JP2009510633A5 - - Google Patents

Download PDF

Info

Publication number
JP2009510633A5
JP2009510633A5 JP2008533701A JP2008533701A JP2009510633A5 JP 2009510633 A5 JP2009510633 A5 JP 2009510633A5 JP 2008533701 A JP2008533701 A JP 2008533701A JP 2008533701 A JP2008533701 A JP 2008533701A JP 2009510633 A5 JP2009510633 A5 JP 2009510633A5
Authority
JP
Japan
Prior art keywords
rls
classification
data
processor
regression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008533701A
Other languages
English (en)
Japanese (ja)
Other versions
JP4635088B2 (ja
JP2009510633A (ja
Filing date
Publication date
Priority claimed from US11/535,921 external-priority patent/US7685080B2/en
Application filed filed Critical
Publication of JP2009510633A publication Critical patent/JP2009510633A/ja
Publication of JP2009510633A5 publication Critical patent/JP2009510633A5/ja
Application granted granted Critical
Publication of JP4635088B2 publication Critical patent/JP4635088B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

JP2008533701A 2005-09-28 2006-09-28 Loo誤差を用いた分類または回帰 Expired - Fee Related JP4635088B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US72175305P 2005-09-28 2005-09-28
US11/535,921 US7685080B2 (en) 2005-09-28 2006-09-27 Regularized least squares classification or regression with leave-one-out (LOO) error
PCT/US2006/038199 WO2007038765A2 (en) 2005-09-28 2006-09-28 Regularized least squares classification/regression

Publications (3)

Publication Number Publication Date
JP2009510633A JP2009510633A (ja) 2009-03-12
JP2009510633A5 true JP2009510633A5 (enExample) 2010-06-17
JP4635088B2 JP4635088B2 (ja) 2011-02-16

Family

ID=37900503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008533701A Expired - Fee Related JP4635088B2 (ja) 2005-09-28 2006-09-28 Loo誤差を用いた分類または回帰

Country Status (3)

Country Link
US (1) US7685080B2 (enExample)
JP (1) JP4635088B2 (enExample)
WO (1) WO2007038765A2 (enExample)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7933847B2 (en) * 2007-10-17 2011-04-26 Microsoft Corporation Limited-memory quasi-newton optimization algorithm for L1-regularized objectives
US9207344B2 (en) * 2008-06-05 2015-12-08 Westerngeco L.L.C. Combining geomechanical velocity modeling and tomographic update for velocity model building
US8825456B2 (en) * 2009-09-15 2014-09-02 The University Of Sydney Method and system for multiple dataset gaussian process modeling
US9092739B2 (en) * 2010-07-22 2015-07-28 Alcatel Lucent Recommender system with training function based on non-random missing data
US8374907B1 (en) 2010-10-17 2013-02-12 Google Inc. E-commerce price index
US8429101B2 (en) * 2010-12-07 2013-04-23 Mitsubishi Electric Research Laboratories, Inc. Method for selecting features used in continuous-valued regression analysis
US20130116991A1 (en) * 2011-11-08 2013-05-09 International Business Machines Corporation Time series data analysis method, system and computer program
CN111602148B (zh) 2018-02-02 2024-04-02 谷歌有限责任公司 正则化神经网络架构搜索
US11009375B2 (en) * 2018-06-07 2021-05-18 The United States Of America As Represented By The Secretary Of The Army Methodology for in situ characterizing and calibrating an entangled photon distribution system
CN110427681B (zh) * 2019-07-26 2023-02-17 中山大学 压水堆组件形状因子参数化方法
US10956825B1 (en) * 2020-03-16 2021-03-23 Sas Institute Inc. Distributable event prediction and machine learning recognition system
CN113313179B (zh) * 2021-06-04 2024-05-31 西北工业大学 一种基于l2p范数鲁棒最小二乘法的噪声图像分类方法
CN114037860B (zh) * 2021-10-26 2024-04-09 西北工业大学 基于鲁棒最小二乘回归框架的图像分类和特征选择方法
CN115080914B (zh) * 2022-06-21 2025-09-09 山东大学 基于混合迭代正则化的载荷识别方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234951A (ja) * 1999-02-16 2000-08-29 Toshiba Corp 振動または形状の計測制御方法および装置
JP2003210460A (ja) * 2002-01-18 2003-07-29 Chikayoshi Sumi ずり弾性率計測装置および治療装置
JP2006506190A (ja) * 2002-11-14 2006-02-23 チーム メディカル エル.エル.シー. 診断信号処理方法及びシステム
US7440944B2 (en) * 2004-09-24 2008-10-21 Overture Services, Inc. Method and apparatus for efficient training of support vector machines

Similar Documents

Publication Publication Date Title
US12154188B2 (en) Training neural networks for vehicle re-identification
CN111798273B (zh) 产品的购买概率预测模型的训练方法及购买概率预测方法
JP2009510633A5 (enExample)
JP5954547B2 (ja) 確率モデル推定装置、方法、およびプログラム
EP3716160B1 (en) Learning parameters of a probabilistic model comprising gaussian processes
WO2016026063A1 (en) A method and a system for facial landmark detection based on multi-task
JP6066086B2 (ja) データ判別装置、方法及びプログラム
JP2010092266A (ja) 学習装置、学習方法及びプログラム
CN113011532B (zh) 分类模型训练方法、装置、计算设备及存储介质
US20130246017A1 (en) Computing parameters of a predictive model
CN110603547A (zh) 医疗不良事件预测、报告和预防
JP2022176899A (ja) 機械学習モデルを訓練するためのデータ要約
CN111639667A (zh) 图像识别方法、装置、电子设备及计算机可读存储介质
CN114093435A (zh) 一种基于深度学习的化学分子相关水溶性预测方法
CN113361381B (zh) 人体关键点检测模型训练方法、检测方法及装置
CN119007807A (zh) 一种基于深度学习的生物表型预测及基因位点筛选方法
KR20220101504A (ko) 그래프 컨볼루션 네트워크 학습 방법 및 장치
CN111461862A (zh) 为业务数据确定目标特征的方法及装置
CN116090507A (zh) 电子装置和用于推断的方法
JP2020038485A (ja) 学習装置、判定装置、学習方法、判定方法、学習プログラムおよび判定プログラム
US20240378866A1 (en) Cell nuclei classification with artifact area avoidance
Groha et al. Neural odes for multi-state survival analysis
US20220383982A1 (en) Comparatively-refined polygenic risk score generation machine learning frameworks
CN112580804B (zh) 一种目标图像处理模型的确定方法、装置及存储介质
CN117133363A (zh) 多标签lncRNA亚细胞定位预测方法、系统、设备及介质