JP3730645B2 - High voltage side electrode for electrostatic precipitator - Google Patents

High voltage side electrode for electrostatic precipitator Download PDF

Info

Publication number
JP3730645B2
JP3730645B2 JP2003401598A JP2003401598A JP3730645B2 JP 3730645 B2 JP3730645 B2 JP 3730645B2 JP 2003401598 A JP2003401598 A JP 2003401598A JP 2003401598 A JP2003401598 A JP 2003401598A JP 3730645 B2 JP3730645 B2 JP 3730645B2
Authority
JP
Japan
Prior art keywords
resin
electrode
voltage
collector
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003401598A
Other languages
Japanese (ja)
Other versions
JP2004122130A (en
Inventor
直記 杉田
修 国安
茂雄 黒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midori Anzen Co Ltd
Original Assignee
Midori Anzen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midori Anzen Co Ltd filed Critical Midori Anzen Co Ltd
Priority to JP2003401598A priority Critical patent/JP3730645B2/en
Publication of JP2004122130A publication Critical patent/JP2004122130A/en
Application granted granted Critical
Publication of JP3730645B2 publication Critical patent/JP3730645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Separation (AREA)

Description

本発明は、静電集塵装置に関し、更に詳しくは、気流中に浮遊する荷電した微粒子を捕集するコレクタ部の高圧側電極に関する。   The present invention relates to an electrostatic precipitator, and more particularly, to a high-voltage side electrode of a collector that collects charged fine particles floating in an air current.

静電集塵装置は、気流中の微粒子に対してコロナ放電などにより電荷を与え、この荷電粒子が電界中を通過する間に静電力により荷電粒子を捕集し、除去するもので、産業用の大型装置から家庭用の小型の装置まで種々のタイプが用いられている。   The electrostatic precipitator collects and removes charged particles by electrostatic force while the charged particles pass through the electric field to the fine particles in the airflow by corona discharge. Various types are used from large-sized devices to small-sized devices for home use.

従来のコレクタは、アルミ平行平板型の電極を用いたものであり、一般に、高圧電源の正極(高圧)側に接続した高圧側電極と、その負極(接地)側に接続した集塵電極とを交互に平行配列した構造で、高圧側電極および集塵電極ともにアルミ平板で構成している。   A conventional collector uses an aluminum parallel plate type electrode, and generally includes a high voltage side electrode connected to the positive electrode (high voltage) side of a high voltage power source and a dust collecting electrode connected to the negative electrode (ground) side thereof. The structure is arranged in parallel alternately, and both the high-voltage side electrode and the dust collection electrode are made of aluminum flat plates.

しかし、このように導電性の金属を電極として用いた静電集塵装置のコレクタでは、コレクタに導かれる荷電粒子中に導電性粉塵が混在していると、高圧側と集塵側との電極間で火花放電が起きたり、捕集した粉塵が電極に堆積した結果抵抗が下がり火花放電が起こるなど、電極間での火花放電が避けられなかった。また、これらの電極を保持している絶縁部分やスペーサなどが汚れたり、湿気によりこれらの抵抗が低下することにより電極と接触している部分からコレクタリーク電流が流れるようになり、電圧の低下を起こし、捕集性能が低下するという欠点があった。さらに、電極間のスペーサなどによって、電極間に流す空気の圧力損失が大きいという問題もあった。   However, in the collector of the electrostatic precipitator using the conductive metal as an electrode in this way, if the conductive particles are mixed in the charged particles guided to the collector, the electrodes on the high voltage side and the dust collection side Spark discharge between the electrodes was unavoidable, for example, spark discharge occurred between them, or the collected dust accumulated on the electrodes, resulting in a decrease in resistance and spark discharge. In addition, the insulating part holding these electrodes, the spacers, etc. become dirty, or the resistance decreases due to moisture, so that the collector leakage current flows from the part in contact with the electrodes, which reduces the voltage. There was the fault that it raises and the collection performance falls. Further, there is a problem that the pressure loss of the air flowing between the electrodes is large due to a spacer between the electrodes.

従って、本発明の目的は、電極間での火花放電の発生を防止し、経時的に安定して捕集性能の低下を抑制し得る静電集塵装置を提供することである。   Accordingly, an object of the present invention is to provide an electrostatic precipitator capable of preventing the occurrence of spark discharge between electrodes and stably suppressing a decrease in collection performance over time.

本発明は、気流中の微粒子に対して電荷を与えるアイオナイザー部と、荷電した粒子を静電力によって捕集する集塵側電極と高圧側電極とを備えるコレクタ部とを有する静電集塵装置であって、該高圧側電極が、体積固有抵抗値が使用環境の温湿度において1010〜1013Ωcmのオーダーである半絶縁性樹脂のうちの吸湿性樹脂からなる静電集塵装置である。 The present invention relates to an electrostatic precipitator including an ionizer that applies electric charges to fine particles in an air stream, and a collector that includes a dust collecting electrode that collects charged particles by electrostatic force and a high voltage electrode. The high-voltage side electrode is an electrostatic precipitator made of a hygroscopic resin of a semi-insulating resin whose volume resistivity value is on the order of 10 10 to 10 13 Ωcm in the temperature and humidity of the use environment. .

また、前記高圧側電極に用いる吸湿性樹脂は、体積固有抵抗値が下記式2を満たす樹脂であることを特徴とする。   Further, the hygroscopic resin used for the high-voltage side electrode is a resin whose volume resistivity value satisfies the following formula 2.

(数1)
ΔlogR/ΔlogV≧−1 式2

ただし、式2において、Rは体積固有抵抗値、Vは印加電圧である。
(Equation 1)
Δlog R / Δlog V ≧ −1 Equation 2

However, in Formula 2, R is a volume specific resistance value and V is an applied voltage.

さらに、本発明の静電集塵装置の高圧側電極に用いる吸湿性樹脂はABS樹脂を基材として吸水性樹脂を配合してなる樹脂またはフェノール樹脂を基材とした樹脂であることを特徴とする。   Furthermore, the hygroscopic resin used for the high voltage side electrode of the electrostatic precipitator of the present invention is a resin obtained by blending a water absorbent resin with an ABS resin as a base material or a resin with a phenol resin base material. To do.

また、本発明は、コレクタ部で高圧側電極を保持する部分には高電圧が供給されるような構造となっており、該保持する部分によって電圧が印加される高圧側電極を有するコレクタ部を備える静電集塵装置であり、また、本発明の静電集塵装置の高圧側電極は一体成形した高圧ラダー型電極であることを特徴とする。   Further, the present invention has a structure in which a high voltage is supplied to a portion that holds the high-voltage side electrode in the collector portion, and a collector portion having a high-voltage side electrode to which a voltage is applied by the holding portion is provided. The high-voltage side electrode of the electrostatic precipitator of the present invention is an integrally formed high-voltage ladder type electrode.

電極間での火花放電を防止し、高い捕集性能を得るためには、電極には高電圧を印加しつつ、電極上で電界が局在するのを防ぎ、かつ電極に過剰な電流が流れるのを防止しなければならないと考えられる。従って、電極を半絶縁性とすることで、電極上での瞬時の電荷の移動を制限し、火花放電の発生が抑えられる。電極の体積固有抵抗と火花の発生の有無を調べたところ、電極の体積固有抵抗値が108 Ωcm未満となると高圧側と集塵側電極間で火花放電が起こる傾向がみられた。また、体積固有抵抗値が1013Ωcmを超えるような場合には、集塵効率が低下する傾向が見られる。従って、体積固有抵抗が108 〜1013Ωcmのオーダーの範囲、特に、1010〜1013Ωcmのオーダーの範囲にある電極を用いたとき火花放電が起こらず、優れた集塵性能を有するものが得られる。さらに、電極組立加工時の工数や電極の信頼性を考慮すると、上述の体積固有抵抗をもつ半絶縁性の樹脂を用いて一体成形して電極を形成するのが好ましい。 In order to prevent spark discharge between the electrodes and to obtain high collection performance, while applying a high voltage to the electrodes, the electric field is prevented from being localized on the electrodes and an excessive current flows through the electrodes. It is thought that it must be prevented. Therefore, by making the electrode semi-insulating, the instantaneous charge movement on the electrode is limited, and the occurrence of spark discharge can be suppressed. When the volume resistivity of the electrode and the presence or absence of sparks were examined, when the volume resistivity of the electrode was less than 10 8 Ωcm, there was a tendency for spark discharge to occur between the high voltage side and the dust collecting side electrode. In addition, when the volume resistivity exceeds 10 13 Ωcm, there is a tendency for dust collection efficiency to decrease. Accordingly, spark discharge does not occur when an electrode having a volume resistivity in the order of 10 8 to 10 13 Ωcm, particularly in the order of 10 10 to 10 13 Ωcm, and has excellent dust collection performance. Is obtained. Furthermore, in consideration of the man-hours at the time of electrode assembly processing and the reliability of the electrodes, it is preferable to form the electrodes by integrally molding using the above-described semi-insulating resin having a volume resistivity.

このような半絶縁性の電極用の樹脂を調製するには、基材となる樹脂に(1)カーボンブラック、(2)カーボンファイバー、(3)導電性または半導電性ウィスカー、(4)ステンレス繊維などの導電材を適量配合することによって得ることができると考えられる。しかし、実際に行ってみると、抵抗値が106 Ωcm以下のように比較的低い樹脂は容易に得ることができるが、目的とする1010〜1013Ωcmのオーダーの範囲の抵抗値を有する樹脂の調製はきわめて困難であった。これは以下に示す理由によるものと思われる。すなわち、(1)高抵抗値の樹脂を調製するためには、通常行われているように樹脂に大量の導電材を添加する訳にはいかず、少ない量の導電材で樹脂の抵抗値をコントロールしなければならない。しかし、樹脂に添加された導電材の量が少ない場合には、添加量に対する抵抗値の変化が大きく、わずかに導電材の量が変化しただけでも、樹脂の抵抗値が大きく変化してしまう結果となる。さらに、樹脂中での導電材の分散状態などのわずかの相違によって抵抗値が大きく変化することになるため、安定した抵抗値が得られないこと。また、(2)電極を成形した場合に、電極表面に導電材が含まれていない樹脂層が形成され、この厚さが成形条件によって大きく変化し、抵抗値が変化する原因となるためである。 In order to prepare such a resin for a semi-insulating electrode, (1) carbon black, (2) carbon fiber, (3) conductive or semiconductive whisker, (4) stainless steel as a base resin It is thought that it can be obtained by blending an appropriate amount of a conductive material such as fiber. However, when actually conducted, a resin having a relatively low resistance value of 10 6 Ωcm or less can be easily obtained, but has a target resistance value in the order of 10 10 to 10 13 Ωcm. Preparation of the resin was extremely difficult. This is probably due to the following reasons. That is, (1) In order to prepare a resin having a high resistance value, it is not always possible to add a large amount of conductive material to the resin as usual, and the resistance value of the resin is controlled with a small amount of conductive material. Must. However, when the amount of the conductive material added to the resin is small, the resistance value changes greatly with respect to the added amount, and even if the amount of the conductive material changes slightly, the resistance value of the resin changes greatly. It becomes. Furthermore, since the resistance value changes greatly due to slight differences in the dispersion state of the conductive material in the resin, a stable resistance value cannot be obtained. Further, (2) when the electrode is molded, a resin layer containing no conductive material is formed on the electrode surface, and this thickness largely changes depending on the molding conditions, causing the resistance value to change. .

さらに、一定量の導電材を配合し、成形で生じた樹脂表面の樹脂層を削り取り導電材が含まれている部分を露出させた樹脂では、抵抗値をある程度の範囲におさえることは可能であるが、樹脂の抵抗値が樹脂に印加する電圧によって変化する電圧依存性を示すようになる。すなわち、樹脂に加わる電位傾度が小さい場合は高い抵抗値を示し、電位傾度が大きい場合には低い抵抗値を示すようになり、ある電圧以上の電圧が加わると突然短絡するようになる。従って、このような樹脂で抵抗値が上述の範囲にある電極を作製した場合には、高圧側と接地側電極とが導電性物質でブリッジされたときに火花放電を生ずることになる。また、ある電圧以上で短絡を生じたときに樹脂の変質が起こり、電圧を除去しても元の抵抗値に戻らないという問題があることが判明した。   Furthermore, it is possible to keep the resistance value within a certain range with a resin in which a certain amount of conductive material is blended and the resin layer on the surface of the resin generated by molding is scraped to expose the portion containing the conductive material. However, the resistance value of the resin shows voltage dependency that varies depending on the voltage applied to the resin. That is, when the potential gradient applied to the resin is small, a high resistance value is exhibited, and when the potential gradient is large, a low resistance value is exhibited. When a voltage higher than a certain voltage is applied, a short circuit occurs suddenly. Therefore, when an electrode having a resistance value within the above range is made of such a resin, a spark discharge is generated when the high voltage side and the ground side electrode are bridged by the conductive material. Further, it has been found that when a short circuit occurs at a voltage higher than a certain voltage, the resin changes in quality and does not return to the original resistance value even if the voltage is removed.

そこで、高抵抗の樹脂を得るために、本来絶縁性の樹脂の中に、導電率が10桁以上異なる導電材をごく少量添加して達成するのではなく、樹脂に吸着された水分により樹脂の抵抗値が変化することに着目し、樹脂の吸湿性を制御することによって樹脂の抵抗値を高電圧に対しても1010〜1013Ωcmのオーダーの範囲とすることができることを見いだし、この知見に基づいて、静電集塵装置の高圧側電極として吸湿性樹脂を用いた電極を使用することを可能とし、本発明をなすに至った。 Therefore, in order to obtain a high-resistance resin, it is not achieved by adding a very small amount of conductive material having a conductivity different by 10 orders of magnitude or more to the originally insulating resin, but by the moisture adsorbed on the resin. Focusing on the fact that the resistance value changes, it was found that the resistance value of the resin can be in the order of 10 10 to 10 13 Ωcm even for a high voltage by controlling the hygroscopicity of the resin. Therefore, it is possible to use an electrode using a hygroscopic resin as the high-voltage side electrode of the electrostatic precipitator, and the present invention has been made.

本発明によると、コレクタ部電極間での火花放電が発生せず、コレクタリーク電流がきわめて少なく経時的に安定して優れた捕集性能を有する静電集塵装置を提供することができる。   According to the present invention, it is possible to provide an electrostatic precipitator that does not generate a spark discharge between collector electrodes, has very little collector leakage current, and has stable and excellent collection performance over time.

以下、本発明を詳細に説明する。   The present invention will be described in detail below.

本発明で用いることができる吸湿性樹脂としては、吸湿性を有し、使用環境の温湿度において高電圧に対して108 〜1013Ωcm、好ましくは1010〜1013Ωcmのオーダーの範囲にある体積固有抵抗値を有する樹脂を使用することができる。このような吸湿性樹脂は、樹脂自体に吸湿性があり、上記の体積固有抵抗値を有するもの用いることもできるが、例えば、熱可塑性樹脂のような樹脂基材に吸水性樹脂を添加し、ブレンドすることにより吸湿性を付与した樹脂を用いることができる。このような樹脂は、樹脂中に配合された吸水性樹脂により吸収された水分によって半絶縁性を示すものであり、吸水性樹脂の配合量を調製することによって、樹脂の体積固有抵抗値を108 〜1013Ωcmのオーダーの範囲となるように自由に調製できるため好ましい樹脂である。一般に、配合量は樹脂の種類により異なるが、5〜50重量%である。樹脂基材としては、例えば、ABS樹脂、ポリエステル樹脂、アクリル樹脂のような熱可塑性樹脂があり、特に、ABS樹脂を基材として用いると成形性、難燃性、耐熱性、耐衝撃性の優れたものが得られ、また、製造コストの面でも安価となる。また、樹脂自体が吸湿性を有している樹脂基材としては、フェノール樹脂、メラミン樹脂、尿素樹脂などがあげられる。また、このような熱硬化性樹脂の例として、なかでもフェノール樹脂を基材として用いた場合には、所望の抵抗値が得られ易く好ましい結果が得られる。一方、混合する吸水性樹脂としては、アクリル酸塩系、ポバール系、ポリアミド系などがあり、吸水能、抵抗値の持続性および基材樹脂との相溶性などを考慮して選択される。なお、このような吸湿性樹脂としては、例えば、マクスロイ(商品名、JSR社製)、スミライト(商品名、住友ベークライト社製)などの市販品を使用することができる。 As a hygroscopic resin that can be used in the present invention have a hygroscopicity, 10 8 to 10 13 [Omega] cm for the high voltage at the temperature and humidity of the use environment, preferably in the range of the order of 10 10 to 10 13 [Omega] cm A resin having a certain volume resistivity can be used. Such a hygroscopic resin has hygroscopicity in the resin itself and can have a volume specific resistance value as described above.For example, a water absorbent resin is added to a resin base material such as a thermoplastic resin, A resin imparted with hygroscopicity by blending can be used. Such a resin exhibits semi-insulating properties due to moisture absorbed by the water-absorbing resin blended in the resin. By adjusting the blending amount of the water-absorbing resin, the volume specific resistance value of the resin is 10 It is a preferred resin because it can be freely prepared to be in the order of 8 to 10 13 Ωcm. In general, the blending amount varies depending on the type of resin, but is 5 to 50% by weight. Examples of the resin base material include thermoplastic resins such as ABS resin, polyester resin, and acrylic resin. In particular, when ABS resin is used as the base material, the moldability, flame retardancy, heat resistance, and impact resistance are excellent. Can be obtained, and the manufacturing cost is low. In addition, examples of the resin base material in which the resin itself has hygroscopicity include a phenol resin, a melamine resin, and a urea resin. Further, as an example of such a thermosetting resin, in particular, when a phenol resin is used as a base material, a desired resistance value is easily obtained and a preferable result is obtained. On the other hand, the water-absorbing resin to be mixed includes acrylate-based, poval-based, polyamide-based, etc., and is selected in consideration of water absorption ability, durability of resistance value, compatibility with base resin, and the like. As such a hygroscopic resin, for example, commercially available products such as Maxroy (trade name, manufactured by JSR) and Sumilite (trade name, manufactured by Sumitomo Bakelite) can be used.

このようにして調製された吸湿性樹脂は、例えば、ABSを樹脂基材として、吸水性樹脂を添加した樹脂の場合には、十分乾燥した樹脂プレート(厚さ2mm)を、温度70℃、湿度65%の恒温恒湿槽内に48時間静置した後の吸湿量は乾燥樹脂に対して0.7〜1.5重量%であり、このとき通常雰囲気に戻し一定時間(48時間以上)放置した後の樹脂の体積固有抵抗値は1010〜1013Ωcmのオーダーを示した。 In the case of the hygroscopic resin thus prepared, for example, in the case of a resin to which ABS is used as a resin base material and a water absorbent resin is added, a sufficiently dried resin plate (thickness 2 mm) is obtained at a temperature of 70 ° C. and humidity. The moisture absorption after standing in a 65% constant temperature and humidity chamber for 48 hours is 0.7 to 1.5% by weight with respect to the dry resin. At this time, it is returned to the normal atmosphere and left for a certain time (48 hours or more). The volume resistivity value of the resin after the treatment was on the order of 10 10 to 10 13 Ωcm.

また、同様に、フェノール樹脂の場合は、体積固有抵抗値は1012〜1013Ωcmのオーダーであった。 Similarly, in the case of phenol resin, the volume resistivity value was on the order of 10 12 to 10 13 Ωcm.

次ぎに、吸湿性樹脂について抵抗値と印加電圧の関係から電極に求められる性質について図1を用いて説明する。   Next, the properties required of the electrode from the relationship between the resistance value and the applied voltage for the hygroscopic resin will be described with reference to FIG.

図1は樹脂電極に印加する電圧を変化させたときの樹脂の体積固有抵抗の変化を示すグラフである。このグラフより、印加電圧Vおよび体積固有抵抗Rについて常用対数をとり、式3で定義する傾きKを求める。求めた傾きKを表1に記載した。   FIG. 1 is a graph showing changes in the volume resistivity of the resin when the voltage applied to the resin electrode is changed. From this graph, a common logarithm is taken for the applied voltage V and the volume resistivity R, and the slope K defined by Equation 3 is obtained. The obtained slope K is shown in Table 1.

(数2)
K=ΔlogR/ΔlogV 式3

この傾きKが−1よりも小さいということは、印加電圧を高くすると抵抗値が大きく減少し、電荷の移動が容易となり火花放電が起こりやすくなる。事実、実験例3および4で示される導電材を配合した樹脂では、傾きKは−2〜−3の値で大きな電圧依存性を示し、7〜8kVの電圧で火花放電が起こっている。従って、樹脂の体積固有抵抗値が印加電圧の増加により大きく低下しないような樹脂であれば本発明の電極として使用することができる。このためには、傾きKの値が−1以上の値となることが必要である。すなわち、傾きKが−1〜0の値であれば、体積固有抵抗の電圧依存性は小さく、印加電圧の増加によって火花放電が生じ、電流が流れるようになるほどまで体積固有抵抗値は低下しない。また、0以上の場合には、印加電圧を増加すれば体積固有抵抗値は、逆に増加することになり、電極間により高圧の電圧を印加でき捕集効率を向上させることができる。
(Equation 2)
K = ΔlogR / ΔlogV Equation 3

The fact that the slope K is smaller than −1 means that when the applied voltage is increased, the resistance value is greatly reduced, the charge transfer is facilitated, and spark discharge is likely to occur. In fact, in the resin blended with the conductive material shown in Experimental Examples 3 and 4, the slope K has a large voltage dependency with a value of −2 to −3, and spark discharge occurs at a voltage of 7 to 8 kV. Therefore, any resin can be used as the electrode of the present invention as long as the volume specific resistance value of the resin does not greatly decrease due to an increase in applied voltage. For this purpose, the value of the slope K needs to be a value of −1 or more. That is, when the slope K is a value of −1 to 0, the voltage dependency of the volume resistivity is small, and the volume resistivity does not decrease until a spark discharge occurs due to an increase in applied voltage and current flows. In the case of 0 or more, if the applied voltage is increased, the volume specific resistance value will increase conversely, and a higher voltage can be applied between the electrodes, and the collection efficiency can be improved.

従って、樹脂の傾きKの値が−1以上の値であれば電極間での火花放電がまったく起きない電極が得られ、安定な捕集性能を確保することができるが、特に、−0.6以上の傾きKを示す樹脂を用いるとよい結果が得られる。 Therefore, if the value of the slope K of the resin is -1 or more, an electrode in which no spark discharge occurs between the electrodes can be obtained, and a stable collection performance can be ensured. Good results can be obtained by using a resin having a slope K of 6 or more.

これらの樹脂を用いて電極は、熱硬化性樹脂の場合は注型、圧縮成形、射出成形などで、熱可塑性樹脂の場合は射出成形などによって一体成形することができる。電極の形状としては平板状、ラダー型など種々の形状とすることができるが、特に、ラダー型の電極を用いると集塵性能や組立工数の面から好ましい結果が得られる。   Using these resins, the electrode can be integrally formed by casting, compression molding, injection molding or the like in the case of a thermosetting resin, or by injection molding or the like in the case of a thermoplastic resin. The shape of the electrode may be various shapes such as a flat plate shape and a ladder type. Particularly, when a ladder type electrode is used, preferable results are obtained in terms of dust collection performance and assembly man-hours.

本発明の吸湿性樹脂で作製した電極は高圧側の電極に用い、集塵側電極には導電性の高いアルミなどの金属、導電性の樹脂などの電極を用いる。この理由としては、集塵側電極の電気抵抗が高いと捕集した荷電粒子からの電荷が集塵側電極上に蓄積してしまうため、この蓄積電荷が高圧側と集塵側との電極間の電界を打ち消すように作用する結果、集塵側電極での捕集効率が低下する傾向があるためである。   An electrode made of the hygroscopic resin of the present invention is used as a high-pressure electrode, and a metal such as highly conductive aluminum or a conductive resin is used as the dust collecting electrode. The reason for this is that if the electric resistance of the dust collection side electrode is high, the charge from the collected charged particles accumulates on the dust collection side electrode. This is because the trapping efficiency at the dust collecting side electrode tends to decrease as a result of acting to cancel the electric field.

平板状の電極を用いる場合には、例えば、高圧側の樹脂電極と接地側である集塵側アルミ電極とを交互に平行配列し、各電極を絶縁性のスペーサなどによって固定し、電極間隔を維持するように配置する。また、ラダー型の電極を用いる場合には、例えば、図2に示すように集塵側電極と高圧側ラダー電極を組み合わせて構成する。   When using flat electrodes, for example, the resin electrode on the high-voltage side and the dust-collecting-side aluminum electrode on the ground side are alternately arranged in parallel, and each electrode is fixed with an insulating spacer, etc. Arrange to maintain. Moreover, when using a ladder-type electrode, for example, as shown in FIG. 2, a dust collecting side electrode and a high voltage side ladder electrode are combined.

図2はラダー型の電極を用いた場合のコレクタ部の構成を示す分解斜視図である。図において、参照符号1は高圧側ラダーであり、参照符号2は集塵極板である。高圧側ラダー1には、複数の高圧側電極31 〜3n が形成され、また、集塵極板2にも複数の集塵側電極41 〜4n-1 が成形されている。高圧側ラダー1と集塵極板2とを組合せ、高圧側電極31 〜3n 間に集塵側電極41 〜4n-1 が挿入されコレクタ部が構成される。 FIG. 2 is an exploded perspective view showing the configuration of the collector portion when ladder type electrodes are used. In the figure, reference numeral 1 is a high-pressure side ladder, and reference numeral 2 is a dust collecting electrode plate. A plurality of high voltage side electrodes 3 1 to 3 n are formed on the high voltage side ladder 1, and a plurality of dust collection side electrodes 4 1 to 4 n−1 are also formed on the dust collection electrode plate 2. The high pressure side ladder 1 and the dust collecting electrode plate 2 are combined, and the dust collecting side electrodes 4 1 to 4 n-1 are inserted between the high pressure side electrodes 3 1 to 3 n to constitute a collector part.

また、本発明の吸湿性樹脂からなる半絶縁性の電極を用いる場合、平行平板型の高圧側電極やラダー型高圧側電極31 〜3n の電圧降下を防止するためには、高圧側電極が接地側電極と接触してはならないことはもちろん、接地されていない絶縁物であっても、高圧側電極と接触することは避けなければならない。すなわち、これらの絶縁物はコレクタ部や集塵装置の枠体やケースなどの絶縁物の表面を通じて間接的に接地され、電位降下が起きてしまうためである。これは高圧側電極の抵抗値が高いために起こる現象であり、高圧側電極が導体であれば、絶縁物が接触したとしても電位降下が起きることはない。さらに、絶縁物の表面が汚れて湿気を帯びてくると、電位降下はさらに増幅される。しかし、一方では高圧側電極はどこかで保持しなければならない。このためには、高圧側電極を保持する部分には高電圧が供給されるような構造とすると上記の問題を解決することができる。このように構成することにより高圧側電極全体を同一の高電位とすることができ、電極の各部分間で電位差は生じずコレクタリーク電流も流れることもなく、安定した状態を保つことができる。従って、汚れや湿気による影響を受けず初期の捕集性能ばかりでなく経時的な捕集性能ともに十分な性能を発揮することができる静電集塵装置が得られる。 Further, when the semi-insulating electrode made of the hygroscopic resin of the present invention is used, in order to prevent the voltage drop of the parallel plate type high voltage side electrode and the ladder type high voltage side electrodes 3 1 to 3 n , Of course, it should not be in contact with the ground-side electrode, but it must be avoided that even an ungrounded insulator is in contact with the high-voltage side electrode. In other words, these insulators are indirectly grounded through the surfaces of the insulators such as the collector part and the frame and case of the dust collector, resulting in a potential drop. This is a phenomenon that occurs because the resistance value of the high-voltage side electrode is high. If the high-voltage side electrode is a conductor, a potential drop does not occur even if an insulator comes into contact. Furthermore, the potential drop is further amplified when the surface of the insulator becomes dirty and wet. However, on the other hand, the high voltage side electrode must be held somewhere. For this purpose, the above problem can be solved by adopting a structure in which a high voltage is supplied to the portion holding the high-voltage side electrode. With this configuration, the entire high-voltage side electrode can have the same high potential, and no potential difference occurs between the portions of the electrode, and no collector leakage current flows, so that a stable state can be maintained. Therefore, it is possible to obtain an electrostatic precipitator that is not affected by dirt or moisture and that can exhibit not only initial collection performance but also sufficient collection performance over time.

なお、静電集塵装置によっては耐熱性が必要になる場合があるが、この時は、シランカップリング剤などで処理したガラス繊維など無機系充填物をさらに樹脂に配合することにより熱変形温度を向上させることができる。ABS系の場合には、ガラス繊維を配合することで110℃まで上昇する。また、必要により難燃剤などを樹脂に添加することができる。   Depending on the electrostatic precipitator, heat resistance may be required. At this time, the heat distortion temperature can be increased by adding an inorganic filler such as glass fiber treated with a silane coupling agent to the resin. Can be improved. In the case of the ABS system, the temperature rises to 110 ° C. by adding glass fiber. Moreover, a flame retardant etc. can be added to resin as needed.

静電集塵装置は本発明の高圧側電極を用いたコレクタ部と、通常、気流中の微粒子に電荷を与えるアイオナイザー部とから構成するが、このような構成をどのように配置するか、電極の形状、大きさや配置、電極への給電方法などは、静電集塵装置の用途や種類により適時定められる。   The electrostatic precipitator is composed of a collector section using the high-voltage side electrode of the present invention and an ionizer section that usually gives electric charge to the fine particles in the airflow, but how to arrange such a structure, The shape, size and arrangement of the electrodes, the method of supplying power to the electrodes, etc. are determined in a timely manner according to the use and type of the electrostatic precipitator.

本発明の構成によると、コレクタの高圧側電極では樹脂中に配合された吸水性樹脂が吸収した水分により、樹脂電極の体積固有抵抗を108 〜1013の範囲に維持することができるため、樹脂電極では電荷の移動が制限され火花放電の発生が抑えられる。さらに、電荷の移動が制限されるためコレクタリーク電流も少なくなり、電圧降下が起こらず高電圧が維持される。 According to the configuration of the present invention, the volume specific resistance of the resin electrode can be maintained in the range of 10 8 to 10 13 by the moisture absorbed by the water absorbent resin blended in the resin in the high voltage side electrode of the collector. In the resin electrode, the movement of electric charges is limited, and the occurrence of spark discharge is suppressed. Furthermore, since the movement of charges is limited, the collector leakage current is also reduced, and a high voltage is maintained without causing a voltage drop.

以下、実験例および実施例によって本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to experimental examples and examples.

実験例1
電極材料としてABS樹脂に吸水性樹脂を配合した吸湿性樹脂(吸湿量:1.3重量%、温度25℃湿度60%印加電圧500Vにおける体積固有抵抗:6×1011Ωcm、商品名:マクスロイS704HW、JSR社製)を用い、長さ10cm、幅10cm、厚さ2.5mmの平板電極を作製した。この樹脂電極に、図3aに示すように、この樹脂電極に印加する電圧を変化させ、接地した直径6mmの金属球を接触させるまで近づけたときに、樹脂電極と金属球との間で火花放電が起こる時の電圧を測定した。結果を表1に示す。また、ASTM−D257に基づき、図3bに示すように、樹脂電極試料に印加する電圧を変化させ、樹脂電極の体積固有抵抗を求めた。結果を表1および図1に示す。
Experimental example 1
Hygroscopic resin in which water-absorbent resin is blended with ABS resin as electrode material (moisture absorption: 1.3 wt%, temperature 25 ° C., humidity 60%, volume specific resistance at 500 V applied voltage: 6 × 10 11 Ωcm, trade name: Maxroy S704HW A plate electrode having a length of 10 cm, a width of 10 cm, and a thickness of 2.5 mm was manufactured using JSR Corporation. As shown in FIG. 3a, when a voltage applied to the resin electrode is changed and brought close to contact with a grounded metal ball having a diameter of 6 mm, a spark discharge is generated between the resin electrode and the metal ball. The voltage was measured when this occurred. The results are shown in Table 1. Further, based on ASTM-D257, as shown in FIG. 3b, the voltage applied to the resin electrode sample was changed to obtain the volume resistivity of the resin electrode. The results are shown in Table 1 and FIG.

実験例2
電極材料としてフェノール樹脂からなる吸湿性樹脂(吸湿量:1重量%、温度25℃湿度60%印加電圧500Vにおける体積固有抵抗:3×1012Ωcm、商品名:スミライトPLC2147、住友ベークライト社製)を用い、実験例1と同じ大きさの電極を作製し、実験例1と同様に評価した。結果を表1および図1に示す。
Experimental example 2
Hygroscopic resin made of phenol resin as electrode material (moisture absorption: 1% by weight, temperature 25 ° C., humidity 60%, volume specific resistance at 500 V applied voltage: 3 × 10 12 Ωcm, trade name: Sumilite PLC2147, manufactured by Sumitomo Bakelite Co., Ltd.) An electrode having the same size as in Experimental Example 1 was prepared and evaluated in the same manner as in Experimental Example 1. The results are shown in Table 1 and FIG.

実験例3
電極材料としてPBT樹脂に導電ウィスカーを配合(配合量:15重量%)した半導電性樹脂(吸湿量:0.5重量%以下、温度25℃湿度60%印加電圧500Vにおける体積固有抵抗:1.3×1011Ωcm)を用い、実験例1と同じ大きさの電極を作製し、実験例1と同様に評価した。結果を表1および図1に示す。
Experimental example 3
Semiconductive resin in which conductive whisker is blended with PBT resin as an electrode material (blending amount: 15% by weight) (moisture absorption amount: 0.5% by weight or less, temperature 25 ° C., humidity 60%, applied volume resistivity at 500 V: 1. 3 × 10 11 Ωcm), an electrode having the same size as that of Experimental Example 1 was produced and evaluated in the same manner as Experimental Example 1. The results are shown in Table 1 and FIG.

実験例4
電極材料としてPBT樹脂に導電ウィスカーを配合(配合量:10重量%)した半導電性樹脂(吸湿量:0.5重量%以下、温度25℃湿度60%印加電圧500Vにおける体積固有抵抗:4.3×1013Ωcm)を用い、実験例1と同じ大きさの電極を作製し、実験例1と同様に評価した。結果を表1および図1に示す。

Figure 0003730645
Experimental Example 4
Semi-conductive resin (weight absorption: 0.5% by weight or less, temperature 25 ° C., humidity 60%, applied voltage 500 V, volume resistivity: PBT resin mixed with conductive whiskers as electrode material: 4. 3 × 10 13 Ωcm), an electrode having the same size as that of Experimental Example 1 was produced and evaluated in the same manner as Experimental Example 1. The results are shown in Table 1 and FIG.
Figure 0003730645

実施例1
実験例1と同様にして調製した長さ19cm、幅10cm、厚さ1mmの樹脂平板電極を高圧側電極に用い、集塵電極として厚さ1mmのアルミ平板電極を用いて、図3cに示すように互いに平行に配置し(電極間隔:7.5mm)、集塵装置を作製した。次いで、この集塵装置の捕集性能をJIS B9908形式−1の方法に従い測定した。測定は、コレクタ電圧Vc を2.2kV、アイオナイザー電圧Vi を4.6kVとし、風速1m/秒、試験用エアロゾルとしてDOPエアロゾルを用い、評価粒径は0.3μmで行い捕集率を測定した。また、比較として、高圧側電極に、吸水性樹脂を配合していない通常のABS樹脂(一般に、吸水量:0.5重量%以下、体積固有抵抗:1014Ωcm以上、例えば、商品名:ABS15、JSR社製)を用いた場合(比較例1)およびアルミ板を用いた場合(比較例2)について評価した。結果を表2に示す。

Figure 0003730645
Example 1
As shown in FIG. 3c, a resin flat plate electrode having a length of 19 cm, a width of 10 cm and a thickness of 1 mm prepared in the same manner as in Experimental Example 1 is used as the high-voltage side electrode, and a 1 mm thick aluminum plate electrode is used as the dust collecting electrode. Were arranged in parallel to each other (electrode spacing: 7.5 mm) to produce a dust collector. Subsequently, the collection performance of this dust collector was measured according to the method of JIS B9908 format-1. The collector voltage Vc was 2.2 kV, the ionizer voltage Vi was 4.6 kV, the wind speed was 1 m / sec, DOP aerosol was used as the test aerosol, the evaluation particle size was 0.3 μm, and the collection rate was measured. . Further, as a comparison, a normal ABS resin in which a high-pressure side electrode is not mixed with a water-absorbing resin (generally, water absorption: 0.5% by weight or less, volume resistivity: 10 14 Ωcm or more, for example, trade name: ABS15 , Manufactured by JSR) (Comparative Example 1) and an aluminum plate (Comparative Example 2) were evaluated. The results are shown in Table 2.
Figure 0003730645

実施例2
実験例1の吸湿性樹脂を用いて、実験例1と同様な条件で図2に示すラダー型電極を射出成形し、この電極を高圧側に、カーボンファイバが配合された導電性樹脂を集塵側電極としてコレクタ奥行dが9mm、コレクタピッチが2.9mmとなるように集塵装置を作製した。次いで、集塵装置の捕集性能を、コレクタ電圧Vc を2.3kV、アイオナイザー電圧Vi を4.6kVとし、風速1m/秒、試験用エアロゾルとしてDOPエアロゾルを用い、評価粒径は0.3μmで行い捕集率を測定した。また、比較として、高圧側電極に、比較例1の通常のABS樹脂を用いてラダー型電極を作製し、同様に評価した(比較例3)。結果を表3に示す。

Figure 0003730645
Example 2
Using the hygroscopic resin of Experimental Example 1, the ladder type electrode shown in FIG. 2 is injection-molded under the same conditions as in Experimental Example 1, and the conductive resin mixed with carbon fiber is collected on this electrode on the high pressure side. A dust collector was fabricated so that the collector depth d was 9 mm and the collector pitch was 2.9 mm as a side electrode. Next, the collection performance of the dust collector was set such that the collector voltage Vc was 2.3 kV, the ionizer voltage Vi was 4.6 kV, the wind speed was 1 m / sec, DOP aerosol was used as the test aerosol, and the evaluation particle size was 0.3 μm. And the collection rate was measured. Further, as a comparison, a ladder-type electrode was produced on the high-voltage side electrode using the normal ABS resin of Comparative Example 1 and evaluated in the same manner (Comparative Example 3). The results are shown in Table 3.
Figure 0003730645

実施例3
電極材料としてABS樹脂に吸水性樹脂を配合した吸湿性樹脂(吸湿量:0.9重量%、温度25℃湿度60%印加電圧500Vにおける体積固有抵抗:3×1013Ωcm、商品名:マクスロイHN−901、JSR社製)を用い、図3(c)に示す平行平板型電極(長さ46cm、幅10cm、厚さ1.5mm)を作製した。次いで、この電極を高圧側に、アルミを集塵側電極(厚さ0.5mm)として、コレクタ奥行dが100mm、コレクタピッチが6mmとなるように集塵装置を作製した。次いで、集塵装置の捕集性能を、コレクタ電圧Vc を8kV、アイオナイザー電圧Vi を6kVとし、風速1m/秒、試験用エアロゾルとしてDOPエアロゾルを用い、評価粒径は0.3μmで行い捕集率を測定したところ90%の捕集率が得られた。
Example 3
Hygroscopic resin in which water-absorbent resin is blended with ABS resin as electrode material (moisture absorption: 0.9 wt%, temperature 25 ° C, humidity 60%, volume resistivity at applied voltage 500V: 3 × 10 13 Ωcm, trade name: Maxroy HN -901 (manufactured by JSR) was used to produce a parallel plate electrode (length 46 cm, width 10 cm, thickness 1.5 mm) shown in FIG. Next, using this electrode as the high-pressure side and aluminum as the dust-collecting side electrode (thickness 0.5 mm), a dust collector was prepared so that the collector depth d was 100 mm and the collector pitch was 6 mm. Next, the collection performance of the dust collector is as follows. The collector voltage Vc is 8 kV, the ionizer voltage Vi is 6 kV, the wind speed is 1 m / sec, DOP aerosol is used as the test aerosol, and the evaluation particle size is 0.3 μm. When the rate was measured, a collection rate of 90% was obtained.

表1は高圧電極と接地体とが万一接触した場合を想定して、樹脂に高電圧を印加し、接地した直径6mmの金属球を接触させるまで近づけたとき、電極間で火花放電が起こるときの電圧を測定したもので、実験例3および4では7〜8kV程度で絶縁が破壊され火花放電が起きているのに対し、実験例1および2では20kV印加しても火花放電は起きていない。通常20kVを超える電圧を印加することはあまりないので実質的に火花放電が起きない電極を作製することができる。   Table 1 assumes that the high-voltage electrode and the grounding body should contact each other, and when a high voltage is applied to the resin and brought close to contact with a grounded metal ball having a diameter of 6 mm, spark discharge occurs between the electrodes. In the experimental examples 3 and 4, the insulation was broken at about 7 to 8 kV and spark discharge occurred, whereas in the experimental examples 1 and 2, spark discharge occurred even when 20 kV was applied. Absent. Usually, a voltage exceeding 20 kV is not often applied, so that an electrode which does not substantially cause a spark discharge can be produced.

また、印加電圧を変化させたときの体積固有抵抗率の変化を示す図1の結果によると、図1の実験例1および2、特に、1では印加電圧に関係なくほぼ一定の抵抗値が得られているのに対し、実験例3および4では印加電圧によって2〜3桁以上抵抗値が変化している。この事実と表1の実験結果より印加電圧に対し抵抗変化率が大きく印加電圧が増加すると低抵抗となる樹脂では火花放電が発生し、逆に、抵抗変化率が小いさく抵抗値が上述の範囲に留まる樹脂は火花放電が発生しないことがわかる。   Further, according to the result of FIG. 1 showing the change in the volume resistivity when the applied voltage is changed, in Examples 1 and 2 of FIG. 1, in particular, in FIG. 1, a substantially constant resistance value is obtained regardless of the applied voltage. On the other hand, in Experimental Examples 3 and 4, the resistance value changes by 2 to 3 digits or more depending on the applied voltage. From this fact and the experimental results in Table 1, spark discharge occurs in a resin that has a low resistance when the applied voltage is large and the applied voltage increases. Conversely, the resistance value is small and the resistance value is small. It can be seen that the resin staying in the range does not generate spark discharge.

これは、導電材を添加した樹脂では、樹脂中の導電材の量は少なく、導電材は連続した状態で分散しているのではなく、導電材は樹脂により隔離された状態で樹脂中に分散されている。従って、樹脂内部の電位傾度が大きくなると、樹脂で隔離されている導電材相互間での電荷の移動が容易となるために、電流が流れ易くなり樹脂の抵抗値も低下することによって大きな電圧依存性を示している。一方、これに対し、吸湿性樹脂では樹脂に吸湿された水分が導電性に寄与し、この水分は樹脂中でほぼ連続的に存在し、また移動も容易であるため、抵抗値の電圧依存性は導電材添加樹脂に比べて少なくなる。さらに、吸湿性樹脂では、電圧が増加すると、電流が流れることになるが、電流が流れるとジュール熱が発生し、このジュール熱によって樹脂に吸着されていた水分が僅わずかながら蒸発し、その結果、抵抗が増加するようになるため高い抵抗値を維持することができる。   This is because the amount of the conductive material in the resin is small in the resin to which the conductive material is added, and the conductive material is not dispersed in a continuous state, but the conductive material is dispersed in the resin in a state of being isolated by the resin. Has been. Therefore, if the potential gradient inside the resin increases, the electric charge easily moves between the conductive materials isolated by the resin, so that current flows easily and the resistance value of the resin also decreases, resulting in a large voltage dependence. Showing sex. On the other hand, in the hygroscopic resin, the moisture absorbed by the resin contributes to the conductivity, and this moisture exists almost continuously in the resin and is easy to move. Is less than the conductive material-added resin. Furthermore, in the hygroscopic resin, when the voltage increases, a current flows. However, when the current flows, Joule heat is generated, and the moisture adsorbed on the resin is evaporated slightly by this Joule heat. Since the resistance increases, a high resistance value can be maintained.

以上のように、導電材添加樹脂では、電極に加わる電圧が高くなると抵抗が下がり、抵抗が下がると電流がより流れ易くなり、電流が流れ易くなるとさらに抵抗が下がり、最終的に火花放電が起きてしまうことになる。   As described above, in the conductive material-added resin, the resistance decreases when the voltage applied to the electrode increases, the current flows more easily when the resistance decreases, and the resistance further decreases when the current easily flows, and spark discharge finally occurs. It will end up.

これに対し、吸湿性樹脂の場合には、電極に高い電圧を印加しても高い抵抗値が維持されるため、火花放電にはいたらないと考えられる。さらに、高い抵抗値により電荷の移動が制限され、コレクタリーク電流はきわめて少なく電圧降下が起こらない。以上のように、電圧に対するよる抵抗値の変化が小さいことは安定な捕集性能を確保するうえに重要であることがわかる。   On the other hand, in the case of a hygroscopic resin, a high resistance value is maintained even when a high voltage is applied to the electrode. Furthermore, the movement of electric charges is limited by a high resistance value, and the collector leakage current is very small and no voltage drop occurs. As described above, it is understood that a small change in the resistance value with respect to the voltage is important for ensuring stable collection performance.

さらに、本発明の吸湿性樹脂で電極を作製すると、コレクタリーク電流が極めて少ないため、高湿度の環境下においても捕集性能が低下するようなことはない。   Furthermore, when the electrode is made of the hygroscopic resin of the present invention, the collector leakage current is extremely small, so that the collection performance does not deteriorate even in a high humidity environment.

表2の結果から、本発明の吸湿性樹脂からなる樹脂電極は、アルミ電極とほぼ同等な捕集効率を有し、火花放電も起こらず優れた静電集塵装置であることがわかる。さらに、吸湿性樹脂を用いて一体成形により電極を作製することができるため、金属板に半導電性の表面処理を施した電極等にみられる絶縁破壊による金属面の露出などが起こることはなく、安定した電極状態を維持し、集塵能力が経時で低下するようなこともない。   From the results shown in Table 2, it can be seen that the resin electrode made of the hygroscopic resin of the present invention has a collection efficiency substantially equal to that of the aluminum electrode and is an excellent electrostatic dust collector without causing spark discharge. Furthermore, since the electrode can be produced by integral molding using a hygroscopic resin, there is no exposure of the metal surface due to dielectric breakdown, etc., seen in an electrode etc. subjected to a semiconductive surface treatment on a metal plate. The stable electrode state is maintained, and the dust collection ability does not decrease with time.

また、表3の実施例2のようなラダー型の高圧側電極を用いた場合、奥行き9mmという極めて薄型で、優れた捕集能力を有する静電集塵装置が得られることがわかる。また、実施例3のように奥行きを長くすることによってさらに高い捕集率を得ることもできる。さらに、ラダー型電極は吸湿性樹脂を一体成形して作製できるため、組立加工時の工数が減り、製作コストの低減化を図れる。また、図2のように集塵電極とを組合せると電極間隔を保持するためのスペーサなどは不要となり圧力損失の問題も解決できる。   Further, it can be seen that when a ladder-type high-voltage side electrode as in Example 2 in Table 3 is used, an electrostatic dust collector having an extremely thin thickness of 9 mm and an excellent collecting ability can be obtained. In addition, a higher collection rate can be obtained by increasing the depth as in the third embodiment. Furthermore, since the ladder-type electrode can be manufactured by integrally molding a hygroscopic resin, the number of man-hours during assembly processing is reduced, and the manufacturing cost can be reduced. Further, when combined with a dust collecting electrode as shown in FIG. 2, a spacer or the like for maintaining the electrode interval becomes unnecessary, and the problem of pressure loss can be solved.

さらに、このようなラダー型の電極では平行平板型のコレクタの利点を生かしているため、汚れや湿気による汚損が進行せず捕集性能が低下するようなことはない。   Furthermore, since such a ladder-type electrode takes advantage of the parallel plate-type collector, contamination due to dirt or moisture does not progress and the collection performance does not deteriorate.

樹脂の印加電圧に対する樹脂の体積固有抵抗の変化を示すグラフである。It is a graph which shows the change of the volume specific resistance of resin with respect to the applied voltage of resin. ラダー型の電極を用いたコレクタ部の構成の一例を示す分解斜視図である。It is a disassembled perspective view which shows an example of a structure of the collector part using a ladder type electrode. 評価試験方法を示す図であって、(a)は印加電圧と火花放電との関係を評価するための回路図、(b)は印加電圧に対する体積固有抵抗を測定するための回路図、(c)は平行平板型コレクタの電極の配置を示す図である。It is a figure which shows an evaluation test method, Comprising: (a) is a circuit diagram for evaluating the relationship between an applied voltage and spark discharge, (b) is a circuit diagram for measuring volume specific resistance with respect to an applied voltage, (c) ) Is a diagram showing the arrangement of the electrodes of the parallel plate collector.

符号の説明Explanation of symbols

1 高圧ラダー
2 集塵極板
1 〜3n 高圧側電極
1 〜4n-1 集塵電極
d 奥行き
1 high pressure ladder 2 collecting electrode plates 3 1 to 3 n high voltage side electrode 4 1 to 4 n-1 collection electrode d Depth

Claims (1)

吸湿性樹脂で構成された静電集塵装置用の高圧側電極であって、体積固有抵抗値と印加電圧との関係が下記式1を満たすことを特徴とする電極。
(数1)
ΔlogR/ΔlogV≧−1 式1

(ただし、式1において、Rは体積固有抵抗値、Vは印加電圧である。)
A high-pressure electrode for an electrostatic precipitator made of a hygroscopic resin, wherein the relationship between the volume specific resistance value and the applied voltage satisfies the following formula 1.
(Equation 1)
Δlog R / Δlog V ≧ −1 Equation 1

(In Equation 1, R is a volume resistivity value, and V is an applied voltage.)
JP2003401598A 2003-12-01 2003-12-01 High voltage side electrode for electrostatic precipitator Expired - Lifetime JP3730645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003401598A JP3730645B2 (en) 2003-12-01 2003-12-01 High voltage side electrode for electrostatic precipitator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003401598A JP3730645B2 (en) 2003-12-01 2003-12-01 High voltage side electrode for electrostatic precipitator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21150694A Division JP3516725B2 (en) 1994-09-05 1994-09-05 Electrostatic dust collector

Publications (2)

Publication Number Publication Date
JP2004122130A JP2004122130A (en) 2004-04-22
JP3730645B2 true JP3730645B2 (en) 2006-01-05

Family

ID=32291146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003401598A Expired - Lifetime JP3730645B2 (en) 2003-12-01 2003-12-01 High voltage side electrode for electrostatic precipitator

Country Status (1)

Country Link
JP (1) JP3730645B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015007142T5 (en) 2015-11-24 2018-08-02 Mitsubishi Electric Corporation Discharge device and equipped with this air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4638452B2 (en) * 2007-01-31 2011-02-23 三菱電機株式会社 Electric dust collector
JP2008284515A (en) * 2007-05-21 2008-11-27 Daicel Polymer Ltd Member for dust collection element, and dust collection element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015007142T5 (en) 2015-11-24 2018-08-02 Mitsubishi Electric Corporation Discharge device and equipped with this air conditioner
DE112015007142B4 (en) 2015-11-24 2022-08-25 Mitsubishi Electric Corporation Unloading device and air conditioner equipped with it

Also Published As

Publication number Publication date
JP2004122130A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP4960831B2 (en) Electric dust collector
JP4638452B2 (en) Electric dust collector
US4166729A (en) Collector plates for electrostatic precipitators
US10744516B2 (en) Electrostatic dust collecting module an electrostatic air purifier thereof
CN107107074B (en) Electrostatic dust collector
US2978066A (en) Gas cleaning apparatus
US5474599A (en) Apparatus for electrostatically cleaning particulates from air
US6096119A (en) Apparatus for using ferrite spacers to suppress arc noise in electrostatic precipitators
US8617298B2 (en) Electrical dust precipitator
PL181050B1 (en) Separator for removing electrically charged aerosol particles from air
US20050204577A1 (en) Hairdryer with electrostatic precipitator and filter cleanout warning
JP3516725B2 (en) Electrostatic dust collector
JP2007029845A (en) Electric dust-collecting device and air treatment apparatus provided with electric dust-collecting device
TW442334B (en) Air cleaning device and electrical dust collecting device
JP3730645B2 (en) High voltage side electrode for electrostatic precipitator
JP2003019444A (en) Resin electrode and electrostatic dust collector using the same
US4077782A (en) Collector for electrostatic precipitator apparatus
JP4149526B2 (en) Resin electrode
US9827573B2 (en) Electrostatic precipitator
JP2006187739A (en) Dust collector and air-conditioner
US20170354978A1 (en) Electrostatic air filter
JP2010094635A (en) Electric dust collector
KR20090009549U (en) Electric precipitation and air cleaner having the same
JP2006046727A (en) Air cleaner, air cleaning device, and air conditioner
KR20170103111A (en) Electric Dust Collection Device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 9

EXPY Cancellation because of completion of term