JP4634438B2 - Manufacturing method of fiber reinforced resin member and ripple spring - Google Patents
Manufacturing method of fiber reinforced resin member and ripple spring Download PDFInfo
- Publication number
- JP4634438B2 JP4634438B2 JP2007341007A JP2007341007A JP4634438B2 JP 4634438 B2 JP4634438 B2 JP 4634438B2 JP 2007341007 A JP2007341007 A JP 2007341007A JP 2007341007 A JP2007341007 A JP 2007341007A JP 4634438 B2 JP4634438 B2 JP 4634438B2
- Authority
- JP
- Japan
- Prior art keywords
- reinforced resin
- resin member
- fiber
- mixed
- fiber reinforced
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Description
本発明は、繊維強化樹脂部材の製造方法及びリップルバネに関するものである。 The present invention relates to a method for manufacturing a fiber reinforced resin member and a ripple spring.
例えば特許文献1に開示されるように、回転電機の固定子鉄心1のスロット2にして、スロット壁面5及び楔部材6と固定子コイル3との間に波板状のバネ(リップルバネ4a・4b)を設けることで、このリップルバネ4a・4bにより固定子コイル3の振動を吸収して安定的に電機子電流を流す技術が知られている(図1参照)。
For example, as disclosed in Patent Document 1, a slot 2 of a stator core 1 of a rotating electrical machine is used to form a corrugated spring (
このリップルバネとしては、一般的には、ガラス繊維等の基材に成形性に秀れたエポキシ樹脂を含浸せしめて形成される繊維強化樹脂製のものが採用されている。 As the ripple spring, a fiber reinforced resin made by impregnating a base material such as glass fiber with an epoxy resin having excellent moldability is generally employed.
ところで、近年においては、発電機の更なる大型化・高出力化が求められていることから、より大きな電機子電流を安定的に流すことができるように、リップルバネにも更なる耐久性が求められている。 By the way, in recent years, since further increase in size and output of the generator has been demanded, the ripple spring is required to have further durability so that a larger armature current can flow stably. It has been.
即ち、電機子電流が増加すると固定子コイルの発熱量が増加することになるが、エポキシ樹脂は耐熱性が低く、この発熱量の増加に対応できない。具体的には、エポキシ樹脂はジアミノジフェニルスルフォンで硬化せしめて耐熱性を向上させている。しかし、このままでは樹脂組成物が硬く脆くなるため、更にゴム状エポキシ樹脂を加えて靱性を向上させている。ゴム状エポキシ樹脂が多いと靱性は向上するが耐熱性は低下する。また、ゴム状エポキシ樹脂が少ないと耐熱性は向上するが靱性は低下する。従って、両者を高いレベルで両立することは困難である。 That is, when the armature current increases, the amount of heat generated by the stator coil increases. However, the epoxy resin has low heat resistance and cannot cope with the increase in the amount of heat generated. Specifically, the epoxy resin is cured with diaminodiphenyl sulfone to improve heat resistance. However, since the resin composition becomes hard and brittle as it is, the rubbery epoxy resin is further added to improve the toughness. When there are many rubber-like epoxy resins, toughness will improve, but heat resistance will fall. Moreover, when there are few rubber-like epoxy resins, heat resistance will improve, but toughness will fall. Therefore, it is difficult to achieve both at a high level.
そこで、例えばエポキシ樹脂に替えて耐熱性及び靱性に秀れたポリイミド樹脂を採用することが考えられるが、ポリイミド樹脂は非常に高価であり、更に成形性も悪いことから、コスト高となることは避けられない。 Therefore, for example, it is conceivable to adopt a polyimide resin excellent in heat resistance and toughness in place of the epoxy resin, but the polyimide resin is very expensive and further has poor moldability, so that the cost is high. Inevitable.
また、ポリイミド樹脂より安価なビスマレイミド樹脂もポリイミド樹脂と同様、秀れた耐熱性を有するが、靱性に劣ることから、このポリイミド樹脂を用いた場合、リップルバネが硬く脆くなってしまうため、耐熱性と共に高度な靱性が要求されるリップルバネに用いるには不向きである。 In addition, bismaleimide resin, which is cheaper than polyimide resin, has excellent heat resistance like polyimide resin, but since it is inferior in toughness, when this polyimide resin is used, the ripple spring becomes hard and brittle. At the same time, it is not suitable for use in a ripple spring that requires high toughness.
本発明は、上述のような現状に鑑み、発明者等が繰り返し実験を行った結果、ビスマレイミド樹脂をアミドアミンと反応させることでビスマレイミド樹脂の欠点である靱性を、耐熱性を悪化させることなく改善できることを見出し完成したもので、コスト安にして秀れた耐久性を有する極めて実用性に秀れた繊維強化樹脂部材の製造方法及びリップルバネを提供するものである。 In view of the present situation as described above, the present invention has been repeatedly tested by the inventors, and as a result, by reacting the bismaleimide resin with amidoamine, the toughness that is a disadvantage of the bismaleimide resin is reduced without deteriorating the heat resistance. The present invention has been completed by finding out that it can be improved, and provides a manufacturing method and a ripple spring of a fiber reinforced resin member having excellent durability at low cost and excellent in practicality.
添付図面を参照して本発明の要旨を説明する。 The gist of the present invention will be described with reference to the accompanying drawings.
基材に樹脂組成物を含浸して成る繊維強化樹脂部材の製造方法であって、P−アミノ安息香酸と1,3−フェニルビスオキサゾリンとを混合して硬化剤としてのアミドアミンを生成した後、このアミドアミンをビスマレイミド樹脂に混合して樹脂組成物を生成し、この樹脂組成物を前記基材に含浸させることを特徴とする繊維強化樹脂部材の製造方法に係るものである。 A method for producing a fiber reinforced resin member comprising a base material impregnated with a resin composition, wherein P-aminobenzoic acid and 1,3-phenylbisoxazoline are mixed to produce an amidoamine as a curing agent, The present invention relates to a method for producing a fiber-reinforced resin member, characterized in that a resin composition is produced by mixing this amidoamine with a bismaleimide resin, and the base material is impregnated with the resin composition.
また、請求項1記載の繊維強化樹脂部材の製造方法において、前記アミドアミンを前記ビスマレイミド樹脂に混合すると共に、芳香族アミン系の硬化促進剤を混合することを特徴とする繊維強化樹脂部材の製造方法に係るものである。 The method for producing a fiber reinforced resin member according to claim 1, wherein the amidoamine is mixed with the bismaleimide resin and an aromatic amine-based curing accelerator is mixed. It concerns the method.
また、請求項2記載の繊維強化樹脂部材の製造方法において、前記芳香族アミン系の硬化促進剤としてポリメチレンポリフェニルアミンが採用されていることを特徴とする繊維強化樹脂部材の製造方法に係るものである。 The method for producing a fiber-reinforced resin member according to claim 2, wherein polymethylene polyphenylamine is employed as the aromatic amine-based curing accelerator. Is.
また、請求項3記載の繊維強化樹脂部材の製造方法において、前記ビスマレイミド樹脂は、前記P−アミノ安息香酸250乃至300重量部に対し、1600乃至2000重量部混合することを特徴とする繊維強化樹脂部材の製造方法に係るものである。
The fiber reinforced resin member manufacturing method according to
また、請求項1〜4いずれか1項に記載の繊維強化樹脂部材の製造方法において、前記基材としてガラス繊維が採用されていることを特徴とする繊維強化樹脂部材の製造方法に係るものである。 Moreover, in the manufacturing method of the fiber reinforced resin member of any one of Claims 1-4, it concerns on the manufacturing method of the fiber reinforced resin member characterized by the glass fiber being employ | adopted as the said base material. is there.
また、請求項1〜5いずれか1項に記載の繊維強化樹脂部材の製造方法において、前記樹脂組成物を前記基材に含浸せしめた後、波板状に成形してリップルバネとすることを特徴とする繊維強化樹脂部材の製造方法に係るものである。 Moreover, in the manufacturing method of the fiber reinforced resin member of any one of Claims 1-5, after making the said resin composition impregnate the said base material, it shape | molds in a corrugated sheet shape and makes it a ripple spring. This relates to a method for producing a fiber-reinforced resin member.
また、請求項6記載の繊維強化樹脂部材の製造方法により製造されたリップルバネであって、このリップルバネ4a・4bは、回転電機の固定子鉄心1のスロット2内に配設され、このスロット2に収納される固定子コイル3の該スロット2内での振動を抑制するものであることを特徴とするリップルバネに係るものである。
A ripple spring manufactured by the method for manufacturing a fiber-reinforced resin member according to
本発明は上述のようにするから、コスト安にして秀れた耐久性を有する極めて実用性に秀れた繊維強化樹脂部材の製造方法及びリップルバネとなる。 Since this invention is as mentioned above, it becomes a manufacturing method and a ripple spring of the fiber reinforced resin member which was excellent in the practicality which was excellent in durability at low cost.
好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。 An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.
ビスマレイミド樹脂とアミドアミンとを反応させることで、耐熱性を悪化させることなく靱性を向上させることができ、よって、ポリイミド樹脂より安価で且つ成形容易なビスマレイミド樹脂を用いて耐熱性及び靱性の双方に秀れた繊維強化樹脂部材、例えばリップルバネを製造可能となる。 By reacting the bismaleimide resin with amidoamine, the toughness can be improved without deteriorating the heat resistance. Therefore, both the heat resistance and the toughness are obtained by using a bismaleimide resin that is cheaper and easier to mold than the polyimide resin. An excellent fiber reinforced resin member such as a ripple spring can be manufactured.
また、ビスマレイミド樹脂とアミドアミンとを反応させる際、ビスマレイミド樹脂とアミドアミンを形成するP−アミノ安息香酸と1,3−フェニルビスオキサゾリンとを一緒に混合すると、ビスマレイミド樹脂とP−アミノ安息香酸及び1,3−フェニルビスオキサゾリンとの反応が優先され、P−アミノ安息香酸と1,3−フェニルビスオキサゾリンとの反応が不十分となるため、上記靱性の向上効果は見られないことを実験により確認している。この点、本発明においては、P−アミノ安息香酸と1,3−フェニルビスオキサゾリンとを先に混合してアミドアミンを生成した後、ビスマレイミド樹脂と混合しているから、アミドアミンとビスマレイミド樹脂との反応は確実に行われ、上記靱性の向上効果を確実に得ることができる。 Further, when the bismaleimide resin and the amidoamine are reacted, when the bismaleimide resin and the P-aminobenzoic acid forming the amidoamine are mixed together with 1,3-phenylbisoxazoline, the bismaleimide resin and the P-aminobenzoic acid are mixed. And the reaction with 1,3-phenylbisoxazoline is given priority, and the reaction between P-aminobenzoic acid and 1,3-phenylbisoxazoline becomes insufficient, so that the effect of improving the toughness is not observed. It is confirmed by. In this regard, in the present invention, P-aminobenzoic acid and 1,3-phenylbisoxazoline are first mixed to form an amidoamine and then mixed with the bismaleimide resin. This reaction is reliably performed, and the effect of improving the toughness can be obtained with certainty.
本発明の具体的な実施例について図面に基づいて説明する。 Specific embodiments of the present invention will be described with reference to the drawings.
本実施例は、基材に樹脂組成物を含浸して成る繊維強化樹脂部材の製造方法であって、P−アミノ安息香酸と1,3−フェニルビスオキサゾリンとを混合して硬化剤としてのアミドアミンを生成した後、このアミドアミンをビスマレイミド樹脂に混合して樹脂組成物を生成し、この樹脂組成物を前記基材に含浸させるものである。 This example is a method for producing a fiber reinforced resin member obtained by impregnating a resin composition into a base material, which comprises mixing P-aminobenzoic acid and 1,3-phenylbisoxazoline to form an amidoamine as a curing agent. Then, this amidoamine is mixed with a bismaleimide resin to produce a resin composition, and the substrate is impregnated with the resin composition.
具体的には、本実施例は、上記樹脂組成物を前記基材としての経糸と緯糸とから成るガラス繊維織物に含浸せしめ加熱・硬化後、波板状に成形することで、例えば回転電機の固定子鉄心1のスロット2に収納される固定子コイル3の振動を抑制するために用いられるリップルバネ4a・4bを製造する方法である。尚、基材としては、ガラス繊維に限らず、炭素繊維やアラミド繊維から成るものを採用しても良い。また、織物に限らず、繊維を一方向に引き揃えてなる引き揃え繊維体を採用しても良い。
Specifically, in this example, the resin composition is impregnated into a glass fiber fabric composed of warps and wefts as the base material, heated and cured, and then formed into a corrugated plate shape. In this method, the
ところで、図1に図示したように、固定子コイル3の振動を抑制するためのリップルバネとしては、固定子コイル3の上下方向(固定子鉄心1の半径方向)への振動を抑制する所謂トップリップル4aと、固定子コイル3の左右方向(固定子鉄心1の円周方向)への振動を抑制する所謂サイドリップル4bとが存在する。このトップリップル4a及びサイドリップル4bに要求される特性は、図2に図示した使用条件から明らかなように夫々異なるが、本実施例によれば、特にトップリップル4aに要求される高い圧縮強度をクリアできるリップルバネをコスト安に製造可能となる。
By the way, as illustrated in FIG. 1, as a ripple spring for suppressing the vibration of the
以下、更に詳細に説明する。 This will be described in more detail below.
本実施例は、基材(ガラス繊維織物)に含浸せしめられる樹脂組成物として、予めP−アミノ安息香酸と1,3−フェニルビスオキサゾリンとを混合してアミドアミン(硬化剤)を生成した後、このアミドアミンをビスマレイミド樹脂に混合したものを採用している。 In this example, as a resin composition to be impregnated into a substrate (glass fiber fabric), P-aminobenzoic acid and 1,3-phenylbisoxazoline were mixed in advance to produce an amidoamine (curing agent). What mixed this amidoamine with the bismaleimide resin is employ | adopted.
更に、本実施例においては、上記アミドアミンをビスマレイミド樹脂に混合する際、硬化促進剤として芳香族アミン系の硬化促進剤(ポリメチレンポリフェニルアミン)を混合する。尚、ポリメチレンポリフェニルアミンと異なる硬化促進剤を採用しても良い。 Furthermore, in this embodiment, when the above-mentioned amidoamine is mixed with the bismaleimide resin, an aromatic amine-based curing accelerator (polymethylene polyphenylamine) is mixed as a curing accelerator. In addition, you may employ | adopt the hardening accelerator different from polymethylene polyphenylamine.
具体的には、P−アミノ安息香酸250乃至300重量部に該P−アミノ安息香酸のカルボキシル基に対して理論量のフェニルビスオキサゾリンを混合してアミドアミンを生成した後、このアミドアミンにビスマレイミド樹脂1600乃至2000重量部と該ビスマレイミド樹脂のビスマレイミド基に対して理論量のポリメチレンポリフェニルアミンを混合して前記樹脂組成物を生成する。 Specifically, after 250 to 300 parts by weight of P-aminobenzoic acid is mixed with a theoretical amount of phenylbisoxazoline with respect to the carboxyl group of the P-aminobenzoic acid to form an amidoamine, the bismaleimide resin is added to the amidoamine. The resin composition is produced by mixing a theoretical amount of polymethylene polyphenylamine with 1600 to 2000 parts by weight and the bismaleimide group of the bismaleimide resin.
本実施例においては、P−アミノ安息香酸274重量部にフェニルビスオキサゾリン216重量部を混合してアミドアミンを生成した後、このアミドアミンにビスマレイミド樹脂1660重量部とポリメチレンポリフェニルアミン297重量部を混合して前記樹脂組成物を生成している。 In this example, 274 parts by weight of P-aminobenzoic acid was mixed with 216 parts by weight of phenylbisoxazoline to form an amide amine, and then 1660 parts by weight of bismaleimide resin and 297 parts by weight of polymethylene polyphenylamine were added to the amide amine. The resin composition is produced by mixing.
尚、P−アミノ安息香酸の添加量が250重量部未満であるとオキサゾリンがアミンと反応しビスマレイミドの反応基が過剰に残り、耐熱性が下がる。また、P-アミノ安息香酸の添加量が300重量部を超えるとカルボン酸が残り、やはり耐熱性が下がる。また、ビスマレイミド樹脂の添加量が1600重量部未満であるとビスマレイミド基が充分に反応しないため耐熱性(Tg)が低くなる。また、ビスマレイミド樹脂の添加量が2000重量部を超えると耐熱性(Tg)は高くなるが、ビスマレイミド基が過剰となり脆くなる。 If the amount of P-aminobenzoic acid added is less than 250 parts by weight, the oxazoline reacts with the amine, leaving excessive reactive groups of bismaleimide, resulting in reduced heat resistance. On the other hand, if the amount of P-aminobenzoic acid added exceeds 300 parts by weight, the carboxylic acid remains and the heat resistance is also lowered. Moreover, since the bismaleimide group does not fully react when the addition amount of the bismaleimide resin is less than 1600 parts by weight, the heat resistance (Tg) is lowered. Moreover, when the addition amount of the bismaleimide resin exceeds 2000 parts by weight, the heat resistance (Tg) increases, but the bismaleimide group becomes excessive and becomes brittle.
ここで、アミドアミン(硬化剤)とポリメチレンポリフェニルアミン(芳香族アミン系硬化促進剤)との配合量をコントロールすることで、耐熱性(Tg)と伸びをコントロールすることができる。具体的には、アミドアミンが多いとTgが低く伸びが大きくなり、ポリメチレンポリフェニルアミンが多いとTgが高く伸びが小さくなる。従って、用いられる回転電機の規格に応じて上記数値範囲内で適宜配合量を設定する。 Here, heat resistance (Tg) and elongation can be controlled by controlling the amount of amidoamine (curing agent) and polymethylene polyphenylamine (aromatic amine-based curing accelerator). Specifically, if there are many amidoamines, Tg will become low and elongation will become large, and if there are many polymethylene polyphenylamines, Tg will become high and elongation will become small. Accordingly, the blending amount is appropriately set within the numerical range according to the standard of the rotating electrical machine to be used.
続いて、上述のようにして生成した樹脂組成物を基材に定法に従い塗布含浸させて加熱硬化せしめた後、波板状に成形してこれを複数枚積層するか若しくは複数枚積層した後にまとめて波板状に成形してリップルバネとする。 Subsequently, the resin composition produced as described above is coated and impregnated on a base material in accordance with a conventional method and heat-cured, and then molded into a corrugated sheet shape, or a plurality of these are laminated, or a plurality are laminated together. To make a ripple spring.
本実施例は上述のようにするから、ビスマレイミド樹脂とアミドアミンとを反応させることで、耐熱性を悪化させることなく靱性を向上させることができ、よって、ポリイミド樹脂より安価で且つ成形容易なビスマレイミド樹脂を用いて耐熱性及び靱性の双方に秀れたリップルバネを製造可能となる。 Since the present embodiment is as described above, by reacting the bismaleimide resin with amidoamine, it is possible to improve the toughness without deteriorating the heat resistance. Therefore, it is cheaper and easier to mold than the polyimide resin. A ripple spring excellent in both heat resistance and toughness can be produced using a maleimide resin.
また、ビスマレイミド樹脂とアミドアミンとを反応させる際、ビスマレイミド樹脂とアミドアミンを形成するP−アミノ安息香酸と1,3−フェニルビスオキサゾリンとを一緒に混合すると、ビスマレイミド樹脂とP−アミノ安息香酸及び1,3−フェニルビスオキサゾリンとの反応が優先され、P−アミノ安息香酸と1,3−フェニルビスオキサゾリンとの反応が不十分となるため、上記靱性の向上効果は見られないことを実験により確認している。この点、本発明においては、P−アミノ安息香酸と1,3−フェニルビスオキサゾリンとを先に混合してアミドアミンを生成した後、ビスマレイミド樹脂と混合しているから、アミドアミンとビスマレイミド樹脂との反応は確実に行われ、上記靱性の向上効果を確実に得ることができる。 Further, when the bismaleimide resin and the amidoamine are reacted, when the bismaleimide resin and the P-aminobenzoic acid forming the amidoamine are mixed together with 1,3-phenylbisoxazoline, the bismaleimide resin and the P-aminobenzoic acid are mixed. And the reaction with 1,3-phenylbisoxazoline is given priority, and the reaction between P-aminobenzoic acid and 1,3-phenylbisoxazoline becomes insufficient, so that the effect of improving the toughness is not observed. It is confirmed by. In this regard, in the present invention, P-aminobenzoic acid and 1,3-phenylbisoxazoline are first mixed to form an amidoamine and then mixed with the bismaleimide resin. This reaction is reliably performed, and the effect of improving the toughness can be obtained with certainty.
よって、本実施例は、コスト安にして秀れた耐久性を有する極めて実用性に秀れたリップルバネを製造可能となる。 Therefore, this embodiment can produce a ripple spring having excellent durability and excellent durability at low cost.
以下に本実施例の効果を裏付ける実験例について説明する。 An experimental example supporting the effect of the present embodiment will be described below.
図3に図示したように、実験例1〜4を夫々の材料の配合比率を変えてTg及び長期劣化性の変化を調べたところ、図4に図示したような結果が得られた。尚、実験例1〜4に係るリップルバネは、ガラス繊維織物として縦横比が6.4:1のものを採用し、このガラス繊維織物に上記樹脂組成物を含浸せしめて、160℃1hで初期硬化せしめた後、200℃2h+230℃4hで後硬化せしめた基体を8枚重ねて作製した。 As shown in FIG. 3, the experimental examples 1 to 4 were examined for changes in Tg and long-term deterioration by changing the blending ratios of the respective materials. The results shown in FIG. 4 were obtained. The ripple springs according to Experimental Examples 1 to 4 employ a glass fiber fabric having an aspect ratio of 6.4: 1. The glass fiber fabric is impregnated with the above resin composition and initially cured at 160 ° C. for 1 hour. After the caulking, eight substrates which were post-cured at 200 ° C. for 2 h + 230 ° C. for 4 h were stacked to produce.
また、長期劣化性は、試料を5mm厚の鉄板で平らに押し潰した後、155℃に一定時間保持し、外観の変化を1週間おきに目視観察して評価した。 Further, long-term degradation was evaluated by squeezing the sample flat with a 5 mm thick iron plate, holding the sample at 155 ° C. for a certain period of time, and visually observing changes in appearance every other week.
図3,4より、ビスマレイミドを理論地より7%減とした実験例4では、長期劣化性が大幅に改善されることが確認された。従って、ビスマレイミドの添加量は1660重量部程度配合するのが特に好ましいことが確認された。 3 and 4, it was confirmed that long-term deterioration was significantly improved in Experimental Example 4 in which bismaleimide was reduced by 7% from the theoretical site. Therefore, it was confirmed that the addition amount of bismaleimide is particularly preferably about 1660 parts by weight.
尚、エポキシ樹脂を用いる従来例に比し、耐熱性及び靱性の双方が大幅に改善されることも実験により確認済みである。 It has been confirmed by experiments that both heat resistance and toughness are greatly improved as compared with the conventional example using an epoxy resin.
1 固定子鉄心
2 スロット
3 固定子コイル
4a・4b リップルバネ
1 Stator core 2
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007341007A JP4634438B2 (en) | 2007-12-28 | 2007-12-28 | Manufacturing method of fiber reinforced resin member and ripple spring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007341007A JP4634438B2 (en) | 2007-12-28 | 2007-12-28 | Manufacturing method of fiber reinforced resin member and ripple spring |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009161627A JP2009161627A (en) | 2009-07-23 |
JP4634438B2 true JP4634438B2 (en) | 2011-02-16 |
Family
ID=40964613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007341007A Active JP4634438B2 (en) | 2007-12-28 | 2007-12-28 | Manufacturing method of fiber reinforced resin member and ripple spring |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4634438B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5062059B2 (en) * | 2008-06-26 | 2012-10-31 | 日立化成工業株式会社 | Polymer, photosensitive resin composition |
US8400042B2 (en) | 2011-06-20 | 2013-03-19 | General Electric Company | Ripple spring |
US8736276B2 (en) | 2011-06-20 | 2014-05-27 | General Electric Company | Ripple spring and diagnostic method therefor |
JP7453004B2 (en) * | 2020-01-24 | 2024-03-19 | 三菱重工業株式会社 | Magnetic geared rotating electric machine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0232129A (en) * | 1988-07-21 | 1990-02-01 | Takeda Chem Ind Ltd | Production of crosslinked resin |
JPH02258836A (en) * | 1989-03-31 | 1990-10-19 | Takeda Chem Ind Ltd | Production of crosslinked resin |
JPH0860873A (en) * | 1994-08-18 | 1996-03-05 | Toho Rayon Co Ltd | Reinforcing and repairing member and reinforcing and repairing method of concrete structure |
JPH0982136A (en) * | 1995-09-11 | 1997-03-28 | Hitachi Ltd | High heat conduction semiconductive prepreg sheet, stator coil, and dynamo-electric machine using the same, and manufacture of dynamo-electric machine stator |
-
2007
- 2007-12-28 JP JP2007341007A patent/JP4634438B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0232129A (en) * | 1988-07-21 | 1990-02-01 | Takeda Chem Ind Ltd | Production of crosslinked resin |
JPH02258836A (en) * | 1989-03-31 | 1990-10-19 | Takeda Chem Ind Ltd | Production of crosslinked resin |
JPH0860873A (en) * | 1994-08-18 | 1996-03-05 | Toho Rayon Co Ltd | Reinforcing and repairing member and reinforcing and repairing method of concrete structure |
JPH0982136A (en) * | 1995-09-11 | 1997-03-28 | Hitachi Ltd | High heat conduction semiconductive prepreg sheet, stator coil, and dynamo-electric machine using the same, and manufacture of dynamo-electric machine stator |
Also Published As
Publication number | Publication date |
---|---|
JP2009161627A (en) | 2009-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4634438B2 (en) | Manufacturing method of fiber reinforced resin member and ripple spring | |
CN1144830C (en) | Viscosity omdifier for thermosetting resin composition | |
TWI595030B (en) | High modulus fiber reinforced polymer composite and method for manufacturing the same | |
JP7213620B2 (en) | Epoxy resin composition, prepreg, carbon fiber reinforced composite material and manufacturing method thereof | |
WO2008013094A1 (en) | Molded article and method for producing the same | |
JP6776649B2 (en) | Epoxy resin composition, and films, prepregs and fiber reinforced plastics using it. | |
WO2019098028A1 (en) | Thermosetting resin composition, prepreg, and fiber-reinforced composite material and production method therefor | |
CN108431073A (en) | Composition epoxy resin, fibre reinforced composites, molded product and pressure vessel | |
JPWO2014030636A1 (en) | Epoxy resin composition and film, prepreg, fiber reinforced plastic using the same | |
US20150274913A1 (en) | Prepreg, carbon-fiber-reinforced composite material, and robot hand | |
JP5606619B2 (en) | Rotating machine coil and manufacturing method thereof | |
CN1690153A (en) | Thermosetting adhesive composition and adhesive band used said composition for electronic member | |
JP7135271B2 (en) | Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels | |
KR101420056B1 (en) | Golf club shaft | |
WO2019176935A1 (en) | Prepreg and carbon fiber-reinforced composite material | |
CN107531883A (en) | Resin combination, resin sheet, resin cured matter and resin substrate | |
JP2005108616A (en) | Separator for fuel cell, and its manufacturing method | |
JP2016084372A (en) | Prepreg and fiber reinforced plastic | |
JP2010106228A (en) | Epoxy resin composition and cured body using the same, semi-cured body, prepreg and compound substrate using the same | |
JP2006260956A (en) | Fuel cell separator | |
JPWO2019107276A1 (en) | Carbon fiber bundle, prepreg, fiber reinforced composite material | |
JP7521182B2 (en) | Covering material | |
JP6433762B2 (en) | Epoxy resin composition for composite materials for electric wire coating | |
TWI720404B (en) | Prepreg and fiber reinforced composite materials | |
KR102697694B1 (en) | Manufacturing method of insulating composite material for generators and insulating composite material manufactured by the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101021 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4634438 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |