JP4631263B2 - Antithrombotic copolymer - Google Patents

Antithrombotic copolymer Download PDF

Info

Publication number
JP4631263B2
JP4631263B2 JP2003348559A JP2003348559A JP4631263B2 JP 4631263 B2 JP4631263 B2 JP 4631263B2 JP 2003348559 A JP2003348559 A JP 2003348559A JP 2003348559 A JP2003348559 A JP 2003348559A JP 4631263 B2 JP4631263 B2 JP 4631263B2
Authority
JP
Japan
Prior art keywords
solution
copolymer
vla
vinylbenzylhexadecanamide
antithrombotic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003348559A
Other languages
Japanese (ja)
Other versions
JP2005112987A (en
JP2005112987A5 (en
Inventor
敏宏 赤池
眞道 岩間
光昭 後藤
義久 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2003348559A priority Critical patent/JP4631263B2/en
Publication of JP2005112987A publication Critical patent/JP2005112987A/en
Publication of JP2005112987A5 publication Critical patent/JP2005112987A5/ja
Application granted granted Critical
Publication of JP4631263B2 publication Critical patent/JP4631263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、抗血栓性共重合物、該抗血栓性共重合物を含む抗血栓性組成物及び抗血栓性共重合物で処理された医療用器具に関する。   The present invention relates to an antithrombotic copolymer, an antithrombotic composition containing the antithrombotic copolymer, and a medical device treated with the antithrombotic copolymer.

従来からカテーテル、チューブ類等の体外循環回路に用いられる医療用器具や、人工腎臓、人肺、人工肝臓等の種々の人工臓器には、それぞれの医療用機能に加えて、抗血栓性が重要な要素として要求されている。 The catheter conventionally, and medical instruments used in the extracorporeal circulation circuit such as tubing, artificial kidneys, artificial lungs, the various artificial organs such as an artificial liver, in addition to the respective medical function, anti-thrombotic properties It is required as an important factor.

一般に、人体には、血管が破損し、血液が血管外に流出すると、血液は凝固して、血栓によって血管の破損部分を補修し、それ以上の出血の危険が防止され、或いは血流中に異物が混入されると、その表面を血栓が被覆し、その異物を生体に同化する機能が備えられている。   In general, when a blood vessel breaks and the blood flows out of the blood vessel in the human body, the blood coagulates and repairs the damaged portion of the blood vessel with a thrombus, preventing further risk of bleeding or entering the bloodstream. When a foreign substance is mixed in, the surface is covered with a thrombus, and the function of assimilating the foreign substance into a living body is provided.

従って、かかる血栓形成は、生命維持にとって必要不可欠であるが、血液と直接に接触する上記のような医療用器具や人工臓器については、かかる血栓形成は、その使用上、致命的な障害である。   Therefore, such thrombus formation is indispensable for life support. However, for the above-mentioned medical devices and artificial organs that are in direct contact with blood, such thrombus formation is a fatal obstacle in its use. .

血栓形成の機構は、非常に複雑であって、未だ必ずしも明確にはされていないが、凝固反応、線溶反応及び血小板反応が血栓形成にかかわる主要な反応であって、血液成分のうちでは、血液凝固因子と血小板とが血栓形成を支配する因子であるとされている。   The mechanism of thrombus formation is very complicated and not yet clearly defined, but coagulation reaction, fibrinolysis reaction and platelet reaction are the main reactions involved in thrombus formation. It is said that blood coagulation factors and platelets are the factors governing thrombus formation.

医療用具の抗血栓性向上の中心となって検討されてきたのが抗凝血作用を有するヘパリンまたはその誘導体を医療用具の表面上になんらかの方法で固定して、抗血栓性を得る手法である。   A method for obtaining antithrombogenicity by fixing heparin or a derivative thereof having anticoagulant action on the surface of the medical device by some method has been studied as a center for improving the antithrombogenicity of the medical device. .

例えば、ヘパリンのアミノ基と基材表面に導入したアミノ基をポリエチレングリコールジグリシジルエーテルでカップリングする共有結合方式がある(特許文献1)。   For example, there is a covalent bond method in which an amino group of heparin and an amino group introduced onto the substrate surface are coupled with polyethylene glycol diglycidyl ether (Patent Document 1).

しかし、これらの製品に用いられるヘパリンは、そのほとんどが、ウシやブタ等の生物組織から抽出される生物由来材料である。   However, most of the heparin used in these products is a biological material extracted from biological tissues such as cows and pigs.

近年、生物由来製品の汚染による健康被害が相次いだことから、生物由来製品の汚染に対する安全確保の必要性が高まり、改正薬事法が平成15年7月30日から適用され、その製造・使用等は、厳しく制限されている。   In recent years, due to the continual health damage caused by contamination of biological products, the need to ensure safety against contamination of biological products has increased, and the revised Pharmaceutical Affairs Law has been applied since July 30, 2003. Is strictly limited.

上記の問題を解決する手段としては、人工的血栓性物質が有効である。人工的抗血栓性物質としては、例えば、糖側鎖を有するポリスチレン誘導体(ポリ(N−p−ビニルベンジル−D−ラクトンアミド):PVLA)が知られている(特許文献2)。   Artificial thrombotic substances are effective as means for solving the above problems. As an artificial antithrombotic substance, for example, a polystyrene derivative having a sugar side chain (poly (Np-vinylbenzyl-D-lactone amide): PVLA) is known (Patent Document 2).

PVLAは、そのスチレン骨格によりポリスチレンに対しては強固に疎水吸着をし、良好な抗血栓性を発現する。しかし、医療機器に汎用されている他の基材、例えば、ポリ塩化ビニル、ポリウレタン、ポリカーボネート、ポリスルホン、ポリエステル、ステンレス等に対しては、適用が困難であるという問題点があった。   PVLA strongly adsorbs hydrophobicity to polystyrene due to its styrene skeleton, and exhibits good antithrombotic properties. However, there is a problem that it is difficult to apply to other base materials that are widely used in medical devices, such as polyvinyl chloride, polyurethane, polycarbonate, polysulfone, polyester, and stainless steel.

そこで、汎用基材に適用可能な、人工的抗血栓性物質の開発が待たれていた。
特開平4−197264号公報 特開平2−224664号公報
Therefore, development of an artificial antithrombotic substance that can be applied to a general-purpose substrate has been awaited.
Japanese Patent Laid-Open No. 4-197264 JP-A-2-224664

本発明が解決しようとする課題は、安全性に優れ、汎用基材に適用可能であることを特徴とする、新規な抗血栓性共重合物を提供することである。   The problem to be solved by the present invention is to provide a novel antithrombotic copolymer characterized by being excellent in safety and applicable to a general-purpose substrate.

本発明は、下記式:
The present invention provides the following formula:

(式中、m:n=9:1〜1:9であり、xは、〜18である。)
で表される共重合物に関する。
(In the formula, m: n = 9: 1 to 1: 9, and x is 6 to 18.)
It is related with the copolymer represented by these.

また、本発明は、xが14である、上記共重合物に関する。   Moreover, this invention relates to the said copolymer whose x is 14.

また、本発明は、上記共重合物を含む、抗血栓性組成物、及び上記共重合物を用いて表面の少なくとも一部が処理されていることを特徴とする、医療用器具にも関する。   The present invention also relates to an antithrombogenic composition containing the copolymer and a medical device characterized in that at least a part of the surface is treated with the copolymer.

本発明による抗血栓共重合体は、極めて低濃度での適用によって、血小板の活性化を抑制し、血栓形成を効果的に防止することができる。   The antithrombotic copolymer according to the present invention can suppress platelet activation and effectively prevent thrombus formation by application at an extremely low concentration.

本発明は、下記式:
The present invention provides the following formula:

で表される共重合物に関し、
式中、m:nは、9:1〜1:9、好ましくは、9:1〜5:5、より好ましくは、9:1〜6:4、xは、6〜18、好ましくは、14である。
In regard to the copolymer represented by
In the formula, m: n is 9: 1 to 1: 9, preferably 9: 1 to 5: 5, more preferably 9: 1 to 6: 4, and x is 6 to 18, preferably 14 It is.

すなわち、本発明は、N−p−ビニルベンジル−D−ラクトンアミドと4−ビニルベンジルヘキサデカンアミドとの共重合物に関する。   That is, the present invention relates to a copolymer of Np-vinylbenzyl-D-lactone amide and 4-vinylbenzyl hexadecanamide.

本発明の別の態様においては、N−p−ビニルベンジル−D−ラクトンアミドに代えて、N−p−ビニルベンジル−D−セロビオンアミド、N−p−ビニルベンジル−D−マルトンアミド、N−p−ビニルベンジル−D−マルトトリオンアミド、N−p−ビニルベンジル−D−マルトペンタオンアミド、又はN−p−ビニルベンジル−D−マルトヘプタオンアミド、好ましくは、N−p−ビニルベンジル−D−マルトンアミド、N−p−ビニルベンジル−D−マルトトリオンアミドを用いることができる。   In another embodiment of the present invention, instead of Np-vinylbenzyl-D-lactone amide, Np-vinylbenzyl-D-cellobionamide, Np-vinylbenzyl-D-maltonamide, N -P-vinylbenzyl-D-maltotrionamide, Np-vinylbenzyl-D-maltopentanamide, or Np-vinylbenzyl-D-maltoheptanamide, preferably Np-vinylbenzyl -D-maltonamide and Np-vinylbenzyl-D-maltotrioneamide can be used.

本発明の別の態様においては、4−ビニルベンジルヘキサデカンアミドに代えて、下記式:
In another embodiment of the present invention, instead of 4-vinylbenzylhexadecanamide, the following formula:

(式中、
Xは、環員数が5〜10の飽和もしくは不飽和の単環もしくは二環、もしくは窒素、酸素を含む分子を表し、ここで、該環は、窒素、硫黄、酸素からなる群より選択される1〜3個の原子を含んでもよく、
nは、0又は1であり、
Yは、−NHCO−、−CONH−、−NHCONH−、−NH−、−CO−、または炭素数0以上のアルキル基であり、
Rは、炭素数が1〜20の直鎖または分岐のアルキル、アルケニルまたはアルキニルであり、必要により1個もしくは2個のヒドロキシ、メルカプト、アミノ、シアノ、ヘテロシクリル、ヘテロシクリルオキシ、フェニル、ベンジル、ヘテロアリール、フェノキシ、ベンジルオキシ及びヘテロアリールオキシにより置換されていてもよい)
で表される化合物を用いることができる。
(Where
X represents a saturated or unsaturated monocyclic or bicyclic ring having 5 to 10 ring members, or a molecule containing nitrogen or oxygen, wherein the ring is selected from the group consisting of nitrogen, sulfur and oxygen May contain 1 to 3 atoms,
n is 0 or 1;
Y is -NHCO-, -CONH-, -NHCONH-, -NH-, -CO-, or an alkyl group having 0 or more carbon atoms,
R is linear or branched alkyl, alkenyl or alkynyl having 1 to 20 carbon atoms, and optionally 1 or 2 hydroxy, mercapto, amino, cyano, heterocyclyl, heterocyclyloxy, phenyl, benzyl, heteroaryl Optionally substituted by phenoxy, benzyloxy and heteroaryloxy)
The compound represented by these can be used.

また、本発明に用いることができるモノマーは、上記モノマーに限定されるものではなく、上記モノマー以外にもVLAと好ましく共重合体を形成するビニル基をもった市販あるいは合成されたモノマーを用いることができる。   In addition, the monomers that can be used in the present invention are not limited to the above monomers, and in addition to the above monomers, commercially available or synthesized monomers having a vinyl group that preferably forms a copolymer with VLA are used. Can do.

本発明の共重合物であるN−p−ビニルベンジル−D−ラクトンアミド:4−ビニルベンジルヘキサデカンアミドの共重合比率は、9:1〜1:9、好ましくは、9:1〜5:5、より好ましくは、9:1〜6:4である。   The copolymerization ratio of Np-vinylbenzyl-D-lactone amide: 4-vinylbenzyl hexadecanamide, which is the copolymer of the present invention, is 9: 1 to 1: 9, preferably 9: 1 to 5: 5. More preferably, it is 9: 1 to 6: 4.

本共重合物の合成に用いるモノマーVLAは、一般的にはラクトースの酸化、脱水により得られるラクトースラクトンとビニルベンジルアミンの反応により得られ、もう一方のモノマーであるビニルベンジルヘキサデカンアミド(VAL)は、ビニルベンジルアミンとパルミトイルクロライドの反応により得られる。共重合物は、一般的な開始剤を用いたラジカル重合により得る事が出来る。   The monomer VLA used for the synthesis of this copolymer is generally obtained by the reaction of lactose lactone obtained by oxidation and dehydration of lactose with vinylbenzylamine, and the other monomer, vinylbenzylhexadecanamide (VAL), is obtained. It can be obtained by the reaction of vinylbenzylamine and palmitoyl chloride. The copolymer can be obtained by radical polymerization using a general initiator.

また、本発明の抗血栓性共重合物は、従来公知の薬学的に許容可能な物質、例えば、水、緩衝液、アルコール等に溶解するか又は分散させ、所要の場合には、さらにこれに乳化剤、分散剤、懸濁剤、安定剤などを添加して用いることができる。   Further, the antithrombotic copolymer of the present invention is dissolved or dispersed in a conventionally known pharmaceutically acceptable substance such as water, buffer solution, alcohol, etc., and if necessary, further added thereto. An emulsifier, a dispersant, a suspending agent, a stabilizer and the like can be added and used.

また、本発明による抗血栓性共重合物は、公知の抗血栓性物質と併用することもできる。   The antithrombotic copolymer according to the present invention can be used in combination with a known antithrombotic substance.

医療容器具の表面に本発明の共重合物を処理する方法としては、浸漬法、スプレー法、刷毛などで塗布する方法等が用いられるが、塗布後、紫外線やγ線等の高エネルギー線照射により表面への結合を強化することも可能である。これらに限定されるものではない。   As a method for treating the surface of the medical container with the copolymer of the present invention, a dipping method, a spray method, a method of applying with a brush or the like is used, but after application, irradiation with high energy rays such as ultraviolet rays and γ rays. It is also possible to strengthen the bond to the surface. It is not limited to these.

ここで、医療用器具の基材の材料としては、通常使用される全ての材料が含まれる。例えば、ポリ塩化ビニル、ポリウレタン、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリエステル、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリブタジエン、シリコーンゴム、ポリメチルメタクリレート、ポリフッ化ビニリデン等の樹脂及びこれらの樹脂の混合物、ステンレス、チタニウム及びアルミニウム等の金属等を挙げることができる。   Here, as a material of the base material of a medical instrument, all the materials normally used are included. For example, resins such as polyvinyl chloride, polyurethane, polycarbonate, polysulfone, polyethersulfone, polyester, polyethylene terephthalate, polyethylene, polypropylene, polybutadiene, silicone rubber, polymethylmethacrylate, polyvinylidene fluoride, and mixtures of these resins, stainless steel, titanium And metals such as aluminum.

VLA−co−ビニルベンジルヘキサデカンアミド(VAL)の製造方法
適量のナスフラスコ中でクロロメチルスチレン 1kgをDMF3.2L に溶解し、カリウムフタルイミド 1.2kgを加えた。これを50℃、4時間反応させた。エバポレーターを用いてDMFを留去したのち、ベンゼン4.5Lを加えて残さを溶解した。ベンゼンを0.2N NaOH溶液で数回洗浄した(全量3.25L)。ベンゼンを更に水で数回洗浄し(全量3.25L)、NaSO等で乾燥させた後、エバポレーターを用いて溶媒を留去した。残さをメタノールから再結晶して1.5kgのビニルベンジルフタルイミドを得た。
Method for producing VLA-co-vinylbenzylhexadecanamide (VAL) 1 kg of chloromethylstyrene was dissolved in 3.2 L of DMF in an appropriate amount of eggplant flask, and 1.2 kg of potassium phthalimide was added. This was reacted at 50 ° C. for 4 hours. After distilling off DMF using an evaporator, 4.5 L of benzene was added to dissolve the residue. Benzene was washed several times with 0.2N NaOH solution (total amount 3.25 L). Benzene was further washed several times with water (total amount 3.25 L), dried with NaSO 4 and the like, and then the solvent was distilled off using an evaporator. The residue was recrystallized from methanol to obtain 1.5 kg of vinylbenzylphthalimide.

適量のセパラブルフラスコ中で上記ビニルベンジルフタルイミド 1Kgを2.7Lのエタノールに溶解し、窒素気流下、加熱灌流させた。これに滴下ロートを用いて、80%ヒドラジンモノハイドレート 0.36kg/545ml EtOH溶液を滴下した(滴下時間40分程度)。反応は、90分間、加熱灌流させて行った。反応終了後、得られた固体を濾取し、これに、KOH溶液(1kg/6.5L HO)を加えて溶解したのち、エーテルにて抽出した(全量3.6L×3)。エーテル層をさらに、2%KCO溶液で洗浄し、さらに水で数回洗浄した。エーテル層をNaSO上で乾燥した後、エーテルを留去し、残さを減圧蒸留し0.45kgのビニルベンジルアミンを得た。 In an appropriate amount of separable flask, 1 kg of the above vinylbenzyl phthalimide was dissolved in 2.7 L of ethanol and heated and perfused under a nitrogen stream. To this, a dropping funnel was used, and 80% hydrazine monohydrate 0.36 kg / 545 ml EtOH solution was dropped (dropping time about 40 minutes). The reaction was performed by heating and perfusion for 90 minutes. After completion of the reaction, the obtained solid was collected by filtration, dissolved in KOH solution (1 kg / 6.5 L H 2 O) and extracted with ether (total amount: 3.6 L × 3). The ether layer was further washed with 2% K 2 CO 3 solution and further several times with water. After the ether layer was dried over Na 2 SO 4 , the ether was distilled off, and the residue was distilled under reduced pressure to obtain 0.45 kg of vinylbenzylamine.

次に、ラクトース12gをメタノール300mlに分散させ、40℃に加熱した。これに、ヨウ素18gのメタノール溶液を滴下し、40分間反応させた。これに、4NのKOHメタノール溶液を、ヨウ素の着色が無くなるまで添加した。沈澱を濾取し、冷メタノールで数回洗浄後、エーテルで洗浄し、一旦秤量した。その後、得られた結晶をごく少量の水に溶解し、アンバーライト120Bのプロトン型イオン交換樹脂にアプライし、酸性分画を単離した。得られた水溶液にメタノールとエタノールを添加してエバポレーションした。完全に乾固したのち、再び、メタノールとエタノールを加えて溶解し、エバポレーションした。この操作を数回繰り返し、ラクトースラクトンを作製した。   Next, 12 g of lactose was dispersed in 300 ml of methanol and heated to 40 ° C. To this, a methanol solution of 18 g of iodine was dropped and reacted for 40 minutes. To this, 4N KOH methanol solution was added until no iodine coloration occurred. The precipitate was collected by filtration, washed several times with cold methanol, washed with ether, and once weighed. Thereafter, the obtained crystals were dissolved in a very small amount of water and applied to a proton-type ion exchange resin of Amberlite 120B, and the acidic fraction was isolated. Methanol and ethanol were added to the obtained aqueous solution for evaporation. After complete drying, methanol and ethanol were added again to dissolve and evaporate. This operation was repeated several times to produce lactose lactone.

適量のナスフラスコ中で、前記ラクトースラクトン 1kgをメタノール5.4Lに70℃で溶解したのち、これにビニルベンジルアミン 0.4kgを加え、120分、70℃で反応させた。反応終了後、21.7Lのアセトンを加えて、VLAを沈殿させた、これを4℃で数時間放置したのち濾取し、沈殿をメタノールから再結晶した。収量は、1.1kgであった。   In an appropriate amount of eggplant flask, 1 kg of the above lactose lactone was dissolved in 5.4 L of methanol at 70 ° C., 0.4 kg of vinylbenzylamine was added thereto, and reacted at 70 ° C. for 120 minutes. After completion of the reaction, 21.7 L of acetone was added to precipitate VLA. This was allowed to stand at 4 ° C. for several hours and then collected by filtration. The precipitate was recrystallized from methanol. The yield was 1.1 kg.

次にもう一方のモノマーであるビニルベンジルヘキサデカンアミド(VAL)の合成を示す。上記で得られたビニルベンジルアミン10gを無水クロロフォルム150mlに溶解し、ピリジン7gを加えて、冷却した後、パルミトイルクロリド24gを溶解した無水クロロフォルム50mlを滴下漏斗より30分間かけて滴下した。反応終了後、クロロフォルム溶液を水で洗浄した後、乾燥させ、溶媒を減圧留去した。残さをエタノールから再結晶して、VAL20gを得た。   Next, synthesis of another monomer, vinylbenzylhexadecanamide (VAL), is shown. 10 g of vinylbenzylamine obtained above was dissolved in 150 ml of anhydrous chloroform, 7 g of pyridine was added and cooled, and then 50 ml of anhydrous chloroform in which 24 g of palmitoyl chloride was dissolved was added dropwise over 30 minutes from the dropping funnel. After completion of the reaction, the chloroform solution was washed with water and then dried, and the solvent was distilled off under reduced pressure. The residue was recrystallized from ethanol to obtain 20 g of VAL.

ポリマーの合成のために、VLAとVALをモル比9:1、8:2,7:3等の割合で秤量し、真空反応管に分注した。DMSOあるいはDMSO−トルエンの混合溶媒を加えて完全に溶解した後、凍結−脱気−融解を繰り返して、酸素を溶液中から取り除いた。これに100分の1モルのアゾイソブチロニトリル(AIBN)を添加して、溶解したのち、減圧密閉した。60℃で5時間反応させてポリマーを合成した。   For polymer synthesis, VLA and VAL were weighed at a molar ratio of 9: 1, 8: 2, 7: 3, etc., and dispensed into a vacuum reaction tube. After DMSO or a mixed solvent of DMSO-toluene was added and completely dissolved, freeze-deaeration-thawing was repeated to remove oxygen from the solution. To this, 1/100 mol of azoisobutyronitrile (AIBN) was added and dissolved, and then sealed under reduced pressure. The polymer was synthesized by reacting at 60 ° C. for 5 hours.

得られた溶液を大過剰のメタノールに滴下して、ポリマーを沈澱させた。これを適当な溶媒に溶解し、再びメタノールに滴下してポリマーを沈澱させる操作を3回繰り返した。   The resulting solution was added dropwise to a large excess of methanol to precipitate the polymer. The operation of dissolving this in an appropriate solvent and dropping it again into methanol to precipitate the polymer was repeated three times.

最終的に得られたポリマーを蒸留水に溶解し、大過剰の水に対して透析した。その後、凍結乾燥により目的のポリマーを得た。   The finally obtained polymer was dissolved in distilled water and dialyzed against a large excess of water. Then, the target polymer was obtained by freeze-drying.

上記で調製したVLA−co−ビニルベンジルヘキサデカンアミド(共重合比率=9:1)のポリスチレン板に対するコーティング性を従来のPVLAと比較した。   The coating properties of the VLA-co-vinylbenzylhexadecanamide (copolymerization ratio = 9: 1) prepared above on polystyrene plates were compared with conventional PVLA.

媒体として70%(v/v)エタノール水溶液を用いコーティング用溶液を調製した。コーティング用溶液の濃度は、両者ともに0.3mg/mlとした。   A coating solution was prepared using 70% (v / v) aqueous ethanol as a medium. The concentration of the coating solution was 0.3 mg / ml in both cases.

ポリスチレン板上884(mm2)にコーティング溶液50μLを均一に塗布し、コーティング溶液のポリスチレン板上における挙動を経時的に観察した。 50 μL of the coating solution was uniformly applied to 884 (mm 2 ) on the polystyrene plate, and the behavior of the coating solution on the polystyrene plate was observed over time.

VLA−co−ビニルベンジルヘキサデカンアミド(共重合比率=9:1)溶液では、6分30秒後においても溶液は、ポリスチレン板状に均一に広がっていた。これに対して、PVLA溶液は、約30秒後から分布が不均一となり、2分30秒後には、ポリスチレン板上に水滴状に散在していた。   In the VLA-co-vinylbenzylhexadecanamide (copolymerization ratio = 9: 1) solution, the solution spread evenly in a polystyrene plate shape even after 6 minutes and 30 seconds. On the other hand, the distribution of the PVLA solution was uneven after about 30 seconds, and after 2 minutes and 30 seconds, the PVLA solution was scattered in the form of water droplets on the polystyrene plate.

また、処理後のポリスチレン板を風乾し、これに水を滴下したところ、VLA−co−ビニルベンジルヘキサデカンアミド(共重合比率=9:1)溶液処理では、均一に水が拡がったのに対し、PVLA溶液処理では、PVLA溶液が局在した部分にのみ水が局在した。   Moreover, when the polystyrene plate after the treatment was air-dried and water was added dropwise thereto, in the VLA-co-vinylbenzylhexadecanamide (copolymerization ratio = 9: 1) solution treatment, the water spread uniformly. In the PVLA solution treatment, water was localized only in the portion where the PVLA solution was localized.

これらの結果から、VLA−co−ビニルベンジルヘキサデカンアミド(共重合比率=9:1)溶液は、PVLAに比べて優れたコーティング性を有していることが明らかとなった。   From these results, it became clear that the VLA-co-vinylbenzylhexadecanamide (copolymerization ratio = 9: 1) solution has a coating property superior to that of PVLA.

平均直径207μmのガラスビーズに、医療用軟質ポリ塩化ビニル樹脂(以下PVC)の0.3%(w/v)テトラヒドロフラン溶液を用いPVCをコーティングした後、VLA−co−ビニルベンジルヘキサデカンアミド(共重合比率=9:1および8:2)の95%(vol.)メタノール水溶液を用い更にコーティング行なった。純水で充分リンスののち乾燥させ、内径2.1mmのテフロンチューブ内に細密充填し血小板粘着評価用カラムとした(図1)。   A glass bead having an average diameter of 207 μm was coated with PVC using a 0.3% (w / v) tetrahydrofuran solution of soft polyvinyl chloride resin (hereinafter PVC) for medical use, and then VLA-co-vinylbenzylhexadecanamide (copolymerization). Further coating was performed using a 95% (vol.) Aqueous methanol solution in a ratio = 9: 1 and 8: 2). After thoroughly rinsing with pure water, it was dried and packed finely in a Teflon tube having an inner diameter of 2.1 mm to obtain a platelet adhesion evaluation column (FIG. 1).

比較対照とし、未コートビーズ(PVCコーティングのみ)、PVLAコーティングビーズ、市場流通品と同等のヘパリン化合物コーティングビーズを用い同様のカラムを作製した。   As a comparative control, similar columns were prepared using uncoated beads (PVC coating only), PVLA coated beads, and heparin compound coated beads equivalent to those on the market.

これらカラムに生理食塩水を充填後、3.8(IU/mL)の濃度となるように前もってヘパリンナトリウムを入れたシリンジを用い、家兎心臓直接穿刺による採血を行った。直ちにペリスターポンプを用いて毎分1mLの流速で上記カラムへ送血し、カラム入口側と出口側の血液サンプリングを行い、両血液中の血小板数を微粒子カウンターで測定した。両血小板数より血小板流出率(%)(出口側血小板数/入口側血小板数×100)を求めた。結果を表1に示す。   After these columns were filled with physiological saline, blood was collected by direct puncture of the rabbit heart using a syringe containing heparin sodium in advance so as to obtain a concentration of 3.8 (IU / mL). Immediately using a peristaltic pump, blood was sent to the column at a flow rate of 1 mL per minute, blood sampling was performed on the inlet and outlet sides of the column, and the number of platelets in both blood was measured with a fine particle counter. Platelet outflow rate (%) (exit side platelet count / inlet side platelet count × 100) was determined from both platelet counts. The results are shown in Table 1.

表1中、9:1及び8:2は、それぞれ、共重合比率が、9:1及び8:2のVLA−co−ビニルベンジルヘキサデカンアミドを表す。また、Hepは、ヘパリンを表す。   In Table 1, 9: 1 and 8: 2 represent VLA-co-vinylbenzylhexadecanamide having a copolymerization ratio of 9: 1 and 8: 2, respectively. Hep represents heparin.

本発明によれば、VLA−co−ビニルベンジルヘキサデカンアミド(共重合比率=9:1および8:2)を用いることにより、既知のPVLAや既存のヘパリン化合物より優れた血液適合性表面を得ることができる。   According to the present invention, by using VLA-co-vinylbenzylhexadecanamide (copolymerization ratio = 9: 1 and 8: 2), a blood compatible surface superior to known PVLA and existing heparin compounds is obtained. Can do.

また別基材として平均直径199(μm)のステンレスビーズにVLA−co−ビニルベンジルヘキサデカンアミド(共重合比率=9:1)のメタノール水溶液を用いコーティングし同様の評価を行った結果を表2に示す。   In addition, Table 2 shows the results of coating the stainless steel beads having an average diameter of 199 (μm) with a methanol aqueous solution of VLA-co-vinylbenzylhexadecanamide (copolymerization ratio = 9: 1) as another base material and conducting the same evaluation. Show.

本発明によればVLA−co−ビニルベンジルヘキサデカンアミド(共重合比率=9:1)を用いることにより、ステンレス表面の血液適合性を著しく高めることができる。   According to the present invention, by using VLA-co-vinylbenzylhexadecanamide (copolymerization ratio = 9: 1), blood compatibility on the stainless steel surface can be remarkably enhanced.

また、別基材として1,2−ポリブタジエンの0.3%(w/v)シクロヘキサン溶液によりコーティングを行なった上記ガラスビーズへVLA−co−ビニルベンジルヘキサデカンアミド(共重合比率=6:4)のジメチルスルホキシド(DMSO)0.5%(wt./vol.)溶液を用い更にコーティングを行なった後、5Wの紫外線照射を行なった試料の評価結果を下記表3に示す。   In addition, VLA-co-vinylbenzylhexadecanamide (copolymerization ratio = 6: 4) was applied to the glass beads coated with a 0.3% (w / v) cyclohexane solution of 1,2-polybutadiene as another substrate. Table 3 below shows the evaluation results of samples subjected to 5 W ultraviolet irradiation after further coating with a dimethyl sulfoxide (DMSO) 0.5% (wt./vol.) Solution.

本発明によればVLA−co−ビニルベンジルヘキサデカンアミド(共重合比率=6:4)を用いることにより、ポリブタジエン表面の血液適合性を著しく高めることができる。   According to the present invention, the blood compatibility of the polybutadiene surface can be remarkably enhanced by using VLA-co-vinylbenzylhexadecanamide (copolymerization ratio = 6: 4).

更に別基材として、ポリウレタンの0.3%(w/v)テトラヒドロフラン溶液によりコーティングを行なった上記ガラスビーズへVLA−co−ビニルベンジルヘキサデカンアミド(共重合比率=9:1及び8:2)の95%(vol.)メタノール水溶液、および共重合比率=6:4の95%(vol.)1−プロパノール水溶液を用い更にコーティングを行なった試料の評価結果を表4に示す。   Further, as another substrate, VLA-co-vinylbenzylhexadecanamide (copolymerization ratio = 9: 1 and 8: 2) was applied to the glass beads coated with a 0.3% (w / v) tetrahydrofuran solution of polyurethane. Table 4 shows the evaluation results of samples further coated with a 95% (vol.) Aqueous methanol solution and a 95% (vol.) 1-propanol aqueous solution having a copolymerization ratio of 6: 4.

本発明によればVLA−co−ビニルベンジルヘキサデカンアミド(共重合比率=9:1〜6:4)を用いることにより、ポリウレタン表面の血液適合性を著しく高めることができる。   According to the present invention, the blood compatibility of the polyurethane surface can be remarkably enhanced by using VLA-co-vinylbenzylhexadecanamide (copolymerization ratio = 9: 1 to 6: 4).

本発明の共重合物は、血小板の活性化を抑制し、血栓形成を効果的に予防することができる。また、血液と接触する可能性がある医療用器具の血液接触面の少なくとも一部を本発明の共重合物で処理することによって、当該医療用器具の使用による血栓形成を防止することができる。   The copolymer of the present invention can inhibit platelet activation and effectively prevent thrombus formation. In addition, by treating at least part of the blood contact surface of a medical device that may come into contact with blood with the copolymer of the present invention, thrombus formation due to the use of the medical device can be prevented.

血小板粘着評価用カラムを示した図である。It is the figure which showed the column for platelet adhesion evaluation.

Claims (4)

下記式:

(式中、m:n=9:1〜1:9であり、xは、6〜18である。)
で表される共重合物。
Following formula:

(In the formula, m: n = 9: 1 to 1: 9, and x is 6 to 18.)
A copolymer represented by
xが14である、請求項1に記載の共重合物。   The copolymer according to claim 1, wherein x is 14. 請求項1又は2に記載の共重合物を含む、抗血栓性組成物。   An antithrombotic composition comprising the copolymer according to claim 1. 請求項1に記載の共重合物を用いて表面の少なくとも一部が処理されていることを特徴とする、医療用器具。
A medical device, wherein at least a part of the surface is treated with the copolymer according to claim 1.
JP2003348559A 2003-10-07 2003-10-07 Antithrombotic copolymer Expired - Fee Related JP4631263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003348559A JP4631263B2 (en) 2003-10-07 2003-10-07 Antithrombotic copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003348559A JP4631263B2 (en) 2003-10-07 2003-10-07 Antithrombotic copolymer

Publications (3)

Publication Number Publication Date
JP2005112987A JP2005112987A (en) 2005-04-28
JP2005112987A5 JP2005112987A5 (en) 2006-11-16
JP4631263B2 true JP4631263B2 (en) 2011-02-16

Family

ID=34540719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003348559A Expired - Fee Related JP4631263B2 (en) 2003-10-07 2003-10-07 Antithrombotic copolymer

Country Status (1)

Country Link
JP (1) JP4631263B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007790A1 (en) 2006-07-14 2008-01-17 Tomey Co., Ltd. Liquid agent for contact lens and method for hydrophilizing contact lens by using the same
JP5419682B2 (en) * 2007-03-23 2014-02-19 Jsr株式会社 Coating composition and method of use thereof
JPWO2009025043A1 (en) * 2007-08-22 2010-11-18 有限会社セラジックス Novel cross-linked polymer, method for producing the same, and use thereof
EP2283807A1 (en) * 2008-05-09 2011-02-16 Celagix, Res. Ltd. Moisturizing agent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347802A (en) * 1989-04-20 1991-02-28 Mitsui Toatsu Chem Inc Styrene derivative having n-acetylchitooligosaccharide chain and production thereof
JPH08253495A (en) * 1995-03-17 1996-10-01 Kanagawa Kagaku Gijutsu Akad Mannose structure-containing styrene derivative and polystyrene derivative and their production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347802A (en) * 1989-04-20 1991-02-28 Mitsui Toatsu Chem Inc Styrene derivative having n-acetylchitooligosaccharide chain and production thereof
JPH08253495A (en) * 1995-03-17 1996-10-01 Kanagawa Kagaku Gijutsu Akad Mannose structure-containing styrene derivative and polystyrene derivative and their production

Also Published As

Publication number Publication date
JP2005112987A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
CA2897127C (en) Coating for substrate
CN105263536B (en) Fixation of the activating agent on substrate
JP6942708B2 (en) Lubricating coating with surface salt groups
Matsumaru et al. Application of thermosensitive polymers as a new embolic material for intravascular neurosurgery
JP6373872B2 (en) Medical tools
US11278647B2 (en) Lubricious coating for medical device
JP4631263B2 (en) Antithrombotic copolymer
US20100316694A1 (en) Novel filter composites for drug detoxification
JP6781220B2 (en) Substrate coating
WO2002098344A1 (en) Antithrombotic compositions and medical instruments containing the same
CN113164660A (en) Immobilized biological entities
JP2000279512A (en) Material for medical treatment and manufacture thereof
EP3307281B1 (en) Use of a block polymer comprising a block of poly(3-(methacryloylamino)propyltrimethylammonium chloride) (pmaptac) for the neutralization of heparin
JPH07136256A (en) Method for decreasing viscosity of plasma of blood vessel embolism patient's blood and device therefor
JP2004298223A (en) Biocompatible material
RU2220982C2 (en) Argacryl as new antiseptic and hemostatic agent
JPH10151192A (en) Anti-thrombot composition and medical material
BR112020017412A2 (en) SOLID OBJECT HAVING A SURFACE UNDERSTANDING A COATING IN LAYERS OF CYANIC AND ANIONIC POLYMERS AND ITS MANUFACTURING PROCESS
JP4338351B2 (en) Blood compatible material
JP4219512B2 (en) Ion concentration regulator of blood for transfusion
JP5146945B2 (en) Antithrombogenic coating agent and medical device
Courtney et al. The design of a polymer coating for activated carbon
JP2753617B2 (en) Antithrombotic material
JP2000060960A (en) Manufacture of anti-thrombogen medical care device
JP2020127705A (en) Heparin-immobilized binder, its manufacturing method, medical supply and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100709

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Ref document number: 4631263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees