JP4636738B2 - Contaminated soil purification method and apparatus - Google Patents

Contaminated soil purification method and apparatus Download PDF

Info

Publication number
JP4636738B2
JP4636738B2 JP2001183955A JP2001183955A JP4636738B2 JP 4636738 B2 JP4636738 B2 JP 4636738B2 JP 2001183955 A JP2001183955 A JP 2001183955A JP 2001183955 A JP2001183955 A JP 2001183955A JP 4636738 B2 JP4636738 B2 JP 4636738B2
Authority
JP
Japan
Prior art keywords
soil
surfactant
washing
water
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001183955A
Other languages
Japanese (ja)
Other versions
JP2002136962A (en
Inventor
尚人 岡本
克己 藤間
岳夫 金沢
伸一 山上
恵祐 岩堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2001183955A priority Critical patent/JP4636738B2/en
Publication of JP2002136962A publication Critical patent/JP2002136962A/en
Application granted granted Critical
Publication of JP4636738B2 publication Critical patent/JP4636738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Physical Water Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、対生態系有害物質に汚染された土壌中から有害物質を分離除去する方法において、特に、界面活性剤を使用して土壌から対生態系有害物質を分離する汚染土壌浄化方法及びその装置に関する。
【0002】
【従来の技術】
従来より、産業廃棄物の不適切な取り扱い、輸送途上の事故、農薬その他の化学物質の無知な使用などにより土壌が汚染され、動植物を含む生態系に有害な結果をもたらしている。急性毒性や変異原性の強い化学物質はもちろんのこと、例え毒性のない炭化水素や油脂類でも、生態系に適した環境を破壊し、生物の生存を脅かす。これら有害物質は、例えば、鉛、六価クロム、水銀などの重金属、農薬や殺虫剤に由来する有機金属化合物や有機塩化物、電気産業から排出したPCBやトリクレンなどの有機塩化物、焼却炉の残灰に含まれるダイオキシン類、機械工業などが排出する切削油や潤滑油、タンカー事故による原油、原油精製工業からの各種副生物やタールなど枚挙に遑がない。特に、都市交通やコークス製造・アルミ精錬等から発生する多環芳香族炭化水素類により汚染された土壌は極めて毒性が強いとされている。これら有害物質は植物や土壌中の生物に害を与えるのみならず、有害物質が地下水や河川等に溶解して水質を汚染し、大気中に揮発して拡散して大気を汚染するので、人その他の生物にも悪影響をおよぼすこととなる。
特に多環芳香族炭化水素類は、近年、石油及び石炭等の化石燃料を製造するためのプラントから環境中への放出量増加が認められており、該多環芳香族炭化水素類の持つ発癌性あるいは突然変異を誘発する変異原性の人体及び環境に及ぼす影響が懸念されている。
【0003】
このような土壌汚染に対して、従来は、汚染土壌を粉砕して空気を通すことにより対象物質を除去する風乾法や汚染土壌をコンクリートにより封じ込める固化、安定化法、低温若しくは高温で熱処理する熱分解、熱脱着法、また汚染土壌に水、栄養分、空気等を供給して土着の微生物により分解させる微生物分解処理法などが用いられてきた。
しかし、前記風乾法では有害物質が土壌中に残留する可能性があるばかりであなく、大気汚染の原因となる。固化、安定化法では処理後の汚染物質の漏洩を経時的に監視する必要がある上に、大量の土壌の処理が困難であるという問題を有している。また熱分解、熱脱着法では有機塩化物系化合物の燃焼により発生するダイオキシンの処理が必要となりコスト高となる。さらに、微生物分解処理法は低コストではあるが処理時間が長く、実用性がない。
【0004】
そこで、このような土壌中の有害な有機化合物の処理方法として、掘削した汚染土壌に界面活性剤やアルカリ等を加えて水で洗浄し、汚染物質を抽出する方法が提案されている。
その一つとして、特開平9−75907号に界面活性剤を用いた土壌浄化方法が提案されている。これは、有機化合物で汚染された土壌を掘削し、攪拌槽にて該掘削土壌に所定濃度の界面活性剤溶液を加えて攪拌混合して汚染物質を脱離し、脱離終了後、固液分離装置により土壌と界面活性剤溶液を分離する方法である。このようにして界面活性剤溶液を分離した土壌は掘削場所へ戻し、界面活性剤溶液は活性炭吸着槽にて汚染物質を除去した後再利用する。
【0005】
かかる界面活性剤を用いた処理方法では、土壌浄化処理においてはコスト的にも安価で簡易な処理が可能であるが、その一方土壌の洗浄の際に大量の汚染水が発生するという問題を有しており、土壌洗浄設備に高い処理能力を備える排水処理設備を併設する必要がある。
かかる問題を解決するために特開平10−216693号では、図3に示すように、化学洗浄剤が添加された洗浄水Wを湛える洗浄槽02内に汚染土壌Bを収容して化学洗浄することにより汚染土壌Bから汚染物質Aを分離させた後、空気中の気体成分が過分に溶解した過飽和水を洗浄槽02内に供給して洗浄水W中に微細気泡を発生させ、この微細気泡を汚染物質Aに付着させることにより汚染物質Aを洗浄水Wの水面に浮かび上がらせて回収する汚染物質分離方法を提案している。
【0006】
【発明が解決しようとする課題】
しかしながら、かかる方法では、上記記載のごとく簡略化された洗浄処理システムにより設備コストの大幅な削減が可能となるが、土壌の種類によっては洗浄槽中での気泡の発生により、汚染物質とともに土壌が浮遊して回収されてしまい最終的な汚染物質の処理量が増加したり、逆に、洗浄槽内が常に流動状態にあるため下部の土壌中に汚染物質が僅かに残留する惧れがあり、本発明における被処理物質である多環芳香族炭化水素のように微量でも非常に毒性の強い汚染物質の処理には適さない。
したがって、本発明はかかる従来技術の課題に鑑み、界面活性剤を用いた土壌洗浄により排出される大量の排水から確実に有害物質を分離することが可能で、かつ洗浄に用いられる水を循環利用でき、排水処理を含む土壌浄化処理を効率良く行うことが可能な汚染土壌浄化方法及びその装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明はかかる課題を解決するために、界面活性剤水溶液を用いて対生態系有害物質で汚染された土壌を洗浄する洗浄工程と、浄化土壌からなる固相と当該有害物質を取込んだ乳化物を含む界面活性剤水溶液からなる液相とに固液分離する固液分離工程とを有する汚染土壌浄化方法において、
前記固液分離した液相を冷却、凍結させて氷を生成させることにより当該有害物質を前記液相中に濃縮するとともに、当該有害物質が除かれた前記氷を融解し、生成した水を前記土壌洗浄に再循環利用することを中間技術として提案する
【0008】
ここに言う対生態系有害物質とは、急性毒性や変異原性・催奇性のある化学物質及び生物に付着若しくは経口進入して、呼吸、発汗、運動、消化吸収機能など生命維持に必要な諸機能を阻害する物質をいう。前者に属するものが、例えば、鉛、水銀、六価クロムのような無機物、有機水銀や有機錫化合物のような有機金属化合物、トリクロロエチレン、テトラクロロエチレン、ポリ塩化ビフェニル、6塩化ベンゼンのような有機塩化物、アントラセン、フェナントレン、ピレン、フルオランテン、クリセン、ベンゾピレン、ペリレンのような多環式芳香族炭化水素、後者に属するものが、例えば、原油、原油精製溜分、鉱油、タールのような原油由来物質などがある。
【0009】
前記した有害な物質には水溶性のものも含まれるが、多くは水不溶性のものが多く、いずれにせよ、土壌粒子に吸着されているので、限られた時間と水で土壌を洗浄するには土壌粒子表面の濡れを高めて吸着している有害物を離脱させ、可溶化若しくは乳化によって、水相に分散せしめて、土壌粒子表面の有害物濃度を低下させる機能を有する界面活性剤の使用は不可欠である。
【0010】
界面活性剤には、一般に知られている陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤、非イオン界面活性剤のいずれも使用することができる。更に具体的には例えば、脂肪酸ナトリウム、硫酸アルキル塩、硫酸アルキルポリオキシエチレン塩、アルキルベンゼンスルホン酸塩、α―オレフィンスルホン酸、のような陰イオン界面活性剤、アルキルトリメチルアンモニュウム塩、トリエタノールアミン・ジ脂肪酸エステル四級塩のような陽イオン界面活性剤、アルキルジメチルアミンオキシド、アルキルカルボキシベタイン、アミドアミノ酸塩のような両性イオン界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、脂肪酸ポリオキシエチレンエステル、脂肪酸ソルビタンエステルのような非イオン界面活性剤の中から選ぶことができ、二種以上を組み合わせて用いることもできる。
【0011】
特に、土壌中にはカルシウムイオンなど、界面活性剤のクラフト点を下げてその機能効果を低減させるような、金属イオンがふくまれるので、これらの金属イオンと高い反応性を持つキレート剤やゼオライトなどの金属封鎖剤を併用することも好ましい。
【0012】
そして本発明の中間技術においては、界面活性剤により土壌と分離された有害物質を含む排水を、冷凍機等により冷却して凍結させ、不純物を含まない真氷を生成させることにより界面活性剤及び有害物質等の不純物を濃縮し、前記真氷を融解して生成した水を土壌洗浄に再循環利用することにより、水と界面活性剤及び有害物質を確実に分離することが可能となり、さらに水の再利用が容易に可能となるために、コストが低減するとともに効率の良い土壌洗浄が可能となる。尚、前記排水を凍結させる際には、該排水中に微細気泡を放出して絶えず空気で攪拌動揺させるとよい。そうすることにより、排水中の水の結晶の核周辺は常に物質移動が頻繁に行われるので、続いて精製する結晶が純粋な水の結晶のみとなり、これにより排水の不純物濃縮、精製が効率よく行われる。
【0013】
そして本発明の汚染土壌浄化方法は、前記分離した液相を、含有界面活性剤のクラフト点以下に冷却するか、曇点以上に昇温するか、超音波を照射することにより、液相の有害物質の可溶化若しくは乳化を破壊して上層と下層に二層分離し、当該有害物質を含む下層は冷却、凍結して氷を生成させることにより当該有害物質を前記下層中に濃縮するとともに、当該有害物質が除かれた前記氷を融解し、生成した水を前記土壌洗浄に再循環利用することを特徴とする。
【0014】
これは、前記界面活性剤により汚染土壌を洗浄処理した後の排水を、凍結させる前にクラフト点以下に冷却することで、イオン性界面活性剤のミセル形成による溶解度を大幅に減少させて該界面活性剤を分離させる工程を含むものである。クラフト点とは、周知のように界面活性剤の水中でのミセル形成による溶解度が急激に増大する温度のことで、通常、この温度以上で界面活性剤を使用しないと溶解度が小さく、役に立たない。一方、非イオン性界面活性剤は、曇点以上の温度で溶解度が急激に低下する。
【0015】
また、このようにして分離した界面活性剤は比重が水より小さいため上層に溜まり、一方比重の水より大きい有害物質若しくは水溶性の有害物質は下層に移行するため、二層に分離した排水のうち界面活性剤を含む上層は再度循環使用することができるのでコストの削減を図ることができる。さらに有害物質と界面活性剤とが分離するため、次工程での有害物質処理が容易になる。即ち本発明の汚染土壌浄化方法の更なる特徴は、前記二層分離して有害物質が除かれた界面活性剤を前記土壌洗浄に再循環利用することを特徴とする。
【0016】
さて、前記固液分離によって得られた有害物質を取り込んだ液相中の、当該有害物質が水不溶性で且つ比重が水より小さい場合は、前記含有界面活性剤のクラフト点以下に降温したり、超音波の作用により界面活性剤および有害物質を分離析出させる操作をしたとき、当該有害物質は界面活性剤とともに、上層に移行する。この場合、界面活性剤と有害物質との分離は別の方法で行うか、若しくは上層界面活性剤とも別途分解工程へ移送して無害化する必要がある。
【0017】
また、本発明による土壌の洗浄処理は処理の条件によっては必ずしも一度の回分操作で所望の浄化が得られない場合もあり得る。即ち、処理器の大きさ、一度に処理すべき土壌の量、これによって限られる使用可能な水の量、界面活性剤の能力や濃度によって、処理率((初期土壌汚染濃度−処理後土壌汚染濃度)×100/初期土壌汚染濃度)は100%とはならず、条件によって異なる。このような場合、設定した土壌の最終到達汚染濃度に応じて、複数回の洗浄を繰り返す多段処理によって処理目的を達成することができる。
【0018】
例えば、前記制約条件により、一度の洗浄処理による到達処理率が90%しか得られず、1000ppmの汚染物質濃度で汚染された、汚染土壌を1ppm以下の最終到達汚染濃度まで下げたいとき、n回以上繰り返す多段洗浄を行うべきとすれば、
(1−0.9)n×1000ppm≦1ppm
10−n≦10−3 ∴n≧3
即ち、3回以上洗浄すれば目的は達せられることになる。
【0019】
これらの発明を効果的に実施する装置の発明を下記に提案する
【0020】
界面活性剤水溶液を用いて対生態系有害物質で汚染された土壌を洗浄する土壌洗浄手段を具えた土壌浄化装置において、
前記土壌洗浄後の、当該有害物質を取り込んだ界面活性剤を含む排水を含有界面活性剤のクラフト点以下に冷却するか、曇点以上に昇温するか、超音波を照射するかして、液相の乳化を破壊して上層と下層に二層分離する二層分離手段と、
分離された当該有害物質を含む下層を冷却して凍結させる凍結濃縮手段と、
凍結により生成した当該有害物質が除かれた氷を分離して融解する氷分離融解手段と、
分離された界面活性剤及び氷の融解により生成した水とを利用して土壌洗浄機に供給する洗浄水を調製する洗浄水調製器と、を具えることを特徴とする。
【0021】
また、前記汚染土壌浄化装置において、更に本発明は、前記凍結濃縮手段と前記氷分離融解手段とが、ヒートポンプの放熱/吸熱サイクルにより同一槽で行われることを特徴とする。
これにより、前記凍結濃縮手段と氷分離融解手段とを兼ね備えた槽に、ヒートポンプサイクル/冷凍サイクルを交互に形成させる構成とすることで、真氷の移動を省き簡易な設備となり、かつ設置面積が削減する。
【0022】
さらにまた、本発明は前記氷分離融解手段にて氷の融解を凝縮器側で、前記凍結濃縮手段にて排水の凍結を蒸発器側で行うとともに、前記界面活性剤分離手段での界面活性剤を含む排水のクラフト点温度以下への冷却に前記氷の融解水を利用し、前記凍結濃縮時の凝縮熱を前記洗浄水調整器の加温熱源と前記界面活性剤分離手段での界面活性剤を含む排水の曇点以上への昇温とに利用するヒートポンプで連結したことを特徴とする。
【0023】
前記洗浄水調整器は界面活性剤の溶解度を増加させるためにクラフト点以上に保持する必要があり、一方、前記二層分離手段では該界面活性剤を浮遊分離させるためにクラフト点以下あるいは曇点に保たなければならない。そこで、かかる発明では、イオン性界面活性剤を用いたときは、氷の生成時の凝縮熱を前記洗浄水調整器に導き温度を上昇させ、また氷の融解により生成した低温の融解水を前記二層分離手段に導いて該界面活性剤分離手段を低温に維持し、非イオン性界面活性剤を用いたときは、氷の生成時の凝縮熱を利用することにより、熱効率のよい土壌浄化装置を提供することが可能となる。
尚、上記したように氷の融解水からの冷熱を利用して界面活性剤分離手段を冷却する方法とは別に、氷を融解する際の融解熱を利用して冷却する方法を利用してもよい。
【0024】
【0025】
【0026】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の中間技術にかかる土壌浄化装置の全体構成図で、図2は本発明の実施形態の全体構成図である。
図1に示すように、本発明の中間技術にかかる土壌浄化装置は、土壌洗浄工程1と凍結濃縮工程3とから構成され、該土壌洗浄工程1は、土壌洗浄機10、固液分離器11、12、戻入手段35からなり、凍結濃縮工程3は、貯留槽13a、凍結濃縮手段13b及び氷分離融解手段13cからなる有害物質分離手段13と冷凍・ヒートポンプ装置16とで構成される。
【0027】
前記土壌洗浄工程で土壌洗浄機10には、例えば、有害物質を含有する汚染土壌20の投入口から導入された該汚染土壌20を螺旋形スクリューの回転により下流側へ移動させるスクリューフィーダを用い、該土壌洗浄機10の下流側に洗浄水供給口を設け、洗浄水21及び界面活性剤を土壌投入口側へ通流させて汚染土壌の洗浄が行われるようにする。
また、固液分離器11は前記土壌洗浄機10の下流側、つまり土壌排出口側に設け、該土壌洗浄機10により洗浄が行われた土壌から、ろ過により液体分を除くフィルタシックナー等を用いるとよい。固液分離した土壌は例えばバケットコンベヤなどの戻入手段35により再度土壌洗浄機に戻し入れ洗浄を繰り返すことが出来るように構成する。さらに、その下流側には沈澱により排水中に残留した土壌を分離する固液分離器12を設ける。
【0028】
前記凍結濃縮工程は、有害物質を取り込んだ界面活性剤を含む排水から純水を分離する工程で、貯留槽13a、凍結濃縮手段13b及び氷分離融解手段13cが併設された有害物質分離手段13と、冷凍・ヒートポンプ装置16とからなる。前記凍結濃縮手段13bは、冷凍・ヒートポンプ装置16の蒸発器側に位置して冷凍サイクル16aが形成されており、該凍結濃縮手段13bに蓄えられた排水を冷却することにより純水を凍結させて不純物と分離する構成となっている。一方、前記氷分離融解手段13cは、前記冷凍・ヒートポンプ装置16の凝縮器側に位置してヒートポンプサイクル16bが形成され、これにより融解した純水29は前記土壌洗浄機10に循環させて再利用する。
【0029】
尚、前記洗浄水21中に含まれる界面活性剤は、陰イオン界面活性剤、陽イオン界面活性剤、非イオン界面活性剤のいずれを用いてもよく、例えばアルキルベンゼンスルホン酸塩、アビエチン酸塩、脂肪酸せっけん、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンノニルフェニルエーテル等、一種若しくは複数組合わせて、汚染物質及び土壌に適した界面活性剤を使用する。
【0030】
次に、かかる中間技術における汚染土壌の浄化工程を説明する。
まず、有害物質を含有する汚染土壌20を土壌洗浄機10に投入し、その下流側から供給する洗浄水21との混合により該汚染土壌20から有害物質を分離した後、水分を含む浄化土壌をフィルタで上下に仕切られた固液分離器11に導入して液体分を除去する。一度の洗浄で有害物濃度が所定値に下がらない場合は、戻入手段35により、分離された土壌を再び土壌洗浄機に戻して、洗浄を繰り返す。そして、浄化された土壌24は掘削現場に戻されたり、土壌利用場所へ搬送されるなどして環境中に返還される。
一方、前記土壌洗浄機10を経て有害物質を取り込んだ界面活性剤を含む排水23は、前記固液分離器11で浄化土壌から分離された液体分26とともに固液分離器12に導かれ、ここで液体中に残存する浄化土壌25を沈澱分離した後、凍結濃縮工程3に送り出される。
【0031】
前記土壌洗浄工程1から排出される有害物質含有排水27は、バルブa、cとを開の状態にしてポンプ18により有害物質分離手段13の貯留槽13aに一時的に貯留され、所要量貯留された時点で凍結濃縮手段13bに供給される。そして、該凍結濃縮手段13bにて、前記冷凍・ヒートポンプ装置16により形成された冷凍サイクル16aの冷媒管に純水が氷結するため、有害物質を取り込んだ界面活性剤が濃縮された排水は該凍結濃縮手段13bの下部に溜まり、バルブa、cを閉に、バルブb、eを開にした状態でポンプ18により有害物質濃縮排水30として分解工程へ排出される。
前記排水30が完全に排出された後、バルブb、eを閉め、凍結濃縮手段13bに今度はヒートポンプサイクル16bを形成させて、氷分離融解手段13cとして機能させることにより、冷媒管に氷結した氷を融解して純水を得ることができる。ここで得た純水29は前記土壌洗浄工程に返送して再利用する。
【0032】
このように、前記冷凍・ヒートポンプ装置16により冷凍・ヒートポンプサイクルを交互に形成することにより、後述する図2に示すように1つの槽で純水を生成することもできるし、図1に示すように、2槽若しくはそれ以上の槽を設置して夫々時間差をもって前記凍結濃縮手段13b及び氷分離融解手段13cとすることで、前記土壌洗浄工程1から排出される大量の排水を効率良く処理することができ、また、冷凍・ヒートポンプ装置16の蒸発器側及び凝縮器側の熱エネルギを有効に活用することができ、動力の無駄を低減することができる。
【0033】
また、図2の本発明における実施形態は、上記した第1実施形態にさらに界面活性剤と有害物質とを分離する工程(二層分離工程)を設けた装置で、土壌洗浄工程1と凍結濃縮工程3と界面活性剤リサイクル工程2とからなる。
かかる第2実施形態において、土壌洗浄工程1は第1実施形態と同様の構成となっている。
界面活性剤リサイクル工程では、使用界面活性剤がイオン性の場合は水溶液をクラフト点以下に冷却して分離し、使用界面活性剤が非イオン性の場合は水溶液を逆に曇点以上に温めて分離する必要がある。前記土壌洗浄工程1から排出される有害物質含有排水27の処理工程である界面活性剤リサイクル工程2は、界面活性剤分離手段(二層分離手段)14と洗浄水調整器15とから構成され、該界面活性剤分離手段14は使用した含有界面活性剤のクラフト点以下あるいは曇点以上に維持されており、前記洗浄水調整器15は同クラフト点以上あるいは曇点以下に保たれている。これにより、前記界面活性剤分離手段14では界面活性剤の溶解度が非常に低いため該界面活性剤が分離し、逆に洗浄水調整器15では界面活性剤が溶解するようになっている。
そして、次工程の凍結濃縮工程3では前記中間技術と同様に、排水中の不純物を濃縮分離して純水を得るように構成されている。
【0034】
かかる実施形態の流れを説明するに、土壌洗浄工程1にて中間技術と同様に汚染土壌の洗浄処理により排出される排水27は、バルブaを開くことにより界面活性剤分離手段14に導かれ、ここで界面活性剤が浮遊分離するとともに本例の場合有害物質は比重が水より大きいので該界面活性剤分離手段14下部に沈降する。分離された界面活性剤33は洗浄水調整器15へ導かれ、また、下部に沈降した有害物質を含む排水は、バルブd、cを開いた状態でポンプ18により、凍結濃縮工程3の貯留槽13aに送給される。
尚、界面活性剤分離手段14は超音波や超音波を伴う微細気泡を槽内に付与して、該微細気泡や超音波により界面活性剤と有害物質の分離を行うことも可能である。また、前記非イオン性界面活性剤の場合、昇温して分離するとき、この超音波による昇温効果で曇点以上にすることも可能である。
前記貯留槽13aに貯留された排水は一定量溜まると凍結濃縮手段13bに移される。該凍結濃縮手段13bでは、冷凍・ヒートポンプ装置16により形成される冷凍サイクル16aにより純水部分が氷結するため、有害物質は濃縮されて下部に溜り、三方弁19、バルブb及びeを開いて該濃縮された有害物質濃縮排水34を有害物質分解処理工程等の具備された設備へ送給する。
このとき、氷生成の際の凝縮熱は前記洗浄水調整器15に供給し、該凝縮熱を洗浄水調整器15の温度を使用界面活性剤のクラフト点以上に保つために利用する。つまり、該凍結濃縮手段13b側に冷凍サイクル16aを、前記洗浄水調整器15側にヒートポンプサイクル16b’を形成するように冷凍・ヒートポンプ装置16を構成することにより、かかる土壌洗浄装置を効率良く運転することが可能となる。
【0035】
前記凍結濃縮手段13bから有害物質濃縮排水34を完全に排出した後、該凍結濃縮手段13bにヒートポンプサイクル16bを形成させて氷分離融解手段13cに移行することにより、氷結した氷が融解されて純水を得ることができる。ここで得た融解水29は、洗浄水調整器15方向に三方弁19を開いて、該洗浄水調整器15に送給する。このとき、低温の該融解水29の冷熱を利用して前記界面活性剤分離手段14の冷却を行なうようにする。これにより、該界面活性剤分離手段14でもって効率良く熱交換ができ、ここで温度の上昇した純水29が導入された洗浄水調整器15を使用界面活性剤のクラフト点以上に温める際、或いは使用界面活性剤の曇点以下に冷却する際にも熱エネルギが少なくてすむ。
尚、界面活性剤分離手段14の冷却方法として、前記したように融解水あるいは凝縮熱を利用する他に、前記氷分離融解手段13cでの氷融解の際の蒸発熱を用いて形成した冷凍サイクルを利用してもよい。
【0036】
前記界面活性剤分離手段14で分離した界面活性剤33を含む排水と、凍結濃縮工程3で生成された純水29とが供給された洗浄水調整器15では、これらを混合して土壌洗浄に適した洗浄水を調整し、前記土壌洗浄工程1に供給して洗浄水の再利用化を図る。これにより、大量に排出される排水を低減できるとともに、界面活性剤及び水の循環利用が可能となり、コストの削減につながる。
尚、前記界面活性剤分離手段14にて界面活性剤及び有害物質と分離された水は、前記純水29とともに洗浄水調整器15で利用することが好ましい。
【0037】
【発明の効果】
以上記載のごとく、本発明によれば、対生態系有害物質により汚染された土壌の洗浄処理に使用された大量の排水から確実に有害物質を取り除くことが可能で、かつ排水量を減少させることができるとともに、洗浄に用いられる水や界面活性剤を循環利用することによりコスト的に安価な土壌浄化方法及び装置が提供できる。
また、かかる発明に用いる凍結濃縮工程において、冷凍・ヒートポンプサイクルを有効に活用することにより、熱効率のよい装置が可能となり、動力の無駄が省ける。
【図面の簡単な説明】
【図1】 本発明の中間技術にかかる土壌浄化装置の全体構成図である。
【図2】 本発明の実施形態にかかる土壌浄化装置の全体構成図である。
【図3】 従来の汚染土壌浄化装置の実施形態を示す概略図である。
【符号の説明】
1 土壌洗浄工程
2 界面活性剤リサイクル工程
3 凍結濃縮工程
10 土壌洗浄機
11、12 固液分離器
13 有害物質分離手段
13a 貯留槽
13b 凍結濃縮手段
13c 氷分離融解手段
15 洗浄水調整器
16 冷凍・ヒートポンプ装置
18 ポンプ
19 三方弁
20 汚染土壌
29 融解水(純水)
34 有害物質濃縮排水
35 戻入手段
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a method for separating and removing harmful substances from soil contaminated with harmful substances to ecosystems, and in particular, a method for purifying contaminated soils that separates harmful substances against ecosystems from soil using a surfactant and its Relates to the device.
[0002]
[Prior art]
  Traditionally, soil has been contaminated by improper handling of industrial waste, accidents in transit, ignorant use of pesticides and other chemicals, causing harmful consequences for ecosystems including animals and plants. Not only chemical substances with strong acute toxicity and mutagenicity, but also non-toxic hydrocarbons and oils and fats, destroy the environment suitable for the ecosystem and threaten the survival of living organisms. These harmful substances include, for example, heavy metals such as lead, hexavalent chromium and mercury, organic metal compounds and organic chlorides derived from agricultural chemicals and pesticides, organic chlorides such as PCB and trichlene discharged from the electric industry, and incinerators. Dioxins contained in residual ash, cutting oil and lubricating oil discharged by machinery industry, crude oil from tanker accidents, various by-products and tars from the crude oil refining industry are innumerable. In particular, soil contaminated with polycyclic aromatic hydrocarbons generated from urban traffic, coke production, aluminum refining, etc. is considered extremely toxic. These harmful substances not only harm plants and soil organisms, but they also dissolve in groundwater and rivers, contaminating water quality, volatilizing and diffusing into the atmosphere, and polluting the atmosphere. Other organisms will be adversely affected.
  In particular, polycyclic aromatic hydrocarbons have recently been recognized to increase in the amount released into the environment from plants for producing fossil fuels such as petroleum and coal. Carcinogenesis of the polycyclic aromatic hydrocarbons There are concerns about the effects on the human body and environment of mutagenicity that induces sex or mutation.
[0003]
  For such soil contamination, conventionally, air-drying methods that remove the target substances by crushing the contaminated soil and letting it through the air, solidification and stabilization methods that contain the contaminated soil with concrete, heat that is heat-treated at low or high temperatures There have been used decomposition, thermal desorption methods, microbial decomposition treatment methods in which water, nutrients, air, etc. are supplied to contaminated soil and decomposed by indigenous microorganisms.
  However, the air drying method not only may cause harmful substances to remain in the soil, but also causes air pollution. The solidification / stabilization method has a problem that it is difficult to treat a large amount of soil in addition to monitoring over time leakage of pollutants after treatment. Further, the thermal decomposition and thermal desorption methods require treatment of dioxins generated by the combustion of organic chloride compounds, resulting in high costs. Furthermore, although the microbial decomposition treatment method is low in cost, the treatment time is long and impractical.
[0004]
  Therefore, as a method for treating harmful organic compounds in the soil, a method has been proposed in which a surfactant, alkali or the like is added to the excavated contaminated soil and washed with water to extract the pollutant.
  As one of them, a soil purification method using a surfactant is proposed in JP-A-9-75907. This involves excavating soil contaminated with organic compounds, adding a surfactant solution of a predetermined concentration to the excavated soil in an agitating tank, stirring and mixing to desorb the pollutants, and after the desorption is complete, solid-liquid separation This is a method for separating soil and surfactant solution by an apparatus. The soil from which the surfactant solution has been separated in this manner is returned to the excavation site, and the surfactant solution is reused after removing contaminants in the activated carbon adsorption tank.
[0005]
  In such a treatment method using a surfactant, the soil remediation treatment is inexpensive and simple, but on the other hand, there is a problem that a large amount of contaminated water is generated when the soil is washed. Therefore, it is necessary to add a wastewater treatment facility with a high treatment capacity to the soil washing facility.
  In order to solve such a problem, in Japanese Patent Laid-Open No. 10-216693, as shown in FIG. 3, the contaminated soil B is accommodated in a cleaning tank 02 containing a cleaning water W to which a chemical cleaning agent is added, and chemically cleaned. After separating the pollutant A from the contaminated soil B, supersaturated water in which gaseous components in the air are excessively dissolved is supplied into the wash tank 02 to generate fine bubbles in the wash water W. A pollutant separation method has been proposed in which the pollutant A floats on the surface of the washing water W by being attached to the pollutant A and is recovered.
[0006]
[Problems to be solved by the invention]
  However, in this method, the equipment cost can be greatly reduced by the simplified cleaning system as described above. However, depending on the type of soil, the generation of bubbles in the cleaning tank causes the soil to move along with the contaminants. The amount of final pollutant treatment increases due to floating and collection, and conversely, there is a possibility that the contaminants will remain slightly in the lower soil because the washing tank is always in a fluid state, Even a trace amount such as a polycyclic aromatic hydrocarbon which is a material to be treated in the present invention is not suitable for treatment of a very toxic contaminant.
  Therefore, in view of the problems of the prior art, the present invention can reliably separate harmful substances from a large amount of wastewater discharged by soil washing using a surfactant and circulates and uses water used for washing. An object of the present invention is to provide a contaminated soil purification method and apparatus capable of efficiently performing soil purification treatment including wastewater treatment.
[0007]
[Means for Solving the Problems]
  In order to solve such problems, the present invention provides a washing process for washing soil contaminated with ecosystem harmful substances using a surfactant aqueous solution, a solid phase comprising purified soil, and emulsification incorporating the harmful substances. In the contaminated soil purification method having a solid-liquid separation step of solid-liquid separation into a liquid phase composed of an aqueous surfactant solution containing substances,
  The liquid phase that has been separated into solid and liquid is cooled and frozen to produce ice, thereby concentrating the harmful substance in the liquid phase, thawing the ice from which the harmful substance has been removed, Recycling for soil cleaningPropose as intermediate technology.
[0008]
  Ecosystem harmful substances mentioned here refer to chemical substances that are acutely toxic, mutagenic or teratogenic, or those that adhere to or enter the organism and are necessary for life support such as breathing, sweating, exercise, and digestion / absorption functions. A substance that inhibits function. The former belong to, for example, inorganic substances such as lead, mercury and hexavalent chromium, organic metal compounds such as organic mercury and organic tin compounds, organic chlorides such as trichlorethylene, tetrachloroethylene, polychlorinated biphenyl and benzene hexachloride. , Anthracene, phenanthrene, pyrene, fluoranthene, polycyclic aromatic hydrocarbons such as chrysene, benzopyrene, perylene, those belonging to the latter include, for example, crude oil, crude oil refined distillates, crude oil-derived substances such as mineral oil, tar, etc. There is.
[0009]
  Although the above-mentioned harmful substances include water-soluble substances, many of them are water-insoluble, and in any case, they are adsorbed on the soil particles, so it is necessary to wash the soil with limited time and water. Uses a surfactant that has the function of increasing the wetness of the soil particle surface to dissociate the adsorbed harmful substances, disperse it in the aqueous phase by solubilization or emulsification, and lower the concentration of harmful substances on the surface of the soil particles Is essential.
[0010]
  As the surfactant, any of generally known anionic surfactants, cationic surfactants, amphoteric surfactants and nonionic surfactants can be used. More specifically, for example, anionic surfactants such as sodium fatty acid, alkyl sulfate, alkyl polyoxyethylene sulfate, alkylbenzenesulfonate, α-olefinsulfonic acid, alkyltrimethylammonium salt, triethanolamine, Cationic surfactants such as difatty acid ester quaternary salts, zwitterionic surfactants such as alkyldimethylamine oxide, alkylcarboxybetaine, amide amino acid salts, polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, fatty acids It can be selected from nonionic surfactants such as polyoxyethylene ester and fatty acid sorbitan ester, and two or more kinds can be used in combination.
[0011]
  In particular, metal ions such as calcium ions that lower the kraft point of surfactants and reduce their functional effects are included in the soil, so chelating agents and zeolites that have high reactivity with these metal ions, etc. It is also preferable to use a sequestering agent in combination.
[0012]
  And of the present inventionIn intermediate technologyThe wastewater containing harmful substances separated from the soil by surfactants is frozen by cooling with a refrigerator, etc., and impurities such as surfactants and harmful substances are concentrated by generating pure ice that does not contain impurities. By recirculating the water generated by melting the true ice for soil washing, it becomes possible to reliably separate water, surfactants and harmful substances, and further facilitate the reuse of water. Therefore, cost reduction and efficient soil cleaning are possible. In addition, when freezing the waste water, it is preferable to discharge fine bubbles into the waste water and continuously stir and shake with air. By doing so, mass transfer frequently takes place around the nucleus of the water crystal in the wastewater, so that the crystal to be purified subsequently becomes only pure water crystal, which makes it possible to efficiently concentrate and purify the drainage impurities. Done.
[0013]
  AndIn the contaminated soil purification method of the present invention, the separated liquid phase is cooled below the Kraft point of the contained surfactant, heated to a cloud point or higher, or irradiated with ultrasonic waves to cause harmful effects on the liquid phase. The solubilization or emulsification of the substance is disrupted and the upper layer and the lower layer are separated into two layers, and the lower layer containing the harmful substance is cooled and frozen to produce ice, thereby concentrating the harmful substance in the lower layer, and The ice from which harmful substances have been removed is melted, and the generated water is recycled for the soil washing.
[0014]
  This is because the drainage after washing the contaminated soil with the surfactant is cooled to below the Kraft point before freezing, thereby greatly reducing the solubility due to micelle formation of the ionic surfactant. A step of separating the active agent. As is well known, the Kraft point is a temperature at which the solubility of the surfactant due to micelle formation in water rapidly increases. Usually, the solubility is small and useless if the surfactant is not used above this temperature. On the other hand, the solubility of the nonionic surfactant rapidly decreases at a temperature equal to or higher than the cloud point.
[0015]
  In addition, since the surfactant separated in this way has a specific gravity smaller than water, it accumulates in the upper layer, while harmful substances larger than specific gravity water or water-soluble harmful substances move to the lower layer. Of these, the upper layer containing the surfactant can be recycled and reused, so that the cost can be reduced. Furthermore, since the hazardous substance and the surfactant are separated, the hazardous substance treatment in the next process becomes easy. That is, a further feature of the contaminated soil purification method of the present invention is that the surfactant from which harmful substances are removed by separating into two layers is recycled for the soil washing.
[0016]
  Now, when the harmful substance is insoluble in water and the specific gravity is less than water in the liquid phase incorporating the harmful substance obtained by the solid-liquid separation, the temperature is lowered below the Kraft point of the contained surfactant, When an operation of separating and depositing the surfactant and the harmful substance by the action of ultrasonic waves is performed, the harmful substance moves to the upper layer together with the surfactant. In this case, it is necessary to separate the surfactant from the harmful substance by another method, or to transfer the upper layer surfactant to the decomposition step separately to make it harmless.
[0017]
  In addition, the soil cleaning treatment according to the present invention may not always achieve a desired purification by a single batch operation depending on the treatment conditions. That is, the treatment rate ((initial soil contamination concentration-post-treatment soil contamination) depends on the size of the treatment device, the amount of soil to be treated at one time, the amount of usable water limited by this, the ability and concentration of the surfactant. (Concentration) × 100 / initial soil contamination concentration) does not become 100%, but varies depending on conditions. In such a case, the treatment purpose can be achieved by multi-stage treatment that repeats multiple washings according to the final soil concentration of the set soil.The
[0018]
  For example, when it is desired to reduce the contaminated soil to a final concentration of 1 ppm or less that is contaminated with a pollutant concentration of 1000 ppm by the above-mentioned constraint condition, an ultimate treatment rate of only 90% can be obtained by a single cleaning process. If repeated multi-stage cleaning should be performed,
  (1-0.9) n × 1000 ppm ≦ 1 ppm
  10−n ≦ 10−3 ∴n ≧ 3
  That is, the purpose can be achieved by washing three times or more.
[0019]
  An invention of an apparatus that effectively implements these inventionsSuggest below.
[0020]
  In a soil purification apparatus equipped with a soil cleaning means for cleaning soil contaminated with ecosystem harmful substances using an aqueous surfactant solution,
  After washing the soil, cooling the wastewater containing the surfactant that has incorporated the harmful substances below the Kraft point of the surfactant, raising the temperature above the cloud point, or irradiating with ultrasonic waves, A two-layer separation means for breaking the emulsification of the liquid phase and separating the two layers into an upper layer and a lower layer;
  Freeze concentration by cooling and freezing the separated lower layer containing the harmful substancemeansWhen,
  Ice separation and thawing means for separating and thawing ice from which the harmful substances generated by freezing are removed,
  And a washing water preparation device for preparing washing water to be supplied to the soil washing machine using the separated surfactant and water generated by melting ice.
[0021]
  Moreover, in the contaminated soil purification apparatus, the present invention is further characterized in that the freeze concentration means and the ice separation and melting means are performed in the same tank by a heat release / heat absorption cycle of a heat pump.
  Accordingly, by adopting a configuration in which the heat pump cycle / refrigeration cycle are alternately formed in the tank having both the freeze concentration means and the ice separation and thawing means, it becomes a simple facility that eliminates the movement of the true ice, and the installation area is reduced. Reduce.
[0022]
  Furthermore, the present invention provides the ice separation and melting means for melting ice on the condenser side, the freeze concentration means for freezing waste water on the evaporator side, and the surfactant separating means for the surfactant separating means. The melting water of the ice is used for cooling the effluent containing kraft to a temperature below the Kraft point temperature, and the condensation heat during the freeze concentration is converted into a heating heat source of the washing water regulator and a surfactant in the surfactant separating means. It connected with the heat pump utilized for the temperature rising to the cloud point or more of the waste_water | drain containing this.
[0023]
  The washing water regulator needs to be kept above the Kraft point in order to increase the solubility of the surfactant,The two-layer separation meansThen, in order to float and separate the surfactant, it must be kept below the Kraft point or at the cloud point. Therefore, in such an invention, when an ionic surfactant is used, the heat of condensation during the formation of ice is led to the washing water regulator to raise the temperature, and the low-temperature molten water generated by melting of the ice isTwo-layer separation meansWhen the non-ionic surfactant is used while maintaining the surfactant separation means at a low temperature, a soil purification device with high thermal efficiency is provided by utilizing the heat of condensation during ice formation. Is possible.
  In addition to the method of cooling the surfactant separating means using the cold heat from the ice melting water as described above, the method of cooling using the heat of melting when melting the ice may be used. Good.
[0024]
[0025]
[0026]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
  FIG. 1 illustrates the present invention.Intermediate technologyFig. 2 shows the overall configuration of the soil purification deviceOf the present invention1 is an overall configuration diagram of an embodiment.
  As shown in FIG.Intermediate technologyThe soil purification apparatus according to the present invention comprises a soil washing step 1 and a freeze concentration step 3, and the soil washing step 1 comprises a soil washing machine 10, solid-liquid separators 11 and 12, and return means 35, and is a freeze concentration step. 3 is composed of a toxic substance separation means 13 and a refrigeration / heat pump device 16 comprising a storage tank 13a, a freeze concentration means 13b, and an ice separation and thawing means 13c.
[0027]
  In the soil washing machine 10 in the soil washing step, for example, a screw feeder that moves the contaminated soil 20 introduced from the inlet of the contaminated soil 20 containing harmful substances to the downstream side by rotation of a helical screw, A cleaning water supply port is provided on the downstream side of the soil cleaning machine 10, and the cleaning water 21 and the surfactant are passed to the soil charging port side so that the contaminated soil is cleaned.
  Further, the solid-liquid separator 11 is provided on the downstream side of the soil washer 10, that is, on the soil discharge port side, and a filter thickener or the like is used to remove liquid from the soil washed by the soil washer 10 by filtration. Good. The soil that has been subjected to solid-liquid separation is configured such that it can be returned to the soil washing machine again by the return means 35 such as a bucket conveyor and repeatedly washed. Further, a solid-liquid separator 12 for separating the soil remaining in the waste water by precipitation is provided on the downstream side.
[0028]
  The freeze concentration step is a step of separating pure water from waste water containing a surfactant that has taken in harmful substances, and includes a harmful substance separation means 13 provided with a storage tank 13a, a freeze concentration means 13b, and an ice separation and melting means 13c. And a refrigeration / heat pump device 16. The freeze concentration means 13b is located on the evaporator side of the refrigeration / heat pump device 16 to form a refrigeration cycle 16a. The pure water is frozen by cooling the waste water stored in the freeze concentration means 13b. It is configured to separate from impurities. On the other hand, the ice separating and melting means 13c is located on the condenser side of the refrigeration / heat pump device 16 to form a heat pump cycle 16b, and the pure water 29 melted thereby is circulated to the soil washing machine 10 for reuse. To do.
[0029]
  The surfactant contained in the washing water 21 may be any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant, such as alkylbenzene sulfonate, abietic acid salt, A surfactant suitable for pollutants and soils is used in combination of one or more of fatty acid soap, polyoxyethylene alkyl ether, polyoxyethylene nonylphenyl ether and the like.
[0030]
  Then takeIntermediate technologyThe purification process of contaminated soil in will be described.
  First, the contaminated soil 20 containing harmful substances is put into the soil washing machine 10, and after separating the harmful substances from the contaminated soil 20 by mixing with the washing water 21 supplied from the downstream side, the purified soil containing moisture is removed. It introduces into the solid-liquid separator 11 divided up and down by the filter and removes the liquid component. If the harmful substance concentration does not fall to a predetermined value after one washing, the separated soil is returned to the soil washing machine by the return means 35 and washing is repeated. The purified soil 24 is returned to the environment by being returned to the excavation site or transported to a soil use place.
  On the other hand, the waste water 23 containing a surfactant that has taken in harmful substances through the soil washing machine 10 is guided to the solid-liquid separator 12 together with the liquid component 26 separated from the purified soil by the solid-liquid separator 11. Then, the purified soil 25 remaining in the liquid is precipitated and separated, and then sent to the freeze concentration step 3.
[0031]
  The hazardous substance-containing wastewater 27 discharged from the soil washing step 1 is temporarily stored in the storage tank 13a of the hazardous substance separation means 13 by the pump 18 with the valves a and c opened, and the required amount is stored. At this point, it is supplied to the freeze concentration means 13b. In the freeze concentration means 13b, pure water freezes on the refrigerant pipe of the refrigeration cycle 16a formed by the refrigeration / heat pump device 16, so that the waste water in which the surfactant containing the harmful substances is concentrated is frozen. It collects in the lower part of the concentration means 13b, and is discharged to the decomposition process as the hazardous substance concentrated waste water 30 by the pump 18 with the valves a and c closed and the valves b and e opened.
  After the drainage 30 is completely discharged, the valves b and e are closed, and the freeze concentrating means 13b forms a heat pump cycle 16b and functions as the ice separating and thawing means 13c. To obtain pure water. The pure water 29 obtained here is returned to the soil washing step and reused.
[0032]
  In this manner, by forming the refrigeration / heat pump cycle alternately by the refrigeration / heat pump device 16, pure water can be generated in one tank as shown in FIG. 2 described later, as shown in FIG. In addition, by installing two or more tanks and using the freeze concentration means 13b and the ice separation and thawing means 13c with a time difference, respectively, a large amount of waste water discharged from the soil washing step 1 can be treated efficiently. In addition, the heat energy on the evaporator side and the condenser side of the refrigeration / heat pump device 16 can be used effectively, and waste of power can be reduced.
[0033]
  In the present invention shown in FIG.FruitThe embodiment further includes a step of separating the surfactant and the harmful substance from the first embodiment described above.(Two-layer separation process)It comprises a soil washing step 1, a freeze concentration step 3, and a surfactant recycling step 2.
  In the second embodiment, the soil washing step 1 has the same configuration as that of the first embodiment.
  In the surfactant recycling process, when the surfactant used is ionic, the aqueous solution is cooled to below the Kraft point and separated, and when the surfactant used is nonionic, the aqueous solution is warmed above the cloud point. Need to be separated. Surfactant recycling step 2 which is a treatment step of harmful substance-containing waste water 27 discharged from soil washing step 1 is a surfactant separating means.(Two-layer separation means)14 and the washing water adjuster 15, the surfactant separating means 14 is maintained below the craft point or the cloud point of the used surfactant used, and the wash water adjuster 15 is the same craft point. Above or below the cloud point. As a result, the surfactant separating means 14 has a very low solubility of the surfactant, so that the surfactant is separated, and conversely, the washing water adjuster 15 dissolves the surfactant.
  And in the freeze concentration step 3 of the next step,Intermediate technologyIn the same manner as described above, pure water is obtained by concentrating and separating impurities in the waste water.
[0034]
  HeelsFruitTo explain the flow of the embodiment, in the soil washing process 1Intermediate technologySimilarly to the above, the waste water 27 discharged by the cleaning treatment of the contaminated soil is led to the surfactant separating means 14 by opening the valve a, where the surfactant is floated and separated, and in this case, the harmful substance has a specific gravity. Since it is larger than water, it settles in the lower part of the surfactant separating means 14. The separated surfactant 33 is guided to the washing water adjuster 15, and waste water containing harmful substances settled in the lower part is stored in the storage tank of the freeze concentration process 3 by the pump 18 with the valves d and c opened. 13a.
  The surfactant separating means 14 can also apply ultrasonic bubbles or fine bubbles with ultrasonic waves in the tank, and separate the surfactant and harmful substances by the fine bubbles or ultrasonic waves. In the case of the nonionic surfactant,TheIt is possible to make the temperature higher than the cloud point by the temperature rise effect by this ultrasonic wave.
  When a certain amount of the wastewater stored in the storage tank 13a is accumulated, it is transferred to the freeze concentration means 13b. In the freeze concentration means 13b, the pure water portion is frozen by the refrigeration cycle 16a formed by the refrigeration / heat pump device 16. Therefore, the harmful substances are concentrated and accumulated in the lower part, and the three-way valve 19, valves b and e are opened, The concentrated hazardous substance concentrated waste water 34 is supplied to facilities equipped with a hazardous substance decomposition treatment process or the like.
  At this time, the heat of condensation at the time of ice generation is supplied to the washing water regulator 15 and used to keep the temperature of the washing water regulator 15 at or above the Kraft point of the used surfactant. That is, by constructing the refrigeration / heat pump device 16 so as to form the refrigeration cycle 16a on the freeze concentration means 13b side and the heat pump cycle 16b ′ on the washing water adjuster 15 side, the soil washing device can be operated efficiently. It becomes possible to do.
[0035]
  After the hazardous substance concentration waste water 34 is completely discharged from the freeze concentration means 13b, the freeze concentration means 13b is formed with a heat pump cycle 16b and transferred to the ice separation and melting means 13c, so that the frozen ice is melted and purified. You can get water. The melted water 29 obtained here is supplied to the washing water regulator 15 by opening the three-way valve 19 in the direction of the washing water regulator 15. At this time, the surfactant separating means 14 is cooled by using the cold heat of the low-temperature molten water 29. Thereby, heat exchange can be efficiently performed by the surfactant separating means 14, and when the washing water regulator 15 into which the pure water 29 having an increased temperature is introduced is heated above the craft point of the used surfactant, Alternatively, less heat energy is required when cooling below the cloud point of the surfactant used.
  In addition, as a cooling method of the surfactant separating means 14, a refrigeration cycle formed by using the heat of evaporation at the time of ice melting in the ice separating and melting means 13 c in addition to using melted water or heat of condensation as described above. May be used.
[0036]
  In the washing water adjuster 15 to which the waste water containing the surfactant 33 separated by the surfactant separating means 14 and the pure water 29 generated in the freeze concentration step 3 are supplied, these are mixed and used for soil washing. A suitable washing water is prepared and supplied to the soil washing step 1 to reuse the washing water. As a result, wastewater discharged in large quantities can be reduced, and the surfactant and water can be circulated and used, leading to cost reduction.
  The water separated from the surfactant and harmful substances by the surfactant separating means 14 is preferably used in the cleaning water adjuster 15 together with the pure water 29.
[0037]
【The invention's effect】
  As described above, according to the present invention, it is possible to reliably remove harmful substances from a large amount of wastewater used for washing treatment of soil contaminated with ecosystem harmful substances, and to reduce the amount of wastewater. In addition, it is possible to provide a soil purification method and apparatus that are inexpensive in terms of cost by circulating and using water and a surfactant used for washing.
  Further, in the freeze concentration step used in the present invention, by effectively utilizing the refrigeration / heat pump cycle, a highly efficient apparatus can be realized, and waste of power can be saved.
[Brief description of the drawings]
FIG. 1 of the present inventionIntermediate technologyIt is a whole block diagram of the soil purification apparatus concerning.
FIG. 2The fruitIt is a whole block diagram of the soil purification apparatus concerning embodiment.
FIG. 3 is a schematic view showing an embodiment of a conventional contaminated soil purification apparatus.
[Explanation of symbols]
  1 soil washing process
  2 Surfactant recycling process
  3 Freeze concentration process
  10 Soil cleaner
  11, 12 Solid-liquid separator
  13 Hazardous substance separation means
  13a storage tank
  13b Freeze concentration means
  13c Ice separation and melting means
  15 Washing water regulator
  16 Refrigeration / heat pump equipment
  18 Pump
  19 Three-way valve
  20 Contaminated soil
  29 Melted water (pure water)
  34 Concentrated drainage of hazardous substances
  35 Returning means

Claims (6)

界面活性剤水溶液を用いて対生態系有害物質で汚染された土壌を洗浄する洗浄工程と、浄化土壌からなる固相と当該有害物質を取込んだ乳化物を含む界面活性剤水溶液からなる液相とに固液分離する固液分離工程とを有する汚染土壌浄化方法において、
前記分離した液相を、含有界面活性剤のクラフト点以下に冷却、含有界面活性剤の曇点以上に昇温もしくは超音波を照射することにより、液相の有害物質の可溶化若しくは乳化を破壊して上層と下層に二層分離し、当該有害物質を含む下層は冷却、凍結して氷を生成させることにより当該有害物質を前記下層中に濃縮するとともに、当該有害物質が除かれた前記氷を融解し、生成した水を前記土壌洗浄に再循環利用することを特徴とする汚染土壌浄化方法。
A washing process for washing soil contaminated with ecosystem harmful substances using an aqueous surfactant solution, and a liquid phase comprising an aqueous surfactant solution containing a solid phase consisting of purified soil and an emulsion containing the harmful substance. In the contaminated soil purification method having a solid-liquid separation step of solid-liquid separation into
The separated liquid phase is cooled below the Kraft point of the contained surfactant, and the solubilization or emulsification of harmful substances in the liquid phase is disrupted by raising the temperature above the cloud point of the contained surfactant or irradiating with ultrasonic waves. The upper layer and the lower layer are separated into two layers, and the lower layer containing the harmful substance is cooled and frozen to produce ice, thereby concentrating the harmful substance in the lower layer and removing the harmful substance from the ice. A method for purifying contaminated soil, wherein the generated water is melted and the generated water is recycled for the soil washing.
前記二層分離して有害物質が除かれた界面活性剤を前記土壌洗浄に再循環利用することを特徴とする請求項1記載の汚染土壌浄化方法。Contaminated soil remediation method according to claim 1 Symbol mounting, characterized in that recycled use of surfactants harmful substances are removed by separating the two layers to the soil washing. 前記固液分離した固相を前記洗浄工程に戻し、洗浄工程と固液分離工程を複数回繰り返す、多段洗浄を行うことを特徴とする請求項1乃至いずれかの項記載の汚染土壌浄化方法。The contaminated soil purification method according to any one of claims 1 to 2, wherein the solid-liquid separated solid phase is returned to the washing step, and the washing step and the solid-liquid separation step are repeated a plurality of times to perform multi-stage washing. . 界面活性剤水溶液を用いて対生態系有害物質で汚染された土壌を洗浄する土壌洗浄手段を具えた土壌浄化装置において、
前記土壌洗浄後の、当該有害物質を取り込んだ界面活性剤を含む排水を含有界面活性剤のクラフト点以下に冷却するか、曇点以上に昇温するか、超音波を照射するかして、液相の乳化を破壊して上層と下層に二層分離する二層分離手段と、
分離された当該有害物質を含む下層を冷却して凍結させる凍結濃縮手段と、
凍結により生成した当該有害物質が除かれた氷を分離して融解する氷分離融解手段と、
分離された界面活性剤及び氷の融解により生成した水とを利用して土壌洗浄機に供給する洗浄水を調製する洗浄水調製器と、を具えることを特徴とする汚染土壌浄化装置。
In a soil purification apparatus equipped with a soil cleaning means for cleaning soil contaminated with ecosystem harmful substances using an aqueous surfactant solution,
After washing the soil, cooling the wastewater containing the surfactant that has incorporated the harmful substances below the Kraft point of the surfactant, raising the temperature above the cloud point, or irradiating with ultrasonic waves, A two-layer separation means for breaking the emulsification of the liquid phase and separating the two layers into an upper layer and a lower layer;
Freeze concentration means for cooling and freezing the lower layer containing the separated harmful substances,
Ice separation and thawing means for separating and thawing the ice from which the harmful substances generated by freezing are removed;
A contaminated soil purification apparatus comprising: a washing water preparation device that prepares washing water to be supplied to a soil washing machine using the separated surfactant and water generated by melting ice.
前記凍結濃縮手段と前記氷分離融解手段とが、ヒートポンプの放熱/吸熱サイクルにより同一槽で行われることを特徴とする請求項記載の汚染土壌浄化装置。5. The contaminated soil purification apparatus according to claim 4, wherein the freeze concentration means and the ice separation and thawing means are performed in the same tank by a heat release / heat absorption cycle of a heat pump. 前記氷分離融解手段にて氷の融解を凝縮器側で、前記凍結濃縮手段にて排水の凍結を蒸発器側で行うとともに、前記二層分離手段での界面活性剤を含む排水のクラフト点以下への冷却に前記氷の融解水を利用し、前記凍結濃縮時の凝縮熱を前記洗浄水調製器の加温熱源と前記二層分離手段での界面活性剤を含む排水の曇点以上への昇温とに利用するヒートポンプで連結したことを特徴とする請求項4乃至5いずれかの項記載の汚染土壌浄化装置。In the ice separation and melting means, ice is melted on the condenser side, and in the freeze concentration means, the waste water is frozen on the evaporator side, and below the Kraft point of the waste water containing the surfactant in the two-layer separation means. The ice melting water is used for cooling to the above, and the heat of condensation during the freeze concentration is increased to a cloud point or higher of the waste water containing the surfactant in the washing water preparation device and the surfactant in the two-layer separation means . The contaminated soil purification apparatus according to any one of claims 4 to 5 , wherein the contaminated soil purification apparatus is connected by a heat pump used for temperature rise.
JP2001183955A 2000-08-24 2001-06-18 Contaminated soil purification method and apparatus Expired - Fee Related JP4636738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001183955A JP4636738B2 (en) 2000-08-24 2001-06-18 Contaminated soil purification method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-253328 2000-08-24
JP2000253328 2000-08-24
JP2001183955A JP4636738B2 (en) 2000-08-24 2001-06-18 Contaminated soil purification method and apparatus

Publications (2)

Publication Number Publication Date
JP2002136962A JP2002136962A (en) 2002-05-14
JP4636738B2 true JP4636738B2 (en) 2011-02-23

Family

ID=26598348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001183955A Expired - Fee Related JP4636738B2 (en) 2000-08-24 2001-06-18 Contaminated soil purification method and apparatus

Country Status (1)

Country Link
JP (1) JP4636738B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804495B2 (en) * 2008-03-17 2011-11-02 公益財団法人鉄道総合技術研究所 Method for treating cleaning wastewater containing chlorine-containing organic compounds
JP4836013B2 (en) * 2009-06-30 2011-12-14 学校法人神奈川大学 Decontamination method
KR200464231Y1 (en) * 2012-09-28 2012-12-18 (주)동명엔터프라이즈 Apparatus for ultrasonic washing of soil
JP6199154B2 (en) * 2013-10-28 2017-09-20 株式会社本間組 Radioactive substance removal equipment
CN108817058B (en) * 2018-07-05 2020-06-19 上海艾库环境工程有限公司 Soil remediation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697503A (en) * 1980-01-07 1981-08-06 Nippon Oil & Fats Co Ltd Separation of constituent component from mixed composition of plural component of org. compound
JPH0975907A (en) * 1995-09-07 1997-03-25 Kajima Corp Method of purifying contaminated soil
JPH09327689A (en) * 1996-06-10 1997-12-22 Hitachi Ltd Waste water recycling system
JPH10216693A (en) * 1997-02-10 1998-08-18 Shimizu Corp Separation of contaminant from contaminated soil and device therefor
JPH11319892A (en) * 1998-03-16 1999-11-24 Mayekawa Mfg Co Ltd Waste water treatment and waste water treating device
JP2001334258A (en) * 2000-05-29 2001-12-04 Nippon Paint Plant Engineering Co Ltd Method and system for recycling cleaning water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697503A (en) * 1980-01-07 1981-08-06 Nippon Oil & Fats Co Ltd Separation of constituent component from mixed composition of plural component of org. compound
JPH0975907A (en) * 1995-09-07 1997-03-25 Kajima Corp Method of purifying contaminated soil
JPH09327689A (en) * 1996-06-10 1997-12-22 Hitachi Ltd Waste water recycling system
JPH10216693A (en) * 1997-02-10 1998-08-18 Shimizu Corp Separation of contaminant from contaminated soil and device therefor
JPH11319892A (en) * 1998-03-16 1999-11-24 Mayekawa Mfg Co Ltd Waste water treatment and waste water treating device
JP2001334258A (en) * 2000-05-29 2001-12-04 Nippon Paint Plant Engineering Co Ltd Method and system for recycling cleaning water

Also Published As

Publication number Publication date
JP2002136962A (en) 2002-05-14

Similar Documents

Publication Publication Date Title
US5368411A (en) Method and apparatus for on the site cleaning of contaminated soil
US5882486A (en) Glycol refining
US5268128A (en) Method and apparatus for cleaning contaminated particulate material
JP5157279B2 (en) Oily water reuse system
US9624113B2 (en) Method for recycling oilfield and other wastewater
US20050006317A1 (en) Systems and methods for water purification through supercritical oxidation
JP4636738B2 (en) Contaminated soil purification method and apparatus
JP2008246273A (en) Washing treatment system for soil contaminated with dioxins and the like
JP3918657B2 (en) Method and apparatus for purifying contaminated soil
JP6619160B2 (en) Soil purification method, soil purification system, and sparging rod assembly
KR100371823B1 (en) Separation of heavy metals and materials for use in this
JP4446247B2 (en) Purification method for contaminated soil containing hazardous substances
JP5612820B2 (en) Purification method for organic chlorine chemical contamination
JP2001162259A (en) Method and equipment for removing dioxin
KR101206399B1 (en) Treatment method and treatment system of waste water
JP2920137B1 (en) Process for integrated processing of fly ash detoxification, salt separation and resource recycling
JP3811705B2 (en) Exhaust gas treatment method and equipment
JP2004313903A (en) Method and system for treatment of soil contaminated with oil
CN112591848A (en) Oil-water separation method and system for oily sewage
JP3814716B2 (en) Method and apparatus for purifying contaminated soil
KR20140111728A (en) Washing of the oil pollution water and recycling method of the flowing water separation and lavage fluid and this apparatus
JPH10216693A (en) Separation of contaminant from contaminated soil and device therefor
JP3935910B2 (en) Purification method and apparatus for contaminated soil
JP2000354845A (en) Method and system for treating solid containing dioxins
Matsuto Problems in leachate treatment systems caused by incineration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees