JP4338351B2 - Blood compatible material - Google Patents

Blood compatible material Download PDF

Info

Publication number
JP4338351B2
JP4338351B2 JP2002078866A JP2002078866A JP4338351B2 JP 4338351 B2 JP4338351 B2 JP 4338351B2 JP 2002078866 A JP2002078866 A JP 2002078866A JP 2002078866 A JP2002078866 A JP 2002078866A JP 4338351 B2 JP4338351 B2 JP 4338351B2
Authority
JP
Japan
Prior art keywords
blood
water
infrared absorption
absorption spectrum
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002078866A
Other languages
Japanese (ja)
Other versions
JP2003275296A (en
Inventor
昌 木口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002078866A priority Critical patent/JP4338351B2/en
Publication of JP2003275296A publication Critical patent/JP2003275296A/en
Application granted granted Critical
Publication of JP4338351B2 publication Critical patent/JP4338351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は血液又は血液成分と接触する医療用器具、具体的には、人工腎臓、人工心肺などの人工臓器、それらに使用する血液チューブなどの医療用器具、血液フィルターや血液成分吸着剤などに適した血液適合性に優れたポリマーからなる血液適合性材料に関する。さらに詳しくは、スルホン及び/又はスルホキシドの官能基と脂肪族鎖とエステル基から形成されるポリマーからなる、医療用材料に適した血液適合性材料に関する。
【0002】
【従来の技術】
近年、医療技術の進歩に伴って、生体組織や血液と、各種の材料が接触する機会は増加しており、材料の生体親和性が大きな問題になってきた。中でも、蛋白質や血球などの血液成分が材料表面に吸着し変性することは、血栓形成、炎症反応等の通常では認められない悪影響を生体側に引き起こすばかりでなく、材料の劣化にもつながり、医療用材料の根本的、かつ、緊急に解決せねばならない重要な課題となってきている。
【0003】
例えば、血液の体外循環に用いる血液回路や血管内に挿入するカテーテルなどの部材は、外科的医療において必要不可欠なものであり、外科的医療の技術の進展に大きく貢献してきた。
医療用材料として、高い機械的強度及び成形性の観点から、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリメタクリル酸メチル、シリコーンゴム、ポリテトラフルオロエチレン、セルロースなどの汎用樹脂が使用されている。これらの素材の機械的物性が、部材としての要求特性に大きく考慮されてきた一方で、血液適合性については全く改善されず、主に、ヘパリンなどの抗凝固剤の血中投与により、かろうじて血液凝固などの異物反応を抑制していた。
【0004】
しかしながら、最近ヘパリンの長期継続投与は、脂質代謝異常などの肝臓障害、出血時間の延長あるいはアレルギー反応等の副作用を併発することが認められている。
以上の背景から、血液接触型医療器具を使用する際に、抗凝固剤の使用量を低減させるか、全く使用しなくても血液凝固を引き起こさない、血液適合性に優れた素材の開発が強く望まれるようになってきた。また、細胞培養の担体やDDS(ドラッグデリバリーシステム)のキャリア、創傷被覆材などにも血液適合性が求められている。
【0005】
こうした背景から様々な材料開発がこれまで行われてきた。
例えば、基材表面を網目構造にし、そこに血管内皮細胞を増殖させ、その表面をもってして血栓形成を抑制する材料がある(A.Voorhees et al .,Ann Surg.,332(1952))。これらの材料は、いかに偽内膜を薄くするか、その脱落を起こしにくくするかが問題であり、未だ安定した材料は得られていない。
抗血液凝固剤のヘパリンを基材表面に固定化し、血液適合性を高めた材料の開発も行われた(V.Gott et al .,Science,142,1297(1963))。しかし血中にはヘパリン分解酵素が存在するので、最終的にはヘパリンが失活してしまい、このタイプのものは長期の使用ができない、という問題を抱えている。
【0006】
また、血栓溶解剤であるウロキナーゼを基材表面に固定化させる方法も考えられている(B.Kusserow et al .,Trans.Am.Soc.Artif.Int.Organs.,17,1(1971))が、固定化されたウロキナーゼは活性が低くなってしまい、期待した効果が得られなくなってしまう、という問題があり、ウロキナーゼの活性が低下しない固定化方法が望まれている。
血液成分の吸着を抑制するような合成高分子を表面に固定化する試みもなされている(E.Merrill,Ann.NY.Acad.Sci.,6,283(1977))。水溶性で、高い運動性を有するポリエチレンオキサイドの固定化はその一例で、分子鎖の運動がいわゆる散漫層を形成し、蛋白質の吸着が抑制され血栓が形成しにくくなるが、このような高含水のポリマーは血小板へダメージを与えやすいという欠点を有しているとの報告(B.D.RATNER et al, J.of Polymer Sci.:Polymer Symposium 66,(1979))もある。
【0007】
表面修飾においては、血管内面を覆う内皮細胞が最も理想的な材料であるとの観点から、この細胞膜の主成分であるリン脂質を利用したポリマーが色々と合成され、研究が進められている。中でも、ホスホリルコリン基を有するメタクリル酸エステル、2−メタクリロイルオキシエチルホスホリルコリン(MPC)は優れた血液適合性を示し(Y.Iwasaki et al., J.Biomed.Mater.Res.,36,508(1997))、各種医療用具への応用が検討されている。しかし、材料自身及び固定化方法の煩雑さによる高コスト化、均質な固定化表層の獲得の困難さ、といった面での問題が残っている。
【0008】
他方で、上例のような表面固定化法とは異なり、材料表面の構造制御によって抗血栓性を発現させる試みもある。この方法はこれまで述べてきた方法が抱える固定化材料の脱落等の問題を根本から解決するものであり、幅広い応用が期待されるものである。これらは材料表面と血漿蛋白及び血小板との間の物理化学的因子に基づいた相互作用に着目した設計がなされている。中でも、材料表面上に微小な表面自由エネルギー差を形成させた材料が高い血液適合性を示すことが報告されている。代表例としては、ポリマー表面に親水−疎水ミクロドメイン構造を有するヒドロキシエチルメタクリレート−スチレン−ヒドロキシエチルメタクリレートブロック共重合体(C.Nojima et al .,ASAIO Transactions,33,596(1987))や、ポリマーの結晶性を制御した、ポリアミドセグメントを有するポリプロピレンオキシドブロック共重合体(N.Yui et al.,J.Biomed.Mater.Res.,20,929(1981))等があるが、血液との接触に際して補体の活性化を促すアミノ基や水酸基といった官能基を持っており、血液適合性材料としては不十分である。
【0009】
一方、硫黄酸化物を含有した高分子を用いた医療用材料としては、脂肪族スルホンに関しては、例えば、遠藤により報告されているもの(金沢大学十全医学会雑誌Vol.94,No.3,P466-478(1985))や、特開昭58−92446号公報には、1,5−シクロオクタジエンと二酸化硫黄の共重合で合成した脂肪族ポリスルホンの膜が開示されている。これらはいずれも、人工肺に用いる材料として、酸素透過性の向上を目的としたものであり、血漿タンパク質の吸着の抑制や抗血栓性などの血液適合性の改善については言及していない。また、D.N.Grayにより炭素数6から18のαオレフィンと二酸化硫黄を共重合させて得た脂肪族ポリスルホン(Polymer Engineering and Science, October, Vol.17, No.10,719-723(1997))が、やはり人工肺用材料として報告されているが、血液適合性については炭素数16の脂肪族ポリスルホンの血液凝固性を確認しているのみである。ガラスやシリコン化ガラス表面に比べて血栓生成時間の延長を認めているが、これは長い脂肪族鎖の低い自由エネルギーによる影響と結論づけている。
【0010】
以上述べたように、抗血栓性などの血液適合性を目的として積極的にスルホンの官能基を導入したものは見当たらない。また、これらはいずれもスルホン基と脂肪族鎖から形成されている。
スルホキシドに関しては、Li Dengらにより、金担体上に形成させたトリ(プロピレンスルホキシド)基を持つアルカンチオレートとウンデカンチオールの混合物からなる自己集合単分子層では、その表面へのタンパク吸着が減少することが報告されている(J.Am.Chem.Soc., Vol.118, No.21, 5136-5137(1966).)が、このスルホキシドは繰り返し単位が3程度のオリゴマーであり、ポリマーとしてのスルホキシドの血液適合性についての記載はない。
【0011】
また、脂肪族鎖とスルホンやスルホキシドの官能基を有するポリマーの合成法としては、上述した遠藤やD.N.Grayの報告や特開昭58−92446号公報に見られるような対応するアルケンと二酸化硫黄との共重合や、今井らの報告(高分子論文集、Vol.37、No.6、445−448、(1980))に見られるような脂肪族ジチオールと脂肪族ジハライドとの縮重合で得られたポリスルフィドを酸化する方法が知られているのみである。
【0012】
【発明が解決しようとする課題】
本発明の課題は、前記問題点を解決し、血液又は血液成分と接触する医療器具、具体的には、人工腎臓、人工心肺などの人工臓器、それらに使用する血液チューブなどの医用器具、血液フィルターや血液成分吸着剤などに適した血液適合性材料を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、以下のとおりである。
[1]アルキル部分が炭素数1〜4の直鎖構造または枝分かれ構造を有するスルホニルジアルキルアルコール又はスルフィニルジアルキルアルコールと、
しゅう酸、マロン酸、こはく酸、グルタル酸、アジピン酸から選ばれるいずれかとを、縮重合した構造を有することを特徴とする血液適合性材料。
[2]スルホニルジアルキルアルコールが2,2’−スルホニルジエタノールであり、該スルフィニルジアルキルアルコールが2,2’−スルフィニルジエタノールであることを特徴とする[1]記載の血液適合性材料。
【0014】
一般に、血液と接触した材料表面にはアルブミン、γ−グロブリン、フィブリノーゲンのような血漿蛋白質が吸着し、その後、これらは高次構造を変化させる。この高次構造の変化により、更なる蛋白質の吸着が促進され、材料表面には多層の蛋白吸着層が形成される。このような多層蛋白吸着層は、これと接触する血小板を活性化させ、最終的には血液が凝固することとなる。そのため、血漿蛋白質の材料表面への吸着を抑制し、血小板の活性化を回避することが血液適合性を得る上で重要であると考えられている。
【0015】
例えば、「高分子と医療」(竹本喜一ほか,P5,三田出版会(1989))によれば、血漿タンパク質との相互作用が著しく低い材料表面は、優れた抗凝血性を示すことが指摘されている。
材料表面への蛋白質の吸着に関しては、材料に収着された水の構造が材料表面と蛋白質との相互作用をコントロールする重要な因子であり、収着水構造がバルク水の構造と類似している場合にタンパク質の吸着が大幅に抑制されることをすでに本発明者が見出している(特開平09-122462号公報)。因みにここで使用した「収着」という用語は「吸着」と「吸収」を統合した用語であり、収着水とは材料の表面に吸着あるいは表面近傍に吸収された水のことである。
【0016】
すなわち、材料表面と高分子溶質の存在する水溶液が接する面においては、通常、様々な界面現象が観測される。例えば、高分子溶質が蛋白質であり、材料が疎水性の強いものであれば、多量の蛋白質の吸着が観測される。材料表面を親水性に加工することによって、ある程度の吸着の抑制は可能であるが、多くの例外が認められ、親水性(濡れ性)、すなわち、蛋白非吸着表面といえる程単純な現象ではないことが知られている。
【0017】
本発明者は、材料近傍の水構造に着目し、収着水構造を解析する上で赤外吸収スペクトルを用い、種々の官能基を有する材料の収着水構造と蛋白質の吸着特性に関し研究を行った結果、赤外吸収スペクトルにおける材料表面と相互作用した水の吸収バンドの分布がバルク水のそれに近いほど、材料表面への蛋白質の吸着が抑制される傾向があることを見出している。
本発明者は、種々の官能基に相互作用する水の構造に関して鋭意検討した結果、スルホン基、スルホキシド基に相互作用する水の構造が特にバルク水に近いことを発見し、これらの官能基を含有するポリマーが蛋白質の吸着を大幅に抑制し得ることを見出し、さらに該ポリマーの合成法として脂肪族鎖とスルホン及び/またはスルホキシドの官能基からなり両末端に水酸基を持つジオールと、両末端にカルボキシル基を持つジカルボン酸の縮重合で鎖長延長することにより、本発明を完成したものである。
【0018】
本発明において、血液適合性材料とは、血液と接触した際に発生する血液凝固が抑制された材料のことをさすが、より詳しくは、血液凝固を引き起こす原因となる材料表面への血小板の付着と活性化は材料表面に血漿蛋白質が吸着することが引き金になるが、この血漿蛋白質の吸着が抑制された材料のことを指す。
【0019】
【発明の実施の形態】
以下、本発明について詳細に説明する。
材料表面の収着水構造を評価するために、本発明者は、赤外吸収スペクトルの収着水由来である3400cm-1付近の吸収ピークの重心波数を用いた。
赤外吸収スペクトルにおける3400cm-1付近の吸収ピークを3650cm-1付近、3550cm-1付近、3450cm-1付近、3250cm-1付近の4種のコンポーネントにカーブフィッティングプログラムを用いて分離する。得られた各コンポーネントのピーク波数及び相対面積比より、相対面積比を重みとして重みつき平均により重心波数(Cwn)を求める。
【0020】
一般に、表面への蛋白吸着が比較的多いとみられる、例えば、芳香族ポリスルホンやポリメタクリル酸メチル、ポリアクリロニトリルの主たる官能基である、芳香環、エステル結合、ニトリル基を有するトルエン、酢酸メチル、アセトニトリルに水を1質量%添加し相互作用した水の赤外吸収スペクトルを調べてみると、その重心波数はそれぞれ3653cm-1、3573cm-1、3549cm-1であり、バルク水の3366cm-1より大きく高波数側に偏っている。
【0021】
これに対して、一般に、蛋白質の吸着を抑制する傾向のある、例えば、ポリエチレングリコールやポリビニルピロリドンの主たる官能基であるエーテル結合、アミド結合を有するテトラヒドロフラン、ジメチルホルムアミドに水を1質量%添加し相互作用した水の赤外吸収スペクトルを調べると、その重心波数は3507cm-1、3480cm-1と比較的バルク水に近い数字を示した。このことから相互作用する水の構造がバルク水に近くなる官能基を有する材料表面ほど蛋白質の吸着が抑制されることが推定される。
【0022】
ところが、親水性の官能基として、スルホン基、スルホキシド基を有するジメチルスルホン、ジメチルスルホキシドに水を1質量%添加し、相互作用した水の赤外吸収スペクトルを調べると、驚くべきことに、その重心波数はそれぞれ3405cm-1、3440cm-1で、バルク水のそれにさらに近いことがわかった。本発明者はこの知見をもとに、スルホン基、スルホキシド基を有するポリマーとして2,2’−スルホニルジエタノールとこはく酸の共重合体及び2,2’−スルフィニルジエタノールとこはく酸の共重合体を合成し、その膜を作製して蛋白質の吸着を調べてみたところ、予想通り、大幅な蛋白吸着抑制効果が達成されることを確認できた。
【0023】
ポリマーの構造としては、スルホン基、スルホキシド基の特性をより顕著に発揮させるため、それ以外の構造の影響はできるだけ小さい方がよい。スルホン基やスルホキシド基及びエステル基を連結する炭素鎖は、疎水性の強い芳香族鎖(必然的に炭素数6以上になる)は避けるべきで、脂肪族鎖が好ましく、しかも可能な限り鎖長は短い方がよい。
本発明の生体適合性材料を形成する脂肪族鎖は、炭素数5以上ではポリマー全体の疎水性が強くなり、蛋白が吸着しやすくなる傾向があるため、炭素数1から4のものが使用可能である。また、直鎖状、枝分かれ状のいずれでもよく、このようなものとしては、例えば、炭素数1の場合はメチレン鎖、炭素数2の場合はエチレン鎖、炭素数3の場合は1,3−プロピレン鎖、1−メチルエチレン鎖、炭素数4の場合は1,4−ブチレン鎖、1−メチル−1,3−プロピレン鎖、2−メチル−1,3−プロピレン鎖、1,1−ジメチルエチレン鎖、1,2−ジメチルエチレン鎖などが挙げられるが、好ましくは炭素数1から3、より好ましくは1から2、さらに好ましくは1のものが好ましい。
【0024】
本発明のポリマーの合成法の例としては、スルホンやスルホキシドの官能基を有する両末端水酸基のジオールを両末端カルボン酸のジカルボン酸との縮重合で鎖長延長して得る方法が挙げられる。この合成反応は水酸基とカルボキシル基のエステル化反応であり、工業的にも実施しやすい特長を有する。
また脂肪族鎖を有し両末端が水酸基であるスルフィドのモノマーを用いてジカルボン酸との縮重合でポリマーを合成した後、酢酸やぎ酸を触媒として過酸化水素で酸化してスルホンやスルホキシドとする方法もある。
【0025】
本発明の血液適合性材料を形成するジカルボン酸の例としては、脂肪族鎖の炭素数0の場合はしゅう酸、炭素数1の場合はマロン酸、炭素数2の場合はこはく酸、炭素数3の場合はグルタル酸、炭素数4の場合はアジピン酸などがある。また、このジカルボン酸の脂肪族鎖中にスルホン基やスルホキシド基が含有されていてもよく、むしろポリマーのスルホン基含有率、スルホキシド含有率が高くなり好適である。
【0026】
本発明の血液適合性材料を形成するスルホン基を有するジオールの例としては、 例えば2,2’−スルホニルジエタノールが挙げられる。またスルホキシドの前駆体としてのスルフィドの例としては、例えば2,2’−チオジエタノールが挙げられる。
本発明の化合物は、その赤外線吸収スペクトルが1020cm-1付近においてスルホキシド基由来の特性吸収、1120cm-1及び1320cm-1付近においてスルホン基由来の特性吸収また1730cm-1付近においてエステル基由来の特性吸収を示すのでこれによって同定することができる。
【0027】
本発明の化合物の分子量は、それ自体を基材として用いる場合は、数平均分子量で30,000〜300,000が好ましい。数平均分子量が300,000を越えると成形が難しくなり、30,000未満になると機械的強度が低下する。他の基材材料にブレンドしたりコーティングしたりして用いる場合は、数平均分子量で3,000〜100,000が好ましい。数平均分子量が100,000を越えるとコーティングが困難になり、3,000未満では水に溶出しやすくなる。
【0028】
本発明の化合物は、分子量や脂肪族鎖の構造を適当に選ぶことにより、基材そのものとして用いることができるが、用途によっては本発明品を溶剤に溶解し、他の基材表面にコーティングしてもよく、他のポリマーとブレンドして用いることもできる。いずれの場合でも、本発明のポリマーは水に不溶なので、使用時に溶出することなく、優れた血液適合性を持続して発揮することができる。
本発明の血液適合材料は、例えば、直接血液成分と接触して用いることが主たる目的となる医療用材料として、人工腎臓、人工心肺等の人工臓器類、人工血管、血液透析膜用や人工心肺用の血液チューブ、ブラッドアクセス、又は血液バッグ、カテーテル、さらに血漿分離膜や血球分離膜等の血液フィルターや血液成分吸着材等に用いることができる。
【0029】
また、血液や細胞など生体へ及ぼす影響が少ないことから、各種細胞培養の担体やDDSのキャリアや創傷被覆材などにも優れた性能を発揮する。
このような材料として本発明の血液適合材料を用いる場合、該材料自体を基材として用いて中空糸、シート、フィルム、チューブとして成形するのみならず、種々の他のポリマーとブレンドして用いることもできる。さらに本発明の血液適合材料を溶媒に溶解し、この溶液を各種基材表面に塗布し、生体接触表面のみを改質することも可能である。
【0030】
【実施例】
実施例によって本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。
<測定法>
・蛋白付着量測定法:BCA法による定量法で行った。
ウシγ−グロブリン20mg(SIGMA社製)を2mlの1M燐酸緩衝液(和光純薬製)に溶解し、その蛋白溶液に試験平膜(約1×1cm)を37℃で1時間浸漬させた。その後、試験片を1M燐酸緩衝液で洗浄し、1%のドデシル硫酸ナトリウム(和光純薬製)を溶解させた1M燐酸緩衝液0.5mlに37℃で4時間浸漬して吸着した蛋白を溶解させた。この液中の蛋白濃度をBCAプロテインアッセイキット(PIERCE社製)を用いて定量した。
【0031】
BCAキットによる蛋白の定量は取り扱い説明書に従って行った。試料を0.1ml採取し、調製済みのマイクロBCA試薬液を2.0ml加えて軽く攪拌し、37℃で30分加熱した後、紫外分光光度計で562nmの波長における吸光度を測定した。あらかじめ作製した検量線を使って蛋白濃度を求め、膜の単位面積あたりの蛋白吸着量を算出した。
【0032】
・収着水の重心波数の測定法
得られた平膜を湿度98%RH、温度25℃の雰囲気下に1時間静置した後、手早く赤外吸収スペクトル測定用窓材である2枚のフッ化カルシウム板に挟み、日本分光製FT/IR300を用い、25℃で15回積算測定して透過法赤外吸収スペクトルを求めた。別途、乾燥した同膜の赤外吸収スペクトルを測定しておき、差スペクトルをとることにより、膜に収着した水の赤外吸収スペクトルを得た。
【0033】
得られた赤外吸収スペクトルにおける水の伸縮振動の吸収に由来する3400cm-1付近の吸収ピークを、約3650cm-1、約3550cm-1、約3450cm-1及び約3250cm-1を中心とする4種のコンポーネントにカーブフィッティングプログラム(日本分光製CFT-300)を用いて分離した。得られた各コンポーネントのピーク波数及び相対面積比より、相対面積比を重みとして重みつき平均により重心波数を求めた。
【0034】
【実施例1】
2,2’−スルホニルジエタノール(Aldrich製)10.0gとこはく酸(和光純薬(株)製)7.3gにエステル化の触媒として濃硫酸0.2gを混合し、攪拌しながら100℃に加熱し、133Paに減圧して反応で生成する水を除去しながら10時間反応させた。これを100mlのジメチルスルホキシド(和光純薬(株)製)に溶解して、1000mlのエタノールに滴下し、ポリマーの沈殿物を得た。沈殿物をエタノールでよく洗浄し、60℃で6時間真空脱溶媒して2,2’−スルホニルジエタノールとこはく酸の共重合体13.0gを得た。この重合体の数平均分子量は、ジメチルスルホキシド−d6を溶媒とした1H−NMR測定における末端OH基の定量分析から求めたところ、約5,200であった。
【0035】
続いて、芳香族ポリスルホン(UDEL P−1700(登録商標)、テイジンアモコエンジニアリングプラスチックス(株)製)22質量部を1−メチル−2−ピロリドン76質量部に溶解したものに、2,2’−スルホニルジエタノールとこはく酸の共重合体2質量部を添加して溶解し、製膜用ドープを調整した。ドクターブレードを用いて、得られたドープをガラス板上にキャストした後50℃に温調された1−メチル−2−ピロリドン:水=95:5の凝固浴中へ1分間浸漬し、続いて1−メチル−2−ピロリドン:水=50:50の凝固浴中へ20分間浸漬して相分離させた後、60℃の熱水で20分づつ3回繰り返し洗浄して平膜Aを得た。得られた平膜Aを用いて上記測定法に従って平膜Aの収着水の重心波数(Cwn)、及び蛋白付着率を求めた。その結果を表1に示す。
【0036】
【実施例2】
実施例1において製膜用ドープの組成を芳香族ポリスルホン17質量部、1−メチル−2−ピロリドン76質量部、2,2’−スルホニルジエタノールとこはく酸の共重合体7質量部とすること以外同様の操作を行い、平膜Bを得た。得られた平膜Bについて上記測定法に従って収着水の重心波数(Cwn)及び蛋白付着率を求めた。その結果を表1に示す。さらに、図2に平膜Bに収着した水の赤外吸収スペクトル及びそれを4つのコンポーネントに分けてカーブフィッティングしたところを示す。
【0037】
【実施例3】
2,2’−チオジエタノール(和光純薬(株)製)10.0gとこはく酸9.2gにエステル化の触媒として濃硫酸0.2gを混合し、攪拌しながら85℃に加熱し、133Paに減圧して反応で生成する水を除去しながら10時間反応させた。これを100mlのジメチルスルホキシド(和光純薬(株)製)に溶解して、1000mlのエタノールに滴下し、ポリマーの沈殿物を得た。沈殿物をエタノールでよく洗浄して60℃で減圧下エタノールを除去して2,2’−チオジエタノールとこはく酸の共重合体13.7gを得た。次に2,2’−チオジエタノールとこはく酸の共重合体10gを1000mlのテトラヒドロフラン(和光純薬(株)製)に溶解し、30%過酸化水素水5.6mlと酢酸24mlの混合液を撹拌しながらゆっくり滴下した。30℃で一晩放置反応させた後、テトラヒドロフランと酢酸を減圧留去しさらに60℃で6時間真空脱溶媒して2,2’−スルフィニルジエタノールとこはく酸の共重合体9.7gを得た。この重合体の数平均分子量は、ジメチルスルホキシド−d6を溶媒とした1H−NMR測定における末端OH基の定量分析から求めたところ、約4,900であった。
【0038】
続いて、芳香族ポリスルホン(UDEL P−1700)22質量部を1−メチル−2−ピロリドン76質量部に溶解したものに、2,2’−スルフィニルジエタノールとこはく酸の共重合体2質量部を添加して溶解し、製膜用ドープを調整した。ドクターブレードを用いて、得られたドープをガラス板上にキャストした後50℃に温調された1−メチル−2−ピロリドン:水=95:5の凝固浴中へ1分間浸漬し、続いて1−メチル−2−ピロリドン:水=50:50の凝固浴中へ20分間浸漬して相分離させた後、60℃の熱水で20分づつ3回繰り返し洗浄して平膜Cを得た。得られた平膜Cについて上記測定法に従って収着水の重心波数(Cwn)、及び蛋白付着率を求めた。その結果を表1に示す。
【0039】
【実施例4】
実施例3において製膜用ドープの組成を芳香族ポリスルホン17質量部、1−メチル−2−ピロリドン76質量部、2,2’−スルフィニルジエタノールとこはく酸の共重合体7質量部とすること以外同様の操作を行い、平膜Dを得た。得られた平膜Dについて上記測定法に従って収着水の重心波数(Cwn)、及び蛋白付着率を求めた。その結果を表1に示す。さらに、図3に平膜Dに収着した水の赤外吸収スペクトル及びそれを4つのコンポーネントに分けてカーブフィッティングしたところを示す。
【0040】
【比較例1】
芳香族ポリスルホン(UDEL P−1700)24質量部、1−メチル−2−ピロリドン76質量部からなるドープを調整した。ドクターブレードを用いて、得られたドープをガラス板上にキャストした後、50℃に温調された1−メチル−2−ピロリドン:水=95:5の凝固浴中へ1分間浸漬し、続いて、1−メチル−2−ピロリドン:水=50:50の凝固浴中へ20分間浸漬して相分離させた後、60℃の熱水で20分づつ3回繰り返し洗浄して平膜Eを得た。
【0041】
得られた平膜Eについて、上記測定法に従って収着水の重心波数(Cwn)を求めた。その結果を表1に示す。さらにその際得た赤外吸収スペクトル及びそれを4つのコンポーネントに分けてカーブフィッティングしたところを図4に示した。図1のバルク水に比べると大きく異なり、低波側の3250cm-1付近の成分が消失し、3450cm-1付近の比率も小さい。相対的に3650cm-1付近と3550cm-1付近の高波数側の成分の比率が大きくなっている。平膜Eについて上記測定法に従って蛋白付着率を求めた結果を表1に示す。
【0042】
【表1】

Figure 0004338351
【0043】
【参考例1】
ジメチルスルホン(関東化成(株)製)10gに蒸留水(和光純薬(株)製)0.1gを添加し、60℃で十分攪拌混合したのち、少量採取し、これを赤外吸収スペクトル測定用窓材である2枚のフッ化カルシウム板にはさみ、日本分光製FT/IR300を用い、25℃で15回積算測定して透過法赤外吸収スペクトルを求めた。予め、蒸留水を添加していないジメチルスルホンの赤外吸収スペクトルを測定しておき、差スペクトルをとることにより、ジメチルスルホンと相互作用した水の赤外吸収スペクトルを得た。得られた赤外吸収スペクトルから上記の収着水の重心波数の測定法と同様にして重心波数を求め、Cwn=3405cm-1を得た。
【0044】
【参考例2】
ジメチルスルホキシド(和光純薬製)10gに蒸留水(和光純薬製)0.1gを添加し、25℃で十分攪拌混合したのち、少量採取し、赤外吸収スペクトル測定用窓材である2枚のフッ化カルシウム板にはさみ、参考例1と同様の条件で赤外吸収スペクトルを測定した。別途、蒸留水を添加していないジメチルスルホキシドの赤外吸収スペクトルを測定しておき、差スペクトルをとることにより、ジメチルスルホキシドと相互作用した水の赤外吸収スペクトルを得た。得られた赤外吸収スペクトルから参考例1と同様にして重心波数を求め、Cwn=3440cm-1を得た。
【0045】
【参考例3】
酢酸メチル(和光純薬製)10gに蒸留水(和光純薬製)0.1gを添加し、25℃で十分攪拌混合したのち、少量採取し、赤外吸収スペクトル測定用窓材である2枚のフッ化カルシウム板にはさみ、参考例1と同様の条件で赤外吸収スペクトルを測定した。別途、蒸留水を添加していない酢酸メチルの赤外吸収スペクトルを測定しておき、差スペクトルをとることにより、酢酸メチルと相互作用した水の赤外吸収スペクトルを得た。得られた赤外吸収スペクトルから参考例1と同様にして重心波数を求め、Cwn=3573cm-1を得た。
【0046】
【参考例4】
少量の蒸留水(バルク水)を赤外吸収スペクトル測定用窓材である2枚のフッ化カルシウム板にはさみ、参考例1と同様の条件で赤外吸収スペクトルを測定した。得られた赤外吸収スペクトルから参考例1と同様にして重心波数を求め、Cwn=3366cm-1を得た。その赤外吸収スペクトルとカーブフィッティングした様子を図1に示す。
【0047】
【発明の効果】
本発明のポリマーは血液適合性に優れるため、蛋白質や血球などの血液成分の吸着が少なく、吸着した蛋白質の変性や接触した血小板の粘着、活性化を抑制することができる。
【図面の簡単な説明】
【図1】参考例4に記載のバルク水の赤外吸収スペクトル及びそれを4つのコンポーネントに分けてカーブフィッティングしたところを示す図である。
【図2】実施例2の平膜Bに収着した水の赤外吸収スペクトル及びそれを4つのコンポーネントに分けてカーブフィッティングしたところを示す図である。
【図3】実施例4の平膜Dに収着した水の赤外吸収スペクトル及びそれを4つのコンポーネントに分けてカーブフィッティングしたところを示す図である。
【図4】比較例1の平膜Eに収着した水の赤外吸収スペクトル及びそれを4つのコンポーネントに分けてカーブフィッティングしたところを示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to medical devices that come into contact with blood or blood components, specifically, artificial organs such as artificial kidneys and heart-lung machines, medical devices such as blood tubes used therefor, blood filters and blood component adsorbents, etc. The present invention relates to a blood compatible material made of a suitable polymer having excellent blood compatibility. More specifically, the present invention relates to a blood compatible material suitable for a medical material, comprising a polymer formed from a functional group of sulfone and / or sulfoxide, an aliphatic chain, and an ester group.
[0002]
[Prior art]
In recent years, with the advancement of medical technology, the chances of contact between various materials with living tissue and blood have increased, and the biocompatibility of materials has become a major problem. In particular, the adsorption and denaturation of blood components such as proteins and blood cells on the surface of the material not only causes unacceptable adverse effects such as thrombus formation and inflammatory reaction on the living body side, but also leads to deterioration of the material, medical treatment. It has become an important issue that must be solved urgently and fundamentally for the materials used.
[0003]
For example, members such as a blood circuit used for extracorporeal circulation of blood and a catheter inserted into a blood vessel are indispensable in surgical medical treatment, and have greatly contributed to the advancement of surgical medical technology.
General-purpose resins such as polyethylene, polypropylene, polyvinyl chloride, polymethyl methacrylate, silicone rubber, polytetrafluoroethylene, and cellulose are used as medical materials from the viewpoint of high mechanical strength and moldability. While the mechanical properties of these materials have been greatly taken into consideration in the required properties as members, the blood compatibility has not been improved at all, and the blood has been barely controlled mainly by the administration of anticoagulants such as heparin. Suppresses foreign body reactions such as coagulation.
[0004]
However, it has recently been recognized that long-term continuous administration of heparin is accompanied by side effects such as liver damage such as abnormal lipid metabolism, prolonged bleeding time or allergic reaction.
Based on the above background, when using blood contact medical devices, there is a strong development of materials with excellent blood compatibility that reduce the amount of anticoagulant used or do not cause blood coagulation even if they are not used at all. It has come to be desired. Blood compatibility is also required for cell culture carriers, DDS (drug delivery system) carriers, wound dressings, and the like.
[0005]
Against this background, various materials have been developed.
For example, there is a material in which the substrate surface is made into a network structure, and vascular endothelial cells are proliferated there, and the surface is used to suppress thrombus formation (A. Voorhees et al., Ann Surg., 332 (1952)). With these materials, the problem is how to make the pseudointimal thin or make it difficult to drop off, and a stable material has not yet been obtained.
An anti-coagulant heparin was immobilized on the substrate surface to develop a material with improved blood compatibility (V. Gott et al., Science, 142, 1297 (1963)). However, since heparin-degrading enzyme exists in the blood, heparin is eventually deactivated, and this type has a problem that it cannot be used for a long time.
[0006]
In addition, a method of immobilizing urokinase, which is a thrombolytic agent, on a substrate surface is also considered (B. Kusserow et al., Trans. Am. Soc. Artif. Int. Organs., 17, 1 (1971)). However, there is a problem that the immobilized urokinase has low activity and the expected effect cannot be obtained, and an immobilization method that does not decrease the activity of urokinase is desired.
Attempts have also been made to immobilize synthetic polymers on the surface that suppress the adsorption of blood components (E. Merrill, Ann. NY. Acad. Sci., 6, 283 (1977)). Immobilization of polyethylene oxide, which is water-soluble and has high mobility, is one example.Molecular chain movement forms a so-called diffuse layer, which suppresses protein adsorption and makes it difficult to form thrombus. There is also a report (BDRATNER et al, J. of Polymer Sci .: Polymer Symposium 66, (1979)) that this polymer has a defect that it easily damages platelets.
[0007]
In surface modification, from the viewpoint that endothelial cells covering the inner surface of blood vessels are the most ideal material, various polymers using phospholipids, which are the main components of the cell membrane, have been synthesized and studied. Among them, a methacrylic acid ester having a phosphorylcholine group, 2-methacryloyloxyethyl phosphorylcholine (MPC) exhibits excellent blood compatibility (Y. Iwasaki et al., J. Biomed. Mater. Res., 36, 508 (1997)). Applications to various medical devices are being studied. However, there remain problems in terms of cost increase due to the complexity of the material itself and the immobilization method, and difficulty in obtaining a homogeneous immobilization surface layer.
[0008]
On the other hand, unlike the surface immobilization method as described above, there is an attempt to develop antithrombogenicity by controlling the structure of the material surface. This method fundamentally solves the problems such as dropping of the immobilizing material that the methods described so far have, and is expected to be widely applied. These are designed to focus on the interaction between the material surface and plasma proteins and platelets based on physicochemical factors. In particular, it has been reported that a material in which a small surface free energy difference is formed on the material surface exhibits high blood compatibility. Typical examples include hydroxyethyl methacrylate-styrene-hydroxyethyl methacrylate block copolymers (C. Nojima et al., ASAIO Transactions, 33,596 (1987)) having a hydrophilic-hydrophobic microdomain structure on the polymer surface, and polymer crystals. Polypropylene oxide block copolymers with polyamide segments with controlled properties (N. Yui et al., J. Biomed. Mater. Res., 20,929 (1981)), etc. It has functional groups such as amino groups and hydroxyl groups that promote activation, and is insufficient as a blood compatible material.
[0009]
On the other hand, as a medical material using a polymer containing a sulfur oxide, as for aliphatic sulfone, for example, what is reported by Endo (Kanazawa University Juzen Medical Association Journal Vol.94, No.3, P466-478 (1985) and JP-A-58-92446 disclose an aliphatic polysulfone membrane synthesized by copolymerization of 1,5-cyclooctadiene and sulfur dioxide. All of these are materials for use in an artificial lung for the purpose of improving oxygen permeability, and do not mention improvement of blood compatibility such as suppression of plasma protein adsorption and antithrombotic properties. In addition, an aliphatic polysulfone (Polymer Engineering and Science, October, Vol. 17, No. 10, 719-723 (1997)) obtained by copolymerizing α-olefins of 6 to 18 carbon atoms and sulfur dioxide with DNGray is also artificial. Although it has been reported as a pulmonary material, only blood coagulation of an aliphatic polysulfone having 16 carbon atoms has been confirmed for blood compatibility. We have observed an increase in thrombus formation time compared to glass and siliconized glass surfaces, and we conclude that this is due to the low free energy of long aliphatic chains.
[0010]
As described above, no sulfone functional group is actively introduced for the purpose of blood compatibility such as antithrombotic properties. These are all formed from a sulfone group and an aliphatic chain.
For sulfoxide, Li Deng et al. Reduced protein adsorption on the surface of a self-assembled monolayer composed of a mixture of alkanethiolate and undecanethiol with a tri (propylene sulfoxide) group formed on a gold support. (J.Am.Chem.Soc., Vol.118, No.21, 5136-5137 (1966).), This sulfoxide is an oligomer having about 3 repeating units. There is no mention of blood compatibility of sulfoxide.
[0011]
In addition, as a method for synthesizing a polymer having an aliphatic chain and a sulfone or sulfoxide functional group, the above-mentioned report of Endo or DNGray or the corresponding alkene and sulfur dioxide as shown in JP-A-58-92446 can be used. It was obtained by copolymerization or polycondensation of aliphatic dithiols and aliphatic dihalides as seen in Imai et al. (Polymer Papers, Vol. 37, No. 6, 445-448, (1980)). Only methods for oxidizing polysulfides are known.
[0012]
[Problems to be solved by the invention]
The object of the present invention is to solve the above-mentioned problems and to make medical devices that come into contact with blood or blood components, specifically, artificial organs such as artificial kidneys and heart-lung machines, medical devices such as blood tubes used for them, blood The object is to provide a blood compatible material suitable for a filter, a blood component adsorbent and the like.
[0013]
[Means for Solving the Problems]
The present invention is as follows.
[1] A sulfonyldialkyl alcohol or a sulfinyldialkyl alcohol in which the alkyl part has a linear or branched structure having 1 to 4 carbon atoms;
Any one selected from oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid And a blood compatible material characterized by having a polycondensation structure.
[2] The The blood compatible material according to [1], wherein the sulfonyldialkyl alcohol is 2,2′-sulfonyldiethanol, and the sulfinyldialkyl alcohol is 2,2′-sulfinyldiethanol.
[0014]
In general, plasma proteins such as albumin, γ-globulin, and fibrinogen are adsorbed on the surface of the material in contact with blood, and then these change the higher-order structure. Due to the change in the higher order structure, further protein adsorption is promoted, and a multilayer protein adsorption layer is formed on the surface of the material. Such a multilayer protein adsorption layer activates platelets in contact therewith, and eventually blood is coagulated. For this reason, it is considered that it is important for obtaining blood compatibility to suppress the adsorption of plasma proteins to the material surface and to avoid the activation of platelets.
[0015]
For example, “Polymer and Medicine” (Kiichi Takemoto et al., P5, Mita Publishing Co. (1989)) pointed out that material surfaces with extremely low interaction with plasma proteins exhibit excellent anticoagulant properties. ing.
Regarding protein adsorption on the material surface, the structure of the water sorbed on the material is an important factor controlling the interaction between the material surface and the protein, and the sorption water structure is similar to the structure of bulk water. The present inventor has already found that protein adsorption is greatly suppressed in the case of the present invention (Japanese Patent Laid-Open No. 09-122462). Incidentally, the term “sorption” used here is an integrated term of “adsorption” and “absorption”, and sorption water is water adsorbed on the surface of the material or absorbed in the vicinity of the surface.
[0016]
That is, various interface phenomena are usually observed on the surface where the surface of the material contacts the aqueous solution containing the polymer solute. For example, if the polymer solute is a protein and the material is highly hydrophobic, adsorption of a large amount of protein is observed. Adsorption can be suppressed to some extent by processing the surface of the material to be hydrophilic, but there are many exceptions, and hydrophilicity (wetting), that is, not a phenomenon as simple as a protein non-adsorbing surface. It is known.
[0017]
The inventor pays attention to the water structure in the vicinity of the material and uses the infrared absorption spectrum to analyze the sorption water structure, and researches the sorption water structure and the protein adsorption characteristics of materials having various functional groups. As a result, it has been found that as the distribution of the absorption band of water interacting with the material surface in the infrared absorption spectrum is closer to that of bulk water, protein adsorption on the material surface tends to be suppressed.
As a result of intensive studies on the structure of water that interacts with various functional groups, the present inventor has discovered that the structure of water that interacts with sulfone groups and sulfoxide groups is particularly close to that of bulk water. It has been found that the contained polymer can greatly suppress protein adsorption, and as a method for synthesizing the polymer, a diol having an aliphatic chain and a functional group of sulfone and / or sulfoxide, having hydroxyl groups at both ends, and both ends. The present invention has been completed by extending the chain length by condensation polymerization of a dicarboxylic acid having a carboxyl group.
[0018]
In the present invention, the blood compatible material refers to a material in which blood coagulation that occurs upon contact with blood is suppressed, and more specifically, adhesion of platelets to the material surface that causes blood coagulation. Activation refers to a material in which the adsorption of plasma protein is triggered by the adsorption of plasma protein on the surface of the material, but this adsorption of plasma protein is suppressed.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In order to evaluate the sorption water structure of the material surface, the present inventor has obtained 3400 cm derived from the sorption water of the infrared absorption spectrum. -1 The barycentric wave number of the nearby absorption peak was used.
3400cm in infrared absorption spectrum -1 Nearby absorption peak is 3650cm -1 Near, 3550cm -1 Near, 3450cm -1 Near 3250cm -1 Use a curve fitting program to separate the four nearby components. From the obtained peak wave number and relative area ratio of each component, the barycentric wave number (Cwn) is obtained by weighted average using the relative area ratio as a weight.
[0020]
In general, protein adsorption on the surface seems to be relatively large, for example, aromatic polysulfone, polymethyl methacrylate, polyacrylonitrile, which is the main functional group, aromatic ring, ester bond, nitrile-containing toluene, methyl acetate, acetonitrile When 1% by mass of water was added to the infrared absorption spectrum of the interacted water, the centroid wave number was 3653 cm, respectively. -1 , 3573cm -1 , 3549cm -1 3366 cm of bulk water -1 Larger and biased toward higher wavenumbers.
[0021]
On the other hand, in general, there is a tendency to suppress protein adsorption, for example, 1 mass% of water is added to tetrahydrofuran or dimethylformamide having an ether bond or an amide bond which are main functional groups of polyethylene glycol or polyvinylpyrrolidone. Examining the infrared absorption spectrum of the water that acted, its center-of-gravity wave number was 3507 cm. -1 , 3480cm -1 And relatively close to bulk water. From this, it is presumed that protein adsorption is suppressed as the surface of the material having a functional group whose interacting water structure is close to that of bulk water.
[0022]
However, when 1% by mass of water is added to a sulfone group, dimethylsulfone having a sulfoxide group, or dimethyl sulfoxide as a hydrophilic functional group, and the infrared absorption spectrum of the interacted water is examined, the center of gravity is surprisingly found. Each wave number is 3405cm -1 , 3440cm -1 It was found that it was closer to that of bulk water. Based on this knowledge, the present inventor used a copolymer of 2,2′-sulfonyldiethanol and succinic acid and a copolymer of 2,2′-sulfinyldiethanol and succinic acid as a polymer having a sulfone group and a sulfoxide group. After synthesizing and preparing the membrane and examining the protein adsorption, it was confirmed that a significant protein adsorption suppression effect was achieved as expected.
[0023]
As the structure of the polymer, the influence of other structures is preferably as small as possible in order to exhibit the characteristics of the sulfone group and sulfoxide group more remarkably. The carbon chain connecting the sulfone group, the sulfoxide group and the ester group should avoid aromatic chains with strong hydrophobicity (necessarily having 6 or more carbon atoms), preferably aliphatic chains, and the chain length as much as possible. Should be shorter.
As the aliphatic chain forming the biocompatible material of the present invention, when the number of carbon atoms is 5 or more, the hydrophobicity of the whole polymer becomes strong and the protein tends to be easily adsorbed. It is. Further, it may be linear or branched, and examples thereof include a methylene chain in the case of 1 carbon, an ethylene chain in the case of 2 carbons, and 1,3-in the case of 3 carbons. Propylene chain, 1-methylethylene chain, in the case of 4 carbon atoms, 1,4-butylene chain, 1-methyl-1,3-propylene chain, 2-methyl-1,3-propylene chain, 1,1-dimethylethylene Examples thereof include a chain and a 1,2-dimethylethylene chain, and those having 1 to 3 carbon atoms, more preferably 1 to 2 carbon atoms, and still more preferably 1 carbon atoms are preferable.
[0024]
As an example of the method for synthesizing the polymer of the present invention, there may be mentioned a method in which a diol having a hydroxyl group at both ends having a sulfone or sulfoxide functional group is obtained by extending the chain length by condensation polymerization with a dicarboxylic acid at both ends. This synthesis reaction is an esterification reaction of a hydroxyl group and a carboxyl group, and has a feature that is easy to implement industrially.
In addition, a polymer is synthesized by condensation polymerization with dicarboxylic acid using a sulfide monomer having an aliphatic chain and both ends are hydroxyl groups, and then oxidized with hydrogen peroxide using acetic acid and formic acid as a catalyst to form sulfone and sulfoxide. There is also a method.
[0025]
Examples of the dicarboxylic acid forming the blood compatible material of the present invention include oxalic acid when the aliphatic chain has 0 carbon atoms, malonic acid when the carbon number is 1 and succinic acid and carbon numbers when the carbon number is 2 In the case of 3, there is glutaric acid, and in the case of 4 carbon atoms, there is adipic acid. In addition, the aliphatic chain of the dicarboxylic acid may contain a sulfone group or a sulfoxide group. Rather, the sulfone group content and the sulfoxide content of the polymer are increased, which is preferable.
[0026]
An example of a diol having a sulfone group that forms the blood compatible material of the present invention is, for example, 2,2′-sulfonyldiethanol. Examples of sulfides as sulfoxide precursors include, for example, 2,2′-thiodiethanol.
The compound of the present invention has an infrared absorption spectrum of 1020 cm. -1 Characteristic absorption derived from sulfoxide group in the vicinity, 1120cm -1 And 1320 cm -1 Characteristic absorption derived from sulfone group in the vicinity or 1730 -1 In the vicinity, the characteristic absorption derived from the ester group is exhibited, so that it can be identified.
[0027]
The molecular weight of the compound of the present invention is preferably 30,000 to 300,000 in terms of number average molecular weight when used as a base material. If the number average molecular weight exceeds 300,000, molding becomes difficult, and if it is less than 30,000, the mechanical strength decreases. When blended or coated on other substrate materials, the number average molecular weight is preferably 3,000 to 100,000. When the number average molecular weight exceeds 100,000, coating becomes difficult, and when the number average molecular weight is less than 3,000, elution into water tends to occur.
[0028]
The compound of the present invention can be used as a base material itself by appropriately selecting the molecular weight and the structure of the aliphatic chain, but depending on the application, the product of the present invention is dissolved in a solvent and coated on the surface of another base material. It may also be used by blending with other polymers. In any case, since the polymer of the present invention is insoluble in water, it can continuously exhibit excellent blood compatibility without being eluted during use.
The blood compatible material of the present invention is, for example, as a medical material whose main purpose is to be used in direct contact with blood components, such as artificial kidneys, artificial organs such as an artificial heart lung, artificial blood vessels, hemodialysis membranes and artificial heart lungs Blood tubes, blood access, blood bags, catheters, blood filters such as plasma separation membranes and blood cell separation membranes, blood component adsorption materials, and the like.
[0029]
In addition, since it has little influence on living bodies such as blood and cells, it exhibits excellent performance in various cell culture carriers, DDS carriers and wound dressings.
When the blood compatible material of the present invention is used as such a material, it is not only used as a hollow fiber, a sheet, a film or a tube by using the material itself as a base material but also blended with various other polymers. You can also. Furthermore, the blood compatible material of the present invention can be dissolved in a solvent, and this solution can be applied to the surfaces of various substrates to modify only the living body contact surface.
[0030]
【Example】
EXAMPLES The present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
<Measurement method>
-Protein adhesion amount measurement method: Quantitative method by BCA method.
20 mg of bovine γ-globulin (manufactured by SIGMA) was dissolved in 2 ml of 1M phosphate buffer (manufactured by Wako Pure Chemical Industries), and a test flat membrane (about 1 × 1 cm) was immersed in the protein solution at 37 ° C. for 1 hour. Thereafter, the test piece was washed with 1M phosphate buffer, and the adsorbed protein was dissolved by immersion in 0.5 ml of 1M phosphate buffer in which 1% sodium dodecyl sulfate (manufactured by Wako Pure Chemical Industries) was dissolved at 37 ° C. for 4 hours. I let you. The protein concentration in this solution was quantified using a BCA protein assay kit (PIERCE).
[0031]
Protein quantification with the BCA kit was performed according to the instruction manual. 0.1 ml of a sample was collected, 2.0 ml of a prepared micro BCA reagent solution was added and stirred gently, heated at 37 ° C. for 30 minutes, and then the absorbance at a wavelength of 562 nm was measured with an ultraviolet spectrophotometer. The protein concentration was determined using a calibration curve prepared in advance, and the amount of protein adsorbed per unit area of the membrane was calculated.
[0032]
・ Measurement method of barycentric wave number of sorption water
The obtained flat film was allowed to stand for 1 hour in an atmosphere of humidity 98% RH and temperature 25 ° C., and then quickly sandwiched between two calcium fluoride plates, which are infrared absorption spectrum measurement windows, and made by JASCO FT / IR300 was used 15 times at 25 ° C. to obtain a transmission infrared absorption spectrum. Separately, an infrared absorption spectrum of the dried film was measured, and an infrared absorption spectrum of water sorbed on the film was obtained by taking a difference spectrum.
[0033]
3400 cm derived from absorption of stretching vibration of water in the obtained infrared absorption spectrum -1 Nearby absorption peak is about 3650cm -1 , About 3550cm -1 , About 3450cm -1 And about 3250 cm -1 Were separated using a curve fitting program (JFTC CFT-300). From the obtained peak wave number and relative area ratio of each component, the barycentric wave number was obtained by weighted average using the relative area ratio as a weight.
[0034]
[Example 1]
Concentrated sulfuric acid 0.2 g as an esterification catalyst was mixed with 10.0 g of 2,2′-sulfonyldiethanol (manufactured by Aldrich) and 7.3 g of succinic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and stirred at 100 ° C. The reaction was carried out for 10 hours while heating and reducing the pressure to 133 Pa to remove water produced by the reaction. This was dissolved in 100 ml of dimethyl sulfoxide (manufactured by Wako Pure Chemical Industries, Ltd.) and dropped into 1000 ml of ethanol to obtain a polymer precipitate. The precipitate was thoroughly washed with ethanol and vacuum desolventized at 60 ° C. for 6 hours to obtain 13.0 g of a copolymer of 2,2′-sulfonyldiethanol and succinic acid. The number average molecular weight of this polymer is dimethyl sulfoxide-d. 6 As a solvent 1 It was about 5,200 when it calculated | required from the quantitative analysis of the terminal OH group in a H-NMR measurement.
[0035]
Subsequently, 22 parts by mass of aromatic polysulfone (UDEL P-1700 (registered trademark), manufactured by Teijin Amoco Engineering Plastics Co., Ltd.) dissolved in 76 parts by mass of 1-methyl-2-pyrrolidone, -2 parts by mass of a copolymer of sulfonyldiethanol and succinic acid was added and dissolved to prepare a dope for film formation. Using a doctor blade, the obtained dope was cast on a glass plate and then immersed in a coagulation bath of 1-methyl-2-pyrrolidone: water = 95: 5, which was temperature-controlled at 50 ° C., for 1 minute. 1-Methyl-2-pyrrolidone: water = 50: 50 was immersed in a coagulation bath for 20 minutes for phase separation, and then washed repeatedly with hot water at 60 ° C. for 20 minutes three times to obtain a flat membrane A . Using the obtained flat membrane A, the barycentric wave number (Cwn) of the sorption water of the flat membrane A and the protein adhesion rate were determined according to the above measurement method. The results are shown in Table 1.
[0036]
[Example 2]
In Example 1, the composition of the dope for film formation is 17 parts by mass of aromatic polysulfone, 76 parts by mass of 1-methyl-2-pyrrolidone, and 7 parts by mass of a copolymer of 2,2′-sulfonyldiethanol and succinic acid. The same operation was performed to obtain a flat membrane B. For the obtained flat membrane B, the centroid wave number (Cwn) of the sorption water and the protein adhesion rate were determined according to the above measurement method. The results are shown in Table 1. Further, FIG. 2 shows an infrared absorption spectrum of water sorbed on the flat membrane B and a curve fitting result obtained by dividing it into four components.
[0037]
[Example 3]
Concentrated sulfuric acid 0.2 g as a catalyst for esterification was mixed with 10.0 g of 2,2′-thiodiethanol (manufactured by Wako Pure Chemical Industries, Ltd.) and 9.2 g of succinic acid, and heated to 85 ° C. with stirring. The reaction was carried out for 10 hours while removing the water produced by the reaction under reduced pressure. This was dissolved in 100 ml of dimethyl sulfoxide (manufactured by Wako Pure Chemical Industries, Ltd.) and dropped into 1000 ml of ethanol to obtain a polymer precipitate. The precipitate was thoroughly washed with ethanol, and ethanol was removed under reduced pressure at 60 ° C. to obtain 13.7 g of a copolymer of 2,2′-thiodiethanol and succinic acid. Next, 10 g of a copolymer of 2,2′-thiodiethanol and succinic acid is dissolved in 1000 ml of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.), and a mixed solution of 5.6 ml of 30% hydrogen peroxide and 24 ml of acetic acid is dissolved. The solution was slowly added dropwise with stirring. After allowing the reaction to stand at 30 ° C. overnight, tetrahydrofuran and acetic acid were distilled off under reduced pressure, followed by vacuum desolvation at 60 ° C. for 6 hours to obtain 9.7 g of a copolymer of 2,2′-sulfinyldiethanol and succinic acid. . The number average molecular weight of this polymer is dimethyl sulfoxide-d. 6 As a solvent 1 It was about 4,900 when it calculated | required from the quantitative analysis of the terminal OH group in a H-NMR measurement.
[0038]
Subsequently, 22 parts by mass of aromatic polysulfone (UDEL P-1700) dissolved in 76 parts by mass of 1-methyl-2-pyrrolidone was mixed with 2 parts by mass of a copolymer of 2,2′-sulfinyldiethanol and succinic acid. The dope for film formation was adjusted by adding and dissolving. Using a doctor blade, the obtained dope was cast on a glass plate and then immersed in a coagulation bath of 1-methyl-2-pyrrolidone: water = 95: 5, which was temperature-controlled at 50 ° C., for 1 minute. 1-methyl-2-pyrrolidone: water = 50: 50 was immersed in a coagulation bath for 20 minutes for phase separation, and then washed with 60 ° C. hot water for 3 times every 20 minutes to obtain a flat membrane C . About the obtained flat membrane C, the gravity wave number (Cwn) of sorption water and the protein adhesion rate were calculated | required according to the said measuring method. The results are shown in Table 1.
[0039]
[Example 4]
In Example 3, the composition of the dope for film formation is 17 parts by mass of aromatic polysulfone, 76 parts by mass of 1-methyl-2-pyrrolidone, and 7 parts by mass of a copolymer of 2,2′-sulfinyldiethanol and succinic acid. The same operation was performed to obtain a flat membrane D. About the obtained flat membrane D, the gravity wave number (Cwn) of sorption water and the protein adhesion rate were calculated | required according to the said measuring method. The results are shown in Table 1. Further, FIG. 3 shows an infrared absorption spectrum of water sorbed on the flat membrane D and a curve fitting result obtained by dividing it into four components.
[0040]
[Comparative Example 1]
A dope consisting of 24 parts by mass of aromatic polysulfone (UDEL P-1700) and 76 parts by mass of 1-methyl-2-pyrrolidone was prepared. After the obtained dope was cast on a glass plate using a doctor blade, it was immersed in a coagulation bath of 1-methyl-2-pyrrolidone: water = 95: 5 controlled to 50 ° C. for 1 minute, followed by Then, after phase separation by immersion in a coagulation bath of 1-methyl-2-pyrrolidone: water = 50: 50 for 20 minutes, the flat membrane E was washed with 60 ° C. hot water repeatedly for 3 times every 20 minutes. Obtained.
[0041]
About the obtained flat film E, the gravity wave number (Cwn) of sorption water was calculated | required according to the said measuring method. The results are shown in Table 1. Further, FIG. 4 shows the infrared absorption spectrum obtained at that time and a curve fitting result obtained by dividing it into four components. Compared with the bulk water in FIG. 1, it is 3250cm on the low wave side. -1 Nearby components disappeared, 3450cm -1 The ratio in the vicinity is also small. Relative 3650cm -1 Near and 3550cm -1 The ratio of components on the high wave number side in the vicinity is large. Table 1 shows the results of obtaining the protein adhesion rate for the flat membrane E according to the above measurement method.
[0042]
[Table 1]
Figure 0004338351
[0043]
[Reference Example 1]
Add 0.1 g of distilled water (manufactured by Wako Pure Chemical Industries, Ltd.) 0.1 g to 10 g of dimethyl sulfone (manufactured by Kanto Kasei Co., Ltd.), mix well at 60 ° C., collect a small amount, and measure the infrared absorption spectrum. A transmission infrared absorption spectrum was obtained by sandwiching two calcium fluoride plates as window materials and using FT / IR300 manufactured by JASCO Corporation for 15 measurements at 25 ° C. An infrared absorption spectrum of dimethylsulfone to which distilled water was not added was measured in advance and a difference spectrum was taken to obtain an infrared absorption spectrum of water interacting with dimethylsulfone. The center-of-gravity wave number is obtained from the obtained infrared absorption spectrum in the same manner as the method for measuring the center-of-gravity wave number of sorption water, and Cwn = 3405 cm. -1 Got.
[0044]
[Reference Example 2]
After adding 0.1 g of distilled water (manufactured by Wako Pure Chemical Industries) to 10 g of dimethyl sulfoxide (manufactured by Wako Pure Chemical Industries) and mixing with sufficient stirring at 25 ° C., a small amount is collected and two sheets are used as infrared absorption spectrum measurement window materials Infrared absorption spectra were measured under the same conditions as in Reference Example 1 with a calcium fluoride plate. Separately, an infrared absorption spectrum of dimethyl sulfoxide to which distilled water was not added was measured, and an infrared absorption spectrum of water interacting with dimethyl sulfoxide was obtained by taking a difference spectrum. The center-of-gravity wave number was obtained from the obtained infrared absorption spectrum in the same manner as in Reference Example 1, and Cwn = 3440 cm. -1 Got.
[0045]
[Reference Example 3]
Add 2g of distilled water (Wako Pure Chemicals) 0.1g to 10g of methyl acetate (Wako Pure Chemicals). Infrared absorption spectra were measured under the same conditions as in Reference Example 1 with a calcium fluoride plate. Separately, an infrared absorption spectrum of methyl acetate to which distilled water was not added was measured, and an infrared absorption spectrum of water interacting with methyl acetate was obtained by taking a difference spectrum. From the obtained infrared absorption spectrum, the barycentric wave number was obtained in the same manner as in Reference Example 1, and Cwn = 3573 cm. -1 Got.
[0046]
[Reference Example 4]
A small amount of distilled water (bulk water) was sandwiched between two calcium fluoride plates which are infrared absorption spectrum measurement window materials, and an infrared absorption spectrum was measured under the same conditions as in Reference Example 1. From the obtained infrared absorption spectrum, the barycentric wave number was obtained in the same manner as in Reference Example 1, and Cwn = 3366 cm. -1 Got. The state of curve fitting with the infrared absorption spectrum is shown in FIG.
[0047]
【The invention's effect】
Since the polymer of the present invention is excellent in blood compatibility, it hardly adsorbs blood components such as proteins and blood cells, and can suppress denaturation of the adsorbed protein and adhesion and activation of the contacted platelets.
[Brief description of the drawings]
FIG. 1 is a diagram showing an infrared absorption spectrum of bulk water described in Reference Example 4 and a curve fitting result obtained by dividing it into four components.
FIG. 2 is a diagram showing an infrared absorption spectrum of water sorbed on the flat membrane B of Example 2 and a curve fitting result obtained by dividing it into four components.
FIG. 3 is a diagram showing an infrared absorption spectrum of water sorbed on the flat membrane D of Example 4 and a curve fitting result obtained by dividing it into four components.
4 is a diagram showing an infrared absorption spectrum of water sorbed on the flat membrane E of Comparative Example 1 and a curve fitting result obtained by dividing it into four components. FIG.

Claims (2)

アルキル部分が炭素数1〜4の直鎖構造または枝分かれ構造を有するスルホニルジアルキルアルコール又はスルフィニルジアルキルアルコールと、
しゅう酸、マロン酸、こはく酸、グルタル酸、アジピン酸から選ばれるいずれかとを、縮重合した構造を有することを特徴とする血液適合性材料。
A sulfonyldialkyl alcohol or a sulfinyldialkyl alcohol in which the alkyl moiety has a linear or branched structure having 1 to 4 carbon atoms;
A blood compatible material characterized by having a structure obtained by condensation polymerization of any one selected from oxalic acid, malonic acid, succinic acid, glutaric acid, and adipic acid .
スルホニルジアルキルアルコールが2,2’−スルホニルジエタノールであり、該スルフィニルジアルキルアルコールが2,2’−スルフィニルジエタノールであることを特徴とする請求項1記載の血液適合性材料。 The a sulfonyl dialkyl alcohol 2,2'-sulfonyl diethanol, blood compatible material according to claim 1, wherein the said sulfinyl dialkyl alcohol is 2,2'-sulfinyl diethanol.
JP2002078866A 2002-03-20 2002-03-20 Blood compatible material Expired - Fee Related JP4338351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002078866A JP4338351B2 (en) 2002-03-20 2002-03-20 Blood compatible material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002078866A JP4338351B2 (en) 2002-03-20 2002-03-20 Blood compatible material

Publications (2)

Publication Number Publication Date
JP2003275296A JP2003275296A (en) 2003-09-30
JP4338351B2 true JP4338351B2 (en) 2009-10-07

Family

ID=29206156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002078866A Expired - Fee Related JP4338351B2 (en) 2002-03-20 2002-03-20 Blood compatible material

Country Status (1)

Country Link
JP (1) JP4338351B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120046411A1 (en) * 2010-08-20 2012-02-23 Becton, Dickinson And Company Recycled Resin Compositions And Disposable Medical Devices Made Therefrom
CN115845822B (en) * 2023-02-27 2023-05-12 佛山市博新生物科技有限公司 Adsorption material for removing blood cytokines and preparation method thereof

Also Published As

Publication number Publication date
JP2003275296A (en) 2003-09-30

Similar Documents

Publication Publication Date Title
Ma et al. Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioactivity via dopamine grafted heparin-like polymers and heparin
Cheng et al. Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes
JP4101460B2 (en) Medical material excellent in antithrombogenicity containing polysulfone having fluorine atom
CA2503490C (en) Medical device surface coating comprising bioactive compound
KR100525604B1 (en) Application of sulfone, ketone and ester containing polyalkyl ether units to medical materials
Ye et al. Hollow fiber membrane modification with functional zwitterionic macromolecules for improved thromboresistance in artificial lungs
CA2780028C (en) Hydrophilic polymer compound having anticoagulation effect
WO2012176861A1 (en) Medical supply
Liu et al. Heparin reduced dialysis through a facile anti-coagulant coating on flat and hollow fiber membranes
JPWO2012176862A1 (en) Hydrophobic polymer compound having anticoagulant action
Raut et al. Engineering biomimetic polyurethane using polyethylene glycol and gelatin for blood-contacting applications
JP2000279512A (en) Material for medical treatment and manufacture thereof
JP4338351B2 (en) Blood compatible material
JP2004298223A (en) Biocompatible material
JP2002263183A (en) Biocompatible material
KR19990038671A (en) Hemocompatible Polyurethane-Hydrophilic Polymer Blend
JPH10212347A (en) Application of polyalkyl-ether-unit-containing sulfone and ketone to medical materials
JP3836204B2 (en) Medical materials with excellent blood compatibility
JP2010069306A (en) Biomaterial using recombination human serum albumin
JP3833299B2 (en) Medical materials with excellent blood compatibility
JP2004129941A (en) Leukocyte selective removal filter
JP4160195B2 (en) Polymer composition excellent in antithrombogenicity and medical material comprising the same
JP4249286B2 (en) Medical material moldable from alcohol solvent and method for producing the same
JP4604177B2 (en) Antithrombotic polymer composition
JPH0343424A (en) High-molecular material compatible with blood

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees