JP4635088B2 - Loo誤差を用いた分類または回帰 - Google Patents
Loo誤差を用いた分類または回帰 Download PDFInfo
- Publication number
- JP4635088B2 JP4635088B2 JP2008533701A JP2008533701A JP4635088B2 JP 4635088 B2 JP4635088 B2 JP 4635088B2 JP 2008533701 A JP2008533701 A JP 2008533701A JP 2008533701 A JP2008533701 A JP 2008533701A JP 4635088 B2 JP4635088 B2 JP 4635088B2
- Authority
- JP
- Japan
- Prior art keywords
- regression
- regularized
- data
- classification
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Physics & Mathematics (AREA)
- Software Systems (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Medical Informatics (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Complex Calculations (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US72175305P | 2005-09-28 | 2005-09-28 | |
| US11/535,921 US7685080B2 (en) | 2005-09-28 | 2006-09-27 | Regularized least squares classification or regression with leave-one-out (LOO) error |
| PCT/US2006/038199 WO2007038765A2 (en) | 2005-09-28 | 2006-09-28 | Regularized least squares classification/regression |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2009510633A JP2009510633A (ja) | 2009-03-12 |
| JP2009510633A5 JP2009510633A5 (enExample) | 2010-06-17 |
| JP4635088B2 true JP4635088B2 (ja) | 2011-02-16 |
Family
ID=37900503
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2008533701A Expired - Fee Related JP4635088B2 (ja) | 2005-09-28 | 2006-09-28 | Loo誤差を用いた分類または回帰 |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US7685080B2 (enExample) |
| JP (1) | JP4635088B2 (enExample) |
| WO (1) | WO2007038765A2 (enExample) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7933847B2 (en) * | 2007-10-17 | 2011-04-26 | Microsoft Corporation | Limited-memory quasi-newton optimization algorithm for L1-regularized objectives |
| US9207344B2 (en) * | 2008-06-05 | 2015-12-08 | Westerngeco L.L.C. | Combining geomechanical velocity modeling and tomographic update for velocity model building |
| US8825456B2 (en) * | 2009-09-15 | 2014-09-02 | The University Of Sydney | Method and system for multiple dataset gaussian process modeling |
| US9092739B2 (en) * | 2010-07-22 | 2015-07-28 | Alcatel Lucent | Recommender system with training function based on non-random missing data |
| US8374907B1 (en) | 2010-10-17 | 2013-02-12 | Google Inc. | E-commerce price index |
| US8429101B2 (en) * | 2010-12-07 | 2013-04-23 | Mitsubishi Electric Research Laboratories, Inc. | Method for selecting features used in continuous-valued regression analysis |
| US20130116991A1 (en) * | 2011-11-08 | 2013-05-09 | International Business Machines Corporation | Time series data analysis method, system and computer program |
| CN111602148B (zh) | 2018-02-02 | 2024-04-02 | 谷歌有限责任公司 | 正则化神经网络架构搜索 |
| US11009375B2 (en) * | 2018-06-07 | 2021-05-18 | The United States Of America As Represented By The Secretary Of The Army | Methodology for in situ characterizing and calibrating an entangled photon distribution system |
| CN110427681B (zh) * | 2019-07-26 | 2023-02-17 | 中山大学 | 压水堆组件形状因子参数化方法 |
| US10956825B1 (en) * | 2020-03-16 | 2021-03-23 | Sas Institute Inc. | Distributable event prediction and machine learning recognition system |
| CN113313179B (zh) * | 2021-06-04 | 2024-05-31 | 西北工业大学 | 一种基于l2p范数鲁棒最小二乘法的噪声图像分类方法 |
| CN114037860B (zh) * | 2021-10-26 | 2024-04-09 | 西北工业大学 | 基于鲁棒最小二乘回归框架的图像分类和特征选择方法 |
| CN115080914B (zh) * | 2022-06-21 | 2025-09-09 | 山东大学 | 基于混合迭代正则化的载荷识别方法及系统 |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000234951A (ja) * | 1999-02-16 | 2000-08-29 | Toshiba Corp | 振動または形状の計測制御方法および装置 |
| JP2003210460A (ja) * | 2002-01-18 | 2003-07-29 | Chikayoshi Sumi | ずり弾性率計測装置および治療装置 |
| JP2006506190A (ja) * | 2002-11-14 | 2006-02-23 | チーム メディカル エル.エル.シー. | 診断信号処理方法及びシステム |
| US7440944B2 (en) * | 2004-09-24 | 2008-10-21 | Overture Services, Inc. | Method and apparatus for efficient training of support vector machines |
-
2006
- 2006-09-27 US US11/535,921 patent/US7685080B2/en not_active Expired - Fee Related
- 2006-09-28 JP JP2008533701A patent/JP4635088B2/ja not_active Expired - Fee Related
- 2006-09-28 WO PCT/US2006/038199 patent/WO2007038765A2/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| WO2007038765A9 (en) | 2009-04-30 |
| US20070094180A1 (en) | 2007-04-26 |
| US7685080B2 (en) | 2010-03-23 |
| JP2009510633A (ja) | 2009-03-12 |
| WO2007038765A2 (en) | 2007-04-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11842284B2 (en) | Data discriminator training method, data discriminator training apparatus, non-transitory computer readable medium, and training method | |
| JP4635088B2 (ja) | Loo誤差を用いた分類または回帰 | |
| Sauer et al. | Vecchia-approximated deep Gaussian processes for computer experiments | |
| US10713566B2 (en) | Efficient calculations of negative curvature in a hessian free deep learning framework | |
| US7565334B2 (en) | Fully bayesian linear regression | |
| US11227213B2 (en) | Device and method for improving processing speed of neural network | |
| Franc et al. | Greedy algorithm for a training set reduction in the kernel methods | |
| Ngufor et al. | Extreme logistic regression | |
| Leiva-Murillo et al. | Algorithms for maximum-likelihood bandwidth selection in kernel density estimators | |
| US7853539B2 (en) | Discriminating speech and non-speech with regularized least squares | |
| Wang et al. | Time-based roofline for deep learning performance analysis | |
| Bucurica et al. | A comparison of extreme learning machine and support vector machine classifiers | |
| US20050038638A1 (en) | Density morphing and mode propagation for Bayesian filtering | |
| Kanamori et al. | Computational complexity of kernel-based density-ratio estimation: A condition number analysis | |
| Adragni et al. | Grassmannoptim: An R package for Grassmann manifold optimization | |
| Nestler et al. | Learning in high-dimensional feature spaces using ANOVA-based fast matrix-vector multiplication | |
| WO2020040007A1 (ja) | 学習装置、学習方法及び学習プログラム | |
| US8805841B2 (en) | Clustering system, method and program | |
| Wang et al. | Sparse kernel feature extraction via support vector learning | |
| Liu | An exact sampler for inference after polyhedral model selection | |
| Reeves et al. | An application of gaussian process modeling for high-order accurate adaptive mesh refinement prolongation | |
| CN116468126B (zh) | 基于量子梯度下降的求解组合优化问题的迭代量子算法 | |
| Kashima et al. | Recent advances and trends in large-scale kernel methods | |
| Krause et al. | The Mixed-Sparse-Smooth-Model Toolbox (MSSM): Efficient Estimation and Selection of Large Multi-Level Statistical Models | |
| Chalupka | Empirical evaluation of Gaussian Process approximation algorithms |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090924 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100420 |
|
| A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20100420 |
|
| A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20100510 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100518 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100720 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100810 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101007 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101109 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101119 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 3 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |