JP4631877B2 - Resin heat sink - Google Patents

Resin heat sink Download PDF

Info

Publication number
JP4631877B2
JP4631877B2 JP2007173747A JP2007173747A JP4631877B2 JP 4631877 B2 JP4631877 B2 JP 4631877B2 JP 2007173747 A JP2007173747 A JP 2007173747A JP 2007173747 A JP2007173747 A JP 2007173747A JP 4631877 B2 JP4631877 B2 JP 4631877B2
Authority
JP
Japan
Prior art keywords
resin
heat sink
volume
carbon
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007173747A
Other languages
Japanese (ja)
Other versions
JP2009016415A (en
Inventor
喜光 寒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Starlite Co Ltd
Original Assignee
Starlite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Starlite Co Ltd filed Critical Starlite Co Ltd
Priority to JP2007173747A priority Critical patent/JP4631877B2/en
Priority to CN2008800224768A priority patent/CN101720569B/en
Priority to PCT/JP2008/061827 priority patent/WO2009005029A1/en
Priority to KR1020097026754A priority patent/KR101408978B1/en
Publication of JP2009016415A publication Critical patent/JP2009016415A/en
Application granted granted Critical
Publication of JP4631877B2 publication Critical patent/JP4631877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、樹脂材料により作られた放熱性に優れたヒートシンクに関する。   The present invention relates to a heat sink made of a resin material and excellent in heat dissipation.

電子機器の分野において、発熱素子の放熱は重要な課題であり、素子を効果的に冷却するためにヒートシンクが用いられている。
従来のヒートシンクは、銅およびアルミ材料を用いて切削加工、ダイカスト若しくは熱間押出により製品を製造している。さらに放熱性を高めるために、金属製のヒートパイプを装填した製品も見受けられる。これら金属製のヒートシンクは、重量が大きく軽量化の妨げとなっている。また、金属製のヒートパイプも重量が大きく、内部構造が毛細管現象を発生させる必要から、複雑な構造になっている為、価格が高くなり、重量も重く薄肉形状にすることが困難である。
In the field of electronic equipment, heat dissipation of the heating element is an important issue, and a heat sink is used to effectively cool the element.
Conventional heat sinks use copper and aluminum materials to produce products by cutting, die casting or hot extrusion. There are also products with metal heat pipes installed to further improve heat dissipation. These metal heat sinks are heavy and hinder weight reduction. In addition, since the metal heat pipe is heavy and the internal structure needs to generate a capillary phenomenon, it has a complicated structure, so the price is high and the weight is heavy and it is difficult to make it thin.

また、樹脂にカーボンナノチューブを添加した放熱部品に関する特許も見受けられるが、実際の放熱効果に関するデータは見受けられず、樹脂にカーボンナノチューブを均一に分散させることは困難なため、期待される放熱効果は得られなかった。
特開2004−198098号公報
There are also patents related to heat-dissipating parts in which carbon nanotubes are added to the resin, but there is no data on the actual heat-dissipating effect, and it is difficult to uniformly disperse carbon nanotubes in the resin. It was not obtained.
JP 2004-198098 A

また、従来の銅、アルミによるヒートシンクの放熱効果を高めるためには、フィンの形状を薄く高く、枚数も増やす必要があるが、その結果、フィンの間に渦電流を発生させ、電磁波を増幅させる副作用を生むため、電子機器内部で発生する電磁波を完全に遮蔽するためには完全なシールドを行う必要があり、電子機器の小型化を阻む要因となっていた。特に、電磁波の遮蔽に関しては広帯域での遮蔽特性が求められているが、特定の周波数で遮蔽性を示す材料は多くあるものの、1MHzから1GHzを越えるような広帯域での遮蔽特性を示す材料を見いだすことは容易ではない。そのため、熱を下げる効果に優れるとともに、広帯域での電磁波遮蔽性を示す材料からなるヒートシンクが求められていた。   In addition, in order to enhance the heat dissipation effect of heat sinks with conventional copper and aluminum, it is necessary to make the fins thin and high, and increase the number of the fins. In order to produce a side effect, it is necessary to perform complete shielding in order to completely shield the electromagnetic wave generated inside the electronic device, which has been a factor that hinders downsizing of the electronic device. In particular, for shielding electromagnetic waves, there is a demand for shielding properties in a wide band, but there are many materials that exhibit shielding properties at a specific frequency, but a material that exhibits shielding properties in a wide band that exceeds 1 MHz to 1 GHz is found. It is not easy. Therefore, there has been a demand for a heat sink made of a material that is excellent in the effect of lowering heat and exhibits electromagnetic wave shielding properties in a wide band.

したがって、本発明は、銅およびアルミに置き換わる放熱効果に優れた樹脂製のヒートシンクであって、電磁波遮蔽性に優れた、特に1MHzから1GHzを越えるような広帯域で優れたシールド特性を示す材料からなるヒートシンクを提供することを課題とする。   Therefore, the present invention is a resin heat sink excellent in heat dissipation effect that replaces copper and aluminum, and is made of a material that has excellent electromagnetic shielding properties, particularly excellent shielding characteristics in a wide band exceeding 1 MHz to 1 GHz. It is an object to provide a heat sink.

本発明者らは、前記課題を解決するために様々な検討を行った結果、炭素材料と、セラミックス粉末および/または軟磁性粉末とを特定の割合で樹脂に混合することで、樹脂中に炭素材料を均一に分散させることができること、およびこの材料を用いて成形したヒートシンクが高い放熱性と電磁波遮蔽特性を有することを見いだし、本発明を完成した。   As a result of various studies to solve the above problems, the present inventors have mixed carbon material and ceramic powder and / or soft magnetic powder into the resin at a specific ratio, so that carbon is contained in the resin. The present invention has been completed by finding that the material can be uniformly dispersed and that the heat sink molded using this material has high heat dissipation and electromagnetic wave shielding properties.

すなわち本発明は、放熱性と電磁波遮蔽性を有するヒートシンクであって、樹脂材料により一部または全部が形成されていること、および、前記樹脂材料は、樹脂中に(a)炭素材料と(b)セラミックス粉末および/または軟磁性粉末とが均一に分散されており、且つ当該樹脂材料中における(a)の割合が15体積%以上60体積%以下であり、(b)の割合が5体積%以上40体積%以下であり、(a)と(b)の総和が20体積%以上80体積%以下であることを特徴とする。   That is, the present invention is a heat sink having heat dissipation and electromagnetic wave shielding properties, wherein a part or all of the heat sink is formed of a resin material, and the resin material includes (a) a carbon material and (b ) The ceramic powder and / or the soft magnetic powder are uniformly dispersed, and the ratio of (a) in the resin material is 15% by volume or more and 60% by volume or less, and the ratio of (b) is 5% by volume. It is 40 volume% or less, and the sum total of (a) and (b) is 20 volume% or more and 80 volume% or less.

樹脂中に、炭素材料とセラミックス粉末および/または軟磁性粉末を上記割合で混合することにより、熱伝導性の高い炭素材料をセラミックス粉末および/または軟磁性粉末によって樹脂中に均一に分散させることができ、この樹脂材料でヒートシンクを構成することにより、放熱性と電磁波遮蔽性に優れたヒートシンクを提供することができる。また、本発明にかかるヒートシンクは樹脂製であるため、複雑形状であっても成形が容易である。   By mixing the carbon material and the ceramic powder and / or soft magnetic powder in the resin in the above ratio, the carbon material having high thermal conductivity can be uniformly dispersed in the resin by the ceramic powder and / or soft magnetic powder. In addition, by forming a heat sink with this resin material, a heat sink excellent in heat dissipation and electromagnetic wave shielding can be provided. Moreover, since the heat sink concerning this invention is resin, even if it is complicated shape, shaping | molding is easy.

前記(a)の炭素材料は、熱伝導率100W/m・k以上の糸形状(チューブ形状を含む)の炭素材料であることが好ましく、特にピッチ系炭素繊維と直径がナノメートルサイズである糸状のカーボンナノ材料の混合物からなることが好ましい。
糸状の炭素材料を用いることにより、ヒートシンクの強度を増すことができる。また、セラミックス粉末および/または軟磁性粉末が配合されていることにより、成形時に炭素繊維が一方向に配向せず、ヒートシンクの均等な強度向上と均質な熱伝導性および電磁波吸収を実現することが可能となる。
特に、熱伝導性の高いピッチ系炭素繊維とカーボンナノチューブをセラミックス粉末および/または軟磁性粉末により樹脂中に均一に分散することで、より放熱性および電磁波遮蔽性に優れたヒートシンクを得ることができる。カーボンナノチューブは樹脂中に均一に分散させにくいが、セラミックス粉末および/または軟磁性粉末と併用することによって、樹脂中に均一に分散させることができる。
The carbon material (a) is preferably a carbon material having a thread shape (including a tube shape) having a thermal conductivity of 100 W / m · k or more, and particularly a pitch-like carbon fiber and a thread shape having a nanometer size in diameter. It is preferable to consist of a mixture of carbon nanomaterials.
By using a filamentous carbon material, the strength of the heat sink can be increased. In addition, by blending ceramic powder and / or soft magnetic powder, the carbon fibers are not oriented in one direction at the time of molding, and it is possible to achieve uniform strength improvement of the heat sink and uniform thermal conductivity and electromagnetic wave absorption. It becomes possible.
In particular, by uniformly dispersing pitch-based carbon fibers and carbon nanotubes with high thermal conductivity in the resin with ceramic powder and / or soft magnetic powder, it is possible to obtain a heat sink with better heat dissipation and electromagnetic wave shielding properties. . Although carbon nanotubes are difficult to disperse uniformly in the resin, they can be uniformly dispersed in the resin by using in combination with ceramic powder and / or soft magnetic powder.

また、ヒートシンクの熱源接地面に熱伝導率100W/m・k以上の材料からなる伝熱体を装着することにより、ヒートシンクの熱拡散性をさらに高めることが可能となる。
また、前記ヒートシンクに冷媒によるヒートパイプ機構を設けることにより、さらに放熱性に優れるヒートシンクを得ることが可能となる。前記ヒートパイプ機構は、ヒートシンクを構成する樹脂材料と同じ材料で構成することができるため、軽量化が可能であり、複雑形状や薄肉の構造のものであっても容易に成形可能である。
Moreover, it is possible to further improve the heat diffusibility of the heat sink by mounting a heat transfer body made of a material having a thermal conductivity of 100 W / m · k or more on the heat source grounding surface of the heat sink.
Further, by providing a heat pipe mechanism with a refrigerant in the heat sink, it is possible to obtain a heat sink having further excellent heat dissipation. Since the heat pipe mechanism can be made of the same material as the resin material constituting the heat sink, the weight can be reduced, and even a complicated shape or thin structure can be easily formed.

本発明にかかるヒートシンクは、放熱性および広帯域における電磁波遮蔽性の両方に優れているため、発熱素子を効果的に冷却できるとともに、電磁波によりもたらされる弊害を軽減することができる。また、軽量化が可能であり成形性にも優れている。   Since the heat sink according to the present invention is excellent in both heat dissipation and electromagnetic wave shielding in a wide band, the heat generating element can be effectively cooled and the adverse effects caused by electromagnetic waves can be reduced. Further, the weight can be reduced and the moldability is excellent.

本発明に用いられる樹脂は、熱可塑性樹脂および熱硬化性樹脂の何れでもよく、熱可塑性樹脂ではポリオレフィン系樹脂、ポリアミド系樹脂、エラストマー系(スチレン系,オレフィン系,PVC系,ウレタン系,エステル系,アミド系)樹脂、アクリル系樹脂、エンジニアリングプラスチック等が用いられる。特にポリエチレン、ポリプロピレン、ナイロン樹脂、ABS樹脂、アクリル樹脂、エチレンアクリレート樹脂、エチレン酢酸ビニル樹脂、ポリスチレン樹脂、ポリフェニレンサルファイド樹脂、ポリカーボネート樹脂、ポリエステルエラストマー樹脂、ポリアミドエラストマー樹脂、液晶ポリマーが選ばれる。中でも耐熱性および柔軟性からナイロン樹脂、ポリエステルエラストマー樹脂、ポリアミドエラストマー樹脂、ABS樹脂、ポリプロピレン樹脂、ポリフェニレンサルファイド樹脂、液晶ポリマーが好適である。
また、熱硬化性樹脂にはエポキシ樹脂、メラミン樹脂、フェノール樹脂、シリコーン樹脂、ウレタン樹脂等が用いられる。なかでも、耐熱性および柔軟性からエポキシ樹脂、シリコーン樹脂およびウレタン樹脂が好適である。
これら樹脂には分散剤、潤滑剤、可塑剤を添加してもよく、とくに分散剤に脂肪酸系エステル、カップリング剤を用いる事により、炭素材料、セラミックス材料、軟磁性材料の充填率を増加させ、特性を向上することができる。
The resin used in the present invention may be either a thermoplastic resin or a thermosetting resin. In the thermoplastic resin, a polyolefin-based resin, a polyamide-based resin, an elastomer-based (styrene-based, olefin-based, PVC-based, urethane-based, ester-based resin) , Amide-based) resin, acrylic resin, engineering plastic, etc. are used. In particular, polyethylene, polypropylene, nylon resin, ABS resin, acrylic resin, ethylene acrylate resin, ethylene vinyl acetate resin, polystyrene resin, polyphenylene sulfide resin, polycarbonate resin, polyester elastomer resin, polyamide elastomer resin, and liquid crystal polymer are selected. Among them, nylon resin, polyester elastomer resin, polyamide elastomer resin, ABS resin, polypropylene resin, polyphenylene sulfide resin, and liquid crystal polymer are preferable because of heat resistance and flexibility.
Moreover, an epoxy resin, a melamine resin, a phenol resin, a silicone resin, a urethane resin, etc. are used for a thermosetting resin. Of these, epoxy resins, silicone resins, and urethane resins are preferred because of their heat resistance and flexibility.
Dispersants, lubricants, and plasticizers may be added to these resins. In particular, the use of fatty acid esters and coupling agents in the dispersant increases the filling rate of carbon materials, ceramic materials, and soft magnetic materials. , The characteristics can be improved.

アルミに匹敵する放熱性を持つ材料を得るためには、樹脂の量は、樹脂材料全量の80体積%以下であることが好ましい。好ましい樹脂の量は樹脂材料全量の20〜60体積%であり、より好ましくは25〜50体積%、特に好ましくは30〜45体積%、さらに好ましくは35〜45体積%である。セラミックスおよび軟磁性粉末の粒子径が小さすぎると、成形時の十分な流動性を確保するため、樹脂の添加量を増やす必要が生じるため、セラミックス粉末および軟磁性粉末の粒子径は0.1〜100μmが好ましい。   In order to obtain a material having heat dissipation comparable to aluminum, the amount of resin is preferably 80% by volume or less of the total amount of resin material. A preferable amount of the resin is 20 to 60% by volume of the total amount of the resin material, more preferably 25 to 50% by volume, particularly preferably 30 to 45% by volume, and further preferably 35 to 45% by volume. If the particle size of the ceramic and soft magnetic powder is too small, it is necessary to increase the amount of resin added in order to ensure sufficient fluidity during molding, so the particle size of the ceramic powder and soft magnetic powder is 0.1 to 100 μm is preferred.

本発明にかかる炭素材料としては、糸状の炭素材料が好ましく、特に熱伝導率100W/m・k以上(より好ましくは500W/m・k以上)の炭素繊維を含むことが好ましい。高い熱伝導率を保持するためには、直径が1μm以上50μm以下(より好ましくは直径が3μm以上20μm以下)であって、平均長さが0.05mm以上30mm以下の炭素繊維を用いることが好ましい。特に、平均長さが0.1mm以上25mm以下、より好ましくは平均長さが0.3mm以上10mm以下の炭素繊維を用いることが好ましい。また前記炭素繊維としては、ピッチ系炭素繊維が好ましい。
さらに、直径がマイクロメートルサイズの炭素繊維に加えて、直径がナノメートルサイズの糸状(チューブ形状を含む)のカーボンナノ材料を併用することが好ましい。好ましいカーボンナノ材料の例としてカーボンナノチューブ又は気相成長カーボン繊維を挙げることができる。前記糸状カーボンナノ材料の好ましい長さは1μm以上50μm以下、好ましい直径は、5nm以上100nm以下である。
なお、本明細書中において、糸状の炭素材料のうち、直径がナノメートルサイズ(1〜999nm)のものを「カーボンナノ材料」と呼び、直径がマイクロメートルサイズ以上(1μm以上)のものを「炭素繊維」と呼ぶ。
炭素繊維やカーボンナノチューブ等の長さは、電子顕微鏡によって測定することができ、直径も電子顕微鏡によって測定することができる。平均直径・平均長さは電子顕微鏡写真を画像解析して平均値を算出することによって求めることができる。
The carbon material according to the present invention is preferably a filamentous carbon material, and particularly preferably includes carbon fibers having a thermal conductivity of 100 W / m · k or more (more preferably 500 W / m · k or more). In order to maintain high thermal conductivity, it is preferable to use a carbon fiber having a diameter of 1 μm to 50 μm (more preferably a diameter of 3 μm to 20 μm) and an average length of 0.05 mm to 30 mm. . In particular, it is preferable to use carbon fibers having an average length of 0.1 mm to 25 mm, more preferably an average length of 0.3 mm to 10 mm. Moreover, as said carbon fiber, a pitch-type carbon fiber is preferable.
Furthermore, in addition to carbon fibers having a diameter of micrometer, it is preferable to use a carbon nanomaterial in the form of filaments (including a tube shape) having a diameter of nanometers. Examples of preferred carbon nanomaterials include carbon nanotubes or vapor grown carbon fibers. A preferable length of the filamentous carbon nanomaterial is 1 μm to 50 μm, and a preferable diameter is 5 nm to 100 nm.
In the present specification, among the filamentous carbon materials, those having a diameter of nanometer size (1 to 999 nm) are referred to as “carbon nanomaterials”, and those having a diameter of micrometer size or more (1 μm or more) Called carbon fiber.
The length of carbon fiber, carbon nanotube, etc. can be measured with an electron microscope, and the diameter can also be measured with an electron microscope. The average diameter and average length can be obtained by image analysis of an electron micrograph and calculating an average value.

炭素材料は総量で樹脂材料全量の15体積%以上60体積%以下となるよう添加するのが好ましい。炭素材料の添加量が15体積%よりも少ない場合には十分な熱伝導性が得られず、60体積%よりも多い場合には成形時の十分な流動性が得られない。特に、20体積%以上50体積%以下、さらに25体積%以上45体積%以下が好ましい。
また、熱伝導性を向上させるためには、熱伝導率500W/m・k以上の炭素繊維およびカーボンナノチューブを多く添加する事が好ましい。両材料は非常に高価であるため、コスト面を考慮すれば、熱伝導率100W/m・k以上500W/m・k未満の炭素繊維を混合して用いてもよい。炭素材料の添加量を100体積%としたときに、熱伝導率が500W/m・k以上の炭素繊維の添加量は10体積%以上が好ましく、より好ましくは15体積%以上、さらに好ましくは20体積%以上である。また、本発明にかかる樹脂材料を100体積%とした場合、樹脂材料中の熱伝導率100W/m・k以上の炭素繊維の量は、5〜50体積%が好ましく、10〜45体積%がより好ましく、25〜45体積%が特に好ましい。樹脂材料中のカーボンナノチューブの量は、熱伝導性・電磁波遮蔽性・樹脂中への均一な分散性・コスト面から0.1体積%以上10体積%以下が好ましく、0.2体積%以上7体積%以下がより好ましく、0.4体積%以上5体積%以下が特に好ましい。
The carbon material is preferably added so that the total amount is 15 volume% or more and 60 volume% or less of the total amount of the resin material. When the amount of carbon material added is less than 15% by volume, sufficient thermal conductivity cannot be obtained, and when it is more than 60% by volume, sufficient fluidity during molding cannot be obtained. In particular, 20 volume% or more and 50 volume% or less, and further 25 volume% or more and 45 volume% or less are preferable.
Moreover, in order to improve thermal conductivity, it is preferable to add a lot of carbon fibers and carbon nanotubes having a thermal conductivity of 500 W / m · k or more. Since both materials are very expensive, in consideration of cost, carbon fibers having a thermal conductivity of 100 W / m · k or more and less than 500 W / m · k may be mixed and used. When the amount of carbon material added is 100% by volume, the amount of carbon fiber having a thermal conductivity of 500 W / m · k or more is preferably 10% by volume or more, more preferably 15% by volume or more, and still more preferably 20%. Volume% or more. Moreover, when the resin material concerning this invention is 100 volume%, 5-50 volume% is preferable and, as for the quantity of the carbon fiber of 100 W / m * k or more in the resin material, 10-45 volume% is preferable. More preferred is 25 to 45% by volume. The amount of carbon nanotubes in the resin material is preferably 0.1% by volume or more and 10% by volume or less, preferably 0.2% by volume or more and 7% by volume or less from the viewpoint of thermal conductivity, electromagnetic wave shielding properties, uniform dispersibility in the resin, and cost. Volume% or less is more preferable, and 0.4 volume% or more and 5 volume% or less is particularly preferable.

特に好ましい樹脂材料では、炭素材料は、ピッチ系炭素繊維およびカーボンナノチューブの混合物からなり、樹脂材料を100体積%とした場合、樹脂材料中のピッチ系炭素繊維の割合が5〜50体積%、カーボンナノチューブの割合が0.1〜10体積%であることが好ましい。より好ましくは樹脂材料中のピッチ系炭素繊維の割合が25〜45体積%およびカーボンナノチューブの割合が1〜7体積%、特に好ましくは樹脂材料中のピッチ系炭素繊維の割合が30〜45体積%およびカーボンナノチューブの割合が1〜5体積%である。上記ピッチ系炭素繊維は500W/m・k以上のピッチ系炭素繊維であることが好ましい。   In a particularly preferable resin material, the carbon material is composed of a mixture of pitch-based carbon fibers and carbon nanotubes. When the resin material is 100% by volume, the proportion of pitch-based carbon fibers in the resin material is 5-50% by volume, carbon The proportion of nanotubes is preferably 0.1 to 10% by volume. More preferably, the proportion of pitch-based carbon fibers in the resin material is 25 to 45% by volume and the proportion of carbon nanotubes is 1 to 7% by volume, and particularly preferably the proportion of pitch-based carbon fibers in the resin material is 30 to 45% by volume. And the ratio of a carbon nanotube is 1-5 volume%. The pitch-based carbon fiber is preferably a pitch-based carbon fiber of 500 W / m · k or more.

セラミックス粉末としては、アルミナ、窒化アルミ、窒化硼素、窒化珪素、炭化珪素およびフェライト等が目的に応じて用いられる。粉末の粒径は0.1μm以上100μm以下のものが好ましい。
軟磁性粉末とは、軟磁性材料からなる粉末である。軟磁性材料とは、保磁力が小さく透磁率が大きいことを特徴とする材料であり、特に、鉄、ケイ素鋼、パーマロイ、センダスト、パーメンジュール、ソフトフェライト、アモルファス磁性合金、ナノクリスタル磁性合金等が目的に応じて用いられる。軟磁性材料としては特にコスト面、性能面からケイ素鋼、パーマロイ、センダスト、パーメンジュール、ソフトフェライト、アモルファス磁性合金が好適である。
As the ceramic powder, alumina, aluminum nitride, boron nitride, silicon nitride, silicon carbide, ferrite or the like is used depending on the purpose. The particle size of the powder is preferably 0.1 μm or more and 100 μm or less.
Soft magnetic powder is a powder made of a soft magnetic material. Soft magnetic materials are materials characterized by low coercive force and high magnetic permeability, especially iron, silicon steel, permalloy, sendust, permendur, soft ferrite, amorphous magnetic alloy, nanocrystal magnetic alloy, etc. Is used depending on the purpose. As the soft magnetic material, silicon steel, permalloy, sendust, permendur, soft ferrite, and amorphous magnetic alloy are particularly suitable in terms of cost and performance.

セラミックス粉末および軟磁性粉末の粒径は0.1μm以上100μm以下が好ましい。粒子径が0.1μmよりも小さくなると比表面積が増えるため樹脂中に添加できる量が少なくなり、100μmよりも大きくなると粉末間の隙間が大きくなり、放熱性が低下する。特に特性の面からは好ましい粒子径は0.3μm以上50μm以下、より好ましくは0.5μm以上40μm以下、さらに好ましくは1μm以上20μm以下である。粉末形状は材料の流動性を向上させることと、添加量を増加させるために球形が好適である。本明細書中において、粉末の粒径とは、レーザ回折式粒度分布測定法により測定した、平均径を意味する。   The particle size of the ceramic powder and the soft magnetic powder is preferably 0.1 μm or more and 100 μm or less. When the particle diameter is smaller than 0.1 μm, the specific surface area increases, so that the amount that can be added to the resin is reduced. When the particle diameter is larger than 100 μm, the gap between the powders is increased, and the heat dissipation is reduced. In particular, from the viewpoint of characteristics, a preferable particle diameter is 0.3 μm or more and 50 μm or less, more preferably 0.5 μm or more and 40 μm or less, and further preferably 1 μm or more and 20 μm or less. The powder shape is preferably spherical in order to improve the fluidity of the material and increase the addition amount. In the present specification, the particle diameter of the powder means an average diameter measured by a laser diffraction particle size distribution measuring method.

本発明の樹脂材料に含まれるセラミックス粉末および軟磁性粉末は1種類であっても、複数種であってもよく、樹脂材料中に占めるセラミックス粉末および/または軟磁性粉末の割合は、総量で5体積%以上40体積%以下が好ましく、7体積%以上37体積%以下がより好ましく、10体積%以上35体積%以下が特に好ましい。   The ceramic material and soft magnetic powder contained in the resin material of the present invention may be one kind or plural kinds, and the ratio of the ceramic powder and / or soft magnetic powder in the resin material is 5 in total. The volume% is preferably 40% by volume or less, more preferably 7% by volume or more and 37% by volume or less, and particularly preferably 10% by volume or more and 35% by volume or less.

本発明の樹脂材料中における、炭素材料とセラミックス・軟磁性粉末との好ましい比率は80:20〜20:80、より好ましい比率は70:30〜30:70、特に好ましい比率は60:40〜40:60である。
また、樹脂材料中に占める炭素材料とセラミックス・軟磁性粉末の合計割合は、好ましくは20体積%以上80体積%以下、より好ましくは35体積%以上75体積%以下、特に好ましくは50体積%以上70体積%以下である。
In the resin material of the present invention, a preferable ratio of the carbon material and the ceramic / soft magnetic powder is 80:20 to 20:80, a more preferable ratio is 70:30 to 30:70, and a particularly preferable ratio is 60:40 to 40. : 60.
The total proportion of the carbon material and the ceramic / soft magnetic powder in the resin material is preferably 20% by volume to 80% by volume, more preferably 35% by volume to 75% by volume, and particularly preferably 50% by volume or more. 70% by volume or less.

熱可塑性樹脂と炭素材料およびセラミックス粉末・軟磁性粉末との混合分散には加熱混練機、多軸押出機および加熱ロール等を用いることができる。また、熱硬化性樹脂を母材に用いた場合にはミキサー、真空混合機、多軸押出機等を用いることができる。
得られた材料は射出成形、シート成形、押出成形若しくはプレス成形により所望する形状に成型することができる。本発明のヒートシンクは、少なくともフィン部分が前記樹脂材料からなることが好ましく、全体が前記樹脂材料からなることがより好ましい。ヒートシンクの熱源接地面に伝熱体を設ける場合は、伝熱体を除く全体が前記樹脂材料からなることが好ましい。
For mixing and dispersing the thermoplastic resin, the carbon material, the ceramic powder, and the soft magnetic powder, a heating kneader, a multi-screw extruder, a heating roll, or the like can be used. In addition, when a thermosetting resin is used as a base material, a mixer, a vacuum mixer, a multi-screw extruder, or the like can be used.
The obtained material can be molded into a desired shape by injection molding, sheet molding, extrusion molding or press molding. In the heat sink of the present invention, at least the fin portion is preferably made of the resin material, and more preferably the whole is made of the resin material. When the heat transfer body is provided on the heat source grounding surface of the heat sink, it is preferable that the whole except the heat transfer body is made of the resin material.

特に炭素材料として炭素繊維を用いた場合、得られたヒートシンクは炭素繊維を含有するため強度が強くなり、また、セラミックス粉末および/または軟磁性粉末を多く含むため、成形時に炭素繊維が一方向に配向せず、ヒートシンクの均等な強度向上と均質な熱伝導性および電磁波吸収を実現することが可能となる。すなわち炭素繊維が、細密充填されたセラミックスおよび/または軟磁性粉末の中でランダムに存在することで、シート成形、射出成形、押し出し成形で生じる炭素繊維の配向を低減でき、炭素繊維を用いたヒートシンクに生じやすい放熱効果の方向依存性を低減させ、また均質な電磁波遮蔽効果を得ることができる。   In particular, when carbon fiber is used as the carbon material, the obtained heat sink contains carbon fiber, so that the strength is strong, and since it contains a lot of ceramic powder and / or soft magnetic powder, the carbon fiber is unidirectional during molding. Without orientation, it is possible to achieve uniform strength improvement of the heat sink and uniform thermal conductivity and electromagnetic wave absorption. That is, the carbon fibers are randomly present in the finely packed ceramics and / or soft magnetic powder, so that the orientation of the carbon fibers generated by sheet molding, injection molding, and extrusion molding can be reduced, and the heat sink using the carbon fibers. It is possible to reduce the direction dependency of the heat radiation effect that is likely to occur, and to obtain a uniform electromagnetic wave shielding effect.

成形方法では特に射出成形法を用いることにより、銅、アルミを原料としたヒートシンクと比較して、三次元複雑形状のヒートシンクを寸法精度良く、低温で成型することが可能である。また、銅、アルミのヒートシンクをダイカスト法で成型する場合と比較して、バリが少ない、肉厚1mm以下の三次元形状のヒートシンクを容易に成型できる。   In the molding method, in particular, by using an injection molding method, it is possible to mold a heat sink having a three-dimensional complex shape with high dimensional accuracy at a low temperature as compared with a heat sink made of copper or aluminum as a raw material. In addition, a three-dimensional heat sink having a wall thickness of 1 mm or less can be easily molded as compared with a case where a copper or aluminum heat sink is molded by a die casting method.

本発明の樹脂製ヒートシンクの放熱効果をさらに増加させるために、熱源接地面に、熱伝導率100W/m・k以上の材料からなる伝熱体、特に、熱伝導性に優れる銅、銅合金、アルミ、アルミ合金、窒化アルミ、アルミナ、炭素材料等からなる伝熱体を装着することにより、本発明品のヒートシンクの放熱効果をさらに高めることができる(図2参照)。伝熱体を本発明品である樹脂製のヒートシンクに装着するためには、ヒートシンクを成形する際に金型内に設置して樹脂を流し込むか、あらかじめ、装着部分にスペースを設けて樹脂製ヒートシンクを成形した後で伝熱体を装着する方法の何れの方法でも良い。
伝熱体は面積が大きいほど効果が高い。また、肉厚が厚い方が伝熱効果はよいが、厚くしすぎると、樹脂部の肉厚が薄くなり成形時の流動性が悪くなり、また製品重量が重くなるため、樹脂部の肉厚と同程度の厚みまでに抑える方がよい。また、電磁波漏洩の観点から、伝熱体は樹脂部からはみ出ないように設けることが好ましい。
In order to further increase the heat dissipation effect of the resin heat sink of the present invention, the heat source grounding surface, a heat transfer body made of a material having a thermal conductivity of 100 W / m · k or more, particularly copper, copper alloy having excellent thermal conductivity, By mounting a heat transfer body made of aluminum, aluminum alloy, aluminum nitride, alumina, carbon material or the like, the heat dissipation effect of the heat sink of the present invention can be further enhanced (see FIG. 2). In order to mount the heat transfer body on the resin heat sink which is the product of the present invention, when molding the heat sink, install it in the mold and pour the resin, or provide a space in the mounting part in advance to make the resin heat sink Any method of attaching the heat transfer body after forming the film may be used.
The larger the area of the heat transfer body, the higher the effect. Also, the heat transfer effect is better if the wall thickness is thicker, but if it is too thick, the thickness of the resin part becomes thin, the fluidity during molding deteriorates, and the product weight becomes heavy. It is better to keep the thickness to the same level. Further, from the viewpoint of electromagnetic wave leakage, the heat transfer body is preferably provided so as not to protrude from the resin portion.

また、本発明の樹脂製ヒートシンクに、冷媒によるヒートパイプ機構を設けることにより、さらに放熱性に優れるヒートシンクとすることが可能となる。ヒートパイプを有するヒートシンクの一例を図3に示す。従来の金属製のヒートシンクにおいては、これらヒートパイプ構造を装着させようとすると、切削加工が不可欠であり、コストの大幅なアップにつながり、量産効率も低いものであった。本発明によれば、ヒートパイプは、本発明の樹脂製ヒートシンクと同じ樹脂材料を用いて、成形後に接着若しくは融着させることで容易に形成することが可能である。また、金属製のヒートパイプを用いる場合でも、成形時に金型内に装着し成形することで、容易に一体型のヒートシンクを作成することが可能となる。本発明の樹脂材料は、熱膨張性の小さい炭素材料、セラミックス材料および軟磁性材料が多く添加されることで、成形材料の熱膨張率を銅、アルミ以下に抑える事が可能であり、この事により、成形後においても安定した放熱性を持続することが可能となる。   Further, by providing the resin heat sink of the present invention with a heat pipe mechanism made of a refrigerant, it is possible to obtain a heat sink with further excellent heat dissipation. An example of a heat sink having a heat pipe is shown in FIG. In conventional heat sinks made of metal, cutting of these heat pipe structures is indispensable, leading to a significant increase in cost and low mass production efficiency. According to the present invention, the heat pipe can be easily formed by using the same resin material as that of the resin heat sink of the present invention and bonding or fusing it after molding. Even when a metal heat pipe is used, it is possible to easily create an integrated heat sink by mounting and molding in a mold at the time of molding. The resin material of the present invention can suppress the coefficient of thermal expansion of the molding material to copper or aluminum or less by adding a large amount of carbon material, ceramic material and soft magnetic material having low thermal expansibility. This makes it possible to maintain stable heat dissipation even after molding.

以下、実施例に基づき、本発明のヒートシンクをより詳細に説明する。   Hereinafter, based on an Example, the heat sink of this invention is demonstrated in detail.

[実施例1〜9]特性の評価
本発明の樹脂材料からなるシートおよびヒートシンクと、比較のためのシートおよびヒートシンクを作製し、シートにより電磁波遮蔽特性を、ヒートシンクにより放熱特性を検討した。
実施例および比較例に用いた樹脂材料の組成を表1〜5に示す。
[Examples 1 to 9] Evaluation of characteristics Sheets and heat sinks made of the resin material of the present invention, and comparative sheets and heat sinks were prepared, and electromagnetic wave shielding characteristics were examined using the sheets, and heat radiation characteristics were examined using the heat sinks.
Tables 1 to 5 show the compositions of the resin materials used in Examples and Comparative Examples.

シートおよびヒートシンクの作製
熱可塑性樹脂を用いる場合は、樹脂をあらかじめ0.5Lの加熱混練機でポリプロピレンの場合には200℃に設定し、ナイロン樹脂(ナイロン12)の場合には230℃に設定して10分間混合し十分溶融させた後に炭素材料およびセラミックス粉末または軟磁性粉末を徐々に添加して1時間加熱混練を行い、取り出した塊をシート状にした後、粉砕機にかけて成形材料とした。
得られた成形材料を型締め力100トンの射出成形機を用いて、電磁波遮蔽性の測定には100mm×100mm×厚み1.5mmのシート状の成形体を成形してこれを用いた。放熱特性の測定に関しては図1Aに模式的に示す形状のヒートシンクの成形体を作成してこれを用いた(底面板3: 50mm×35mm×厚み3mm フィン2: 幅35mm×高さ30mm×厚み1mm フィン2の枚数: 14枚)。
熱硬化性樹脂であるシリコーン樹脂を用いる場合は、2成分付加型液状シリコーンゴムを用い、主剤100重量部に対して硬化剤10重量部を混合させたものを用いた。これに炭素材料および軟磁性粉末を添加した後、1Lの真空脱泡混合機を用いて、25℃で真空脱泡しながら撹拌混合を30分間行い、取り出した後、ポリエチレンテレフタレート(PET)フィルムに1.5mmの厚みにコーティングした後、25℃で24時間後にPETフィルムから離型し、25℃で48時間放置した後、電磁波遮蔽性の測定のために用いた。シートのサイズは上述通りとした(100mm×100mm×厚み1.5mm)。
放熱特性の測定に関しては、熱可塑性樹脂の場合と同様、図1Aに模式的に示す形状のヒートシンクの成形体を作成してこれを用いた。母系となるヒートシンク金型にワックス系の離型材を塗布し、上記シリコーンゴム材料に各粉末を添加し、1Lの真空脱泡混合機を用いて、25℃で真空脱泡しながら撹拌混合を30分間行い取り出した後、真空にした金型に成形材料を注型し、25℃で24時間放置し、取り出した後、100℃で2時間保持した後測定を行った。
Preparation of sheet and heat sink When using a thermoplastic resin, set the resin in advance in a 0.5 L heating kneader at 200 ° C. for polypropylene and 230 ° C. for nylon resin (nylon 12). After mixing and melting sufficiently for 10 minutes, the carbon material and ceramic powder or soft magnetic powder were gradually added and heated and kneaded for 1 hour.
The obtained molding material was used by measuring a 100 mm × 100 mm × 1.5 mm thickness sheet-like molded body for measurement of electromagnetic wave shielding using an injection molding machine having a clamping force of 100 tons. Regarding the measurement of heat dissipation characteristics, a heat sink molded body having a shape schematically shown in FIG. 1A was prepared and used (bottom plate 3: 50 mm × 35 mm × thickness 3 mm Fin 2: width 35 mm × height 30 mm × thickness 1 mm) Number of fins 2: 14).
In the case of using a silicone resin that is a thermosetting resin, a two-component addition type liquid silicone rubber was used in which 10 parts by weight of a curing agent was mixed with 100 parts by weight of the main agent. After adding carbon material and soft magnetic powder to this, stirring and mixing were performed for 30 minutes while vacuum defoaming at 25 ° C. using a 1 L vacuum defoaming mixer, and after taking out, it was applied to a polyethylene terephthalate (PET) film. After coating to a thickness of 1.5 mm, it was released from the PET film after 24 hours at 25 ° C., and left for 48 hours at 25 ° C., and then used for measurement of electromagnetic wave shielding properties. The size of the sheet was as described above (100 mm × 100 mm × thickness 1.5 mm).
Regarding the measurement of heat dissipation characteristics, a heat sink molded body having a shape schematically shown in FIG. 1A was prepared and used, as in the case of the thermoplastic resin. Apply a wax-type release material to the heat sink mold as a mother system, add each powder to the silicone rubber material, and stir and mix with a 1 L vacuum defoaming mixer while defoaming at 25 ° C. After taking out for a minute, the molding material was poured into a vacuum mold, left at 25 ° C. for 24 hours, taken out, held at 100 ° C. for 2 hours, and then measured.

実施例および比較例に用いたセラミックス粉末(アルミナ粉末、窒化アルミ粉末)は平均粒子径が10μmのものを用いた。軟磁性粉末としては、平気粒子径が10μmのセンダスト粉末、3μmのニッケル粉末を用いた。また、炭素材料には三菱化学産資株式会社K6371T:140W/m・k、三菱化学産資株式会社K223HG:700W/m・kまたは日本グラファイトファイバー株式会社XN-100:900W/m・kのピッチ系炭素繊維およびナノカーボンテクノロジーズ株式会社:多層カーボンナノチューブを併用した。   Ceramic powders (alumina powder, aluminum nitride powder) used in Examples and Comparative Examples were those having an average particle diameter of 10 μm. As the soft magnetic powder, sendust powder having a flat particle diameter of 10 μm and nickel powder of 3 μm were used. Carbon materials include Mitsubishi Chemical Corporation K6371T: 140 W / m · k, Mitsubishi Chemical Corporation K223HG: 700 W / m · k, or Nippon Graphite Fiber Co., Ltd. XN-100: 900 W / m · k pitch. -Based carbon fiber and Nanocarbon Technologies, Inc .: Multi-walled carbon nanotubes were used in combination.

電磁波の測定に関してはアドバンテスト製、スペクトラムアナライザR3132を用いて10MHz〜1GHzの電磁波遮蔽特性を測定した。
また、放熱特性の測定については、図1Bに示すように、15mm角、厚み2mmのセラミックスヒータ4の上にアルミ板5を置いて熱源の温度を100℃まで温度を上げて、30分均熱を確認した後、作製したヒートシンク1を前記のアルミ板5の上に置いて、30分後にアルミ板5の温度を測定した。
Regarding the measurement of electromagnetic waves, an electromagnetic shielding characteristic of 10 MHz to 1 GHz was measured using a spectrum analyzer R3132 manufactured by Advantest.
As for the measurement of heat dissipation characteristics, as shown in FIG. 1B, an aluminum plate 5 is placed on a ceramic heater 4 having a 15 mm square and a thickness of 2 mm, the temperature of the heat source is raised to 100 ° C., and the temperature is soaked for 30 minutes. After confirming the above, the produced heat sink 1 was placed on the aluminum plate 5, and the temperature of the aluminum plate 5 was measured after 30 minutes.

結果を以下の表に示す。表中に示す電磁波遮蔽特性は透過損失であり、対応する樹脂のみで作製したシートにおける透過量を基準値とし、実施例あるいは比較例のシートにおける透過量の減少値を示す。

Figure 0004631877
The results are shown in the table below. The electromagnetic wave shielding characteristic shown in the table is transmission loss, and indicates a reduction value of the transmission amount in the sheet of the example or the comparative example with the transmission amount in the sheet made of only the corresponding resin as a reference value.
Figure 0004631877

Figure 0004631877
Figure 0004631877

Figure 0004631877
Figure 0004631877

Figure 0004631877
Figure 0004631877

Figure 0004631877
Figure 0004631877

実験の結果から本発明にかかるヒートシンクは放熱性に優れることが確認された。また、ヒートシンクを構成する樹脂材料は、高い電磁波遮蔽特性を示すため、前記樹脂材料で形成されたヒートシンクは電磁波遮蔽能力にも優れることが分かる。また、実施例1〜9で用いた樹脂材料は2.1g/cm〜3.6g/cmであり、シリコーン樹脂を用いたもの以外は銅やアルミ製のヒートシンクと比べて軽量のヒートシンクを得ることができた。 From the experimental results, it was confirmed that the heat sink according to the present invention was excellent in heat dissipation. Moreover, since the resin material which comprises a heat sink shows the high electromagnetic wave shielding characteristic, it turns out that the heat sink formed with the said resin material is excellent also in electromagnetic wave shielding capability. The resin materials used in Examples 1-9 is 2.1g / cm 3 ~3.6g / cm 3 , the weight of the heat sink as compared to copper or aluminum heat sink except that a silicone resin I was able to get it.

さらに各成分の添加量について検討を行った結果、樹脂材料中における炭素材料の割合が15体積%未満の場合、またはセラミックス粉末および/または軟磁性粉末の割合が5体積%未満の場合は、期待される電磁波遮蔽特性並びに放熱特性が得られなかった。また、樹脂材料中における炭素材料の割合が60体積%を超える場合、またはセラミックス粉末および/または軟磁性粉末の割合が40体積%を超える場合は、樹脂材料の粘度が高くなり、成形加工が出来なかった。   Furthermore, as a result of examining the addition amount of each component, it is expected that the ratio of the carbon material in the resin material is less than 15% by volume, or the ratio of the ceramic powder and / or the soft magnetic powder is less than 5% by volume. The electromagnetic wave shielding characteristic and the heat radiation characteristic that were used were not obtained. Further, when the proportion of the carbon material in the resin material exceeds 60% by volume, or when the proportion of the ceramic powder and / or the soft magnetic powder exceeds 40% by volume, the viscosity of the resin material becomes high and molding processing can be performed. There wasn't.

[実施例10〜12]伝熱体を有するヒートシンクの作製
実施例1または2の樹脂材料と同じ材料を用いて、図2に模式的に示すように、熱源接地面にアルミニウム板または銅板からなる伝熱体6を取り付けたヒートシンク1を作製した。ヒートシンク1の全体的な形状・大きさは実施例1と同様とし、伝熱体6であるアルミニウム板または銅板として35mm×25mm×厚み0.5mmのものを用いた。ヒートシンクは射出成形によりインサート成形することによって作製した。各ヒートシンクの放熱特性を実施例1と同様の方法で測定した。
[Examples 10 to 12] Preparation of heat sink having heat transfer body Using the same material as the resin material of Example 1 or 2, as shown schematically in FIG. 2, the heat source grounding surface is made of an aluminum plate or a copper plate. The heat sink 1 to which the heat transfer body 6 was attached was produced. The overall shape and size of the heat sink 1 was the same as in Example 1, and an aluminum plate or copper plate as the heat transfer body 6 having a size of 35 mm × 25 mm × thickness 0.5 mm was used. The heat sink was produced by insert molding by injection molding. The heat dissipation characteristics of each heat sink were measured by the same method as in Example 1.

Figure 0004631877
Figure 0004631877

なお、上記のアルミニウム板のみでの放熱特性は65℃、銅板のみでの放熱特性は63℃であった。実施例10〜12から、本発明の樹脂性ヒートシンクに熱伝導性の高い伝熱体を装着することでさらに放熱性に優れたヒートシンクを得ることができることが分かった。   In addition, the heat dissipation characteristic only with said aluminum plate was 65 degreeC, and the heat dissipation characteristic only with a copper plate was 63 degreeC. From Examples 10-12, it turned out that the heat sink which was further excellent in heat dissipation can be obtained by mounting | wearing the resin heat sink of this invention with a heat conductive body with high heat conductivity.

[実施例13]ヒートパイプ機構を有するヒートシンクの作製
実施例2の樹脂材料を用いて図3に模式的に示すように、熱源接地部分にヒートパイプ機構7を有するヒートシンク1を作製した。図3Aは側面断面図であり、図3Bはヒートパイプ部7の平面図であって、冷却水路を構成する空間部分8を白抜きで示した図である。作製方法は以下の通りである。まず、フィンのある部分(底面板3とフィン2 サイズは実施例1と同じ)と底面板3の下方に設置するヒートパイプ部分7とを別々に射出成形して作製する。得られた両部品を図3の形状になるように組立て、両部品を熱融着により貼り合わせて一体化した。
冷却水路を構成する空間部分8と連通する1mm程度の穴を空けて内部の空気を排気した後、純水を空間部分8の50%程度を満たすように注入し、注入後、エポキシ系接着剤を用いて穴をふさいだ。得られたヒートパイプ付きのヒートシンク1の放熱特性を実施例1と同様の方法で測定した。放熱特性は36℃となり、ヒートパイプ形状を持たない、外観形状が同じであるアルミニウム製のヒートシンクが40℃であることから、非常に放熱性に優れたヒートシンクを得ることができた。また、フィン部およびヒートパイプ部の全てを樹脂材料で構成することができるため、軽量であるとともに成型が容易であり、従来のヒートパイプ機構を有するヒートシンクと比較して容易に製造することができた。
Example 13 Production of Heat Sink Having Heat Pipe Mechanism As shown schematically in FIG. 3 using the resin material of Example 2, a heat sink 1 having a heat pipe mechanism 7 at the heat source grounding portion was produced. FIG. 3A is a side cross-sectional view, and FIG. 3B is a plan view of the heat pipe portion 7, and shows a space portion 8 constituting the cooling water channel in white. The manufacturing method is as follows. First, a portion with fins (the size of the bottom plate 3 and the fin 2 is the same as that of the first embodiment) and the heat pipe portion 7 installed below the bottom plate 3 are separately injection molded. The obtained two parts were assembled so as to have the shape shown in FIG. 3, and the two parts were bonded together by heat fusion.
A hole of about 1 mm communicating with the space portion 8 constituting the cooling water channel is made, and the air inside is exhausted. Then, pure water is injected so as to fill about 50% of the space portion 8, and after the injection, an epoxy adhesive is used. Used to close the hole. The heat dissipation characteristics of the obtained heat sink 1 with the heat pipe were measured by the same method as in Example 1. The heat radiation characteristic was 36 ° C., and a heat sink made of aluminum having no heat pipe shape and the same external shape was 40 ° C. Therefore, it was possible to obtain a heat sink excellent in heat dissipation. Also, since all of the fin part and the heat pipe part can be made of a resin material, it is lightweight and easy to mold, and can be easily manufactured as compared with a heat sink having a conventional heat pipe mechanism. It was.

本発明にかかるヒートシンクは、優れた放熱性と電磁波遮蔽性の両方を併せ持つため、従来2つの部品が用いられていたものを一体化することができ、製品の薄型化を図ることができる。また、樹脂材料からなるため軽量である。さらに、本発明にかかる樹脂材料は成型性にも優れるため、射出成形等により小型・複雑形状のヒートシンクを容易に得ることができる。   Since the heat sink according to the present invention has both excellent heat dissipation and electromagnetic wave shielding properties, it has been possible to integrate two components conventionally used, and to reduce the thickness of the product. Moreover, since it consists of a resin material, it is lightweight. Furthermore, since the resin material according to the present invention is excellent in moldability, a small and complex heat sink can be easily obtained by injection molding or the like.

本発明にかかる樹脂製ヒートシンクの一実施例を示すものであって、Aは斜視図、BはAのヒートシンクを熱源の上においた状態を示す側面図である。1 shows an embodiment of a resin heat sink according to the present invention, in which A is a perspective view and B is a side view showing a state in which the heat sink of A is placed on a heat source. 熱源接地面に伝熱体が装着されているヒートシンクを示すものであって、Aは側面断面図、Bは底面図である。1 shows a heat sink in which a heat transfer body is mounted on a heat source grounding surface, in which A is a side sectional view and B is a bottom view. 熱源接地面にヒートパイプ機構を有するヒートシンクを示すものであって、Aは側面断面図、Bはヒートパイプ機構の平面図であって、冷却水路部を白抜きで示した図である。1 shows a heat sink having a heat pipe mechanism on a heat source grounding surface, wherein A is a side sectional view, B is a plan view of the heat pipe mechanism, and a cooling water channel portion is shown in white.

符号の説明Explanation of symbols

1 ヒートシンク
2 フィン
3 底面板
4 セラミックスヒータ
5 アルミ板
6 伝熱体
7 ヒートパイプ
8 空間部(冷却水路)
DESCRIPTION OF SYMBOLS 1 Heat sink 2 Fin 3 Bottom plate 4 Ceramic heater 5 Aluminum plate 6 Heat transfer body 7 Heat pipe 8 Space part (cooling water channel)

Claims (10)

樹脂材料により一部または全部が形成された樹脂製ヒートシンクであって、
前記樹脂材料は、樹脂中に(a)炭素材料と(b)セラミックス粉末および/または軟磁性粉末とが均一に分散されており、且つ当該樹脂材料中における(a)の割合が15〜60体積%であり、(b)の割合が5〜40体積%であり、(a)と(b)の総和が20〜80体積%であることを特徴とする樹脂製ヒートシンク。
A resin heat sink partially or entirely formed of a resin material,
In the resin material, (a) carbon material and (b) ceramic powder and / or soft magnetic powder are uniformly dispersed in the resin, and the ratio of (a) in the resin material is 15 to 60 volumes. %, The ratio of (b) is 5 to 40% by volume, and the sum of (a) and (b) is 20 to 80% by volume.
前記(a)の炭素材料が、熱伝導率100W/m・k以上の糸状の炭素材料を含むことを特徴とする、請求項1に記載の樹脂製ヒートシンク。   The resin heat sink according to claim 1, wherein the carbon material (a) includes a filamentous carbon material having a thermal conductivity of 100 W / m · k or more. 前記(a)の炭素材料が、ピッチ系炭素繊維および糸状のカーボンナノ材料を含むことを特徴とする、請求項1または2に記載の樹脂製ヒートシンク。   The resin heat sink according to claim 1 or 2, wherein the carbon material (a) includes pitch-based carbon fibers and thread-like carbon nanomaterials. 前記(a)の炭素材料が、ピッチ系炭素繊維およびカーボンナノチューブの混合物からなり、前記樹脂材料中におけるピッチ系炭素繊維の割合が5〜50体積%であり、カーボンナノチューブの割合が0.1〜10体積%であることを特徴とする、請求項1〜3のいずれか1項に記載の樹脂製ヒートシンク。   The carbon material (a) is composed of a mixture of pitch-based carbon fibers and carbon nanotubes, the proportion of pitch-based carbon fibers in the resin material is 5 to 50% by volume, and the proportion of carbon nanotubes is 0.1 to The resin heat sink according to claim 1, wherein the heat sink is 10% by volume. 前記(b)のセラミックス粉末が、アルミナ、窒化アルミ、窒化硼素、窒化珪素、炭化珪素およびフェライトからなる群から選択され、前記(b)の軟磁性粉末が、ケイ素鋼、パーマロイ、センダスト、パーメンジュール、ソフトフェライトおよびアモルファス磁性合金からなる群から選択されることを特徴とする、請求項1〜4のいずれか1項に記載の樹脂製ヒートシンク。   The ceramic powder (b) is selected from the group consisting of alumina, aluminum nitride, boron nitride, silicon nitride, silicon carbide and ferrite, and the soft magnetic powder (b) is silicon steel, permalloy, sendust, perm The resin heat sink according to any one of claims 1 to 4, wherein the resin heat sink is selected from the group consisting of joules, soft ferrites, and amorphous magnetic alloys. 前記ピッチ系炭素繊維の平均長さが0.05mm〜30mmであり、前記セラミックス粉末および軟磁性粉末の粒径が0.1μm〜100μmであることを特徴とする、請求項3〜5のいずれか1項に記載の樹脂製ヒートシンク。   The average length of the pitch-based carbon fibers is 0.05 mm to 30 mm, and the ceramic powder and the soft magnetic powder have a particle size of 0.1 μm to 100 μm. 6. The resin heat sink according to item 1. 前記ヒートシンクの熱源接地面に、熱伝導率100W/m・k以上の材料からなる伝熱体が装着されていることを特徴とする、請求項1〜6のいずれか1項に記載の樹脂製ヒートシンク。   The resin-made product according to any one of claims 1 to 6, wherein a heat transfer body made of a material having a thermal conductivity of 100 W / m · k or more is attached to a heat source grounding surface of the heat sink. heatsink. 前記伝熱体を構成する材料が、銅、銅合金、アルミ、アルミ合金、窒化アルミおよび炭素材料からなる群から選択されることを特徴とする、請求項7に記載の樹脂製ヒートシンク。   The resin heat sink according to claim 7, wherein the material constituting the heat transfer body is selected from the group consisting of copper, copper alloy, aluminum, aluminum alloy, aluminum nitride, and carbon material. 冷媒によるヒートパイプ機構を備えていることを特徴とする、請求項1〜8のいずれか1項に記載の樹脂製ヒートシンク。   The resin heat sink according to any one of claims 1 to 8, further comprising a heat pipe mechanism using a refrigerant. 前記樹脂材料を押出成形、射出成形またはプレス成形することにより製造されたことを特徴とする、請求項1〜9のいずれか1項に記載の樹脂製ヒートシンク。   The resin heat sink according to any one of claims 1 to 9, wherein the resin heat sink is manufactured by extrusion molding, injection molding or press molding of the resin material.
JP2007173747A 2007-07-02 2007-07-02 Resin heat sink Active JP4631877B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007173747A JP4631877B2 (en) 2007-07-02 2007-07-02 Resin heat sink
CN2008800224768A CN101720569B (en) 2007-07-02 2008-06-30 Resin heat sink
PCT/JP2008/061827 WO2009005029A1 (en) 2007-07-02 2008-06-30 Resin heat sink
KR1020097026754A KR101408978B1 (en) 2007-07-02 2008-06-30 Resin heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007173747A JP4631877B2 (en) 2007-07-02 2007-07-02 Resin heat sink

Publications (2)

Publication Number Publication Date
JP2009016415A JP2009016415A (en) 2009-01-22
JP4631877B2 true JP4631877B2 (en) 2011-02-16

Family

ID=40226074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007173747A Active JP4631877B2 (en) 2007-07-02 2007-07-02 Resin heat sink

Country Status (4)

Country Link
JP (1) JP4631877B2 (en)
KR (1) KR101408978B1 (en)
CN (1) CN101720569B (en)
WO (1) WO2009005029A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component
JP5683799B2 (en) * 2009-09-14 2015-03-11 スターライト工業株式会社 LED heat sink for automobile
DE102009045063C5 (en) * 2009-09-28 2017-06-01 Infineon Technologies Ag Power semiconductor module with molded-on heat sink, power semiconductor module system and method for producing a power semiconductor module
US8593040B2 (en) 2009-10-02 2013-11-26 Ge Lighting Solutions Llc LED lamp with surface area enhancing fins
DE102009046680A1 (en) * 2009-11-13 2011-05-19 BSH Bosch und Siemens Hausgeräte GmbH Domestic appliance with heat exchanger made of thermoplastic material containing, as well as such a heat exchanger
WO2011095919A1 (en) * 2010-02-05 2011-08-11 Koninklijke Philips Electronics N.V. Thermal management component for led lighting
JP2013524439A (en) * 2010-04-02 2013-06-17 ジーイー ライティング ソリューションズ エルエルシー Light weight heat sink and LED lamp using the same
KR101223485B1 (en) * 2010-11-12 2013-01-17 한국과학기술연구원 Multifuctional thermal spreading particles and array thereof, and the fabrication method thereof
JP2012186384A (en) * 2011-03-07 2012-09-27 Tdk Corp Electromagnetic noise suppression member
US9243178B2 (en) * 2011-07-15 2016-01-26 Polyone Corporation Polyamide compounds containing pitch carbon fiber
JP2013036720A (en) * 2011-08-11 2013-02-21 Sharp Corp Air conditioner
JP2013089718A (en) * 2011-10-17 2013-05-13 Kaneka Corp Heat sink with highly heat-conducting resin, and led light source
US9500355B2 (en) 2012-05-04 2016-11-22 GE Lighting Solutions, LLC Lamp with light emitting elements surrounding active cooling device
CN102651961B (en) * 2012-05-29 2016-02-03 安顿雷纳(上海)纤维材料科技有限公司 A kind of Heat-conduction heat-dissipation interface material and manufacture method thereof
RU2488244C1 (en) * 2012-06-05 2013-07-20 Федеральное государственное унитарное предприятие "Московское опытно-конструкторское бюро "Марс" (ФГУП МОКБ "Марс") Method of increasing heat dissipation and radiation protection of electronic components
US20140104284A1 (en) * 2012-10-16 2014-04-17 Qualcomm Mems Technologies, Inc. Through substrate via inductors
JP2014067728A (en) * 2013-12-17 2014-04-17 Starlite Co Ltd Led lamp for automobile
CN105742252B (en) 2014-12-09 2019-05-07 台达电子工业股份有限公司 A kind of power module and its manufacturing method
CN105061999A (en) * 2015-08-06 2015-11-18 殷姝媛 High-thermal conductivity high-molecular composite material
CN105062000A (en) * 2015-08-06 2015-11-18 殷姝媛 Preparation method of high-thermal conductivity high-molecular composite material
JP7212451B2 (en) * 2018-02-16 2023-01-25 三井化学株式会社 Metal-resin bonded plates, housings and electronic devices
US20210351102A1 (en) * 2018-10-04 2021-11-11 Showa Denko Materials Co., Ltd. Heat radiation material, method for producing a heat radiation material, composition, and heat-generating element
KR20200097384A (en) 2019-02-07 2020-08-19 원광희 Heating wire and preparing method of the same
JP7391761B2 (en) * 2020-05-15 2023-12-05 キヤノン株式会社 Power supply device and image forming device
CN112497595A (en) * 2020-11-12 2021-03-16 西安紫光国芯半导体有限公司 Preparation method and application of flexible heat dissipation shell
WO2022260194A1 (en) * 2021-06-10 2022-12-15 주식회사 씨엔와이더스 Led light module comprising heat sink using carbonaceous material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092988A (en) * 1996-09-12 1998-04-10 Tokin Corp Heat sink and heat dissipation sheet
JP2001294676A (en) * 2000-04-13 2001-10-23 Jsr Corp Heat-conductive sheet, method for producing heat- conductive sheet and radiating structure using heat- conductive sheet
JP2002064168A (en) * 2000-08-17 2002-02-28 Toshiba Eng Co Ltd Cooling device, manufacturing method of cooling device, and semiconductor device
JP2002088250A (en) * 2000-09-12 2002-03-27 Polymatech Co Ltd Thermoconductive polymer composition and thermoconductive molded body
JP2002184916A (en) * 2000-12-15 2002-06-28 Kitagawa Ind Co Ltd Multifunctional sheet and manufacturing method therefor
JP2004315761A (en) * 2003-04-21 2004-11-11 Hitachi Metals Ltd Heat radiator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124369A (en) * 1998-10-15 2000-04-28 Mitsubishi Chemicals Corp Heat radiating member
US7027304B2 (en) * 2001-02-15 2006-04-11 Integral Technologies, Inc. Low cost thermal management device or heat sink manufactured from conductive loaded resin-based materials
CA2446728C (en) * 2001-04-30 2007-12-18 Thermo Composite, Llc Thermal management material, devices and methods therefor
JP2004207690A (en) * 2002-12-13 2004-07-22 Usui Kokusai Sangyo Kaisha Ltd Heat sink made of resin material
JP2005146057A (en) * 2003-11-12 2005-06-09 Polymatech Co Ltd High-thermal-conductivity molding and method for producing the same
JP4666203B2 (en) * 2004-09-17 2011-04-06 株式会社安川電機 Radiation fin and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092988A (en) * 1996-09-12 1998-04-10 Tokin Corp Heat sink and heat dissipation sheet
JP2001294676A (en) * 2000-04-13 2001-10-23 Jsr Corp Heat-conductive sheet, method for producing heat- conductive sheet and radiating structure using heat- conductive sheet
JP2002064168A (en) * 2000-08-17 2002-02-28 Toshiba Eng Co Ltd Cooling device, manufacturing method of cooling device, and semiconductor device
JP2002088250A (en) * 2000-09-12 2002-03-27 Polymatech Co Ltd Thermoconductive polymer composition and thermoconductive molded body
JP2002184916A (en) * 2000-12-15 2002-06-28 Kitagawa Ind Co Ltd Multifunctional sheet and manufacturing method therefor
JP2004315761A (en) * 2003-04-21 2004-11-11 Hitachi Metals Ltd Heat radiator

Also Published As

Publication number Publication date
KR101408978B1 (en) 2014-06-16
KR20100027148A (en) 2010-03-10
WO2009005029A1 (en) 2009-01-08
JP2009016415A (en) 2009-01-22
CN101720569B (en) 2013-08-21
CN101720569A (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4631877B2 (en) Resin heat sink
JP5205947B2 (en) Resin carbon composite material
JP5011786B2 (en) High thermal conductivity insulator and manufacturing method thereof
JP5814688B2 (en) Thermally conductive resin composition and heat dissipation material containing the same
JP2011021069A (en) Heat-radiating filler composition, resin composition, heat-radiating grease and heat-radiating coating composition
CN108659536B (en) Heat conducting material and preparation method thereof
JP2014193808A (en) Zinc oxide powder, heat-radiating filler, resin composition, heat-radiating grease, and heat-radiating coating material composition
JP4798048B2 (en) Materials and molded products with excellent electromagnetic shielding and heat dissipation
JP2013089718A (en) Heat sink with highly heat-conducting resin, and led light source
KR102479099B1 (en) Composite material
CN109891577A (en) Thermally conductive sheet and semiconductor device
WO2022264790A1 (en) Thermally-conductive sheet and thermally-conductive sheet production method
TW202033643A (en) Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using same, and methods for producing same
JP3520257B2 (en) Manufacturing method of multifunctional sheet
JP2004315761A (en) Heat radiator
KR20210084007A (en) Core-shell hybrid structured heat dissipating particles, and composites comprising the same
JP2005320390A (en) Curable composition, molded product and heat-releasing member
JP2014167117A (en) Heat releasing filler composition, resin composition, heat releasing grease and heat releasing coating material composition
JP2020111748A (en) Resin composition for semiconductor sealing and semiconductor device using the same
JP2023173930A (en) Heat conductive particle, composite material, and method for manufacturing the same
JP2009221527A (en) Method for producing fiber composite material
JP6390842B2 (en) Composite material and manufacturing method thereof
JP2002080726A (en) Resin composition for sealing
CN116409030A (en) 3D printing manufacturing method of radiating fin and radiating fin
KR20150139163A (en) Heat sink and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Ref document number: 4631877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250