JP4632519B2 - Reflector - Google Patents

Reflector Download PDF

Info

Publication number
JP4632519B2
JP4632519B2 JP2000359770A JP2000359770A JP4632519B2 JP 4632519 B2 JP4632519 B2 JP 4632519B2 JP 2000359770 A JP2000359770 A JP 2000359770A JP 2000359770 A JP2000359770 A JP 2000359770A JP 4632519 B2 JP4632519 B2 JP 4632519B2
Authority
JP
Japan
Prior art keywords
alloy
added
reflector
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000359770A
Other languages
Japanese (ja)
Other versions
JP2001221908A (en
Inventor
崇 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuya Metal Co Ltd
Original Assignee
Furuya Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuya Metal Co Ltd filed Critical Furuya Metal Co Ltd
Priority to JP2000359770A priority Critical patent/JP4632519B2/en
Publication of JP2001221908A publication Critical patent/JP2001221908A/en
Application granted granted Critical
Publication of JP4632519B2 publication Critical patent/JP4632519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/37Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors characterised by their material, surface treatment or coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヘッドライトやフォグライト等の車両用灯具、或いは屋外、屋内照明機器類等に、そして、レーザー機器を含む光学機器の平面鏡や曲面鏡等に使用される反射体の改良に関する。
【0002】
【従来の技術】
従来から、この種の反射体(通称、リフレクターと称されている)には主にMg、Ca、Sr、Li等のアルカリ土類金属を添加して、そのアルカリ土類金属の酸素吸着効果を用いて浮動体膜を形成した比較的に安定なAl若しくはAl合金が使用されていたが、低電力コストで高照度が得られるAlや、Alよりも反射率が低下するAl合金よりも高い反射率を有するAgの使用が近年検討及び実施されている。
しかし、Alの場合では浮動体膜の安定性や再現性、若しくは浮動体膜自体がAlの酸化性の向上を目的とするために、例えば塩素を始めとするハロゲン系元素等の大気に添加される非金属成分に対しては、必ずしも安定ではないために、実際にリフレクターに採用する場合ではアクリル系の樹脂系保護膜でAl膜若しくはAl合金膜を被覆することで、リフレクターの形成を行うことが広く知られている。
【0003】
ところで、AgはAlに比べて可視光域、特には光学波長域で400〜800nmの範囲での高い反射率を有する材料として高反射率のリフレクターを形成する場合においては高い評価が得られているが、大気中に多く添加される硫黄、塩素により硫化、塩化、あるいは酸化等と非金属元素に対して大変活性であるために、反射膜として汎用的に用いることが困難であると言われている。つまりは、Agは大気中に長時間暴露されると、硫化銀(Ag2S)となり黒く変色したり、又、塩化銀(AgCl)となり白濁化して光学特性が劣化する。
従って、大気中に長時間曝されると、Agの光学特性が劣化して反射率が低下する問題があることから、低電力コストで高照度を求めている近年の照明機器類や車両用灯具等には適用され難いとされている。
【0004】
そこで、この問題の解決策として、硫黄や塩素と反応し難く耐薬品性等の耐候性に優れたPdかAuの内のどちらか、或いは両方を30wt%以下にて添加させたAgを主成分とするAg合金反射膜、又は、Ptを30wt%以下にて添加させたAgを主成分とするAgPt合金反射膜を、支持体となる基板上に形成することにより、高い反射率を維持しながら硫黄、塩素に対する耐候性をも向上させた反射体が提案され、知られている(例えば、特開平6−186407号参照)。
【0005】
【発明が解決しようとする課題】
しかし乍ら、この従来の反射体においては、高い反射性が得られることは評価試験等の結果から明らかにされているが、塩素、硫黄との反応による変色や白濁化等の耐候性においては必ずしも十分とは言えず、実用化上未だに不十分であると言った問題が残されている。
即ち、Pd及びAuは高温高湿の雰囲気中に長時間暴露されない限りでは塩素や硫黄と反応し難い耐候性に優れた材料ではあるが、オゾンと呼称される特定環境下で高温高湿の雰囲気中に暴露されると、非金属元素と反応しその非金属元素の化合物を形成する虞れがあると言われている。
従って、例えば時間の経過とともに温度が徐々に上昇し、雨の日等には温度に加えて湿度も上昇すると言った厳しい環境下で使用されるヘッドライトやフォグライト等の車両用灯具等に適用された場合、高温高湿の雰囲気中に長時間暴露されることとなり、耐候性が急激に低下する可能性が高いことから、更になる改善が望まれているのが現状である。
【0006】
又、従来の反射体では前述したように、塩素、硫黄と反応して塩化、硫化、酸化されることが懸念されることから、当該反応により反射膜が基板から部分的に浮いてしまう膜剥がれ現象が発生すると言った、接合性(密着力)においても劣る課題があった。
【0007】
更には、前記特開平6−186407号に関して、Pd若しくはPtが30wt%添加された場合にはPd、Pt共に大変市場価格が不安定であることと、コスト的に高いために、コスト的にAl若しくはAl合金と比した場合においては、少なくとも適切な材料であるとは検討し難いため、現実的とは考えられなかった。
【0008】
本発明はこの様な従来事情に鑑みてなされたもので、その目的とする処は、Agの優れた高反射率の低下を抑制し、且つ高温高湿の厳しい環境下に暴露されても安定した耐候性が継続的に得られ、更には接合性が効果的に強化された実用化上の効果が大きく、高い信頼性の反射体を提供することにある。
【0009】
【課題を達成するための手段】
課題を達成するために本発明は、反射体として、主成分となるAgに、固溶助材としてのdを0.5〜3.0wt%の範囲内で添加し、更にCu、Tiのいずれか一種元素を0.1〜3.0wt%の範囲内で添加して、固溶したAg合金からなる3元合金反射膜を、基板上に形成してなることである。
【0013】
而して、斯かる技術的手段によれば、Agに固溶助材としてのPdを0.5〜3.0wt%の範囲内で添加し、更にCu、Tiいずれか一種元素を0.1〜3.0%の範囲内で添加して、固溶したAg合金からなる3元合金反射膜を、スパッタリング法又は蒸着法等の成膜プロセスにより基板上に形成することで、高い反射率を維持しながら、高温高湿の雰囲気においても塩化、硫化、酸化による黒いシミの発生や白濁化を防止し、又、反射膜が基板から部分的に浮くことを防止するために、このAgを主成分として素からなる合金では、耐候性が大幅に改善され、且つ基板との接合性が効果的に強化されることがわかった。
【0014】
【発明の実施の形態】
本発明の実施の具体例を図面に基づいて説明する。図1は、本発明に係る反射体1の実施形態の一例を示した断面図で、車両用灯具4用として使用した例を示し、この実施形態においては、主成分となるAgに、耐食性向上を目的としてPdを添加し、更にC、Tいずれか一種を添加してなる素で構成されるAg合金反射膜を、周知の断面形状を呈し、灯体5内に収容保持される支持体となる基板2上に、スパッタリング法、蒸着法による成膜プロセスにより所定膜厚(nm)にて成膜する。図において、6は光源、7は灯体5に着脱可能に装着されるレンズである。ここで、AgにPdを所定の添加量で添加して溶融することにより、Ag結晶に均質にPdを固溶させることができ、Ag全体の耐候性を向上させることは従来から知られている。しかし、単にAgにPdを添加するだけでは高温高湿の雰囲気中では塩素、硫黄に対する十分な耐候性が得られない。又、前記雰囲気中においても十分な耐候性が得られる程度までPdかAuの内のいずれかを添加するとAgの反射率が低下する。換言すれば、Agの光学特性の低下を招く。そこで、Pdの添加量を0.5〜3.0wt%の範囲内に抑え、更に、第元素としてC、Tいずれか一種の添加量を0.1〜3.0wt%の範囲内に抑えることで、Agの高反射率の低下を抑制し、耐候性を効果的に改善することが可能となる。
【0015】
従って、本発明においてはAgを主成分とし、耐候性向上を目的としたPdの添加量を0.5〜3.0wt%の範囲内に、更にC、Tiのいずれか一種元素の添加量を0.1〜3.0wt%の範囲内に抑えることが本発明を成立させる上で重要である。その理由は、Pdの添加量が0.5wt%以下だと、高温高湿環境下では黄色に変色してしまい、反射率を低下させる傾向や塩素に対して安定性が必ずしも高くはないために、リフレクターとして長時間大気放置した場合での経時変化を検討した場合に安定性に欠けるからであり、3.0wt%を越えると、Agの反射率の低下が著しくなってしまうために実用的ではなくなるからである。
【0016】
又、Agを主成分として第2の添加元素としてPdを添加する場合にはPdの水素融解能力に対しての材料本質的な安定性に欠けてしまうために、更に添加するC、Tiのいずれか一種の元素の添加量が0.1wt%以下の場合には、例えば高温高湿下で放置した場合では、AgにPdのみを添加した2元合金で生じていた黒色の励起物の発生が確認されてしまい、材料としての耐候性が不安定になってしまうからであり、3.0wt%を越えると、添加物の影響を大きく受けてしまうために、例えばCuでは酸素と結合し易くなって、Agの酸素に対しての安定性を損なってしまったり、更はTiについては反射率が大きく低下する等の本発明によって得ようとする効果が損なわれてしまうからである。この様に、Pdを0.5〜3.0wt%の範囲内で添加し、更にC、Tiを0.1〜3.0wt%の範囲内で添加して溶融することで、金属元素の中で最も優れた高反射率を有するAgの特性が維持され、尚且つ、耐候性が効果的に改善されたAg合金を得ることができる。ここで、Pdの好ましい添加量は0.7〜2.3wt%であり、特に好ましくは0.9wt%である。又、更に添加する元素の好ましい添加量は0.5〜2.5wt%であり、特に好ましくは1.0wt%である。この様にして得られたAg合金は前述した反射膜3の成膜に使用するスパッタリングターゲット材料又は蒸着材料として適用されるものである。
【0017】
実施例
純Agに対し、第二元素のPdかAuの内のいずれか、或いは両方を0.5〜3.0wt%の範囲内で添加し、更にCu又はTiを0.1〜3.0wt%の範囲内で添加してなるAgPdX、AgAuX(X=Cu、Ti)合金からなる所定膜厚(nm)の反射膜3を、支持体となる基板2の表面にスパッタリング法又は蒸着法による成膜プロセスにより成膜し、車両用灯具4に適用される反射体1を得る(図1参照)。
ここで、前記AgPd合金、AgAu合金、或いはAgPdAu合金に、更に追加元素としてAl、Pt、Cu、Ta、Cr、Ti、Ni、Co、Siこれらの各金属元素中からCu又はTiを選んだ理由としては、大気中の塩素や硫黄に対するAgの耐候性が得られるまでPd又はAuのみを添加させた場合に比べて、Agの高反射率の低下を効果的に抑制し、しかも、例えば温度600℃で湿度が100%の高温高湿の厳しき環境下において長期に亘り高い信頼性が得られる耐候性を効果的に改善する上で、Cu又はTiが添加する元素として本発明に対して特に有効な金属元素であることが確認できるからである。
因みに、基板2は、主に金属、合成樹脂等から形成されている。
【0018】
次に、スパッタリングターゲット材料又は蒸着材料について説明する。
スパッタリングターゲット材料又は蒸着材料としてはCuやTiをAgに添加する場合には、CuやTiをAgに完全に固溶させることが困難である。従って、部分的にCu或いはTiの組成が変動するため、そのスパッタリングターゲットを用いて形成されたAgCu合金、或いはAgTi合金においても、Cu或いはTiの組成が変動し、安定した光学特性を得ることができない。
【0019】
そこで、Agを主成分として、PdかAuの内のいずれか、或いは両方を添加してなる合金に対してCu或いはTiを添加すると、Cu或いはTiは比較的容易に固溶することが分かった。これは、Pd及びAuがAg、Cu、Tiの夫々の原子と固溶することが確認されている。
従って、Pd及びAuが、固溶助剤としての作用を起して、固溶し難いAgとCu或いはTiに対して夫々の元素と1次固溶反応を起しその後の残りの1元素と2次固溶反応を起して結合させることで、これらのAgを主成分として更に添加する元素間で完全固溶体を作ることが可能になったものと考えられる。
【0020】
次に、本実施例詳述にて得られた例えばAgPdX、AgAuX(X=Cu、Ti)合金からなる反射膜3を基板2上に成膜してなる本発明の反射体1(以後、本発明品)と、AgPd合金反射膜を成膜してなる従来の反射体(以後、従来品)について行った反射率、耐候性の評価測定の実験結果を以下に説明する。
【0021】
まず、反射率の評価測定について説明すると、ここでは平滑な表面を有するガラス基板上に、各組成の合金反射膜をスパッタリング法又は蒸着法により成膜して作製した試料を用いた。膜厚はいずれも12nmであり、用いた波長域は400〜800nmである。
ここで、これらの波長域を選んだ理由は、照明機器類や車両用灯具等、特にヘッドライトやフォグライト等の車両用灯具4に適用される光源6から照射される波長が一般的に400〜800nmの範囲とされているからである。試験結果を表1に示す。
【0022】
【表1】

Figure 0004632519
【0023】
表1から明らかなように、本発明品は従来品と同じく高い反射率を示していることが分かる。
即ち、PdかAuの内のいずれか、或いは両方を0.5〜3.0wt%の範囲内で添加し、更にCu又はTiを0.1〜3.0wt%の範囲内で添加してなるAgを主成分とするAgPdX、AgAuX(X=Cu、Ti)合金からなる反射膜3を基板2上に成膜して形成した本発明品であっても純Agの優れた高反射率を維持し、低電力コストで高照度の反射体1が得られることが分かる。
【0024】
次に、耐薬品性から見た耐候性の評価測定について説明すると、ここでは石英ガラス基板上に、各組成の合金反射膜をスパッタリング法又は蒸着法により成膜して作製した試料を用いた。膜厚はいずれも12nmである。この評価試験では、1%H2SO4、3%NaCl、1%KOHこれらの溶液を各試料に滴らして10分経過後、又は30分経過後に、目視により観察したものである。その試験結果を表2に示す。
【0025】
【表2】
Figure 0004632519
【0026】
従来品ではPdの添加量によらず、薬液を滴らしてから10分経過した時点でAgPd合金反射膜及びAgAu合金反射膜の衰失、白濁化が観察され、これにより各薬液と反応していることが確認された。
対照的に、本発明品では薬液を滴らしてから10分後、30分後においても全く反応による変色が認められなかった。これにより、Agを主成分としてPdかAuの内のいずれか、或いは両方を添加し、更にCu又はTiを添加するにより、耐候性が大幅に改善されていることが分かる。
【0027】
更に、長期信頼性の評価試験として、高温高湿の厳しい環境下で行った耐候性の評価測定について説明すると、ここでは前述した石英ガラス基板上に、各組成の合金反射膜をスパッタリング法又は蒸着法により成膜して作製した試料を用い、温度600℃で湿度100%の高温高湿の空気雰囲気中に24時間暴露した後、目視により観察したものである。試験結果は表3に示す。
【0028】
【表3】
Figure 0004632519
【0029】
従来品では黒いシミの発生が確認された。この黒いシミの発生は、顕微鏡による観察の結果、各薬品と反応して塩化、硫化、酸化していることが確認された。又、AgPd合金反射膜及びAgAu合金反射膜が基板から部分的に浮いている膜剥がれが確認された。これは、AgPd合金反射膜及びAgAu合金反射膜と基板との密着力が弱いことと、当該反射膜が部分的に腐蝕されて白濁化する酸化現象に起因しているものと考察される。
【0030】
対照的に、本発明品ではこの様な厳しい高温高湿の環境下においても、何ら変化は観測されなかった。又、これらの試験に加えて温度750℃で、湿度が100%の更に厳しい酸素雰囲気中に24時間放置した試験を更に行ったところ、この厳しい条件下においても何ら変化がなく、耐候性が格段に改善されていることが分かった。又、基板からの膜剥がれも全く観察されなかった。
この様に、AgPd、或いはAgAu若しくはAgPdAuの内のいずれかの合金に、更にCu又はTiを添加することにより、耐候性が格段に改善され、且つ基盤との接合性が効果的に強化されることが分かった。
【0031】
以上の試験結果から明らかなように、Agを主成分として、PdかAuの内のいずれか、或いは両方を0.1〜3.0wt%の範囲で、更にCu又はTiを0.1〜3.0wt%の範囲で添加させたAgPdX、AgAuX(X=Cu、Ti)合金からなる反射膜3を基板2上に成膜してなることにより、高い反射率を維持しながら、尚且つ、温度600℃で湿度100%という高温高湿の厳しい環境下においても、塩素、硫黄と反応する虞れがない安定した耐候性が確認され、これにより、厳しい環境下で使用される車両用灯具4に適用しても長期に亘り高い信頼性が得られることが分かる。
【0032】
図2は、車両用灯具4用として使用した場合の本発明反射体1の他の実施例を示し、斯かる実施例では支持体となる基板2と、反射膜3との接合性を強化するために、基板2上に、前処理として有機下地膜8を形成し、その上に前述した実施例詳述の0.5〜3.0wt%のPdかAuの内のいずれか、或いは両方、及び0.1〜3.0wt%のCu又はTiを添加するAgを主成分とするAgPdX、AgAuX(X=Cu、Ti)合金からなる反射膜3を成膜して形成した反射体1の実施形態の一例を示す。
尚、斯かる実施例では基板2上に有機下地膜8を形成し、この上にAgPdX、AgAuX(X=Cu、Ti)合金からなる反射膜3を成膜した以外の構成、即ち、Agを主成分とし、Pd及び/又はAuを0.5〜3.0wt%の範囲内で添加し、更に第3元素としてAl、Pt、Ta、Cr、Ni、Co、Siの内のいずれか一種以上を0.1〜3.0wt%の範囲内で添加してなる場合にも適用する。
【0033】
尚、前述した実施例詳述においては車両用灯具のリフレクターについて説明したが、本発明は屋外、屋内照明機器類、レーザー機器を含む光学機器の平面鏡や曲面鏡等に使用される反射体、そして多種多様の分野に使用されている各種の反射体をも対称としていることは言うまでもないであろう。
【0034】
本発明の反射体は叙上の如く構成してなることから下記の作用効果を奏する。
反射膜を、耐候性の向上を目的として、固溶助材としてのPdを0.5〜3.0wt%の範囲内で添加し、更にCu、Tiいずれか一種元素を0.1〜3.0%の範囲内で添加してなるAgを主成分とする素にて構成された固溶した合金を用いてスパッタリング法又は蒸着法により基板上に形成してなることで、従来品と変わらぬ高い反射率を維持しながら、温度600℃で湿度100%の高温高湿と言う厳しい環境下において長時間暴露されても硫化、塩化、酸化する虞れがない耐候性が改善され、且つ基板との接合性がより一層効果的に強化された高い信頼性が得られる。
【0035】
従って、本発明によれば、低電力コストで高照度が望まれている屋外、屋内照明機器類や車両用灯具、特に、厳しい環境下で使用される車両用灯具として適用しても長期に亘り高い信頼性が得られ、実用化上の効果が大きい反射体を提供することができる。
【図面の簡単な説明】
【図1】 本発明反射体の実施形態の一例を示した断面図で、車両用灯具に使用した例を示す
【図2】 同反射体の他の実施形態を示した部分拡大図
【符号の説明】
1:反射体 2:基板
3:反射膜 4:車両用灯具
8:有機下地膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to improvements in reflectors used in vehicle lamps such as headlights and fog lights, outdoor and indoor lighting devices, and plane mirrors and curved mirrors of optical devices including laser devices.
[0002]
[Prior art]
Conventionally, alkaline earth metals such as Mg, Ca, Sr, and Li are mainly added to this type of reflector (commonly referred to as a reflector) to improve the oxygen adsorption effect of the alkaline earth metal. Relatively stable Al or Al alloy used to form a floating film was used, but higher reflectivity than Al with high illuminance at low power cost and Al alloy with lower reflectivity than Al The use of Ag with a rate has recently been studied and implemented.
However, in the case of Al, in order to improve the stability and reproducibility of the floating film, or the floating film itself improves the oxidation of Al, it is added to the atmosphere of halogen-based elements such as chlorine. Since it is not always stable for non-metallic components, the reflector is formed by covering the Al film or Al alloy film with an acrylic resin-based protective film when actually used in the reflector. Is widely known.
[0003]
By the way, Ag is highly evaluated in the case where a reflector having a high reflectance is formed as a material having a high reflectance in the visible light range, particularly in the optical wavelength range of 400 to 800 nm, as compared with Al. However, it is said to be difficult to use as a reflective film because it is very active against non-metallic elements such as sulfur, chloride, or oxidation due to sulfur and chlorine added in large amounts in the atmosphere. Yes. In other words, when Ag is exposed to the atmosphere for a long time, it becomes silver sulfide (Ag2S) and turns black, or becomes silver chloride (AgCl) and becomes white turbid, resulting in deterioration of optical characteristics.
Therefore, when exposed to the atmosphere for a long time, there is a problem that the optical characteristics of Ag deteriorate and the reflectance decreases, so that recent lighting equipment and vehicle lamps that require high illuminance at low power cost. It is said that it is difficult to apply to the above.
[0004]
Therefore, as a solution to this problem, the main component is Ag added with 30 wt% or less of either Pd or Au, which is difficult to react with sulfur and chlorine and has excellent weather resistance such as chemical resistance, or both. While maintaining a high reflectivity by forming an Ag alloy reflective film as described above or an AgPt alloy reflective film mainly composed of Ag added with Pt at 30 wt% or less on a substrate serving as a support. A reflector having improved weather resistance against sulfur and chlorine has been proposed and known (for example, see JP-A-6-186407).
[0005]
[Problems to be solved by the invention]
However, in this conventional reflector, high reflectivity is clarified from the results of evaluation tests, etc., but in weather resistance such as discoloration and clouding due to reaction with chlorine and sulfur. It is not necessarily sufficient, and there remains a problem that it is still insufficient for practical use.
In other words, Pd and Au are materials having excellent weather resistance that do not easily react with chlorine or sulfur unless exposed to high temperature and high humidity atmosphere for a long time, but high temperature and high humidity atmosphere in a specific environment called ozone. It is said that when exposed to the inside, it may react with a nonmetallic element to form a compound of the nonmetallic element.
Therefore, for example, it is applied to vehicle lamps such as headlights and fog lights that are used in harsh environments where the temperature gradually increases over time and the humidity increases in addition to the temperature on rainy days. In such a case, it is exposed to a high-temperature and high-humidity atmosphere for a long time, and it is highly possible that the weather resistance is drastically lowered. Therefore, further improvement is desired at present.
[0006]
In addition, as described above, since there is a concern that the conventional reflector reacts with chlorine and sulfur to be chlorinated, sulfided and oxidized, the film peels off the reflective film partially floating from the substrate due to the reaction. There was also a problem with inferior bondability (adhesion) that the phenomenon occurred.
[0007]
Furthermore, with respect to the above-mentioned JP-A-6-186407, when Pd or Pt is added at 30 wt%, both Pd and Pt are very unstable in market price and high in cost. Or, when compared with an Al alloy, it is difficult to consider that it is at least an appropriate material, so it was not considered realistic.
[0008]
The present invention has been made in view of such conventional circumstances, and its objective is to suppress a reduction in Ag's excellent high reflectivity and to be stable even when exposed to severe environments of high temperature and high humidity. The object is to provide a highly reliable reflector having a large effect on practical use, in which the weather resistance is continuously obtained and the bonding property is effectively enhanced.
[0009]
[Means for achieving the object]
In order to achieve the object, the present invention adds, as a reflector, Ag as a main component to Pd as a solid solution auxiliary within a range of 0.5 to 3.0 wt%, and further, Cu and Ti. One of the elements is added within a range of 0.1 to 3.0 wt %, and a ternary alloy reflective film made of a solid solution of Ag alloy is formed on the substrate.
[0013]
And Thus, according to such technical means, the Pd as a solid solution aids in A g was added in the range of 0.5~3.0Wt%, further Cu, any one element of Ti By adding within the range of 0.1 to 3.0% and forming a ternary alloy reflective film made of a solid solution of Ag alloy on the substrate by a film forming process such as sputtering or vapor deposition, it is high. In order to prevent the occurrence of black spots and white turbidity due to chlorination, sulfidation and oxidation even in a high-temperature and high-humidity atmosphere while maintaining the reflectance, and to prevent the reflective film from partially floating from the substrate. the ternary hydride Ranaru alloy of Ag as a main component, weatherability is greatly improved, and bonding between the substrate was found to be enhanced effectively.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
A specific example of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of an embodiment of a reflector 1 according to the present invention, showing an example used for a vehicular lamp 4. In this embodiment, the main component of Ag is improved in corrosion resistance. was added P d the purposes, further to C u, the Ag alloy reflective film composed of a ternary element formed by addition of any one of T i, exhibit well-known cross-sectional shape, in the lighting body 5 A film having a predetermined thickness (nm) is formed on the substrate 2 serving as a support to be accommodated and held by a film forming process using a sputtering method or a vapor deposition method. In the figure, 6 is a light source, and 7 is a lens that is detachably attached to the lamp body 5. Here, by melting by adding a predetermined amount of Pd to Ag, homogeneously can be a solid solution of P d to Ag crystal, to improve the weather resistance of the entire Ag is previously known Yes. However, sufficient weather resistance against chlorine and sulfur cannot be obtained in a high-temperature and high-humidity atmosphere simply by adding Pd to Ag. Further, when either Pd or Au is added to such an extent that sufficient weather resistance can be obtained even in the atmosphere, the reflectance of Ag is lowered. In other words, Ag optical characteristics are degraded. Therefore, reducing the amount of P d in the range of 0.5~3.0Wt%, further, C u as a third element, the amount of any one of T i 0.1~3.0wt% By restraining within the range, it is possible to suppress a decrease in high reflectance of Ag and effectively improve the weather resistance.
[0015]
Therefore, the main component Ag in the present invention, the addition amount of P d for the purpose of improving weather resistance in the range of 0.5~3.0Wt%, more in C u, of any kind of T i In order to achieve the present invention, it is important to keep the amount of element added within the range of 0.1 to 3.0 wt%. The reason is that it follows the addition amount is 0.5 wt% of P d, causes discoloration to yellow is in the environment of high temperature and high humidity, since it is not necessarily high stability against trends and chlorine to reduce the reflectivity Moreover, it is because the stability is insufficient when examining the change with time when the reflector is left in the atmosphere for a long time, and if it exceeds 3.0 wt%, the reflectance of Ag becomes remarkably lowered, which is practical. Because it is not.
[0016]
Further, in order to cause lack material intrinsic stability against hydrogen melting capacity of Pd in the case of adding Pd as a second additive element Ag as a main component, it added further C u, T When the addition amount of any one element of i is 0.1 wt% or less, for example, when left under high temperature and high humidity, a black excitant produced in a binary alloy in which only Pd is added to Ag the occurrence will be confirmed, it is because weather resistance as the material becomes unstable and exceeds 3.0 wt%, in order to greatly affected by additives, the Cu for example oxygen bound becomes easier and, or worse impairing the stability against oxygen Ag, since further the impairs the effect to be obtained by the present invention such that for reflectance Ti is significantly reduced It is. Thus, by adding in the range of P d of 0.5~3.0Wt%, melting was added further to C u, the Ti in the range of 0.1~3.0Wt%, metal It is possible to obtain an Ag alloy in which the characteristics of Ag having the highest high reflectance among the elements are maintained and the weather resistance is effectively improved. Here, good preferable addition amount of Pd is 0.7~2.3Wt%, particularly preferably 0.9 wt%. Further, a preferable addition amount of the element to be added is 0.5 to 2.5 wt%, particularly preferably 1.0 wt%. The Ag alloy thus obtained is applied as a sputtering target material or a vapor deposition material used for forming the reflective film 3 described above.
[0017]
Example To the pure Ag, either or both of the second element Pd and Au are added in the range of 0.5 to 3.0 wt%, and further Cu or Ti is added in an amount of 0.1 to 3.0 wt%. % Of a reflective film 3 having a predetermined film thickness (nm) made of an AgPdX, AgAuX (X = Cu, Ti) alloy added within a range of% by sputtering or vapor deposition on the surface of the substrate 2 serving as a support. The film 1 is formed by a film process to obtain the reflector 1 applied to the vehicle lamp 4 (see FIG. 1).
Here, the reason why Cu or Ti was selected from these metal elements as Al, Pt, Cu, Ta, Cr, Ti, Ni, Co, Si as an additional element to the AgPd alloy, AgAu alloy, or AgPdAu alloy. As compared with the case where only Pd or Au is added until the weather resistance of Ag against chlorine and sulfur in the atmosphere is obtained, the reduction in Ag high reflectivity is effectively suppressed, and for example, a temperature of 600 Particularly effective for the present invention as an element to which Cu or Ti is added to effectively improve the weather resistance in which high reliability is obtained over a long period of time in a severe environment of high temperature and high humidity of 100% at 100 ° C. This is because it can be confirmed that it is a metal element.
Incidentally, the board | substrate 2 is mainly formed from the metal, the synthetic resin, etc.
[0018]
Next, a sputtering target material or a vapor deposition material will be described.
When Cu or Ti is added to Ag as a sputtering target material or vapor deposition material, it is difficult to completely dissolve Cu or Ti in Ag. Accordingly, since the composition of Cu or Ti partially varies, the composition of Cu or Ti also varies in the AgCu alloy or AgTi alloy formed using the sputtering target, and stable optical characteristics can be obtained. Can not.
[0019]
Therefore, it has been found that when Cu or Ti is added to an alloy containing Ag as a main component and either or both of Pd and Au, Cu or Ti dissolves relatively easily. . It has been confirmed that Pd and Au are in solid solution with the respective atoms of Ag, Cu, and Ti.
Therefore, Pd and Au act as solid solution assistants, cause primary solid solution reaction with each element with respect to Ag and Cu or Ti, which are difficult to dissolve, and the remaining one element. It is considered that a complete solid solution can be made between elements to which these Ags are further added as a main component by causing a secondary solid solution reaction and bonding.
[0020]
Next, the reflector 1 of the present invention obtained by forming a reflective film 3 made of, for example, an AgPdX, AgAuX (X = Cu, Ti) alloy obtained in the detailed description of this embodiment on the substrate 2 (hereinafter referred to as the present invention). Inventive product) and a conventional reflector (hereinafter referred to as a conventional product) formed by forming an AgPd alloy reflective film will be described below.
[0021]
First, the reflectance evaluation and measurement will be described. Here, a sample prepared by forming an alloy reflective film of each composition on a glass substrate having a smooth surface by sputtering or vapor deposition was used. All film thicknesses are 12 nm, and the used wavelength range is 400-800 nm.
Here, the reason why these wavelength ranges are selected is that the wavelength irradiated from the light source 6 applied to lighting devices, vehicle lamps, etc., particularly the vehicle lamps 4 such as headlights and fog lights, is generally 400. This is because it is in the range of ˜800 nm. The test results are shown in Table 1.
[0022]
[Table 1]
Figure 0004632519
[0023]
As is apparent from Table 1, it can be seen that the product of the present invention shows a high reflectance as in the conventional product.
That is, either or both of Pd and Au are added within a range of 0.5 to 3.0 wt%, and further Cu or Ti is added within a range of 0.1 to 3.0 wt%. Even in the present product formed by forming the reflective film 3 made of AgPdX, AgAuX (X = Cu, Ti) alloy containing Ag as a main component on the substrate 2, the excellent high reflectivity of pure Ag is maintained. And it turns out that the reflector 1 of high illumination intensity is obtained at low electric power cost.
[0024]
Next, the evaluation and measurement of weather resistance from the viewpoint of chemical resistance will be described. Here, a sample prepared by forming an alloy reflective film of each composition on a quartz glass substrate by sputtering or vapor deposition was used. The film thickness is 12 nm for all. In this evaluation test, 1% H 2 SO 4 , 3% NaCl, 1% KOH These solutions were dripped onto each sample and visually observed after 10 minutes or 30 minutes. The test results are shown in Table 2.
[0025]
[Table 2]
Figure 0004632519
[0026]
In the conventional product, regardless of the amount of Pd added, the AgPd alloy reflective film and the AgAu alloy reflective film are observed to have faded and become clouded when 10 minutes have passed since the chemical was dripped. It was confirmed that
In contrast, in the product of the present invention, no discoloration due to reaction was observed even after 10 minutes and 30 minutes after the chemical solution was dripped. Thus, it can be seen that the weather resistance is greatly improved by adding one or both of Pd and Au with Ag as a main component and further adding Cu or Ti.
[0027]
Furthermore, as an evaluation test for long-term reliability, the evaluation and measurement of weather resistance performed in a severe environment of high temperature and high humidity will be described. Here, an alloy reflection film of each composition is formed on the above-described quartz glass substrate by sputtering or vapor deposition. Using a sample prepared by film formation by the method, the sample was exposed to a high-temperature and high-humidity air atmosphere at a temperature of 600 ° C. and a humidity of 100% for 24 hours, and then visually observed. The test results are shown in Table 3.
[0028]
[Table 3]
Figure 0004632519
[0029]
The occurrence of black spots was confirmed in the conventional product. As a result of observation with a microscope, it was confirmed that the occurrence of black spots was chlorided, sulfided or oxidized by reacting with each chemical. Further, it was confirmed that the AgPd alloy reflecting film and the AgAu alloy reflecting film were partially lifted from the substrate. It is considered that this is due to the weak adhesion between the AgPd alloy reflective film and the AgAu alloy reflective film and the substrate and the oxidation phenomenon that the reflective film is partially corroded and becomes white turbid.
[0030]
In contrast, in the product of the present invention, no change was observed even in such a severe environment of high temperature and high humidity. In addition to these tests, a test was further conducted in a more severe oxygen atmosphere at a temperature of 750 ° C. and a humidity of 100% for 24 hours. As a result, there was no change under these severe conditions, and the weather resistance was remarkably high. It was found that it was improved. Also, no film peeling from the substrate was observed.
Thus, by adding Cu or Ti to AgPd, or any alloy of AgAu or AgPdAu, the weather resistance is remarkably improved and the bondability with the substrate is effectively enhanced. I understood that.
[0031]
As is clear from the above test results, Ag is the main component, either Pd or Au, or both are in the range of 0.1 to 3.0 wt%, and further Cu or Ti is 0.1 to 3%. The reflective film 3 made of an AgPdX, AgAuX (X = Cu, Ti) alloy added in the range of 0.0 wt% is formed on the substrate 2, thereby maintaining the high reflectance and the temperature. Stable weather resistance without the possibility of reacting with chlorine and sulfur is confirmed even in a severe environment of high temperature and high humidity of 100% humidity at 600 ° C., so that the vehicle lamp 4 used in a severe environment can be used. It can be seen that even when applied, high reliability can be obtained over a long period of time.
[0032]
FIG. 2 shows another embodiment of the reflector 1 of the present invention when used for a vehicular lamp 4. In such an embodiment, the bonding property between the substrate 2 serving as a support and the reflecting film 3 is enhanced. Therefore, an organic base film 8 is formed on the substrate 2 as a pretreatment, and either 0.5 to 3.0 wt% of Pd or Au, or both of them described above in detail in the embodiment, And implementation of reflector 1 formed by forming a reflective film 3 made of an AgPdX, AgAuX (X = Cu, Ti) alloy mainly composed of Ag to which 0.1 to 3.0 wt% of Cu or Ti is added An example of a form is shown.
In such an embodiment, the organic underlayer film 8 is formed on the substrate 2 and the reflective film 3 made of an AgPdX, AgAuX (X = Cu, Ti) alloy is formed thereon, that is, Ag is formed. As a main component, Pd and / or Au is added in the range of 0.5 to 3.0 wt%, and further, any one or more of Al, Pt, Ta, Cr, Ni, Co, and Si as the third element This is also applied to the case of adding 0.1 to 3.0 wt%.
[0033]
In addition, although the reflector of the vehicle lamp has been described in the detailed description of the above-described embodiment, the present invention is a reflector used for a plane mirror or a curved mirror of an optical device including an outdoor, indoor lighting device, a laser device, and the like, and It goes without saying that various reflectors used in a wide variety of fields are also symmetric.
[0034]
Since the reflector of the present invention is configured as described above, the following effects are obtained.
A reflective film, in order to increase the weather resistance, the Pd as a solid solution aids were added in the range of 0.5~3.0Wt%, further Cu, 0.1 to one kind of elements Ti the Ag obtained by adding in the range of 3.0% by using the alloys were solid solution which is manually configured ternary element whose main component, that obtained by forming on a substrate by sputtering or vapor deposition While maintaining the same high reflectance as conventional products, it has a weather resistance that does not cause sulfidation, chlorination, or oxidation even when exposed to harsh environments such as high temperature and high humidity at a temperature of 600 ° C and a humidity of 100%. It is improved and high reliability is obtained in which the bondability with the substrate is further effectively enhanced.
[0035]
Therefore, according to the present invention, it can be applied for a long time even when applied as an outdoor or indoor lighting device or a vehicular lamp in which a high illuminance is desired at a low power cost, particularly as a vehicular lamp used in a severe environment. It is possible to provide a reflector that has high reliability and a great practical effect.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a reflector of the present invention, showing an example used in a vehicular lamp. FIG. 2 is a partially enlarged view showing another embodiment of the reflector. Explanation】
1: Reflector 2: Substrate 3: Reflective film 4: Vehicle lamp 8: Organic base film

Claims (1)

主成分となるAgに、固溶助材としてのdを0.5〜3.0wt%の範囲内で添加し、更にCu、Tiのいずれか一種元素を0.1〜3.0wt%の範囲内で添加して、固溶したAg合金からなる3元合金反射膜を、基板上に形成してなることを特徴とする反射体。To the main component Ag, the P d of solid solution aids were added in the range of 0.5~3.0wt%, 0.1~3.0 wt further Cu, any one element of Ti %, A ternary alloy reflecting film made of a solid solution of Ag alloy is formed on a substrate.
JP2000359770A 1999-11-26 2000-11-27 Reflector Expired - Lifetime JP4632519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000359770A JP4632519B2 (en) 1999-11-26 2000-11-27 Reflector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33645299 1999-11-26
JP11-336452 1999-11-26
JP2000359770A JP4632519B2 (en) 1999-11-26 2000-11-27 Reflector

Publications (2)

Publication Number Publication Date
JP2001221908A JP2001221908A (en) 2001-08-17
JP4632519B2 true JP4632519B2 (en) 2011-02-16

Family

ID=26575476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000359770A Expired - Lifetime JP4632519B2 (en) 1999-11-26 2000-11-27 Reflector

Country Status (1)

Country Link
JP (1) JP4632519B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765684B1 (en) 2002-07-03 2007-10-11 삼성전자주식회사 Organometallic Precursors for Forming Metal Alloy Pattern and Method for Forming Metal Alloy Pattern Using The Same
KR100797731B1 (en) 2002-11-25 2008-01-24 삼성전자주식회사 Composition of Organometallic Compounds for forming metal alloy pattern and Method of forming metal alloy pattern using the same
JPWO2005056851A1 (en) * 2003-12-10 2007-12-13 田中貴金属工業株式会社 Silver alloy with excellent reflectance maintenance characteristics
JP5975186B1 (en) * 2015-02-27 2016-08-23 三菱マテリアル株式会社 Ag alloy sputtering target and method for producing Ag alloy film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186407A (en) * 1992-12-22 1994-07-08 Matsushita Electric Works Ltd Reflective body
JPH06208732A (en) * 1992-10-19 1994-07-26 Eastman Kodak Co Compact disk and storage medium
JPH085806A (en) * 1994-06-17 1996-01-12 Mitsui Toatsu Chem Inc Reflector and backlight lamp reflector for liquid crystal display using the same reflector
JPH08262207A (en) * 1995-03-22 1996-10-11 Toppan Printing Co Ltd Light reflecting plate, light reflecting plate for reflection type liquid crystal display device, and light-reflecting electrode plate for reflection type liquid crystal display device
JPH09324264A (en) * 1996-06-03 1997-12-16 Toppan Printing Co Ltd Sputtering target
JPH1033333A (en) * 1996-03-29 1998-02-10 Central Glass Co Ltd Anti-corrosion mirror
JPH1152366A (en) * 1997-08-04 1999-02-26 Toppan Printing Co Ltd Translucent type liquid crystal display device
JPH11185310A (en) * 1997-12-24 1999-07-09 Tdk Corp Production of optical recording medium and optical recording medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06208732A (en) * 1992-10-19 1994-07-26 Eastman Kodak Co Compact disk and storage medium
JPH06186407A (en) * 1992-12-22 1994-07-08 Matsushita Electric Works Ltd Reflective body
JPH085806A (en) * 1994-06-17 1996-01-12 Mitsui Toatsu Chem Inc Reflector and backlight lamp reflector for liquid crystal display using the same reflector
JPH08262207A (en) * 1995-03-22 1996-10-11 Toppan Printing Co Ltd Light reflecting plate, light reflecting plate for reflection type liquid crystal display device, and light-reflecting electrode plate for reflection type liquid crystal display device
JPH1033333A (en) * 1996-03-29 1998-02-10 Central Glass Co Ltd Anti-corrosion mirror
JPH09324264A (en) * 1996-06-03 1997-12-16 Toppan Printing Co Ltd Sputtering target
JPH1152366A (en) * 1997-08-04 1999-02-26 Toppan Printing Co Ltd Translucent type liquid crystal display device
JPH11185310A (en) * 1997-12-24 1999-07-09 Tdk Corp Production of optical recording medium and optical recording medium

Also Published As

Publication number Publication date
JP2001221908A (en) 2001-08-17

Similar Documents

Publication Publication Date Title
JP4009564B2 (en) Ag alloy reflective film for reflector, reflector using this Ag alloy reflective film, and Ag alloy sputtering target for forming an Ag alloy thin film of this Ag alloy reflective film
TW575674B (en) A sputtering target material and Ag alloy film
KR100491931B1 (en) Reflective film, reflection type liquid crystal display, and sputtering target for forming the reflective film
JP2005029849A (en) Ag ALLOY REFLECTIVE FILM FOR REFLECTOR, REFLECTOR USING THE Ag ALLOY REFLECTIVE FILM, AND Ag ALLOY SPUTTERING TARGET FOR DEPOSITING THE Ag ALLOY REFLECTIVE FILM
JP2004002929A (en) Silver alloy, sputtering target, reflector for reflection lcd, reflection wiring electrode, thin film, manufacturing method therefor, optical recording medium, electro magnetic wave shield, metal material for electronic part, wiring material, electronic part, electronic appliance, processing method of metal film, electron optical part, laminate, and glass of building material
JPWO2006132414A1 (en) Silver alloy with excellent reflectivity and transmittance maintenance characteristics
KR20040108585A (en) Alloy and its use
JPWO2006132415A1 (en) Silver alloy with excellent reflectivity and transmittance maintenance characteristics
KR100859921B1 (en) Reflector
JP2007265909A (en) Vehicular lighting fixture
JP4632519B2 (en) Reflector
JP5097031B2 (en) Reflective film, LED, organic EL display, and organic EL lighting fixture
KR20130139381A (en) Optical reflective material and light emitting diode device
WO2006132417A1 (en) Silver alloy excellent in reflectance/transmittance maintaining characteristics
WO2006132416A1 (en) Silver alloy excellent in reflectance/transmittance maintaining characteristics
JP2008191528A (en) Reflecting film, method of forming the same, and lighting device
CA2344216C (en) Aluminium-titanium alloy with high specular reflectivity, reflecting coatings comprising same and mirrors and parts comprising said coating
JP4503162B2 (en) Reflector
JP4358076B2 (en) Vehicle lighting
JP2006106720A (en) Reflecting film
JP2902884B2 (en) Reflector
JP5144302B2 (en) Reflective film laminate
JP3855958B2 (en) Sputtering target material
JP2010097066A (en) Reflector for lightening, for mirror or for display panel
KR20020095257A (en) Sputtering target materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101116

R150 Certificate of patent or registration of utility model

Ref document number: 4632519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term