JP4633390B2 - Polyarylene sulfide resin composition - Google Patents

Polyarylene sulfide resin composition Download PDF

Info

Publication number
JP4633390B2
JP4633390B2 JP2004176457A JP2004176457A JP4633390B2 JP 4633390 B2 JP4633390 B2 JP 4633390B2 JP 2004176457 A JP2004176457 A JP 2004176457A JP 2004176457 A JP2004176457 A JP 2004176457A JP 4633390 B2 JP4633390 B2 JP 4633390B2
Authority
JP
Japan
Prior art keywords
polyarylene sulfide
resin composition
sulfide resin
olefin
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004176457A
Other languages
Japanese (ja)
Other versions
JP2006001955A (en
Inventor
克平 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2004176457A priority Critical patent/JP4633390B2/en
Publication of JP2006001955A publication Critical patent/JP2006001955A/en
Application granted granted Critical
Publication of JP4633390B2 publication Critical patent/JP4633390B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Description

本発明は、耐衝撃性に優れ、成形時のモールドディポジットの発生が著しく抑制されたポリアリーレンサルファイド樹脂組成物に関する。   The present invention relates to a polyarylene sulfide resin composition that is excellent in impact resistance and in which generation of mold deposits during molding is remarkably suppressed.

ポリフェニレンサルファイド(以下PPSと略す)樹脂に代表されるポリアリーレンサルファイド(以下PASと略す)樹脂は、高い耐熱性、機械的物性、耐化学薬品性、寸法安定性、難燃性を有していることから、電気・電子機器部品材料、自動車機器部品材料、化学機器部品材料等に広く使用されている。   Polyarylene sulfide (hereinafter abbreviated as PAS) resin represented by polyphenylene sulfide (hereinafter abbreviated as PPS) resin has high heat resistance, mechanical properties, chemical resistance, dimensional stability, and flame retardancy. For this reason, it is widely used for electrical / electronic equipment parts materials, automotive equipment parts materials, chemical equipment parts materials, and the like.

しかしながら、PAS樹脂は靭性に乏しく脆弱であり、耐衝撃性に代表される機械的物性が不十分であるという根本的な欠点がある。   However, PAS resins have a fundamental drawback that they have poor toughness and are fragile, and have insufficient mechanical properties represented by impact resistance.

この問題を解決する従来の方法としては、各種エラストマーを配合することが知られている。特に、α−オレフィンとα,β−不飽和酸のグリシジルエステルを主成分とするオレフィン系共重合体は、PAS樹脂への相溶性に優れるため、耐衝撃性の向上が見られる(特許文献1〜4)。しかし、PAS樹脂の加工温度は300℃以上であるために、オレフィン系共重合体成分は熱劣化を生じ、十分な耐衝撃性改良効果が得られないばかりか、成形時に分解しガスを生じるために、成形時にモールドディポジットが多くなる場合がある。
特開昭58−154757号公報 特開昭59−152953号公報 特開昭59−189166号公報 特開昭62−153343号公報
As a conventional method for solving this problem, it is known to blend various elastomers. In particular, an olefin copolymer mainly composed of an α-olefin and a glycidyl ester of an α, β-unsaturated acid is excellent in compatibility with a PAS resin, and thus has improved impact resistance (Patent Document 1). ~ 4). However, since the processing temperature of the PAS resin is 300 ° C. or higher, the olefin copolymer component is thermally deteriorated and not only has a sufficient impact resistance improvement effect, but also decomposes and produces gas during molding. In addition, mold deposits may increase during molding.
JP 58-154757 A JP 59-152953 A JP 59-189166 JP 62-153343 A

本発明は、上記従来技術の課題を解決し、耐衝撃性に優れ、且つ成形時のモールドディポジットの発生が著しく低減されたPAS樹脂組成物の提供を目的とするものである。   The object of the present invention is to provide a PAS resin composition that solves the above-mentioned problems of the prior art, is excellent in impact resistance, and has a significantly reduced generation of mold deposits during molding.

本発明者らは上記課題を解決すべく鋭意検討した結果、窒素含有量を低減した特定のPAS樹脂と特定のオレフィン系共重合体を用いることにより、耐衝撃性に優れ、成形時のモールドディポジットの発生が著しく低減されたPAS樹脂組成物が得られることを見出し、本発明を完成するに到った。   As a result of intensive studies to solve the above problems, the present inventors have achieved excellent impact resistance by using a specific PAS resin with a reduced nitrogen content and a specific olefin copolymer, and a mold deposit at the time of molding. The present inventors have found that a PAS resin composition in which the generation of water is remarkably reduced can be obtained, and the present invention has been completed.

即ち本発明は、
(A) 窒素元素の含有量が樹脂1kg当たり0.55g以下であるポリアリーレンサルファイド樹脂100重量部に対し、
(B) α−オレフィンとα,β−不飽和酸のグリシジルエステルを主成分とするオレフィン系共重合体0.5〜50重量部
を配合してなるポリアリーレンサルファイド樹脂組成物である。
That is, the present invention
(A) For 100 parts by weight of polyarylene sulfide resin in which the content of nitrogen element is 0.55 g or less per kg of resin,
(B) A polyarylene sulfide resin composition comprising 0.5 to 50 parts by weight of an olefin copolymer mainly composed of an α-olefin and a glycidyl ester of an α, β-unsaturated acid.

上記のような窒素元素の含有量が樹脂1kg当たり0.55g以下であるポリアリーレンサルファイド樹脂は、例えば、下記(1) 、(2) を特徴とする製造法によって得られる。
(1) 反応槽内に、有機アミド溶媒、アルカリ金属水硫化物を含む硫黄源、及び必要に応じてアルカリ金属水酸化物の全仕込み量の一部を仕込み、これらを含有する混合物を加熱して、該混合物を含有する系内から水を含む留出物の少なくとも一部を系外に排出する脱水工程、並びに
(2) 脱水工程後の系内に残存する混合物とジハロ芳香族化合物とを混合し、これらを含む重合反応混合物を加熱して、硫黄源とジハロ芳香族化合物とを重合反応させると共に、重合反応混合物中にアルカリ金属水酸化物を連続的に又は分割して添加し、重合反応の開始から終了に至るまでの間、重合反応混合物のpHを7〜12.5の範囲内に制御する重合工程を含む
ことを特徴とするポリアリーレンサルファイド樹脂組成物の製造法
The polyarylene sulfide resin having a nitrogen element content of 0.55 g or less per kg of the resin as described above can be obtained, for example, by a production method characterized by the following (1) and (2).
(1) A reaction vessel is charged with an organic amide solvent, a sulfur source containing an alkali metal hydrosulfide, and, if necessary, a part of the total charge of the alkali metal hydroxide, and the mixture containing these is heated. A dehydration step of discharging at least part of the distillate containing water from the system containing the mixture to the outside of the system, and
(2) Mixing the mixture remaining in the system after the dehydration step and the dihaloaromatic compound, heating the polymerization reaction mixture containing them, causing the sulfur source and the dihaloaromatic compound to undergo a polymerization reaction, and a polymerization reaction A polymerization step of adding alkali metal hydroxide continuously or in portions to the mixture and controlling the pH of the polymerization reaction mixture within the range of 7 to 12.5 from the start to the end of the polymerization reaction Process for producing polyarylene sulfide resin composition characterized in that

以下本発明の構成成分について詳細に説明する。PAS樹脂は、主たる繰返し単位として-(Ar-S)-(但しArはアリーレン基)で構成された高分子化合物であり、本発明の(A) 成分としては、一般的に知られている分子構造のPAS樹脂を使用することができるが、窒素元素の含有量が樹脂1kg当たり0.55g以下であることが必須である。   Hereinafter, the constituent components of the present invention will be described in detail. The PAS resin is a polymer compound composed of-(Ar-S)-(where Ar is an arylene group) as a main repeating unit, and as the component (A) of the present invention, a generally known molecule is used. A PAS resin having a structure can be used, but it is essential that the content of nitrogen element is 0.55 g or less per kg of the resin.

上記アリーレン基としては、例えば、p−フェニレン基、m−フェニレン基、o−フェニレン基、置換フェニレン基、p,p'−ジフェニレンスルフォン基、p,p'−ビフェニレン基、p,p'−ジフェニレンエーテル基、p,p'−ジフェニレンカルボニル基、ナフタレン基等が挙げられる。   Examples of the arylene group include p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, p, p'-diphenylene sulfone group, p, p'-biphenylene group, p, p'- Examples include diphenylene ether group, p, p′-diphenylenecarbonyl group, naphthalene group and the like.

本発明に使用するPAS樹脂は、上記繰返し単位のみからなるホモポリマーでも良いし、下記の異種繰返し単位を含んだコポリマーが加工性等の点から好ましい場合もある。   The PAS resin used in the present invention may be a homopolymer consisting only of the above repeating units, or a copolymer containing the following different types of repeating units may be preferable from the viewpoint of processability.

ホモポリマーとしては、アリーレン基としてp−フェニレン基を用いた、p−フェニレンサルファイド基を繰返し単位とするもの(PPS)が特に好ましく用いられる。又、コポリマーとしては、前記のアリーレン基からなるアリーレンサルファイド基の中で、相異なる2種以上の組み合わせが使用できるが、中でもp−フェニレンサルファイド基とm−フェニレンサルファイド基を含む組み合わせが特に好ましく用いられる。この中で、p−フェニレンサルファイド基を70モル%以上、好ましくは80モル%以上含むものが、耐熱性、成形性、機械的特性等の物性上の点から適当である。又、m−フェニレンサルファイド基は、5〜30モル%、特に10〜20モル%を含むものが共重合体としては好ましい。この場合、成分の繰返し単位がランダム状のものより、ブロック状に含まれているもの(例えば、特開昭61−14228号公報に記載のもの)が、加工性に優れ、且つ耐熱性、機械的物性も優れており、好ましく使用できる。又、これらのPAS樹脂の中で、2官能性ハロゲン芳香族化合物を主体とするモノマーから縮重合によって得られる実質的に直鎖状構造の高分子量ポリマーが、特に好ましく使用できる。   As the homopolymer, one having a p-phenylene sulfide group as a repeating unit (PPS) using a p-phenylene group as an arylene group is particularly preferably used. As the copolymer, among the arylene sulfide groups comprising the above-mentioned arylene groups, two or more different combinations can be used, and among them, a combination containing a p-phenylene sulfide group and an m-phenylene sulfide group is particularly preferably used. It is done. Among these, those containing 70 mol% or more, preferably 80 mol% or more of p-phenylene sulfide groups are suitable from the viewpoint of physical properties such as heat resistance, moldability and mechanical properties. The m-phenylene sulfide group preferably contains 5 to 30 mol%, particularly 10 to 20 mol%, as a copolymer. In this case, the repeating unit of the component is contained in a block rather than a random one (for example, the one described in JP-A-61-1228) has excellent workability, heat resistance, machine The physical properties are also excellent and can be preferably used. Further, among these PAS resins, a high molecular weight polymer having a substantially linear structure obtained by condensation polymerization from a monomer mainly composed of a bifunctional halogen aromatic compound can be particularly preferably used.

かかる実質的に分岐を有しない直鎖状のPAS樹脂は、流動性や機械的物性が優れるという面で本発明の目的から好適な対象樹脂である。   Such a linear PAS resin having substantially no branch is a target resin suitable for the purpose of the present invention in terms of excellent fluidity and mechanical properties.

尚、直鎖状構造のPAS樹脂以外にも、縮重合させるときに、3個以上のハロゲン置換基を有するポリハロ芳香族化合物等のモノマーを少量用いて、部分的に分岐構造または架橋構造を形成させたポリマーも使用できるし、低分子量の直鎖状構造ポリマーを酸素等の存在下、高温で加熱して、酸化架橋又は熱架橋により溶融粘度を上昇させ、成形加工性を改良したポリマー、あるいはこれらの混合物も使用可能である。   In addition to the linear PAS resin, a partially branched or crosslinked structure is formed by using a small amount of a monomer such as a polyhaloaromatic compound having 3 or more halogen substituents when performing condensation polymerization. A polymer having a low molecular weight linear structure polymer heated at a high temperature in the presence of oxygen or the like to increase the melt viscosity by oxidative crosslinking or thermal crosslinking to improve molding processability, or Mixtures of these can also be used.

本発明に使用する基体樹脂としてのPAS樹脂の溶融粘度(310℃、ズリ速度1200sec-1)は、上記混合系の場合も含め、10〜500Pa・sが好ましく、中でも20〜300Pa・sの範囲にあるものは、機械的物性と流動性のバランスが優れており、特に好ましい。溶融粘度が過小の場合は機械的強度が十分でないため好ましくない。又、溶融粘度が500Pa・sを超える時は、射出成形時に樹脂組成物の流動性が悪く、成形作業が困難になるため好ましくない。 The melt viscosity (310 ° C., shear rate 1200 sec −1 ) of the PAS resin as the base resin used in the present invention is preferably 10 to 500 Pa · s, including the above mixed system, and more preferably in the range of 20 to 300 Pa · s. In this case, the balance between mechanical properties and fluidity is excellent, and it is particularly preferable. An excessively low melt viscosity is not preferable because the mechanical strength is not sufficient. On the other hand, when the melt viscosity exceeds 500 Pa · s, the flowability of the resin composition is poor at the time of injection molding, and the molding operation becomes difficult.

PAS樹脂中の窒素元素の含有量は、樹脂1kg当たり0.55g以下であり、好ましくは0.4g以下である。窒素含有量が過大であることは、PAS樹脂中に残存するNMP(N−メチル−2−ピロリドン)、メチルアミノブタン酸ナトリウム、クロロフェニルメチルアミノブタン酸、あるいはPAS末端のメチルアミノブタン酸基等の存在量が多いことを意味し、これら物質の熱分解に起因すると考えられる、成形時のモールドディポジットの発生が多くなり金型メンテナンスが頻発になる、あるいは得られるPAS樹脂組成物の熱安定性が低下するといった問題を生じる。   The content of nitrogen element in the PAS resin is 0.55 g or less, preferably 0.4 g or less, per 1 kg of the resin. Excessive nitrogen content means that NMP (N-methyl-2-pyrrolidone), sodium methylaminobutanoate, chlorophenylmethylaminobutanoic acid, or methylaminobutanoic acid group at the PAS terminal, etc. remaining in the PAS resin. This means that there is a large amount, and it is thought that this is due to the thermal decomposition of these substances, the occurrence of mold deposits during molding increases, frequent mold maintenance, or the thermal stability of the resulting PAS resin composition. The problem that it falls is caused.

尚、PAS樹脂中の窒素元素の含有量は、微量窒素硫黄分析計等の市販の装置を用いて、通常の手法により測定できる。   In addition, content of the nitrogen element in PAS resin can be measured with a normal method using commercially available apparatuses, such as a trace amount nitrogen sulfur analyzer.

このような本発明に使用するPAS樹脂は、窒素含有量が樹脂1kg当たり0.55g以下であればその製造法にはよらないが、下記(1) 、(2) を特徴とする製造法によって得られる。
(1) 反応槽内に、有機アミド溶媒、アルカリ金属水硫化物を含む硫黄源、及び必要に応じてアルカリ金属水酸化物の全仕込み量の一部を仕込み、これらを含有する混合物を加熱して、該混合物を含有する系内から水を含む留出物の少なくとも一部を系外に排出する脱水工程、並びに
(2) 脱水工程後の系内に残存する混合物とジハロ芳香族化合物とを混合し、これらを含む重合反応混合物を加熱して、硫黄源とジハロ芳香族化合物とを重合反応させると共に、重合反応混合物中にアルカリ金属水酸化物を連続的に又は分割して添加し、重合反応の開始から終了に至るまでの間、重合反応混合物のpHを7〜12.5の範囲内に制御する重合工程を含む
また、本発明に使用するPAS樹脂は、窒素含有量が上記範囲にあれば良く、この条件を満足すれば、窒素含有量が多いものと少ないもののブレンドであってもよい。
Such a PAS resin used in the present invention does not depend on the production method if the nitrogen content is 0.55 g or less per kg of the resin, but is obtained by the production method characterized by the following (1) and (2). It is done.
(1) A reaction vessel is charged with an organic amide solvent, a sulfur source containing an alkali metal hydrosulfide, and, if necessary, a part of the total charge of the alkali metal hydroxide, and the mixture containing these is heated. A dehydration step of discharging at least part of the distillate containing water from the system containing the mixture to the outside of the system, and
(2) Mixing the mixture remaining in the system after the dehydration step and the dihaloaromatic compound, heating the polymerization reaction mixture containing them, causing the sulfur source and the dihaloaromatic compound to undergo a polymerization reaction, and a polymerization reaction A polymerization step of adding alkali metal hydroxide continuously or in portions to the mixture and controlling the pH of the polymerization reaction mixture within the range of 7 to 12.5 from the start to the end of the polymerization reaction Further, the PAS resin used in the present invention only needs to have a nitrogen content in the above range, and may be a blend having a high nitrogen content and a low nitrogen content as long as this condition is satisfied.

次に、本発明に用いる(B) オレフィン系共重合体は、α−オレフィンとα,β−不飽和酸のグリシジルエステルを主成分とするオレフィン系共重合体であるが、共重合体を構成する一方の成分であるα−オレフィンとしては、エチレン、プロピレン、ブチレンなどが挙げられるが、エチレンが好ましい。これらα−オレフィンは2種以上を用いることもできる。また、オレフィン系共重合体を構成するもう一方の成分であるα,β−不飽和酸のグリシジルエステルとは、一般式(2)   Next, the (B) olefin copolymer used in the present invention is an olefin copolymer mainly composed of α-olefin and a glycidyl ester of α, β-unsaturated acid. Examples of the α-olefin that is one of the components include ethylene, propylene, and butylene, with ethylene being preferred. Two or more of these α-olefins can be used. Further, the glycidyl ester of α, β-unsaturated acid which is the other component constituting the olefin copolymer is represented by the general formula (2).

Figure 0004633390
Figure 0004633390

(但し、R は水素又は低級アルキル基を示す。)
で示される成分であり、アクリル酸グリシジルエステル、メタクリル酸グリシジルエステル、エタクリル酸グリシジルエステル等が挙げられるが、メタクリル酸グリシジルエステルが好ましい。
(However, R 1 represents hydrogen or a lower alkyl group.)
And glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, and the like, with glycidyl methacrylate being preferred.

α−オレフィン(例えばエチレン)とα,β−不飽和酸のグリシジルエステルから成るオレフィン系共重合体は、通常よく知られたラジカル重合反応により共重合させることによって得ることができる。(B) オレフィン系共重合体は、α−オレフィン100重量部に対してα,β−不飽和酸のグリシジルエステル1〜40重量部を用いて共重合することが好適である。   An olefin copolymer comprising an α-olefin (for example, ethylene) and a glycidyl ester of an α, β-unsaturated acid can be obtained by copolymerization by a well-known radical polymerization reaction. (B) The olefin copolymer is preferably copolymerized using 1 to 40 parts by weight of a glycidyl ester of an α, β-unsaturated acid with respect to 100 parts by weight of the α-olefin.

更に(B) オレフィン系共重合体は、耐衝撃性、耐熱性向上のために、下記一般式(1)で示される繰返し単位で構成された重合体又は共重合体の一種又は二種以上が分岐又は架橋構造的に化学結合したグラフト共重合体であることが好ましい。   Further, (B) the olefin copolymer is one or more of a polymer or copolymer composed of a repeating unit represented by the following general formula (1) for improving impact resistance and heat resistance. A graft copolymer that is chemically bonded in a branched or crosslinked structure is preferred.

Figure 0004633390
Figure 0004633390

(但し、R は水素又は低級アルキル基、Xは-COOCH3、-COOC2H5、-COOC4H9、-COOCH2CH(C2H5)C4H9、-C6H5、-CNから選ばれた一種又は二種以上の基を示す。)
分岐又は架橋鎖としてグラフト共重合させる重合体又は共重合体セグメントとしては、アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸ブチル、メタクリル酸ブチル、アクリロニトリル及びスチレンから選ばれる一種又は二種以上からなる重合体又は共重合体が挙げられる。好ましくは、メタクリル酸重合体、アクリロニトリルとスチレンの共重合体、メタクリル酸メチルとアクリル酸ブチルの共重合体等であり、特に好ましくはメタクリル酸メチルとアクリル酸ブチルの共重合体である。これら重合体又は共重合体は、通常よく知られたラジカル重合によって調製される。
(However, R is hydrogen or a lower alkyl group, X is -COOCH 3 , -COOC 2 H 5 , -COOC 4 H 9 , -COOCH 2 CH (C 2 H 5 ) C 4 H 9 , -C 6 H 5 , One or more groups selected from —CN are shown.)
The polymer or copolymer segment to be graft copolymerized as a branched or cross-linked chain may be one or two selected from acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, butyl acrylate, butyl methacrylate, acrylonitrile and styrene. Examples include polymers or copolymers composed of more than one species. Preferred are a methacrylic acid polymer, a copolymer of acrylonitrile and styrene, a copolymer of methyl methacrylate and butyl acrylate, and the like, particularly preferably a copolymer of methyl methacrylate and butyl acrylate. These polymers or copolymers are usually prepared by well-known radical polymerization.

また、これら重合体又は共重合体の分岐又は架橋反応も、ラジカル反応によって容易に調製できる。例えば、これら重合体又は共重合体に過酸化物等でフリーラジカルを生成させ、α−オレフィンとα,β−不飽和酸のグリシジルエステルのオレフィン系共重合体を溶融混練することによって、所望のグラフト共重合体を調製できる。   In addition, the branching or crosslinking reaction of these polymers or copolymers can be easily prepared by radical reaction. For example, by generating free radicals in these polymers or copolymers with peroxides or the like, and melting and kneading an olefin copolymer of α-olefin and a glycidyl ester of α, β-unsaturated acid, Graft copolymers can be prepared.

分岐又は架橋鎖となる重合体又は共重合体は、α−オレフィンとα,β−不飽和酸のグリシジルエステルのオレフィン系共重合体100重量部に対し、10〜100重量部を分岐又は架橋することが好適である。   The polymer or copolymer that becomes a branched or crosslinked chain branches or crosslinks 10 to 100 parts by weight with respect to 100 parts by weight of an olefin copolymer of glycidyl ester of α-olefin and α, β-unsaturated acid. Is preferred.

(B) オレフィン系共重合体の配合量としては、(A) PAS樹脂100重量部に対し、0.5〜50重量部、好ましくは1〜20重量部が用いられる。   (B) As a compounding quantity of an olefin type copolymer, 0.5-50 weight part with respect to 100 weight part of (A) PAS resin, Preferably 1-20 weight part is used.

本発明では、目的とする耐衝撃性、耐熱性、成形性を得るために、フェノール系酸化防止剤、チオエーテル系酸化防止剤、燐系安定剤、アミン系安定剤等の安定剤を使用することができる。   In the present invention, a stabilizer such as a phenolic antioxidant, a thioether antioxidant, a phosphorus stabilizer, or an amine stabilizer is used to obtain the desired impact resistance, heat resistance, and moldability. Can do.

また、本発明の樹脂組成物には、機械的強度、耐熱性、寸法安定性(耐変形、そり)、電気的性質等の性能改良のため(C) 成分として無機充填材を配合することもでき、これには目的に応じて繊維状、粉粒状、板状の充填材が用いられる。   In addition, the resin composition of the present invention may be blended with an inorganic filler as component (C) in order to improve performance such as mechanical strength, heat resistance, dimensional stability (deformation resistance, warpage), and electrical properties. This can be done using fibrous, granular or plate-like fillers depending on the purpose.

繊維状充填材としては、ガラス繊維、アスベスト繊維、カーボン繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、硼素繊維、チタン酸カリウム繊維、さらにステンレス、アルミニウム、チタン、銅、真鍮等金属の繊維状物などの無機質繊維状物質が挙げられる。特に代表的な繊維状充填材はガラス繊維、又はカーボン繊維である。なおポリアミド、フッ素樹脂、アクリル樹脂などの高融点有機質繊維物質も使用することができる。一方、粉粒状充填材としてはカーボンブラック、シリカ、石英粉末、ガラスビーズ、ガラス粉、硅酸カルシウム、硅酸アルミニウム、カオリン、タルク、クレー、硅藻土、ウォラストナイトのごとき硅酸塩、酸化鉄、酸化チタン、酸化亜鉛、アルミナのごとき金属の酸化物、炭酸カルシウム、炭酸マグネシウムのごとき金属の炭酸塩、硫酸カルシウム、硫酸バリウムのごとき金属の硫酸塩、その他炭化硅素、窒化硅素、窒化硼素、各種金属粉末が挙げられる。又、板状充填材としてはマイカ、ガラスフレーク、各種の金属箔が挙げられる。これらの無機充填材は一種又は二種以上併用することができる。   Examples of the fibrous filler include glass fiber, asbestos fiber, carbon fiber, silica fiber, silica / alumina fiber, zirconia fiber, boron nitride fiber, boron fiber, potassium titanate fiber, stainless steel, aluminum, titanium, copper, brass, etc. Examples thereof include inorganic fibrous materials such as metal fibrous materials. Particularly typical fibrous fillers are glass fibers or carbon fibers. High melting point organic fiber materials such as polyamide, fluororesin and acrylic resin can also be used. On the other hand, as granular fillers, carbon black, silica, quartz powder, glass beads, glass powder, calcium oxalate, aluminum oxalate, kaolin, talc, clay, diatomaceous earth, wollastonite such as wollastonite, oxidation Metal oxides such as iron, titanium oxide, zinc oxide and alumina, metal carbonates such as calcium carbonate and magnesium carbonate, metal sulfates such as calcium sulfate and barium sulfate, other silicon carbide, silicon nitride, boron nitride, Various metal powders are mentioned. Examples of the plate-like filler include mica, glass flakes, and various metal foils. These inorganic fillers can be used alone or in combination of two or more.

これらの充填材の使用にあたっては必要ならば収束剤又は表面処理剤を使用することが望ましい。この例を示せば、エポキシ系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物等の官能性化合物である。これ等の化合物はあらかじめ表面処理又は収束処理を施して用いるか、又は材料調製の際同時に添加してもよい。   In using these fillers, it is desirable to use a sizing agent or a surface treatment agent if necessary. Examples of this are functional compounds such as epoxy compounds, isocyanate compounds, silane compounds, and titanate compounds. These compounds may be used after being subjected to surface treatment or convergence treatment in advance, or may be added at the same time as material preparation.

無機充填材の使用量は(A) 成分のPAS樹脂100重量部あたり10〜300重量部である。過小の場合は機械的強度がやや劣り、過大の場合は成形作業が困難になるほか、機械的強度にも問題がでる。   The amount of the inorganic filler used is 10 to 300 parts by weight per 100 parts by weight of the component (A) PAS resin. If it is too small, the mechanical strength is slightly inferior. If it is too large, the molding operation becomes difficult, and there is also a problem in mechanical strength.

又、本発明の樹脂組成物には、本発明の効果を損なわない範囲で、バリ等を改良する目的としてシラン化合物を配合することができる。シラン化合物としては、ビニルシラン、メタクリロキシシラン、エポキシシラン、アミノシラン、メルカプトシラン等の各種タイプが含まれ、例えば、ビニルトリクロルシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシランなどが例示されるが、これらに限定されるものではない。   Moreover, the silane compound can be mix | blended with the resin composition of this invention in order to improve a burr | flash etc. in the range which does not impair the effect of this invention. The silane compound includes various types such as vinyl silane, methacryloxy silane, epoxy silane, amino silane, mercapto silane, etc., for example, vinyl trichloro silane, γ-methacryloxy propyl trimethoxy silane, γ-glycidoxy propyl trimethoxy silane. , Γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, and the like, but are not limited thereto.

又、本発明の樹脂組成物には、その目的に応じ前記成分の他に、他の熱可塑性樹脂を補助的に少量併用することも可能である。他の熱可塑性樹脂としては、例えば、ポリフェニレンエーテル、ポリエーテルスルホン、ポリスルホン、ポリカーボネート、ポリアセタール等の他、液晶性ポリマー、芳香族ポリエステル、ポリアリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のエステル系樹脂;ポリエチレン、ポリプロピレン、ポリ−4−メチルペンテン−1等のオレフィン系樹脂;ナイロン6、ナイロン66、芳香族ナイロン等のアミド系樹脂;ポリメチル(メタ)アクリレート、ポリアクリロニトリルスチレン(AS樹脂)、ポリスチレン、ノルボルネン樹脂等の環状オレフィン樹脂などが挙げられる。これらの熱可塑性樹脂は2種以上を混合して使用することもできる。   The resin composition of the present invention can be used in combination with a small amount of other thermoplastic resins in addition to the above components depending on the purpose. Other thermoplastic resins include, for example, ester resins such as polyphenylene ether, polyethersulfone, polysulfone, polycarbonate, polyacetal, etc., liquid crystalline polymers, aromatic polyesters, polyarylate, polyethylene terephthalate, polybutylene terephthalate; polyethylene Olefin resins such as polypropylene and poly-4-methylpentene-1; amide resins such as nylon 6, nylon 66 and aromatic nylon; polymethyl (meth) acrylate, polyacrylonitrile styrene (AS resin), polystyrene, norbornene resin And the like, and the like. These thermoplastic resins can be used in combination of two or more.

更に、本発明の樹脂組成物には、一般に熱可塑性樹脂に添加される公知の物質、すなわち難燃剤、染・顔料等の着色剤、潤滑剤および結晶化促進剤、結晶核剤等も要求性能に応じ適宜添加することができる。   Further, the resin composition of the present invention also includes known substances generally added to thermoplastic resins, that is, flame retardants, coloring agents such as dyes and pigments, lubricants and crystallization accelerators, crystal nucleating agents, and the like. Depending on the case, it can be added appropriately.

本発明の樹脂組成物の調製は、一般に合成樹脂組成物の調製に用いられる設備と方法により調製することができる。一般的には必要な成分を混合し、1軸又は2軸の押出機を使用して溶融混練し、押出して成形用ペレットとすることができる。この溶融混練時の樹脂温度は、オレフィン系共重合体の熱劣化を防止するために360℃以下が好ましい。また、樹脂成分を溶融押出し、その途中でガラス繊維の如き無機成分を添加配合するのも好ましい方法の1つである。   The resin composition of the present invention can be prepared by facilities and methods generally used for preparing a synthetic resin composition. In general, necessary components can be mixed, melt-kneaded using a single-screw or twin-screw extruder, and extruded to form pellets for molding. The resin temperature during this melt-kneading is preferably 360 ° C. or lower in order to prevent thermal degradation of the olefin copolymer. It is also a preferred method to melt-extrude the resin component and add and mix an inorganic component such as glass fiber in the middle.

このようにして得た材料ペレットは、射出成形、押出し成形、真空成形、圧縮成形等、一般に公知の熱可塑性樹脂の成形法を用いて成形することができるが、最も好ましいのは射出成形である。   The material pellets thus obtained can be molded using generally known thermoplastic resin molding methods such as injection molding, extrusion molding, vacuum molding, compression molding, etc., but injection molding is most preferred. .

次に実施例、比較例で本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例および比較例に用いた各(A) 、(B) 、(C) 成分の具体的物質は以下の通りである。
(A) PAS樹脂
(A-1)
20LのオートクレーブにNMP(N−メチル−2−ピロリドン)5700gを仕込み、窒素ガスで置換後、約1時間かけて、攪拌機の回転数250rpmで撹拌しながら、100℃まで昇温した。100℃に到達後、濃度74.7重量%のNaOH水溶液1170g、硫黄源水溶液1990g(NaSH=21.8モル及びNaS=0.50モルを含む)、及びNMP1000gを加え、約2時間かけて、徐々に200℃まで昇温し、水945g、NMP1590g、及び0.31モルの硫化水素を系外に排出した。
Next, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these. The specific substances of the components (A), (B) and (C) used in the examples and comparative examples are as follows.
(A) PAS resin
(A-1)
Into a 20 L autoclave, 5700 g of NMP (N-methyl-2-pyrrolidone) was charged, and after replacing with nitrogen gas, the temperature was raised to 100 ° C. while stirring at a rotation speed of 250 rpm for about 1 hour. After reaching 100 ° C., 1170 g of an aqueous NaOH solution having a concentration of 74.7% by weight, 1990 g of an aqueous sulfur source solution (including NaSH = 21.8 mol and Na 2 S = 0.50 mol) and NMP 1000 g were added, and gradually increased to 200 ° C. over about 2 hours. Then, 945 g of water, 1590 g of NMP, and 0.31 mol of hydrogen sulfide were discharged out of the system.

上記脱水工程の後、170℃まで冷却し、p−ジクロロベンゼン3283g、NMP2800g、水133g、及び濃度97重量%のNaOHを23g加えたところ、缶内温度は130℃、pHは13.2になった。引き続き、攪拌機の回転数250rpmで撹拌しながら、180℃まで30分間かけて昇温し、更に180℃から220℃の間は60分間かけて昇温した。その温度で60分間反応させた後、230℃まで30分間かけて昇温し、230℃で90分間反応を行い、前段重合を行った。   After the dehydration step, the mixture was cooled to 170 ° C. and 3283 g of p-dichlorobenzene, 2800 g of NMP, 133 g of water, and 23 g of NaOH having a concentration of 97% by weight were added. As a result, the temperature in the can became 130 ° C. and the pH became 13.2. Subsequently, while stirring at a rotational speed of 250 rpm of the stirrer, the temperature was raised to 180 ° C. over 30 minutes, and further between 180 ° C. and 220 ° C. over 60 minutes. After reacting at that temperature for 60 minutes, the temperature was raised to 230 ° C. over 30 minutes, and the reaction was carried out at 230 ° C. for 90 minutes to perform pre-stage polymerization.

前段重合終了後、直ちに攪拌機の回転数を400rpmに上げ、水340gを圧入した。水圧入後、260℃まで1時間かけて昇温し、その温度で5時間反応させ、後段重合を行った。後段重合終了時点での系のpHは10.1であった。   Immediately after completion of the pre-polymerization, the rotation speed of the stirrer was increased to 400 rpm, and 340 g of water was injected. After water injection, the temperature was raised to 260 ° C. over 1 hour, and the reaction was carried out at that temperature for 5 hours to carry out post polymerization. The pH of the system at the end of the latter polymerization was 10.1.

後段重合終了後、反応混合物を室温付近まで冷却してから、内容物を100メッシュのスクリーンにかけ、粒状ポリマーを濾別し、次いで、アセトン洗いを3回、水洗を3回、0.3%酢酸洗を行い、その後、水洗を4回行い、洗浄した粒状ポリマーを得た。粒状ポリマーは、105℃で13時間乾燥した。こりようにして得られた粒状ポリマーは、溶融粘度(310℃、ズリ速度1200sec-1)が140Pa・sであった。この操作を5回繰返し、必要量のポリマーを得た。
(A-2)
20LのオートクレーブにNMP(N−メチル−2−ピロリドン)5700gを仕込み、窒素ガスで置換後、約1時間かけて、攪拌機の回転数250rpmで撹拌しながら、100℃まで昇温した。100℃に到達後、硫黄源水溶液1990g(NaSH=21.9モル及びNaS=0.4モルを含む)、及びNMP1000gを加え、約2時間かけて、徐々に200℃まで昇温し、水729g、NMP1370g、及び0.70モルの硫化水素を系外に排出した。
After the post-polymerization is completed, the reaction mixture is cooled to near room temperature, the contents are passed through a 100 mesh screen, the particulate polymer is filtered off, then washed three times with acetone, three times with water, and 0.3% acetic acid. After that, washing with water was performed 4 times to obtain a washed granular polymer. The granular polymer was dried at 105 ° C. for 13 hours. The granular polymer thus obtained had a melt viscosity (310 ° C., shear rate of 1200 sec −1 ) of 140 Pa · s. This operation was repeated 5 times to obtain the required amount of polymer.
(A-2)
Into a 20 L autoclave, 5700 g of NMP (N-methyl-2-pyrrolidone) was charged, and after replacing with nitrogen gas, the temperature was raised to 100 ° C. while stirring at a rotation speed of 250 rpm for about 1 hour. After reaching 100 ° C., 1990 g of sulfur source aqueous solution (including NaSH = 21.9 mol and Na 2 S = 0.4 mol) and NMP 1000 g were added, and the temperature was gradually raised to 200 ° C. over about 2 hours. Water 729 g, NMP 1370 g , And 0.70 mol of hydrogen sulfide was discharged out of the system.

上記脱水工程の後、170℃まで冷却し、p−ジクロロベンゼン3236g、及びNMP2800gを加えたところ、缶内温度は130℃になった。180℃まで30分間かけて昇温した後、水酸化ナトリウム(NaOH)の添加を開始し、重合反応系のpHを11.5〜12.0に制御した。引き続き、攪拌機の回転数250rpmで撹拌しつつ、180℃まで30分間かけて昇温し、更に180℃から220℃の間は60分間かけて昇温した。その温度で60分間反応させた後、230℃まで30分間かけて昇温し、230℃で90分間反応を行い、前段重合を行った。   After the dehydration step, the mixture was cooled to 170 ° C., and 3236 g of p-dichlorobenzene and 2800 g of NMP were added. As a result, the inside temperature of the can reached 130 ° C. After heating up to 180 ° C. over 30 minutes, addition of sodium hydroxide (NaOH) was started, and the pH of the polymerization reaction system was controlled to 11.5 to 12.0. Subsequently, while stirring at a rotation speed of 250 rpm of the stirrer, the temperature was raised to 180 ° C. over 30 minutes, and further between 180 ° C. and 220 ° C. over 60 minutes. After reacting at that temperature for 60 minutes, the temperature was raised to 230 ° C. over 30 minutes, and the reaction was carried out at 230 ° C. for 90 minutes to perform pre-stage polymerization.

前段重合工程を通して、重合反応系のpHを11.5〜12.0の範囲に維持するように、ポンプを用いて濃度73.7重量%のNaOH水溶液1180gを連続的に添加した。   Through the previous polymerization step, 1180 g of a 73.7 wt% NaOH aqueous solution was continuously added using a pump so as to maintain the pH of the polymerization reaction system in the range of 11.5 to 12.0.

前段重合終了後、直ちに攪拌機の回転数を400rpmに上げ、水340gを圧入した。水圧入後、260℃まで1時間かけて昇温し、その温度で4時間反応させ、後段重合を行った。後段重合終了時点での系のpHは10.0であった。   Immediately after completion of the pre-polymerization, the rotation speed of the stirrer was increased to 400 rpm, and 340 g of water was injected. After water injection, the temperature was raised to 260 ° C. over 1 hour and reacted at that temperature for 4 hours to carry out post polymerization. The pH of the system at the end of the latter polymerization was 10.0.

後段重合終了後、反応混合物を室温付近まで冷却してから、内容物を100メッシュのスクリーンにかけ、粒状ポリマーを濾別し、次いで、アセトン洗いを3回、水洗を3回、0.3%酢酸洗を行い、その後、水洗を4回行い、洗浄した粒状ポリマーを得た。粒状ポリマーは、105℃で13時間乾燥した。こりようにして得られた粒状ポリマーは、溶融粘度(310℃、ズリ速度1200sec-1)が151Pa・sであった。この操作を5回繰返し、必要量のポリマーを得た。
(B) オレフィン系共重合体
(B-1) エチレン/グリシジルメタクリレート共重合体(日本ポリオレフィン(株)製、レクスパールRA3150)
(B-2) エチレン/グリシジルメタクリレート共重合体70重量部にスチレン/アクリロニトリル共重合体30重量部をグラフトさせた共重合体(日本油脂(株)製、モディパーA4400)
(B-3) エチレン/グリシジルメタクリレート共重合体70重量部にメチルメタクリレート/ブチルアクリレート共重合体(9/21)を30重量部グラフトさせた共重合体(日本油脂(株)製、モディパーA4300)
(C) 無機充填材
(C-1) ガラス繊維(13μmφのチョップドストランド(日本電気硝子(株)製、ECS303T−717))
(C-2) 炭酸カルシウム(東洋ファインケミカル製、ホワイトンP−30)
また、実施例および比較例での評価方法は以下の通りである。
[窒素量の分析法]
微量窒素硫黄分析計(ANTEK社製、ANTEK7000)を用いてPAS樹脂中の窒素含有量を測定した(窒素量の検量線はトリフェニルアミンのエチルベンゼン溶液を用いて作成した)。
After the post-polymerization is completed, the reaction mixture is cooled to near room temperature, the contents are passed through a 100 mesh screen, the particulate polymer is filtered off, then washed three times with acetone, three times with water, and 0.3% acetic acid. After that, washing with water was performed 4 times to obtain a washed granular polymer. The granular polymer was dried at 105 ° C. for 13 hours. The granular polymer thus obtained had a melt viscosity (310 ° C., shear rate of 1200 sec −1 ) of 151 Pa · s. This operation was repeated 5 times to obtain the required amount of polymer.
(B) Olefin copolymer
(B-1) Ethylene / glycidyl methacrylate copolymer (Nippon Polyolefin Co., Ltd., Lexpearl RA3150)
(B-2) A copolymer obtained by grafting 30 parts by weight of a styrene / acrylonitrile copolymer to 70 parts by weight of an ethylene / glycidyl methacrylate copolymer (manufactured by NOF Corporation, Modiper A4400)
(B-3) A copolymer obtained by grafting 30 parts by weight of a methyl methacrylate / butyl acrylate copolymer (9/21) to 70 parts by weight of an ethylene / glycidyl methacrylate copolymer (Nippon Yushi Co., Ltd., Modiper A4300)
(C) Inorganic filler
(C-1) Glass fiber (13 μmφ chopped strand (manufactured by Nippon Electric Glass Co., Ltd., ECS303T-717))
(C-2) Calcium carbonate (Toyo Fine Chemical, Whiten P-30)
Moreover, the evaluation method in an Example and a comparative example is as follows.
[Analytical method of nitrogen content]
The nitrogen content in the PAS resin was measured using a trace nitrogen sulfur analyzer (ANTEK 7000, manufactured by ANTEK) (a calibration curve for the nitrogen content was prepared using an ethylbenzene solution of triphenylamine).

その結果、前述の如くして製造したPAS樹脂(A-1) の窒素含有量は850ppm(樹脂1kg当たり0.850g)、PAS樹脂(A-2) の窒素含有量は320ppm(樹脂1kg当たり0.320g)であった。
[モールドディポジットの評価]
射出成形機にて、下記条件で図1に示す特定形状の成形品を連続成形し、金型付着物の量を評価した。具体的には、試験片を500ショット成形し、ガスベント部(稼動側のみ)に付着するモールドディポジットを採取し、重量(μg)を測定した。
(成形条件)
射出成形機;東芝IS30FPA(東芝機械製)
シリンダー温度;335−340−325−310℃
射出圧力;74MPa
射出速度;1m/min
射出時間;2sec
冷却時間;5sec
成形サイクル;12sec
金型温度;60℃
[衝撃強度の測定]
射出成形機で、シリンダー温度320℃、金型温度150℃でASTM D−256に準じてアイゾット衝撃試験片を成形し、所定の温度雰囲気下に2時間以上放置後、ノッチ側衝撃強度を測定した。
実施例1〜6、比較例1〜4
表1に示す(A) 成分をヘンシェルミキサーで5分間予備混合した(1種の場合は省略)。更に(B) 成分及び(C) 成分を表1に示す量加えて、2分間混合し、これをシリンダー温度320℃の二軸押出機に投入し、ポリフェニレンサルファイド樹脂組成物のペレットを作った。得られたペレットについて、上述の方法にてモールドディポジット及び衝撃強度についての評価を行った。
As a result, the nitrogen content of PAS resin (A-1) produced as described above was 850 ppm (0.850 g per kg of resin), and the nitrogen content of PAS resin (A-2) was 320 ppm (0.320 g per kg of resin). )Met.
[Evaluation of mold deposit]
With an injection molding machine, a molded product having a specific shape shown in FIG. 1 was continuously molded under the following conditions, and the amount of mold deposits was evaluated. Specifically, 500 shots of the test piece were molded, a mold deposit adhering to the gas vent part (operation side only) was collected, and the weight (μg) was measured.
(Molding condition)
Injection molding machine; Toshiba IS30FPA (manufactured by Toshiba Machine)
Cylinder temperature: 335-340-325-310 ° C
Injection pressure: 74MPa
Injection speed: 1m / min
Injection time: 2 sec
Cooling time: 5 sec
Molding cycle: 12sec
Mold temperature: 60 ℃
[Measurement of impact strength]
With an injection molding machine, Izod impact test specimens were molded according to ASTM D-256 at a cylinder temperature of 320 ° C and a mold temperature of 150 ° C, and allowed to stand in a predetermined temperature atmosphere for 2 hours or more, and the notch side impact strength was measured. .
Examples 1-6, Comparative Examples 1-4
The component (A) shown in Table 1 was premixed for 5 minutes with a Henschel mixer (omitted for one type). Further, the components (B) and (C) were added in the amounts shown in Table 1, mixed for 2 minutes, and charged into a twin-screw extruder having a cylinder temperature of 320 ° C. to produce pellets of a polyphenylene sulfide resin composition. About the obtained pellet, evaluation about a mold deposit and impact strength was performed by the above-mentioned method.

結果を表1に示す。   The results are shown in Table 1.

Figure 0004633390
Figure 0004633390

実施例で行ったモールドディポジットの評価用の成形品と評価状況を示す模式図である。It is a schematic diagram which shows the molded product for evaluation of the mold deposit performed in the Example, and the evaluation condition.

Claims (4)

(A) 窒素元素の含有量が樹脂1kg当たり0.55g以下であるポリアリーレンサルファイド樹脂100重量部に対し、
(B) α−オレフィンとα,β−不飽和酸のグリシジルエステルを主成分とするオレフィン系共重合体0.5〜50重量部
を配合してなるポリアリーレンサルファイド樹脂組成物であって、
ポリアリーレンサルファイド樹脂(A) 、またはその一部が、下記(1) 、(2) を特徴とする製造法によって得られたポリアリーレンサルファイド樹脂であるポリアリーレンサルファイド樹脂組成物。
(1) 反応槽内に、有機アミド溶媒、アルカリ金属水硫化物を含む硫黄源、及び必要に応じてアルカリ金属水酸化物の全仕込み量の一部を仕込み、これらを含有する混合物を加熱して、該混合物を含有する系内から水を含む留出物の少なくとも一部を系外に排出する脱水工程、並びに
(2) 脱水工程後の系内に残存する混合物とジハロ芳香族化合物とを混合し、これらを含む重合反応混合物を加熱して、硫黄源とジハロ芳香族化合物とを重合反応させると共に、重合反応混合物中にアルカリ金属水酸化物を連続的に又は分割して添加し、重合反応の開始から終了に至るまでの間、重合反応混合物のpHを7〜12.5の範囲内に制御する重合工程を含む
ことを特徴とするポリアリーレンサルファイド樹脂組成物の製造法
(A) For 100 parts by weight of polyarylene sulfide resin in which the content of nitrogen element is 0.55 g or less per kg of resin,
(B) A polyarylene sulfide resin composition comprising 0.5 to 50 parts by weight of an olefin copolymer mainly composed of an α-olefin and a glycidyl ester of an α, β-unsaturated acid ,
A polyarylene sulfide resin composition wherein the polyarylene sulfide resin (A) or a part thereof is a polyarylene sulfide resin obtained by a production method characterized by the following (1) and (2).
(1) A reaction vessel is charged with an organic amide solvent, a sulfur source containing an alkali metal hydrosulfide, and, if necessary, a part of the total charge of the alkali metal hydroxide, and the mixture containing these is heated. A dehydration step of discharging at least part of the distillate containing water from the system containing the mixture to the outside of the system, and
(2) Mixing the mixture remaining in the system after the dehydration step and the dihaloaromatic compound, heating the polymerization reaction mixture containing them, causing the sulfur source and the dihaloaromatic compound to undergo a polymerization reaction, and a polymerization reaction A polymerization step of adding alkali metal hydroxide continuously or in portions to the mixture and controlling the pH of the polymerization reaction mixture within the range of 7 to 12.5 from the start to the end of the polymerization reaction
Process for producing polyarylene sulfide resin composition characterized in that
(B) オレフィン系共重合体が、α−オレフィンとα,β−不飽和酸のグリシジルエステルから成るオレフィン系共重合体に、下記一般式(1)で示される繰返し単位で構成された重合体又は共重合体の一種又は二種以上が分岐又は架橋構造的に化学結合したグラフト共重合体である請求項1記載のポリアリーレンサルファイド樹脂組成物。(B) A polymer in which the olefin copolymer is composed of a repeating unit represented by the following general formula (1) in an olefin copolymer comprising an α-olefin and a glycidyl ester of an α, β-unsaturated acid. The polyarylene sulfide resin composition according to claim 1, wherein the polyarylene sulfide resin composition is a graft copolymer in which one or more of the copolymers are chemically bonded in a branched or crosslinked structure.
Figure 0004633390
Figure 0004633390
(但し、R は水素又は低級アルキル基、Xは-COOCH(Where R is hydrogen or a lower alkyl group, X is -COOCH 3Three 、-COOC, -COOC 22 HH 5Five 、-COOC, -COOC 4Four HH 99 、-COOCH, -COOCH 22 CH(CCH (C 22 HH 5Five )C) C 4Four HH 99 、-C, -C 66 HH 5Five 、-CNから選ばれた一種又は二種以上の基を示す。), Or one or more groups selected from —CN. )
(B) オレフィン系共重合体が、α−オレフィンとα,β−不飽和酸のグリシジルエステルから成るオレフィン系共重合体に、アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸ブチル、メタクリル酸ブチル、アクリロニトリル及びスチレンから選ばれる一種又は二種以上からなる重合体又は共重合体が分岐又は架橋構造的に化学結合したグラフト共重合体である請求項1又は2記載のポリアリーレンサルファイド樹脂組成物。(B) The olefin copolymer is an olefin copolymer comprising an α-olefin and a glycidyl ester of an α, β-unsaturated acid, and acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, butyl acrylate. A polyarylene sulfide according to claim 1 or 2, which is a graft copolymer in which one or more polymers or copolymers selected from butyl methacrylate, acrylonitrile and styrene are chemically bonded in a branched or cross-linked structure. Resin composition. (B) オレフィン系共重合体が、メタクリル酸メチルとアクリル酸ブチルからなる共重合体を分岐鎖として化学結合させたグラフト共重合体である請求項1〜3の何れか1項記載のポリアリーレンサルファイド樹脂組成物。(B) The polyarylene according to any one of claims 1 to 3, wherein the olefin copolymer is a graft copolymer obtained by chemically bonding a copolymer of methyl methacrylate and butyl acrylate as a branched chain. A sulfide resin composition.
JP2004176457A 2004-06-15 2004-06-15 Polyarylene sulfide resin composition Expired - Fee Related JP4633390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004176457A JP4633390B2 (en) 2004-06-15 2004-06-15 Polyarylene sulfide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004176457A JP4633390B2 (en) 2004-06-15 2004-06-15 Polyarylene sulfide resin composition

Publications (2)

Publication Number Publication Date
JP2006001955A JP2006001955A (en) 2006-01-05
JP4633390B2 true JP4633390B2 (en) 2011-02-16

Family

ID=35770626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004176457A Expired - Fee Related JP4633390B2 (en) 2004-06-15 2004-06-15 Polyarylene sulfide resin composition

Country Status (1)

Country Link
JP (1) JP4633390B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11383491B2 (en) 2016-03-24 2022-07-12 Ticona Llc Composite structure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626951B2 (en) * 2004-08-09 2011-02-09 ポリプラスチックス株式会社 Polyarylene sulfide resin composition
JP5029881B2 (en) * 2007-03-29 2012-09-19 Dic株式会社 Polyarylene sulfide resin composition
WO2011070968A1 (en) 2009-12-10 2011-06-16 ポリプラスチックス株式会社 Polyarylene sulfide resin composition and insert-molded article
JP6392998B2 (en) * 2015-12-25 2018-09-19 ポリプラスチックス株式会社 Polyarylene sulfide-based resin composition and insert molded product
JPWO2019026869A1 (en) * 2017-08-02 2020-06-11 ポリプラスチックス株式会社 Polyarylene sulfide resin composition and fuel contact body
JP6823005B2 (en) * 2018-04-17 2021-01-27 ポリプラスチックス株式会社 Polyarylene sulfide resin composition, extruded product, manufacturing method of extruded product, and transport aircraft or generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198664A (en) * 1988-02-03 1989-08-10 Polyplastics Co Polyarylene sulfide resin composition
JPH08208985A (en) * 1993-12-28 1996-08-13 Kureha Chem Ind Co Ltd Flame-retardant resin composition
JPH11100506A (en) * 1997-09-29 1999-04-13 Polyplastics Co Manufacture of polyarylene sulfide resin composition
JP2001040090A (en) * 1999-05-21 2001-02-13 Dainippon Ink & Chem Inc Polyarylene sulfide, its production and polyarylene sulfide composition
JP2001181394A (en) * 1999-12-24 2001-07-03 Dainippon Ink & Chem Inc Method of manufacturing polyarylene sulfide
JP2004244619A (en) * 2003-01-21 2004-09-02 Kureha Chem Ind Co Ltd Polyarylene sulfide and process for producing the same
JP2005298669A (en) * 2004-04-12 2005-10-27 Polyplastics Co Polyarylene sulfide resin composition and its molded article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198664A (en) * 1988-02-03 1989-08-10 Polyplastics Co Polyarylene sulfide resin composition
JPH08208985A (en) * 1993-12-28 1996-08-13 Kureha Chem Ind Co Ltd Flame-retardant resin composition
JPH11100506A (en) * 1997-09-29 1999-04-13 Polyplastics Co Manufacture of polyarylene sulfide resin composition
JP2001040090A (en) * 1999-05-21 2001-02-13 Dainippon Ink & Chem Inc Polyarylene sulfide, its production and polyarylene sulfide composition
JP2001181394A (en) * 1999-12-24 2001-07-03 Dainippon Ink & Chem Inc Method of manufacturing polyarylene sulfide
JP2004244619A (en) * 2003-01-21 2004-09-02 Kureha Chem Ind Co Ltd Polyarylene sulfide and process for producing the same
JP2005298669A (en) * 2004-04-12 2005-10-27 Polyplastics Co Polyarylene sulfide resin composition and its molded article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11383491B2 (en) 2016-03-24 2022-07-12 Ticona Llc Composite structure
US11919273B2 (en) 2016-03-24 2024-03-05 Ticona Llc Composite structure

Also Published As

Publication number Publication date
JP2006001955A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP2736279B2 (en) Polyarylene sulfide resin composition
US20050228095A1 (en) Polyarylene sulfide resin composition and molded article therefrom
JP5310326B2 (en) Polyphenylene sulfide resin composition and method for producing the same
US5786422A (en) Polyphenylene sulfide resin composition
JP4307908B2 (en) Polyarylene sulfide resin composition and coated molded article
JP4633390B2 (en) Polyarylene sulfide resin composition
JP3019108B2 (en) Resin composition
JP4777080B2 (en) Polyarylene sulfide resin composition for molded article having box shape and molded article having box shape
JP3889122B2 (en) Polyarylene sulfide resin composition
WO1999016830A1 (en) Polyarylene sulfide resin composition
JP2012177015A (en) Polyarylene sulfide resin composition
JP2021172675A (en) Polyphenylene sulfide resin composition and molding
JP3970374B2 (en) Polyarylene sulfide resin composition
JP3019107B2 (en) Polyphenylene sulfide resin composition
JP5103763B2 (en) Resin composition and molded article comprising the same
EP0431954A2 (en) Polyarylene sulphide resin composition and process for producing the same
KR20220104680A (en) Polyphenylene sulfide resin composition for automobile cooling parts and automobile cooling parts
JP7234666B2 (en) Polyarylene sulfide resin composition
JP3501165B2 (en) Polyarylene sulfide resin composition
JP2004091504A (en) Polyarylene sulfide resin composition
JP2008214383A (en) Polyarylene sulfide resin composition
JP2685976B2 (en) Polyarylene sulfide resin composition and method for producing the same
EP4317263A1 (en) Polyphenylene sulfide resin composition and method for producing same
JP5103762B2 (en) Resin composition and molded article comprising the same
JPH10158511A (en) Polyarylene sulfide resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

R150 Certificate of patent or registration of utility model

Ref document number: 4633390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees