JP4634310B2 - Quantitative analyzer and quantitative analysis method - Google Patents

Quantitative analyzer and quantitative analysis method Download PDF

Info

Publication number
JP4634310B2
JP4634310B2 JP2006015440A JP2006015440A JP4634310B2 JP 4634310 B2 JP4634310 B2 JP 4634310B2 JP 2006015440 A JP2006015440 A JP 2006015440A JP 2006015440 A JP2006015440 A JP 2006015440A JP 4634310 B2 JP4634310 B2 JP 4634310B2
Authority
JP
Japan
Prior art keywords
film
immersion liquid
quantitative analysis
hexavalent chromium
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006015440A
Other languages
Japanese (ja)
Other versions
JP2007198797A (en
Inventor
隆行 和久井
俊浩 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2006015440A priority Critical patent/JP4634310B2/en
Publication of JP2007198797A publication Critical patent/JP2007198797A/en
Application granted granted Critical
Publication of JP4634310B2 publication Critical patent/JP4634310B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、基材の表面に形成された被膜に含まれる金属元素の定量分析を行う装置及びその方法に係り、特に被膜に含まれる金属元素の含有量を迅速かつ正確に分析することができる定量分析装置及びその方法に関する。   The present invention relates to an apparatus and method for quantitatively analyzing a metal element contained in a coating formed on the surface of a substrate, and in particular, it is possible to quickly and accurately analyze the content of a metal element contained in the coating. The present invention relates to a quantitative analysis apparatus and a method thereof.

従来から、電気機器、ねじなどの部品の表面には、防錆を目的として、鍍金が施されることがある。例えば、このような機器、部品を基材とした表面に、電気鍍金もしくは無電解鍍金によりクロム鍍金を行った場合、基材表面に形成されたクロメート被膜には、金属元素として六価クロム(Cr(VI))が含まれる。そして、このような六価クロムを含有する機器、部品が使用後屋外等に廃棄されると、雨水などにより、これらの機器、部品から六価クロムが溶出して地下水を汚染し、環境を悪化するおそれがある。   Conventionally, the surface of parts such as electric devices and screws is sometimes plated for the purpose of rust prevention. For example, when chromium plating is performed by electroplating or electroless plating on the surface of such a device or component as a base material, hexavalent chromium (Cr as a metal element) is formed on the chromate film formed on the surface of the base material. (VI)). And when such devices and parts containing hexavalent chromium are disposed outdoors after use, the hexavalent chromium is eluted from these devices and parts by rain water, etc., contaminating the groundwater and deteriorating the environment. There is a risk.

近年において、世界的にこのような環境問題に対する関心が高まっており、例えば、欧州においては、鉛、水銀、カドミウム、六価クロムの重金属と、臭化物難燃剤を2006年7月1日までに原則として非含有とすることを目的としたRoHS指令が発令されており、この指令による六価クロムを含む機器、部材の使用規制に対応すべく、クロメート被膜に含まれる六価クロムを正確に定量分析することが求められている。   In recent years, there has been a growing interest in environmental issues around the world. For example, in Europe, heavy metals such as lead, mercury, cadmium and hexavalent chromium, and bromide flame retardants are in principle by July 1, 2006. In order to comply with the regulations on the use of equipment and components containing hexavalent chromium under the directive, the RoHS Directive has been issued for the purpose of not containing it. Accurate quantitative analysis of hexavalent chromium contained in chromate coatings It is requested to do.

このようなクロメート被膜に含まれる六価クロムの測定方法の一例として、例えば、クロメート被膜が形成された試料を沸騰した純水で5分間加熱することにより六価クロムを溶出し、溶出した液を室温まで放冷し、この放冷した液を酸性とし、さらに酸性化した液にジフェニルカルバジドを添加して発色させた後、この吸光度を測定するような六価クロムの定量分析方法がJIS規格により定められている(非特許文献1参照)。   As an example of a method for measuring hexavalent chromium contained in such a chromate film, for example, by heating a sample on which a chromate film is formed with boiling pure water for 5 minutes, hexavalent chromium is eluted, The hexavalent chromium quantitative analysis method is a JIS standard that measures the absorbance after allowing to cool to room temperature, acidifying the cooled liquid, adding diphenylcarbazide to the acidified liquid, and then developing the color. (See Non-Patent Document 1).

また、この他の例として、例えば、測定対象物であるクロム化合物を中性の温水中で一定時間保持する工程と、前記温水とジフェニルカルバジドとを混合することにより混合液を得る工程と、前記混合液の吸光光度分析を行うことにより、前記混合液中の六価クロムを測定する工程とを含む六価クロムの測定方法が提案されている(特許文献1参照)。   Further, as another example, for example, a step of holding a chromium compound as a measurement object in neutral warm water for a certain period of time, a step of obtaining a mixed solution by mixing the warm water and diphenylcarbazide, There has been proposed a method for measuring hexavalent chromium including a step of measuring the hexavalent chromium in the mixed solution by performing an absorptiometric analysis of the mixed solution (see Patent Document 1).

「電気亜鉛めっき及び電気カドミウムめっき上のクロメート皮膜」、JIS H 8625、財団法人日本規格協会、1993年2月28日、p.6−8“Chromate film on electrogalvanizing and cadmium plating”, JIS H 8625, Japanese Standards Association, February 28, 1993, p. 6-8 特開2005−274503号公報JP 2005-274503 A

このように、従来におけるJIS規格により定められた分析方法は、六価クロムを溶出する溶媒に水を使用している点と、浸漬時間が5分と短時間である点とから、クロメート被膜に含まれる全ての六価クロムを溶出することができなかった。そのため、定量分析により得られる六価クロムの定量値は、実際にクロメート被膜に含有する六価クロムの含有量(真値)よりも少ない値となり、この方法では、正確な定量分析を行うことができなかった。また、特許文献1に記載の如き方法は、六価クロムを溶出する溶媒に温水を使用しているので、クロメート被膜に含まれる六価クロムを安定して溶出させるには、温水に長時間、基材を浸漬しなければならなかった。   Thus, the analysis method defined by the JIS standard in the past is based on the fact that water is used as a solvent for eluting hexavalent chromium and that the immersion time is as short as 5 minutes. All the hexavalent chromium contained could not be eluted. For this reason, the quantitative value of hexavalent chromium obtained by quantitative analysis is smaller than the content (true value) of hexavalent chromium actually contained in the chromate film. This method allows accurate quantitative analysis. could not. Moreover, since the method as described in Patent Document 1 uses hot water as a solvent for eluting hexavalent chromium, in order to stably elute hexavalent chromium contained in the chromate film, The substrate had to be immersed.

さらに、これらの分析方法は、基材を浸漬液に浸漬させる工程、この基材を浸漬液中から引き上げて浸漬液を放冷する工程、この放冷した浸漬液に試料を混合する工程、及びこの混合した混合液を吸光分光装置に配置し混合液の吸光度を測定する工程、の複数の工程からなり、これらの工程は個別の機器を用いて行われるので、作業に労を要するものであった。   Further, these analysis methods include a step of immersing the base material in the immersion liquid, a step of pulling up the base material from the immersion liquid and allowing the immersion liquid to cool, a step of mixing the sample with the cooled cooling liquid, and This mixed liquid mixture is arranged in an absorption spectrophotometer and the absorbance of the liquid mixture is measured, and these steps are performed using individual devices, which requires labor. It was.

本発明の目的とするところは、たとえクロメート被膜などの被膜に含まれる六価クロムのような金属元素であっても、該被膜に含まれる金属元素の定量分析を正確にすることができると共に、この定量分析における労力の削減と処理時間の短縮化を図ることができる定量分析装置及び定量分析方法を提案することにある。   The object of the present invention is to accurately perform the quantitative analysis of the metal element contained in the film even if it is a metal element such as hexavalent chromium contained in the film such as a chromate film, An object of the present invention is to propose a quantitative analysis apparatus and a quantitative analysis method capable of reducing labor and shortening the processing time in this quantitative analysis.

本発明は、基材の表面に形成された被膜に含まれる金属元素の定量分析を行う定量分析ことであって、浸漬液に基材を浸漬し、基材から被膜を脱離させ、被膜を脱離した浸漬液中の金属元素の定量分析を行うことに関する。   The present invention is a quantitative analysis for quantitative analysis of a metal element contained in a coating formed on the surface of a substrate, wherein the substrate is immersed in an immersion liquid, the coating is detached from the substrate, The present invention relates to the quantitative analysis of metal elements in the detached immersion liquid.

本発明によれば、クロメート被膜などの被膜に含まれる六価クロムのような金属元素であっても、該被膜に含まれる金属元素の定量分析を正確に行うことができると共に、この定量分析における労力の削減と処理時間の短縮化を図ることができる。   According to the present invention, even a metal element such as hexavalent chromium contained in a film such as a chromate film, the quantitative analysis of the metal element contained in the film can be accurately performed. It is possible to reduce the labor and the processing time.

以下、図面に基づき本発明に係る定量分析方法を好適に行うことができる、被膜に含まれる金属元素を溶出させる溶出処理装置(前処理装置)10Aを備えた定量分析装置1の一実施形態について説明する。図1は、溶出処理装置10Aの全体構成図であり、図2は、この装置10Aを含む定量分析装置1の全体構成図である。   Hereinafter, an embodiment of a quantitative analysis apparatus 1 including an elution processing apparatus (pretreatment apparatus) 10A for eluting a metal element contained in a film, which can suitably perform the quantitative analysis method according to the present invention based on the drawings. explain. FIG. 1 is an overall configuration diagram of an elution processing apparatus 10A, and FIG. 2 is an overall configuration diagram of a quantitative analysis apparatus 1 including the apparatus 10A.

図1に示すように、溶出処理装置10Aは、基材の表面に形成された被膜に含まれる金属元素を溶媒中に溶出させる処理を行う装置であって、被膜脱離用溶媒貯蔵槽11、被膜脱離槽(基材浸漬手段)12、被膜溶解槽(回収手段)13、及び被膜溶解用溶媒貯蔵槽(被膜溶解用溶媒供給手段)14を主に備えている。   As shown in FIG. 1, an elution treatment apparatus 10A is an apparatus that performs a process of eluting a metal element contained in a film formed on the surface of a base material into a solvent, and is a solvent storage tank 11 for film desorption. A film detachment tank (base material immersing means) 12, a film dissolving tank (collecting means) 13, and a film dissolving solvent storage tank (film dissolving solvent supply means) 14 are mainly provided.

被膜脱離用溶媒貯蔵槽11は、たとえば酸性の溶媒などの被膜を脱離するための浸漬液(被膜脱離用溶媒)を被膜脱離槽12に供給するための槽(溶媒供給手段)であり、貯蔵槽11には、この被膜脱離用溶媒が貯蔵されている。この溶媒としては、例えば、鉄系金属材料の表面に形成されたクロメート被膜に含有する六価クロム(Cr(IV))を溶出させる場合には、基材そのものの溶解を抑制するためにも希塩酸が好ましい。そして、この貯蔵槽11は、貯蔵された溶媒が供給可能なように弁15を介して被膜脱離槽12に連通している。   The film removal solvent storage tank 11 is a tank (solvent supply means) for supplying an immersion liquid (film removal solvent) for removing a film such as an acidic solvent to the film removal tank 12. The storage tank 11 stores the solvent for film removal. As the solvent, for example, in order to elute hexavalent chromium (Cr (IV)) contained in the chromate film formed on the surface of the iron-based metal material, dilute hydrochloric acid is also used to suppress dissolution of the base material itself. Is preferred. And this storage tank 11 is connected to the film removal tank 12 through the valve 15 so that the stored solvent can be supplied.

さらに、被膜脱離槽12は、被膜脱離用溶媒貯蔵槽11から供給された被膜脱離用溶媒により基材から被膜を脱離すべく、被膜脱離用溶媒(浸漬液)に基材を浸漬するための槽(基材浸漬手段)であり、被膜脱離槽12は、この基材を載置するための金網部12aと、基材が浸漬している浸漬液に超音波を照射する超音波照射装置(超音波照射手段(図示せず))とを備えている。そして、この被膜脱離槽12は、溶出した金属元素と脱離した被膜(脱離被膜)とを含有した浸漬液が、弁16を介して回収可能なように、被膜溶解槽13に連通している。   Furthermore, the film detachment tank 12 immerses the substrate in the film detachment solvent (immersion liquid) in order to desorb the film from the substrate with the film detachment solvent supplied from the film detachment solvent storage tank 11. The coating film detaching tank 12 is a tank for placing the base material and a wire mesh part 12a for placing the base material, and an ultrasonic wave for irradiating the immersion liquid in which the base material is immersed. And a sound wave irradiation device (ultrasonic wave irradiation means (not shown)). The coating film removal tank 12 communicates with the coating film dissolution tank 13 so that the immersion liquid containing the eluted metal element and the detached film (desorption film) can be collected through the valve 16. ing.

一方、被膜溶解用溶媒貯蔵槽14は、浸漬液中の前記脱離被膜を溶解すべく、回収された浸漬液に被膜溶解用溶媒を供給するための槽(被膜溶解用溶媒供給手段)であり、この貯蔵槽11には、酸性溶媒が貯蔵されている。また、この脱離した被膜が前記したクロメート被膜である場合には、この貯蔵槽14の被膜溶解用溶媒は、濃塩酸であることが好ましい。そして、貯蔵された被膜溶解用溶媒が供給可能なように弁17を介して被膜溶解槽13に連通している。   On the other hand, the film-dissolving solvent storage tank 14 is a tank (film-dissolving solvent supply means) for supplying the film-dissolving solvent to the recovered immersion liquid so as to dissolve the desorbed film in the immersion liquid. In this storage tank 11, an acidic solvent is stored. When the detached film is the above-described chromate film, the solvent for dissolving the film in the storage tank 14 is preferably concentrated hydrochloric acid. And it connects to the film dissolution tank 13 via the valve 17 so that the stored solvent for film dissolution can be supplied.

さらに、被膜溶解槽13は、被膜脱離槽12からの被膜を脱離した浸漬液を回収するための槽(回収手段)であると共に、被膜溶解用溶媒貯蔵槽14からの酸性溶媒により浸漬液中の脱離被膜を溶解するための槽であり、この被膜溶解槽13は、被膜溶解用溶媒が供給された浸漬液を加熱するためのヒーター(加熱手段)13aと、被膜が溶解した浸漬液が排出可能なように排出管18が配設されている。   Further, the film dissolution tank 13 is a tank (collecting means) for recovering the immersion liquid from which the film from the film desorption tank 12 has been removed, and the immersion liquid by the acidic solvent from the film dissolution solvent storage tank 14. The film dissolution tank 13 is a tank (heater) 13a for heating the immersion liquid supplied with the solvent for dissolving the film and the immersion liquid in which the film is dissolved. A discharge pipe 18 is disposed so that the can be discharged.

このように構成された溶出処理装置の操作方法について以下に示す。まず、検体である被膜が形成された基材を被膜脱離槽12に投入し金網部12a上に載置する。そして、弁15を開閉し、被膜脱離用溶媒貯蔵槽11の内にある被膜脱離用溶媒(酸性又はアルカリ性の溶媒)を基材が浸漬する一定量分まで被膜脱離槽12に送液し、浸漬液に基材を浸漬し、基材から被膜を脱離させる(被膜脱離工程)。   An operation method of the elution processing apparatus configured as described above will be described below. First, a base material on which a coating film as a specimen is formed is put into the coating film detaching tank 12 and placed on the wire mesh portion 12a. Then, the valve 15 is opened and closed, and the film removal solvent (acidic or alkaline solvent) in the film removal solvent storage tank 11 is fed to the film removal tank 12 up to a certain amount in which the substrate is immersed. Then, the substrate is immersed in the immersion liquid, and the film is detached from the substrate (film removal step).

さらに、基材に形成された被膜を効率良く脱離するために、必要に応じて超音波照射装置を作動させ、浸漬液に一定時間超音波を照射しながら、被膜を脱離させる。そして、弁16を開けて被膜脱離槽12の被膜が脱離し、金属元素が溶出した浸漬液(溶液)を被膜溶解槽13に全て回収し送液する。この際に、被膜脱離槽12や弁16に脱離した被膜が残存する可能性があるため、弁15を開閉し被膜脱離用溶媒貯蔵槽11から被膜脱離用溶媒を被膜脱離槽12に一定量送液し、洗浄することにより、これらの内壁に付着し残存した被膜も被膜溶解槽13に送る。   Furthermore, in order to efficiently remove the coating formed on the substrate, the ultrasonic irradiation apparatus is operated as necessary, and the coating is detached while irradiating the immersion liquid with ultrasonic waves for a certain period of time. Then, the valve 16 is opened, the coating film in the coating film detaching tank 12 is detached, and all the immersion liquid (solution) from which the metal element is eluted is collected and sent to the coating film dissolving tank 13. At this time, since the detached film may remain in the film desorption tank 12 or the valve 16, the valve 15 is opened and closed to remove the film desorption solvent from the film desorption solvent storage tank 11. When a certain amount of liquid is fed to 12 and washed, the film remaining on these inner walls is also sent to the film dissolution tank 13.

さらに、先に示した被膜脱離工程と後述する分析工程との間の工程として、弁17を開閉し被膜溶解用溶媒貯蔵槽14内にある被膜溶解用溶媒を一定量送液する。これにより回収された浸漬液に被膜溶解用溶媒が供給され、この浸漬液の液特性を被膜が溶解可能な液性に変え、浸漬液中の脱離した被膜を溶解する(被膜溶解工程)。さらに、この被膜溶解工程は、必要に応じて、被膜溶解槽13の浸漬液をヒーター13aにより加熱し、液温を高め、浸漬液中の脱離被膜の溶解を促進させる。   Further, as a process between the film desorption process described above and the analysis process described later, the valve 17 is opened and closed, and a certain amount of the film dissolving solvent in the film dissolving solvent storage tank 14 is fed. A solvent for dissolving the film is supplied to the recovered immersion liquid, and the liquid property of the immersion liquid is changed to a liquid property in which the film can be dissolved, and the detached film in the immersion liquid is dissolved (film dissolution process). Furthermore, in this film dissolution step, the immersion liquid in the film dissolution tank 13 is heated by the heater 13a as necessary to increase the liquid temperature and promote dissolution of the release film in the immersion liquid.

次に、このような溶出処理装置10Aを備えた定量分析装置1の全体構成を説明する。図2に示すように、定量分析装置1は、前記溶出処理装置10Aと、以下の如く前記溶出処理装置10Aにより被膜を脱離した浸漬液中の金属元素の定量分析を行う(分析工程を行う)分析手段10Bとして、試薬混合手段20、分光光度計(分光光度測定手段)30、及び、廃液貯蔵槽40を備えている。   Next, the overall configuration of the quantitative analysis apparatus 1 including such an elution processing apparatus 10A will be described. As shown in FIG. 2, the quantitative analysis apparatus 1 performs quantitative analysis of the metal element in the elution processing apparatus 10 </ b> A and the immersion liquid from which the coating has been removed by the elution processing apparatus 10 </ b> A as follows (performs an analysis step). ) As the analyzing means 10B, a reagent mixing means 20, a spectrophotometer (spectrophotometric measuring means) 30, and a waste liquid storage tank 40 are provided.

試薬混合手段20は、溶出処理装置10Aにより得られた浸漬液にpH調整試薬及び発色用試薬を混合するための混合装置であり、該試薬混合手段20は、pH調整用試薬が貯蔵された試薬貯蔵槽21、発色用試薬が貯蔵された試薬貯蔵槽22、浸漬液又はこれらの試薬を吸引するポンプ23〜25、及び浸漬液にこれらの試薬を混合するミキサー26,27を備えている。   The reagent mixing means 20 is a mixing apparatus for mixing the pH adjusting reagent and the coloring reagent with the immersion liquid obtained by the elution processing apparatus 10A, and the reagent mixing means 20 is a reagent in which the pH adjusting reagent is stored. A storage tank 21, a reagent storage tank 22 in which a coloring reagent is stored, pumps 23 to 25 for sucking the immersion liquid or these reagents, and mixers 26 and 27 for mixing these reagents in the immersion liquid are provided.

具体的には、ポンプ23は、溶出処理装置10Aの被膜溶解槽13からミキサー26に浸漬液が送液可能なように連通接続されており、ポンプ24は、試薬貯蔵槽21からpH調整用試薬が送液可能なようにミキサー26に連通接続されている。ポンプ23,24の流量は、この浸漬液を所望のpHにすべく、調整と可能になっている。   Specifically, the pump 23 is connected in communication so that the immersion liquid can be sent from the coating film dissolution tank 13 of the elution treatment apparatus 10A to the mixer 26, and the pump 24 is supplied from the reagent storage tank 21 to the pH adjusting reagent. Is connected to the mixer 26 so that the liquid can be fed. The flow rates of the pumps 23 and 24 can be adjusted to bring the immersion liquid to a desired pH.

ミキサー26は、二液混合のミキサーであり、この送液された浸漬液とpH調整用試薬を混合し、この混合した液をミキサー27に送液可能なように接続されている。一方、ポンプ25は、試薬貯蔵槽22からミキサー27にこの混合液が送液可能なように連通接続されており、ミキサー27は、ミキサー26から送液された混合液に、ポンプ25により送液された発色用試薬を混合し、この混合液を分光光度計30に送液可能なように接続されている。   The mixer 26 is a two-component mixing mixer, and is connected so that the fed immersion liquid and the pH adjusting reagent are mixed and the mixed solution can be fed to the mixer 27. On the other hand, the pump 25 is connected in communication so that the liquid mixture can be sent from the reagent storage tank 22 to the mixer 27, and the mixer 27 feeds the liquid mixture sent from the mixer 26 by the pump 25. The developed coloring reagent is mixed, and the mixture is connected to the spectrophotometer 30 so as to be fed.

さらに、分光光度計30は、この発色用試薬を混合した混合液の吸光度を測定し、この浸漬液中の金属元素の濃度を求め、金属元素の定量分析を行うように構成されており、この分光光度計30は、この測定完了後の液を、廃液貯蔵槽40に廃液可能なように接続されている。   Further, the spectrophotometer 30 is configured to measure the absorbance of the mixed solution mixed with the coloring reagent, determine the concentration of the metal element in the immersion liquid, and perform the quantitative analysis of the metal element. The spectrophotometer 30 is connected to the waste liquid storage tank 40 so that the liquid after completion of the measurement can be discharged.

このように構成された定量分析装置1により、以下の分析工程を行う。まず、ポンプ23により溶出処理装置10Aで処理した浸漬液を吸引すると同時に、ポンプ24により、pH調整剤を吸引し、これらの二液をミキサー26に送液し、このミキサー26により混合する。そして、この混合液は、ミキサー27に送液され、さらにポンプ25により吸引された発色用試薬と、この混合液とを、ミキサー27によりを混合する。この混合された液は、分光光度計30によりこの液の吸光度が測定され、この液に含有される六価クロムの濃度または量に変換され、測定後の溶液は廃液貯蔵槽40に廃液される。   The following analysis process is performed by the quantitative analysis device 1 configured as described above. First, the immersion liquid processed by the elution processing apparatus 10 </ b> A is sucked by the pump 23, and at the same time, the pH adjusting agent is sucked by the pump 24, and these two liquids are fed to the mixer 26 and mixed by the mixer 26. Then, the mixed solution is fed to the mixer 27, and the coloring reagent sucked by the pump 25 is mixed with the mixed solution by the mixer 27. The mixed liquid is measured for absorbance by the spectrophotometer 30 and converted to the concentration or amount of hexavalent chromium contained in the liquid, and the solution after the measurement is discharged into the waste liquid storage tank 40. .

しかし、以上のようなポンプとミキサーを用いた一連の送液システムだけではなく、オートサンプラを用いてサンプルし、pH調整用試薬と発色用試薬をそれぞれ添加し混合した後、分光光度計に送液する測定装置であってもよい。   However, not only a series of liquid delivery systems using a pump and a mixer as described above, but also samples using an autosampler, added and mixed with a pH adjusting reagent and a coloring reagent, and then sent to a spectrophotometer. A liquid measuring device may be used.

このような定量分析装置を用いた定量分析方法において、被膜脱離槽(基材浸漬手段)12を用いて被膜脱離工程を行うので、この基材から被膜を脱離し、被膜に含まれる金属元素が溶出することができる。すなわち、単に水などの中性の溶液中に浸漬させる方法に比べて、この被膜に含まれる金属元素が浸漬液に溶出しやすくなり、被膜に含まれる金属元素の定量分析をより迅速かつ精度良く行なうことができる。そして、被膜脱離工程において、超音波照射手段を用いて、基材が浸漬している浸漬液に超音波を照射しながら、基材から前記被膜を脱離させているので、基材からの被膜の脱離をさらに促進することができる。   In the quantitative analysis method using such a quantitative analysis apparatus, the coating film detachment step is performed using the coating film detachment tank (base material immersion means) 12, so that the coating film is detached from the base material and the metal contained in the coating film is removed. Elements can be eluted. That is, compared to a method of simply immersing in a neutral solution such as water, the metal element contained in this film is more likely to elute into the immersion liquid, and quantitative analysis of the metal element contained in the film can be performed more quickly and accurately. Can be done. And, in the coating film detaching step, the coating film is detached from the substrate while irradiating the immersion liquid in which the substrate is immersed with ultrasonic waves using the ultrasonic irradiation means. Desorption of the film can be further promoted.

また、被膜溶解槽(回収手段)13により、基材そのものの溶解を抑制すべく、浸漬液と基材を分離して、被膜を分離した浸漬液を回収し、被膜溶解用溶媒貯蔵槽(被膜溶解用溶媒供給手段)14を用いてさらに被膜溶解工程を行うので、この回収した浸漬液に含まれる脱離被膜を溶解し、この溶解した脱離被膜に含まれる金属元素までも溶出することができる。その結果、この金属元素の定量分析をより精度良く、確実に行なうことができる。また、ヒーター(加熱手段)13aが回収した浸漬液を加熱するので、脱離被膜の溶解を促進することができ、金属元素を溶出させる処理時間の短縮化を図ることができる。   Further, in order to suppress dissolution of the base material itself by the film dissolution tank (collection means) 13, the immersion liquid and the base material are separated, the immersion liquid from which the film has been separated is recovered, and the solvent storage tank for film dissolution (coating film) Since the film dissolving step is further performed using the dissolving solvent supply means) 14, the desorbed film contained in the recovered immersion liquid is dissolved, and even the metal element contained in the dissolved desorbed film can be eluted. it can. As a result, the quantitative analysis of the metal element can be performed more accurately and reliably. Further, since the immersion liquid collected by the heater (heating means) 13a is heated, dissolution of the release film can be promoted, and the processing time for eluting the metal element can be shortened.

このようにして、該被膜に含まれる金属元素を正確に定量分析することができると共に、この定量分析における労力の削減と処理時間を短縮することができる。   In this way, the metal element contained in the coating can be accurately quantitatively analyzed, and the labor and processing time in this quantitative analysis can be reduced.

なお、各弁15〜17の開閉タイミング、及び、各ポンプ23〜26の流量を制御するための制御装置をさらに備えてもよく、この制御装置を備えることにより、pH調整用試薬、発色用試薬の添加と分光光度計による吸光度を測定と、を自動化することが可能となる。   In addition, you may further provide the control apparatus for controlling the opening-and-closing timing of each valve 15-17, and the flow volume of each pump 23-26, and by providing this control apparatus, the reagent for pH adjustment, the reagent for color development It is possible to automate the addition of and measuring the absorbance with a spectrophotometer.

このような、定量分析装置1を用いて、クロメート被膜に含まれる六価クロムを定量分析する方法を以下に示す。この分析対象となる基材に形成された被膜は、クロメート被膜と亜鉛被膜を積層した被膜であって、前記亜鉛被膜を基材表面側に形成させた被膜である。   A method of quantitatively analyzing hexavalent chromium contained in the chromate film using such a quantitative analysis apparatus 1 will be described below. The film formed on the base material to be analyzed is a film in which a chromate film and a zinc film are laminated, and the zinc film is formed on the base material surface side.

まず、被膜脱離用溶媒貯蔵槽11に0.5M塩酸(被膜脱離用溶媒)を入れる。そして、被膜脱離槽12に被膜が形成された基材を投入し金網部12a上に載置する。次に、弁15を開閉し、被膜脱離用溶媒貯蔵槽11の内にある0.5M塩酸を、被膜が形成された基材に供給し、この基材が浸漬する一定量分まで被膜脱離槽12に送液する。   First, 0.5 M hydrochloric acid (film removal solvent) is placed in the film removal solvent storage tank 11. And the base material in which the film was formed is thrown into the film removal tank 12, and it mounts on the metal-mesh part 12a. Next, the valve 15 is opened and closed, and 0.5 M hydrochloric acid in the solvent storage tank 11 for removing the coating is supplied to the substrate on which the coating has been formed. The solution is sent to the separation tank 12.

次に、超音波照射装置を作動させ、基材が浸漬している浸漬液に、超音波を照射しながら5分間保持し、六価クロムを溶出させると共に基材からクロメート被膜を脱離させる。このクロメート被膜を脱離させた後、基材と浸漬液とを分離するために、弁16を開けて被膜溶解槽13においてこの被膜を脱離した浸漬液を回収する。さらに、弁15を開閉し少量の希塩酸を送液し被膜脱離槽12及び弁16を洗浄し、この洗浄液も被膜溶解槽13に送液する。このとき0.5M塩酸の浸漬液中にはクロメート被膜の残渣が存在する。   Next, the ultrasonic irradiation apparatus is operated, and the immersion liquid in which the base material is immersed is held for 5 minutes while irradiating ultrasonic waves, so that hexavalent chromium is eluted and the chromate film is detached from the base material. After the chromate film is removed, in order to separate the substrate and the immersion liquid, the valve 16 is opened and the immersion liquid from which the film has been removed is recovered in the film dissolution tank 13. Further, the valve 15 is opened and closed, and a small amount of dilute hydrochloric acid is sent to wash the coating film detachment tank 12 and the valve 16, and this cleaning liquid is also sent to the coating film dissolution tank 13. At this time, a chromate film residue is present in the 0.5 M hydrochloric acid immersion liquid.

そこで、弁17を開閉し被膜溶解用溶媒貯蔵槽14内にある11.6M濃塩酸(被膜溶解用溶媒)を一定量送液し、被膜溶解槽13内の浸漬液の液性を3Mの塩酸とする。この場合、塩酸3Mにするためには、61mLの前記濃塩酸を被膜溶解槽13に注入することになる。さらに被膜溶解槽13に搭載されているヒーターを作動させ、被膜溶解槽13内の浸漬液を50℃にし、この状態を20分間維持し、浸漬液中の脱離したクロメート被膜の溶解を促進させる。この一連の操作により電気亜鉛鍍金被膜上に形成されたクロメート被膜に含まれる六価クロムを効率良く溶出することができる。   Therefore, the valve 17 is opened and closed to feed a fixed amount of 11.6M concentrated hydrochloric acid (solvent for dissolving the coating) in the solvent storage tank 14 for coating dissolution, and the liquid property of the immersion liquid in the coating dissolution tank 13 is changed to 3M hydrochloric acid. And In this case, in order to make hydrochloric acid 3M, 61 mL of the concentrated hydrochloric acid is poured into the coating dissolution tank 13. Furthermore, the heater mounted in the film dissolution tank 13 is operated, the immersion liquid in the film dissolution tank 13 is set to 50 ° C., this state is maintained for 20 minutes, and the dissolution of the detached chromate film in the immersion liquid is promoted. . Through this series of operations, hexavalent chromium contained in the chromate coating formed on the electrogalvanized coating can be efficiently eluted.

ところで、膜厚の異なる様々なクロメート被膜を前処理するためには、クロメート被膜の膜厚に応じて被膜脱離槽12における希塩酸と基材を分離する時間を調整する必要がある。この場合には、2価陽イオンを測定対象とした、ジデシルリン酸を膜組成とする液膜電極型のイオン選択性電極を設置し、クロメート被膜と亜鉛被膜を積層した被膜のうち亜鉛被膜が希塩酸に溶解したイオン化された亜鉛(Zn2+)の濃度を測定する濃度測定手段(図示せず)をさらに備えることが好ましい。このような濃度測定手段を設けることにより、被膜脱離槽12内の希塩酸に溶解したイオン化された亜鉛(Zn2+)の濃度を測定し、この亜鉛濃度の測定結果に基づいて、分離時間(被膜脱離工程を終了する時間)を調整することができる。具体的には、電極の指示値が一定に達し、亜鉛イオンに由来する2価陽イオンが一定濃度に達した時点で、弁16を開ける制御装置を備えてもよい。これにより、クロメート被膜のみを効率よく脱離することが可能となり、イオン化された亜鉛により六価クロムの濃度が低下することを抑制することができるので、クロメート被膜のみを効率よく基材から脱離させ、その被膜を含む浸漬液を効率よく回収することができる。 By the way, in order to pre-process various chromate films having different film thicknesses, it is necessary to adjust the time for separating dilute hydrochloric acid and the substrate in the film desorption tank 12 in accordance with the film thickness of the chromate film. In this case, a liquid membrane electrode type ion-selective electrode having didecyl phosphate as a membrane composition and having a divalent cation as the measurement target is installed, and the zinc coating is a dilute hydrochloric acid among the coatings in which the chromate coating and the zinc coating are laminated It is preferable to further comprise a concentration measuring means (not shown) for measuring the concentration of ionized zinc (Zn 2+ ) dissolved in. By providing such a concentration measuring means, the concentration of ionized zinc (Zn 2+ ) dissolved in dilute hydrochloric acid in the coating desorption tank 12 is measured, and based on the measurement result of this zinc concentration, the separation time (coating The time for ending the desorption step) can be adjusted. Specifically, a control device may be provided that opens the valve 16 when the indicated value of the electrode reaches a constant value and the divalent cation derived from zinc ions reaches a certain concentration. As a result, it is possible to efficiently remove only the chromate film, and it is possible to prevent the concentration of hexavalent chromium from being lowered by the ionized zinc, so that only the chromate film is efficiently detached from the substrate. And the immersion liquid containing the coating can be efficiently recovered.

また被膜脱離用溶媒としては希塩酸などの酸性溶媒だけではなく、アルカリ性溶媒を使用してもよい。電気亜鉛鍍金被膜上に形成されたクロメート被膜は、水酸化ナトリウム水溶液であってもクロメート被膜を脱離させることが可能であるからである。この場合は、被膜脱離用溶媒貯蔵槽11に水酸化ナトリウム水溶液を貯蔵し、被膜溶解用溶媒貯蔵槽14には濃塩酸を貯蔵し上記の方法と同様に行えばよい。このように、希塩酸又は水酸化ナトリウム水溶液を用いることにより、六価クロムを還元することなく、基材そのものの溶解を抑制し、被膜に含まれる六価クロムを溶出させると共に、クロメート被膜を基材から脱離することが可能となる。さらに、濃塩酸を用いることにより脱離したクロメート被膜を確実に溶解し、脱離したクロメート被膜に含まれる六価クロムを溶出させることができる。   Further, as the solvent for removing the film, not only an acidic solvent such as dilute hydrochloric acid but also an alkaline solvent may be used. This is because even if the chromate film formed on the electrogalvanized film is an aqueous sodium hydroxide solution, the chromate film can be removed. In this case, the aqueous solution of sodium hydroxide is stored in the solvent storage tank 11 for film removal, and concentrated hydrochloric acid is stored in the solvent storage tank 14 for film dissolution, and the same method as described above may be performed. Thus, by using dilute hydrochloric acid or sodium hydroxide aqueous solution, the dissolution of the base material itself is suppressed without reducing the hexavalent chromium, and the hexavalent chromium contained in the film is eluted, and the chromate film is used as the base material. It becomes possible to detach from. Furthermore, by using concentrated hydrochloric acid, the detached chromate film can be surely dissolved, and hexavalent chromium contained in the detached chromate film can be eluted.

さらに、ジフェニルカルバジド−吸光光度法により、浸漬液に含まれる六価クロムの定量分析を行う。具体的には、吐出流量を0.92mL/分に調整したポンプ23により浸漬液を9.2mL、さらに吐出流量を0.06mL/分に調整したポンプ24によりpH調整剤として2Mの硫酸もしくは塩酸0.6mLを吸引してミキサー26に送液し、これら二液をミキサー26により混合し、この混合液に対して、0.02mL/分に調整したポンプ25により、発色用試薬として1%のジフェニルカルバジド溶液を0.2mLの割合となるようにミキサー27により混合し、この混合された全ての溶液を分光光度計(分光光度測定手段)30に送液し、この混合液に対する540nmの吸光度を測定し、六価クロムの濃度を算出し、六価クロムの定量分析を行うので、クロメート被膜に含まれる六価クロムを確実に溶出させることができ、信頼性の高い六価クロムの定量分析を行うことができる。そして、測定後の溶液は廃液貯蔵槽40に廃液される。   Furthermore, the hexavalent chromium contained in the immersion liquid is quantitatively analyzed by diphenylcarbazide-absorption spectrophotometry. Specifically, 2M sulfuric acid or hydrochloric acid is used as a pH adjuster by a pump 24 having a discharge flow rate adjusted to 0.92 mL / min and a pump 24 having a discharge flow rate adjusted to 0.06 mL / min. 0.6 mL is sucked and sent to the mixer 26, and the two liquids are mixed by the mixer 26. The pump 25 adjusted to 0.02 mL / min with respect to the mixed liquid is 1% as a coloring reagent. The diphenylcarbazide solution is mixed by the mixer 27 so as to have a ratio of 0.2 mL, all the mixed solutions are sent to a spectrophotometer (spectrophotometric measuring means) 30, and the absorbance at 540 nm with respect to the mixed solution. Since the hexavalent chromium concentration is calculated and the hexavalent chromium concentration is analyzed, the hexavalent chromium contained in the chromate film can be eluted reliably. It is possible to perform a quantitative analysis of the high sex hexavalent chromium. Then, the solution after the measurement is discharged into the waste liquid storage tank 40.

<検証実験>
以下に本実施形態における作用を実験的に検証した検証例をその比較例と共に、以下に説明する。
<Verification experiment>
The verification example which verified the effect | action in this embodiment experimentally below is demonstrated below with the comparative example.

(検証例1)
クロメート被膜が形成された試験片A[20×45mm(厚さ2mm),Ep−Fe/Zn8]を準備し、被膜脱離用溶媒貯蔵槽11に0.5M塩酸を入れ、被膜脱離槽12にこの試験片Aを投入し、金網部12a上に載置した。そして、弁15を開閉し、被膜脱離用溶媒貯蔵槽11の内にある0.5M塩酸を、試験片Aに供給し、試験片Aが浸漬する一定量分まで被膜脱離槽12に送液した。次に、超音波照射装置を作動させ、超音波を、この溶媒に試験片Aが浸漬した液に超音波を照射しながら所定の時間保持し、六価クロムを溶出させると共に基材からクロメート被膜を脱離させた。なお、浸漬時間を1〜10分間の範囲において行った。溶出した全クロム(全Cr)、亜鉛(Zn)、鉄(Fe)量を原子吸光光度計により定量した結果を図3に示す。
(Verification example 1)
A test piece A [20 × 45 mm (thickness 2 mm), Ep-Fe / Zn8] on which a chromate film was formed was prepared, 0.5 M hydrochloric acid was placed in the solvent storage tank 11 for film removal, and the film release tank 12 The test piece A was put in and placed on the wire mesh portion 12a. Then, the valve 15 is opened and closed, and 0.5 M hydrochloric acid in the solvent storage tank 11 for film desorption is supplied to the test piece A, and sent to the film desorption tank 12 up to a certain amount in which the test piece A is immersed. Liquid. Next, the ultrasonic irradiation device is operated, and the ultrasonic wave is held for a predetermined time while irradiating the liquid in which the test piece A is immersed in this solvent for elution of hexavalent chromium and the chromate film from the substrate. Was desorbed. The immersion time was in the range of 1 to 10 minutes. FIG. 3 shows the results of quantifying the eluted total chromium (total Cr), zinc (Zn), and iron (Fe) with an atomic absorption photometer.

(比較例1)
検証例1と同じ試験片Aを準備し、50mLの純水の入った容器に試験片を浸漬し、この試験片の入った純水を30〜180分間加熱して沸騰水とし、六価クロムを純水中に溶出させ、ジフェニルカルバジド−吸光光度法により溶出した六価クロムの定量分析を行った。なお、試験体を沸騰水に浸漬した時間を、30〜180分の範囲において行った。この結果を図4に示す。さらに、X線光電子分光法により120分間浸漬した場合の試験片表面にある六価クロムの分析を行った。
(Comparative Example 1)
Prepare the same test piece A as in Verification Example 1, immerse the test piece in a container containing 50 mL of pure water, heat the pure water containing this test piece for 30 to 180 minutes to make boiling water, and then use hexavalent chromium. Was eluted in pure water, and quantitative analysis of hexavalent chromium eluted by diphenylcarbazide-absorptiometry was performed. In addition, the time which immersed the test body in boiling water was performed in the range of 30 to 180 minutes. The result is shown in FIG. Furthermore, the hexavalent chromium on the surface of the test piece when immersed for 120 minutes by X-ray photoelectron spectroscopy was analyzed.

(比較例2)
比較例1と異なる装置において製造した試験片Bを準備し、比較例1と同様の分析試験を行った。この結果を図4に示す。
(Comparative Example 2)
A test piece B manufactured in an apparatus different from that in Comparative Example 1 was prepared, and the same analytical test as in Comparative Example 1 was performed. The result is shown in FIG.

(結果1)
図3に示すように、検証例1において、浸漬時間が5分間以上である場合に全クロム量が一定となった。さらに蛍光X線分析装置により浸漬した試験片表面のクロム量を測定したところ、5分間の浸漬により完全に脱離していることを確認した。また、浸漬時間が長くなるに従って(7分間程度まで)、クロメート被膜の下層に存在する亜鉛被膜の亜鉛の溶解量が増大した。
(Result 1)
As shown in FIG. 3, in the verification example 1, the total chromium amount became constant when the immersion time was 5 minutes or more. Furthermore, when the amount of chromium on the surface of the test piece immersed in the fluorescent X-ray analyzer was measured, it was confirmed that it was completely detached by immersion for 5 minutes. Further, as the immersion time became longer (up to about 7 minutes), the amount of zinc dissolved in the zinc coating existing under the chromate coating increased.

図4に示すように、比較例1、2に用いた試験片A,Bの六価クロムの溶出の挙動は異なるが、いずれの場合も120分間以上浸漬させると、六価クロムの溶出量が一定となった。さらに、120分間浸漬した場合の試験片表面をX線光電子分光法により六価クロムを分析したところ、表面に六価クロムは残存しており、その溶出率は約50%であった。   As shown in FIG. 4, the behavior of elution of hexavalent chromium in the test pieces A and B used in Comparative Examples 1 and 2 is different. It became constant. Further, when the surface of the test piece immersed for 120 minutes was analyzed for hexavalent chromium by X-ray photoelectron spectroscopy, hexavalent chromium remained on the surface, and the elution rate was about 50%.

(考察1)
この結果1から、検証例1の如き塩酸を用いた方法で六価クロムを溶出させると、基材から短時間で安定して六価クロムを溶出することが可能であると考えられる。また、比較例1,2の如く、沸騰水による六価クロムの溶出には最低でも120分間を要し、JIS規格の規定時間の5分間では処理時間が短い。さらに、X線光電子分光法の結果から、120分間浸漬した場合の試験片表面には六価クロムは残存しており、沸騰水に浸漬する方法では、被膜から六価クロムを完全に溶出することができないと考えられる。
(Discussion 1)
From this result 1, it is considered that when hexavalent chromium is eluted by a method using hydrochloric acid as in Verification Example 1, it is possible to stably elute hexavalent chromium from the substrate in a short time. In addition, as in Comparative Examples 1 and 2, elution of hexavalent chromium with boiling water requires at least 120 minutes, and the processing time is short in 5 minutes as specified in JIS standards. Furthermore, from the results of X-ray photoelectron spectroscopy, hexavalent chromium remains on the surface of the test piece when immersed for 120 minutes, and in the method immersed in boiling water, hexavalent chromium is completely eluted from the coating. It is thought that is not possible.

(検証例2)
検証例1と同じようにして、試験片から浸漬液に六価クロムを溶出させた。検証例1と異なる点は、浸漬時間の経過にあわせて、希塩酸に溶解したイオン化された亜鉛(Zn2+)の濃度を測定し、この亜鉛イオンの溶解量が、40mg以上になるまで、試験片を浸漬し、その後、その液をジフェニルカルバジド−吸光光度法により、六価クロムを定量分析した点である。この結果である、亜鉛の溶出量と六価クロムの定量値の関係を図5に示す。
(Verification example 2)
In the same manner as in Verification Example 1, hexavalent chromium was eluted from the test piece into the immersion liquid. The difference from Verification Example 1 is that the concentration of ionized zinc (Zn 2+ ) dissolved in dilute hydrochloric acid is measured as the immersion time elapses, and the test piece is used until the amount of dissolved zinc ions reaches 40 mg or more. Then, the hexavalent chromium was quantitatively analyzed by diphenylcarbazide-absorption photometry. FIG. 5 shows the relationship between the elution amount of zinc and the quantitative value of hexavalent chromium, which is the result.

(比較例3)
検証例2と同じようにして、試験片から六価クロムを溶出させた。検証例2と異なる点は、この亜鉛イオンの溶解量が、40mg以上試験片を浸漬した点である。この結果を図5に示す。
(Comparative Example 3)
In the same manner as in Verification Example 2, hexavalent chromium was eluted from the test piece. The difference from the verification example 2 is that the amount of zinc ions dissolved is 40 mg or more of test pieces. The result is shown in FIG.

(結果2)
検証例2では、亜鉛の溶解量が増加しても、六価クロムの定量値には変化が無かったが、比較例3では、亜鉛の溶解量が増加するに従って、六価クロムの定量値は減少した。
(Result 2)
In Verification Example 2, even when the amount of dissolved zinc was increased, the quantitative value of hexavalent chromium was not changed. In Comparative Example 3, the quantitative value of hexavalent chromium was increased as the amount of dissolved zinc was increased. Diminished.

(考察2)
この結果2から、亜鉛被膜が溶解し、イオン化された亜鉛(Zn2+)の溶解量が増加すると、この亜鉛イオンにより六価クロムが三価クロムに還元されたので、六価クロムの定量値が減少したと推測される。そのため、六価クロムの定量値を正確に測定するには、クロメート被膜が脱離し、Znが多量に溶出していない時点で、浸漬液を回収し、浸漬液から試験片を取り出す必要があると考えられる。なお、この点を考慮すると、この試験片では0.5M塩酸に5分間浸漬した時点で取り出すと、還元されることなく六価クロムを定量分析することができると考えられる。
(Discussion 2)
As a result, when the zinc coating is dissolved and the amount of ionized zinc (Zn 2+ ) is increased, hexavalent chromium is reduced to trivalent chromium by this zinc ion, so that the quantitative value of hexavalent chromium is Presumed to have decreased. Therefore, in order to accurately measure the quantitative value of hexavalent chromium, it is necessary to recover the immersion liquid and remove the test piece from the immersion liquid when the chromate film is detached and a large amount of Zn is not eluted. Conceivable. In consideration of this point, it is considered that this test piece can quantitatively analyze hexavalent chromium without being reduced when taken out after being immersed in 0.5 M hydrochloric acid for 5 minutes.

(検証例3)
検証例1と同じように、希塩酸に試験片を5分間浸漬させて、浸漬液に六価クロムを溶出させた。さらに、この六価クロムが溶出された浸漬液に、11.6M濃塩酸(被膜溶解用溶媒)を一定量送液し、被膜溶解槽13内の浸漬液の液性を3Mの塩酸となるように、濃塩酸を添加した。そして、20〜150分間において、この浸漬液の六価クロムの量を、ジフェニルカルバジド−吸光光度法により定量した。その結果を図6に示す。
(Verification Example 3)
As in Verification Example 1, the test piece was immersed in dilute hydrochloric acid for 5 minutes to elute hexavalent chromium in the immersion liquid. Further, a certain amount of 11.6M concentrated hydrochloric acid (solvent for dissolving the film) is fed into the immersion liquid from which the hexavalent chromium has been eluted, so that the liquid property of the immersion liquid in the film dissolution tank 13 becomes 3M hydrochloric acid. To the mixture, concentrated hydrochloric acid was added. Then, the amount of hexavalent chromium in the immersion liquid was quantified by diphenylcarbazide-absorption spectrophotometry in 20 to 150 minutes. The result is shown in FIG.

(検証例4)
検証例3と同じようにして、試験片Aから浸漬液に六価クロムを溶出させ、さらに、この浸漬液に濃塩酸を添加した。実施例と異なる点は、この濃塩酸を添加した浸漬液を加熱した点である。検証例3と同様に、この浸漬液の六価クロムの量を、ジフェニルカルバジド−吸光光度法により定量した。その結果を図6に示す。
(Verification Example 4)
In the same manner as in Verification Example 3, hexavalent chromium was eluted from the test piece A into the immersion liquid, and concentrated hydrochloric acid was added to the immersion liquid. The difference from the example is that the immersion liquid to which concentrated hydrochloric acid was added was heated. In the same manner as in Verification Example 3, the amount of hexavalent chromium in the immersion liquid was quantified by diphenylcarbazide-absorption spectrophotometry. The result is shown in FIG.

(比較例4)
検証例3と同じように、試験片Aから浸漬液に六価クロムを溶出させた。検証例3と粉なる点は、浸漬液に濃塩酸を添加せず、浸漬液を0.5M塩酸の状態を保持した点である。検証例3と同様に、この浸漬液の六価クロムの量を、ジフェニルカルバジド−吸光光度法により定量した。その結果を図6に示す。
(Comparative Example 4)
As in Verification Example 3, hexavalent chromium was eluted from the test piece A into the immersion liquid. The point which becomes powder with the verification example 3 is a point which did not add concentrated hydrochloric acid to immersion liquid, but maintained the state of 0.5 M hydrochloric acid for immersion liquid. In the same manner as in Verification Example 3, the amount of hexavalent chromium in the immersion liquid was quantified by diphenylcarbazide-absorption spectrophotometry. The result is shown in FIG.

(結果3)
検証例3の如く浸漬液の酸濃度を3Mの塩酸とし、この浸漬液を加熱したものは、他のものに比べ、浸漬液中の脱離被膜の溶解は迅速に進み、処理時間20分間で六価クロムの溶出量は一定値に達した。検証例4の如く浸漬液の酸濃度を高めた3Mの塩酸中では比較例4に比べ脱離被膜の溶解速度は速くなり、およそ150分間で一定値に達した。比較例4の如く0.5Mの塩酸中では脱離したクロメート被膜が溶解する速度は検証例3,4に比べて非常に遅く、処理時間を150分間にしたとしても溶出量は一定にはならなかった。
(Result 3)
In the case where the acid concentration of the immersion liquid is 3M hydrochloric acid as in Verification Example 3 and the immersion liquid is heated, the dissolution of the release film in the immersion liquid proceeds more quickly than in the other cases, and the treatment time is 20 minutes. The elution amount of hexavalent chromium reached a certain value. In 3M hydrochloric acid in which the acid concentration of the immersion liquid was increased as in Verification Example 4, the dissolution rate of the release film was faster than that in Comparative Example 4, and reached a constant value in about 150 minutes. As in Comparative Example 4, the rate of dissolution of the detached chromate film in 0.5 M hydrochloric acid is much slower than in Examples 3 and 4, and even if the treatment time is 150 minutes, the elution amount does not become constant. There wasn't.

(考察3)
この結果3から、脱離したクロメート被膜には六価クロムが含まれており、より正確に六価クロムの定量分析を行うためには、この脱離被膜を含む浸漬液は完全に溶液化し、この被膜を溶解する必要があると考えられる。脱離したクロメート被膜を含む浸漬液の酸濃度を、高濃度にすると共に加熱することによって、短時間で脱離したクロメート被膜に含まれる六価クロムを溶液化できると考えられる。
(Discussion 3)
From this result 3, the detached chromate film contains hexavalent chromium, and in order to perform more accurate quantitative analysis of hexavalent chromium, the immersion liquid containing this released film is completely dissolved, It is considered necessary to dissolve this coating. It is considered that the hexavalent chromium contained in the detached chromate film can be made into a solution in a short time by increasing the acid concentration of the immersion liquid containing the detached chromate film and heating it.

(六価クロム回収量の確認試験)
(1)0.5M塩酸に試験片Aを室温条件で浸漬し、直ちに超音波を照射した。5分後に試験片を取り出し、最終的に3M塩酸になるように濃塩酸を添加した。その後,50℃に加熱して,処理開始後30〜160分間の六価クロムを定量した(六価クロム無添加)。
(Confirmation test of hexavalent chromium recovery)
(1) Specimen A was immersed in 0.5 M hydrochloric acid at room temperature and immediately irradiated with ultrasonic waves. After 5 minutes, the test piece was taken out, and concentrated hydrochloric acid was added so as to finally become 3M hydrochloric acid. Thereafter, the mixture was heated to 50 ° C., and hexavalent chromium was quantified for 30 to 160 minutes after the treatment was started (no addition of hexavalent chromium).

(2)試験片Aを浸漬する0.5M塩酸溶液中に、予め100μgの六価クロムクロム[ニクロム酸カリウムとして添加]を添加し、上記と同じようにして、試験片Aを室温条件で浸漬し、直ちに超音波を照射した。5分後に試験片を取り出し、最終的に3M塩酸になるように濃塩酸を添加した。その後,50℃に加熱して,処理開始後30〜160分間の六価クロムを定量した(六価クロム添加)。これらについてそれぞれ2回の試験を行った。この結果を図7に示す。なお、このときの亜鉛の溶出量は六価クロムクロム無添加の場合には40mg以下、六価クロムを添加した場合には60mg以下の溶出量となるようした。   (2) 100 μg of hexavalent chromium chromium [added as potassium dichromate] is added in advance to a 0.5 M hydrochloric acid solution in which test specimen A is immersed, and test specimen A is immersed at room temperature in the same manner as described above. And immediately irradiated with ultrasonic waves. After 5 minutes, the test piece was taken out, and concentrated hydrochloric acid was added so as to finally become 3M hydrochloric acid. Thereafter, the mixture was heated to 50 ° C., and hexavalent chromium was quantified for 30 to 160 minutes after the treatment was started (addition of hexavalent chromium). Each of these was tested twice. The result is shown in FIG. At this time, the zinc elution amount was 40 mg or less when hexavalent chromium chromium was not added, and 60 mg or less when hexavalent chromium was added.

(結果4)
図7に示すように、検体間の再現性の高い結果が得られた。さらに、得られた添加、無添加のそれぞれ2回の実験における六価クロムの量の平均を求め、それらの差から添加量に対する回収率を算出すると、六価クロムの添加量に対して85〜90%の回収率が得られ、クロムの酸化状態がほとんど変化していないことが確認された。
(Result 4)
As shown in FIG. 7, results with high reproducibility between samples were obtained. Furthermore, when the average of the amount of hexavalent chromium obtained in each of two experiments with and without addition was obtained and the recovery rate with respect to the addition amount was calculated from the difference between them, 85 to 85 with respect to the addition amount of hexavalent chromium. A recovery rate of 90% was obtained, and it was confirmed that the oxidation state of chromium was hardly changed.

(考察4)
この結果4から、本実施形態に係る定量分析方法によって全てのクロメート被膜が基材から脱離し、この脱離した被膜を溶解する場合には、この回収率と同程度の六価クロムの回収率を見込むことができ、これまでの方法(比較例1,2に示す方法:JIS H8625)より高い回収率が得られる。
(Discussion 4)
From this result 4, when all the chromate film is detached from the substrate by the quantitative analysis method according to the present embodiment and this detached film is dissolved, the recovery rate of hexavalent chromium that is the same as this recovery rate. And a higher recovery rate than the conventional methods (methods shown in Comparative Examples 1 and 2: JIS H8625) can be obtained.

(考察5)
以上の考察1〜4から、六価クロムの定量分析を行う最適な条件は以下のすべてを満たす条件である。1)試験片を0.5M塩酸に浸漬し,超音波を5分間照射しクロメート被膜を脱離させる。2)この溶液(脱離被膜を含む浸漬液)全体が3Mになるように濃塩酸を添加する3)この溶液(被膜が溶解した浸漬液)を50℃で20分間加熱しクロメート被膜を完全に溶解する。4)この溶液を冷却後、ジフェニルカルバジド−吸光光度法により六価クロムクロムを定量する。の上記4項目により達成されることがわかった。
(Discussion 5)
From the above considerations 1 to 4, the optimum conditions for quantitative analysis of hexavalent chromium are conditions that satisfy all of the following. 1) Immerse the test piece in 0.5M hydrochloric acid and irradiate ultrasonic waves for 5 minutes to remove the chromate film. 2) Add concentrated hydrochloric acid so that the total amount of this solution (immersion liquid including the release film) is 3M. 3) Heat this solution (immersion liquid in which the film is dissolved) at 50 ° C. for 20 minutes to completely form the chromate film. Dissolve. 4) After cooling this solution, hexavalent chromium chromium is quantified by diphenylcarbazide-absorption spectrophotometry. It was found that the above four items were achieved.

以上、本発明に係る溶出処理及び定量分析の装置の一実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。   As mentioned above, although one embodiment of the elution processing and quantitative analysis apparatus according to the present invention has been described in detail, the present invention is not limited to the above-described embodiment, and the present invention described in the scope of the claims. Various design changes can be made without departing from the spirit.

たとえば、このような定量分析装置は、被膜脱離用溶媒貯蔵槽が被膜溶解層に供給する溶媒の流量(送液量)と供給タイミング、及び、被膜溶解用溶媒貯蔵槽(被膜溶解用溶媒供給手段)が、浸漬液に供給する被膜溶解用溶媒の流量(送液量)と供給タイミングを、制御すべく、前記した各弁を作動させる制御装置をさらに備えてもよい。   For example, such a quantitative analysis apparatus includes a flow rate (amount of liquid fed) and a supply timing of a solvent supplied to a film dissolution layer by a film desorption solvent storage tank, and a film dissolution solvent storage tank (film dissolution solvent supply). The means) may further include a control device that operates each of the above-described valves so as to control the flow rate (liquid feeding amount) and the supply timing of the solvent for dissolving the film supplied to the immersion liquid.

さらに、被膜溶解槽(回収手段)が浸漬液を回収するタイミングを制御するべく、前記弁を作動させる制御装置を設けてもよい。また、前記各ポンプの動作、及びミキサーの運転時間等を自動かすべく、これらの機器を制御する制御装置をさらに備えてもよい。   Furthermore, you may provide the control apparatus which act | operates the said valve so that a film dissolution tank (collection means) may control the timing which collect | recovers immersion liquid. Moreover, in order to move the operation of each pump, the operation time of the mixer, and the like, a control device for controlling these devices may be further provided.

このような制御装置を備えることにより、溶出処理から鍍金中金属元素の定量分析結果のアウトプットまでが自動で行え、労力の削減につながる。   By providing such a control device, the process from the elution process to the output of the quantitative analysis result of the metal element in the plating can be automatically performed, leading to reduction of labor.

本実施形態に係る溶出分析装置の全体構成図。The whole block diagram of the elution analyzer which concerns on this embodiment. 図1に示す溶出分析装置を備えた定量分析装置の全体構成図。The whole block diagram of the quantitative analyzer provided with the elution analyzer shown in FIG. 検証例1に係る原子吸光光度計による測定結果を示した図。The figure which showed the measurement result by the atomic absorption photometer which concerns on the verification example 1. FIG. 比較例1及び2に係る溶出した六価クロムの測定結果を示した図。The figure which showed the measurement result of the eluted hexavalent chromium which concerns on the comparative examples 1 and 2. FIG. 検証例2及び比較例3に係る亜鉛の溶出量と六価クロムの定量値の関係を示した図。The figure which showed the relationship between the elution amount of zinc which concerns on the verification example 2 and the comparative example 3, and the fixed value of hexavalent chromium. 検証例3,4及び比較例4に係る六価クロムの定量値の結果を示した図。The figure which showed the result of the quantitative value of the hexavalent chromium which concerns on the verification examples 3 and 4 and the comparative example 4. FIG. 六価クロムの回収量を確認するための試験結果を示した図。The figure which showed the test result for confirming the collection amount of hexavalent chromium.

符号の説明Explanation of symbols

1:定量分析装置,10A:溶出処理装置,10B:分析手段,11:被膜脱離用溶媒貯蔵槽(溶媒供給手段),12:被膜脱離槽(基材浸漬手段),12a:金網部,13:被膜溶解槽(回収手段),13a:ヒーター(加熱手段),14:被膜溶解用溶媒貯蔵槽(被膜溶解用溶媒供給手段),15〜17:弁,20:試薬混合手段,21:pH調整用試薬が貯蔵された試薬貯蔵槽,22:発色用試薬が貯蔵された試薬貯蔵槽,23〜25:ポンプ,26,27:ミキサー,30:分光光度計(分光光度測定手段),40:廃液貯蔵槽   1: quantitative analysis apparatus, 10A: elution processing apparatus, 10B: analysis means, 11: solvent storage tank for film desorption (solvent supply means), 12: film desorption tank (base material immersion means), 12a: wire mesh part, 13: Film dissolution tank (recovery means), 13a: Heater (heating means), 14: Film dissolution solvent storage tank (film dissolution solvent supply means), 15-17: Valve, 20: Reagent mixing means, 21: pH Reagent storage tank storing adjustment reagent, 22: Reagent storage tank storing coloring reagent, 23-25: Pump, 26, 27: Mixer, 30: Spectrophotometer (spectrophotometric measuring means), 40: Waste liquid storage tank

Claims (13)

基材の表面に形成された被膜に含まれる金属元素の定量分析を行う定量分析方法であって、
前記定量分析方法は、浸漬液に前記基材を浸漬し、前記基材から前記被膜を脱離させる被膜脱離工程と、
前記被膜を脱離した前記浸漬液中の前記金属元素の定量分析を行う分析工程と、
を少なくとも含み、
前記被膜脱離工程と前記分析工程との間に、前記浸漬液に被膜溶解用溶媒を供給し、前記浸漬液中の前記脱離被膜を溶解する被膜溶解工程をさらに含むことを特徴とする定量分析方法。
A quantitative analysis method for performing a quantitative analysis of a metal element contained in a coating formed on a surface of a substrate,
The quantitative analysis method comprises immersing the base material in an immersion liquid, and detaching the film from the base material;
An analysis step of performing a quantitative analysis of the metal element in the immersion liquid from which the coating has been removed;
At least look at including the,
A quantitative determination characterized by further comprising a film dissolving step of supplying a film dissolving solvent to the immersion liquid and dissolving the desorbed film in the immersion liquid between the film desorption step and the analysis step. Analysis method.
前記被膜溶解工程は、前記浸漬液を加熱しながら、前記脱離被膜を溶解するものであることを特徴とする請求項1に記載の定量分析方法。 The quantitative analysis method according to claim 1 , wherein the film dissolution step dissolves the release film while heating the immersion liquid. 前記被膜脱離工程は、前記基材が浸漬している前記浸漬液に超音波を照射しながら、前記基材から前記被膜を脱離させるものであることを特徴とする請求項1に記載の定量分析方法。   2. The film removal step according to claim 1, wherein the film is detached from the base material while irradiating the immersion liquid in which the base material is immersed with ultrasonic waves. Quantitative analysis method. 前記被膜は、少なくともクロメート被膜を含む被膜であり、前記金属元素は、六価クロムであることを特徴とする請求項1に記載の定量分析方法。   The quantitative analysis method according to claim 1, wherein the film is a film including at least a chromate film, and the metal element is hexavalent chromium. 前記被膜は、クロメート被膜と亜鉛被膜を積層した被膜であって、前記亜鉛被膜を前記基材表面側に形成させたものであり、
前記被膜脱離工程の終了は、前記浸漬液による前記亜鉛被膜の溶解でイオン化された亜鉛の濃度の測定結果に基づいて実施することを特徴とする請求項1に記載の定量分析方法。
The film is a film obtained by laminating a chromate film and a zinc film, and the zinc film is formed on the substrate surface side,
The quantitative analysis method according to claim 1, wherein the film desorption step is completed based on a measurement result of a concentration of zinc ionized by dissolution of the zinc film by the immersion liquid.
前記被膜脱離工程の前記浸漬液は、希塩酸又は水酸化ナトリウム水溶液であり、前記被膜溶解工程の前記被膜溶解用溶媒は、濃塩酸であることを特徴とする請求項1に記載の定量分析方法。 The quantitative analysis method according to claim 1 , wherein the immersion liquid in the film desorption step is dilute hydrochloric acid or a sodium hydroxide aqueous solution, and the solvent for dissolving the film in the film dissolution step is concentrated hydrochloric acid. . 前記分析工程における前記定量分析は、ジフェニルカルバジド−吸光光度法により行われることを特徴とする請求項4に記載の定量分析方法。 The quantitative analysis method according to claim 4 , wherein the quantitative analysis in the analysis step is performed by diphenylcarbazide-absorptiometry. 基材の表面に形成された被膜に含まれる金属元素の定量分析を行う定量分析装置であって、
該定量分析装置は、前記被膜を脱離するための浸漬液に前記基材を浸漬する基材浸漬手段と、
前記被膜を脱離した前記浸漬液中の前記金属元素の定量分析を行う分析手段と、を少なくとも備え、
前記定量分析装置は、前記基材浸漬手段の前記浸漬液を回収する回収手段と、
回収した前記浸漬液中の前記脱離被膜を溶解すべく、前記浸漬液に被膜溶解用溶媒を供給する被膜溶解用溶媒供給手段と、をさらに備えることを特徴とする定量分析装置。
A quantitative analysis device that performs quantitative analysis of metal elements contained in a coating formed on the surface of a substrate,
The quantitative analysis apparatus comprises a substrate immersing means for immersing the substrate in an immersion liquid for removing the coating,
At least Bei give a, and analysis means for performing a quantitative analysis of the metal element of the immersion liquid desorbed said coating,
The quantitative analysis apparatus includes a recovery unit that recovers the immersion liquid of the base material immersion unit;
A quantitative analysis apparatus , further comprising: a film dissolution solvent supply unit that supplies a film dissolution solvent to the immersion liquid in order to dissolve the desorption film in the collected immersion liquid .
前記定量分析装置は、回収した前記浸漬液を加熱する加熱手段をさらに備えることを特徴とする請求項8に記載の定量分析装置。 The quantitative analysis apparatus according to claim 8 , further comprising a heating unit that heats the collected immersion liquid. 前記定量分析装置は、前記基材が浸漬している前記浸漬液に超音波を照射する超音波照射手段をさらに備えることを特徴とする請求項8に記載の定量分析装置。 The quantitative analysis apparatus according to claim 8 , further comprising an ultrasonic irradiation unit that applies ultrasonic waves to the immersion liquid in which the base material is immersed. 前記被膜が、少なくともクロメート被膜を含む被膜であり、前記金属元素が、六価クロムであり、
前記分析手段は、前記浸漬液にpH調整試薬及び発色用試薬を混合する試薬混合手段と、該試薬を混合した混合液の吸光度から混合液に含有される六価クロムの含有量を測定する分光光度測定手段と、を備えることを特徴とする請求項8に定量分析装置。
The film is a film including at least a chromate film, and the metal element is hexavalent chromium,
The analysis means includes a reagent mixing means for mixing a pH adjusting reagent and a color-developing reagent in the immersion liquid, and a spectrophotometer for measuring the content of hexavalent chromium contained in the mixed liquid from the absorbance of the mixed liquid in which the reagent is mixed. The quantitative analysis apparatus according to claim 8 , further comprising a photometric measurement unit.
前記被膜は、クロメート被膜と亜鉛被膜を積層した被膜であって、前記亜鉛被膜を前記基材表面側に形成させたものであり、
前記基材浸漬手段は、前記浸漬液による前記亜鉛被膜の溶解でイオン化された亜鉛の濃度を測定する濃度測定手段を備えることを特徴とする請求項8に記載の定量分析装置。
The film is a film obtained by laminating a chromate film and a zinc film, and the zinc film is formed on the substrate surface side,
The quantitative analysis apparatus according to claim 8 , wherein the base material immersing means includes a concentration measuring means for measuring a concentration of zinc ionized by dissolution of the zinc coating by the immersion liquid.
前記被膜を脱離するための前記浸漬液は、希塩酸又は水酸化ナトリウム水溶液であり、前記被膜溶解用溶媒は、濃塩酸であることを特徴とする請求項8に記載の定量分析装置。 9. The quantitative analysis apparatus according to claim 8 , wherein the immersion liquid for removing the film is dilute hydrochloric acid or a sodium hydroxide aqueous solution, and the solvent for dissolving the film is concentrated hydrochloric acid.
JP2006015440A 2006-01-24 2006-01-24 Quantitative analyzer and quantitative analysis method Expired - Fee Related JP4634310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006015440A JP4634310B2 (en) 2006-01-24 2006-01-24 Quantitative analyzer and quantitative analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006015440A JP4634310B2 (en) 2006-01-24 2006-01-24 Quantitative analyzer and quantitative analysis method

Publications (2)

Publication Number Publication Date
JP2007198797A JP2007198797A (en) 2007-08-09
JP4634310B2 true JP4634310B2 (en) 2011-02-16

Family

ID=38453552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006015440A Expired - Fee Related JP4634310B2 (en) 2006-01-24 2006-01-24 Quantitative analyzer and quantitative analysis method

Country Status (1)

Country Link
JP (1) JP4634310B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526615B2 (en) * 2009-06-18 2014-06-18 富士通株式会社 Sample weight measurement method and apparatus, and hexavalent chromium analysis method and apparatus using the same
JP5904165B2 (en) * 2012-07-30 2016-04-13 Jfeスチール株式会社 Method for analyzing chlorine in steel sheet coatings
CN110261628A (en) * 2019-07-08 2019-09-20 东华理工大学 A kind of online Absorbency Test platform and its test method of adsorbent material
CN111060498B (en) * 2020-01-03 2023-03-14 河南佰利联新材料有限公司 Method for testing coating sequence of titanium dioxide film layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633958U (en) * 1992-10-09 1994-05-06 日本鋼管株式会社 Tin plating layer rapid dissolution test piece holder
JP2003172696A (en) * 2001-12-06 2003-06-20 Toyota Motor Corp Method of determining hexavalent chromium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634010B2 (en) * 1984-07-27 1994-05-02 三菱重工業株式会社 Method for measuring chromium deposition on Alodine conversion coating
JP3019641B2 (en) * 1992-12-02 2000-03-13 日本鋼管株式会社 Automatic plating peeling analyzer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633958U (en) * 1992-10-09 1994-05-06 日本鋼管株式会社 Tin plating layer rapid dissolution test piece holder
JP2003172696A (en) * 2001-12-06 2003-06-20 Toyota Motor Corp Method of determining hexavalent chromium

Also Published As

Publication number Publication date
JP2007198797A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP4634310B2 (en) Quantitative analyzer and quantitative analysis method
Molaakbari et al. Ionic liquid ultrasound assisted dispersive liquid–liquid microextraction method for preconcentration of trace amounts of rhodium prior to flame atomic absorption spectrometry determination
Doner et al. Determination of copper, cadmium and lead in seawater and mineral water by flame atomic absorption spectrometry after coprecipitation with aluminum hydroxide
Nielsen et al. Selective flow-injection quantification of ultra-trace amounts of Cr (VI) via on-line complexation and preconcentration with APDC followed by determination by electrothermal atomic absorption spectrometry
Wang et al. On-line sample-pre-treatment schemes for trace-level determinations of metals by coupling flow injection or sequential injection with ICP-MS
Davidson et al. Effect of ultrasonic agitation on the release of copper, iron, manganese and zinc from soil and sediment using the BCR three-stage sequential extraction
Zheng et al. UV photochemical vapor generation and in situ preconcentration for determination of ultra-trace nickel by flow injection graphite furnace atomic absorption spectrometry
Alonso et al. Flow injection on-line electrothermal atomic absorption spectrometry
JP5319658B2 (en) Method and apparatus for measuring bromate ion
Luque-Garcia et al. Continuous ultrasound-assisted extraction of hexavalent chromium from soil with or without on-line preconcentration prior to photometric monitoring
Maratta et al. Lead preconcentration by solid phase extraction using oxidized carbon xerogel and spectrophotometric determination with dithizone
JP4656508B2 (en) Determination of selenium by chemical form
Koseoglu et al. The recovery of silver from mining wastewaters using hybrid cyanidation and high-pressure membrane process
JP4591851B2 (en) Quantitative determination method of metal in semiconductor polishing slurry
Cespón-Romero et al. Determination of trace metals in urine with an on-line ultrasound-assisted digestion system combined with a flow-injection preconcentration manifold coupled to flame atomic absorption spectrometry
US9057145B2 (en) Electrodeposition method with analysis of the electrolytic bath by solid phase extraction
Latva et al. Separation of picogram quantities of Cr (III) and Cr (VI) species in aqueous solutions and determination by graphite furnace atomic absorption spectrometry
JP4103827B2 (en) Method and apparatus for measuring hexavalent chromium
Gerwinski et al. Automated solid-phase extraction for trace-metal analysis of seawater: sample preparation for total-reflection X-ray fluorescence measurements
Cacho et al. On-line electrochemical pre-concentration of arsenic on a gold coated porous carbon electrode for graphite furnace atomic absorption spectrometry
Xiao et al. Determination of cadmium in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction
Menegário et al. On-line preconcentration flow system for multi-elemental analysis by total reflection X-ray fluorescence spectrometry
JP3168826B2 (en) Automatic measurement method of trace cadmium concentration in wastewater
JP2003172696A (en) Method of determining hexavalent chromium
JP4314224B2 (en) Method for quantitative analysis of hexavalent chromium in chromate film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees