JP2002263183A - Biocompatible material - Google Patents

Biocompatible material

Info

Publication number
JP2002263183A
JP2002263183A JP2001067280A JP2001067280A JP2002263183A JP 2002263183 A JP2002263183 A JP 2002263183A JP 2001067280 A JP2001067280 A JP 2001067280A JP 2001067280 A JP2001067280 A JP 2001067280A JP 2002263183 A JP2002263183 A JP 2002263183A
Authority
JP
Japan
Prior art keywords
group
chain
water
sulfone
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001067280A
Other languages
Japanese (ja)
Inventor
Akira Kiguchi
昌 木口
Masami Komiyama
政美 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001067280A priority Critical patent/JP2002263183A/en
Publication of JP2002263183A publication Critical patent/JP2002263183A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a biocompatible material which suppresses the multilayer adsorption of protein and is advantageous for medical materials, etc., for which excellent biocompatibility is called in the long term use. SOLUTION: This biocompatible material consists of a polymer formed of a functional group of sulfone and/or sulfoxide and aliphatic chain. This material is suitable for artificial organs, such as artificial kidneys and artificial lungs, medical treatment appliances, such as blood tubes and catheters used for the same, blood filters, blood component adsorbents, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は生体又は生体成分と
接触する医療器具、具体的には、人工腎臓、人工心肺な
どの人工臓器、それらに使用する血液チューブなどの医
用器具、血液フィルターや血液成分吸着剤などに適した
生体適合性に優れたポリマーからなる生体適合性材料に
関する。さらに詳しくは、スルホン及び/又はスルホキ
シドの官能基と脂肪族鎖から形成されるポリマーからな
る、医療用材料等に適した生体適合性材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a medical device which comes into contact with a living body or a living body component, specifically, an artificial organ such as an artificial kidney or an artificial heart-lung machine, a medical device such as a blood tube used therein, a blood filter or blood. The present invention relates to a biocompatible material made of a polymer having excellent biocompatibility suitable for a component adsorbent and the like. More specifically, the present invention relates to a biocompatible material suitable for medical materials and the like, comprising a polymer formed from a functional group of sulfone and / or sulfoxide and an aliphatic chain.

【0002】[0002]

【従来の技術】近年、医療技術の進歩に伴って、生体組
織や血液と、各種の材料が接触する機会は増加してお
り、材料の生体親和性が大きな問題になってきた。中で
も、蛋白質や血球などの生体成分が材料表面に吸着し変
性することは、血栓形成、炎症反応等の、通常では認め
られない悪影響を生体側に引き起こすばかりでなく、材
料の劣化にもつながり、医療用材料の根本的、かつ、緊
急に解決せねばならない重要な課題となってきている。
2. Description of the Related Art In recent years, with the advancement of medical technology, opportunities for various materials to come into contact with living tissues and blood have increased, and the biocompatibility of the materials has become a major problem. Above all, the denaturation of biological components such as proteins and blood cells by adsorbing on the material surface not only causes unusual adverse effects on the living body, such as thrombus formation and inflammatory reaction, but also leads to deterioration of the material, It is becoming a fundamental and urgent problem for medical materials that must be solved urgently.

【0003】例えば、血液の体外循環に用いる血液回路
や血管内に挿入するカテーテルなどの部材は、外科的医
療において必要不可欠なものであり、これらの技術の進
展に大きく貢献してきた。医療用材料として、高い機械
的強度及び成形性の観点から、ポリエチレン、ポリプロ
ピレン、ポリ塩化ビニル、ポリメタクリル酸メチル、シ
リコーンゴム、ポリテトラフルオロエチレン、セルロー
スなどの汎用樹脂が使用されている。これらの素材の機
械的物性が部材としての要求特性に大きく考慮されてき
た一方で、血液適合性については全く改善されず、主
に、ヘパリンなどの抗凝固剤の血中投与により、かろう
じて血液凝固などの異物反応を抑制していた。
[0003] For example, members such as a blood circuit used for extracorporeal circulation of blood and a catheter inserted into a blood vessel are indispensable in surgical medical treatment, and have greatly contributed to the development of these techniques. As medical materials, general-purpose resins such as polyethylene, polypropylene, polyvinyl chloride, polymethyl methacrylate, silicone rubber, polytetrafluoroethylene, and cellulose are used from the viewpoint of high mechanical strength and moldability. While the mechanical properties of these materials have been greatly considered in the properties required as members, their blood compatibility has not been improved at all, and blood coagulation has been barely achieved, mainly due to the administration of anticoagulants such as heparin in the blood. Foreign body reaction such as was suppressed.

【0004】しかしながら、最近ヘパリンの長期継続投
与による脂質代謝異常などの肝臓障害、出血時間の延長
あるいはアレルギー反応等の副作用を併発することが認
められている。以上の背景から、これら血液接触型医療
器材を使用する際に、抗凝固剤の使用量を低減させる
か、全く使用しなくても血液凝固を引き起こさない、血
液適合性に優れた素材の開発が強く望まれるようになっ
てきた。また、細胞培養の担体やDDS(ドラッグデリ
バリーシステム)のキャリア、創傷被覆材などにも生体
適合性が求められている。こうした背景から様々な材料
開発がこれまで行われてきた。
[0004] However, it has been recently recognized that long-term continuous administration of heparin causes side effects such as liver disorders such as abnormal lipid metabolism, prolonged bleeding time, and allergic reactions. Based on the above background, when using these blood-contacting medical devices, the use of anticoagulants should be reduced, or the development of materials with excellent blood compatibility that would not cause blood coagulation even if they were not used at all. It has become strongly desired. Also, biocompatibility is required for a carrier for cell culture, a carrier for DDS (drug delivery system), a wound dressing, and the like. From this background, various materials have been developed.

【0005】例えば、基材表面を網目構造にし、そこに
血管内皮細胞を増殖させ、その表面をもってして血栓形
成を抑制する材料がある(A.Voorhees et al .,Ann Sur
g.,332(1952))。これらの材料は、いかに偽内膜を薄く
するか、その脱落を起こしにくくするかが問題であり、
未だ安定した材料は得られていない。抗血液凝固剤のヘ
パリンを基材表面に固定化し、血液適合性を高めた材料
の開発も行われた(V.Gott et al .,Science,142,1297
(1963))。しかし血中にはヘパリン分解酵素が存在する
ので、最終的にはヘパリンが失活してしまい、このタイ
プのものは長期の使用ができない、という問題を抱えて
いる。
[0005] For example, there is a material in which the surface of a base material is formed into a network structure, on which vascular endothelial cells are proliferated, and the surface of which is used to inhibit thrombus formation (A. Voorhees et al., Ann Sur.
g., 332 (1952)). The problem is how these materials can make the fake intima thinner and less likely to fall off.
Stable materials have not yet been obtained. A material with improved blood compatibility by immobilizing heparin, an anticoagulant, on the substrate surface was also developed (V. Gott et al., Science, 142, 1297).
(1963)). However, since heparin-degrading enzyme is present in blood, heparin is eventually deactivated, and this type has a problem that it cannot be used for a long time.

【0006】また、血栓溶解剤であるウロキナーゼを基
材表面に固定化させる方法も考えられている(B.Kussero
w et al .,Trans.Am.Soc.Artif.Int.Organs.,17,1(197
1))が、固定化されたウロキナーゼは活性が低くなって
しまい、期待した効果が得られなくなってしまう、とい
う問題があり、ウロキナーゼの活性が低下しない固定化
方法が望まれている。血液成分の吸着を抑制するような
合成高分子を表面に固定化する試みもなされている(E.M
errill,Ann.NY.Acad.Sci.,6,283(1977))。水溶性で、高
い運動性を有するポリエチレンオキサイドの固定化はそ
の一例で、分子鎖の運動がいわゆる散漫層を形成し、蛋
白質の吸着が抑制され血栓が形成しにくくなるが、この
ような高含水のポリマーは血小板へダメージを与えやす
い、という欠点を有しているとの報告(B.D.RATNER et
al, J.of Polymer Sci.:Polymer Symposium 66,(197
9))もある。
A method of immobilizing urokinase, a thrombolytic agent, on the surface of a substrate has also been proposed (B. Kussero).
w et al., Trans.Am.Soc.Artif.Int.Organs., 17, 1 (197
However, the immobilized urokinase has a problem that the activity of the immobilized urokinase is low and an expected effect cannot be obtained. Therefore, an immobilization method in which the activity of urokinase is not reduced is desired. Attempts have also been made to immobilize synthetic polymers on the surface that suppress the adsorption of blood components (EM
errill, Ann. NY. Acad. Sci., 6, 283 (1977)). The immobilization of water-soluble, highly mobilizable polyethylene oxide is one example. The movement of molecular chains forms a so-called diffuse layer, which inhibits protein adsorption and makes thrombus less likely to form. Report that they have the disadvantage of easily damaging platelets (BDRATNER et
al, J. of Polymer Sci .: Polymer Symposium 66, (197
9)).

【0007】表面修飾においては、血管内面を覆う内皮
細胞が最も理想的な材料であるとの観点から、この細胞
膜の主成分であるリン脂質を利用したポリマーが色々と
合成され、研究が進められている。中でも、ホスホリル
コリン基を有するメタクリル酸エステル、2−メタクリ
ロイルオキシエチルホスホリルコリン(MPC)は優れ
た血液適合性を示し(Y.Iwasaki et al., J.Biomed.Mat
er.Res.,36,508(1997))、各種医療用具への応用が検討
されている。しかし、材料自身及び固定化方法の煩雑さ
による高コスト化、均質な固定化表層の獲得の困難さ、
といった面での問題が残っている。
[0007] In the surface modification, from the viewpoint that endothelial cells covering the inner surface of blood vessels are the most ideal material, various polymers utilizing phospholipids, which are the main components of the cell membrane, have been synthesized and studied. ing. Among them, a methacrylic acid ester having a phosphorylcholine group, 2-methacryloyloxyethyl phosphorylcholine (MPC) shows excellent blood compatibility (Y. Iwasaki et al., J. Biomed. Mat.
er. Res., 36, 508 (1997)), and application to various medical devices is being studied. However, high cost due to the complexity of the material itself and the fixing method, difficulty in obtaining a uniform fixed surface layer,
There remains a problem in terms of such.

【0008】他方で、上例のような表面固定化法とは異
なり、材料表面の構造制御によって抗血栓性を発現させ
る試みもある。この方法は、これまで述べてきた方法が
抱える固定化材料の脱落等の問題を根本から解決するも
のであり、幅広い応用が期待されるものである。これら
は材料表面と血漿蛋白及び血小板との間の物理化学的因
子に基づいた相互作用に着目した設計がなされている。
中でも、材料表面上に微小な表面自由エネルギー差を形
成させた材料が高い血液適合性を示すことが報告されて
いる。代表例としては、ポリマー表面に親水−疎水ミク
ロドメイン構造を有するヒドロキシエチルメタクリレー
ト−スチレン−ヒドロキシエチルメタクリレートブロッ
ク共重合体(C.Nojima et al .,ASAIO Transactions,3
3,596(1987))や、ポリマーの結晶性を制御した、ポリ
アミドセグメントを有するポリプロピレンオキシドブロ
ック共重合体(N.Yui et al.,J.Biomed.Mater.Res.,20,
929(1981))等があるが、血液との接触に際して補体の
活性化を促すアミノ基や水酸基といった官能基を持って
おり、血液適合性材料としては不十分である。
On the other hand, unlike the surface immobilization method as described above, there is also an attempt to develop antithrombotic properties by controlling the structure of the material surface. This method fundamentally solves the problems of the method described above, such as the falling off of the immobilization material, and is expected to be widely applied. These are designed focusing on the interaction based on physicochemical factors between the material surface and plasma proteins and platelets.
In particular, it has been reported that a material having a small surface free energy difference formed on the surface of the material exhibits high blood compatibility. A typical example is a hydroxyethyl methacrylate-styrene-hydroxyethyl methacrylate block copolymer having a hydrophilic-hydrophobic microdomain structure on the polymer surface (C. Nojima et al., ASAIO Transactions, 3).
3,596 (1987)) and a polypropylene oxide block copolymer having a polyamide segment with controlled polymer crystallinity (N. Yui et al., J. Biomed. Mater. Res., 20,
929 (1981)), but it has a functional group such as an amino group or a hydroxyl group that promotes the activation of complement upon contact with blood, and is insufficient as a blood compatible material.

【0009】一方、硫黄酸化物を含有した高分子を用い
た医用材料としては、脂肪族スルホンに関しては、例え
ば、遠藤により報告されているもの(金沢大学十全医学
会雑誌Vol.94,No.3,P466-478(1985))や、特開昭58−
92446号公報には、1、5−シクロオクタジエンと
二酸化硫黄の共重合で合成した脂肪族ポリスルホンの膜
が開示されている。これらはいずれも、人工肺に用いる
材料として、酸素透過性の向上を目的としたものであ
り、血漿タンパク質の吸着の抑制や抗血栓性などの生体
適合性の改善については言及していない。また、D.N.Gr
ayにより炭素数6から18のαオレフィンと二酸化硫黄
を共重合させて得た脂肪族ポリスルホン(Polymer Engin
eering and Science, October, Vol.17, No.10,719-723
(1997))が、やはり人工肺用材料として報告されている
が、生体適合性については炭素数16の脂肪族ポリスル
ホンの血液凝固性を確認しているのみである。ガラスや
シリコン化ガラス表面に比べて血栓生成時間の延長を認
めているが、これは長い脂肪族鎖の低い自由エネルギー
による影響と結論づけている。
On the other hand, as a medical material using a polymer containing a sulfur oxide, aliphatic sulfones are reported, for example, by Endo (Kanazawa University Juzen Medical Association, Vol. 94, No. 3, P466-478 (1985)) and
Japanese Patent No. 92446 discloses an aliphatic polysulfone membrane synthesized by copolymerization of 1,5-cyclooctadiene and sulfur dioxide. All of these are aimed at improving oxygen permeability as a material used for an artificial lung, and do not mention suppression of adsorption of plasma proteins or improvement of biocompatibility such as antithrombotic properties. Also, DNGr
aliphatic polysulfone (Polymer Engin) obtained by copolymerizing an α-olefin having 6 to 18 carbon atoms with sulfur dioxide by ay.
eering and Science, October, Vol. 17, No. 10, 719-723
(1997)), which is also reported as a material for an artificial lung, but it has only confirmed the blood coagulability of an aliphatic polysulfone having 16 carbon atoms for biocompatibility. The authors found that thrombus formation time was prolonged compared to glass and siliconized glass surfaces, but concluded that this was due to the low free energy of long aliphatic chains.

【0010】以上述べたように、抗血栓性などの生体適
合性を目的として積極的にスルホンの官能基を導入した
ものは見当たらない。スルホキシドに関しては、Li Den
gらにより、金単体上に形成させたトリ(プロピレンス
ルホキシド)基を持つアルカンチオレートとウンデカン
チオールの混合物からなる自己集合単分子層では、その
表面へのタンパク吸着が減少することが報告されている
(J.Am.Chem.Soc., Vol.118, No.21, 5136-5137(196
6).)が、このスルホキシドは繰り返し単位が3程度の
オリゴマーであり、ポリマーとしてのスルホキシドの生
体適合性を調べた例は見当たらない。
[0010] As described above, there has not been found any one in which a sulfone functional group is actively introduced for the purpose of biocompatibility such as antithrombotic properties. For sulfoxide, Li Den
g et al. reported that in a self-assembled monolayer composed of a mixture of alkanethiolate and undecanethiol having a tri (propylene sulfoxide) group formed on a simple substance of gold, protein adsorption on the surface was reduced. (J. Am. Chem. Soc., Vol. 118, No. 21, 5136-5137 (196
6).) However, this sulfoxide is an oligomer having about 3 repeating units, and no example has been found for examining the biocompatibility of sulfoxide as a polymer.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、前記
課題を解決し、生体又は生体成分と接触する医療器具、
具体的には、人工腎臓、人工心肺などの人工臓器、それ
らに使用する血液チューブなどの医用器具、血液フィル
ターや血液成分吸着剤などに適した生体適合性材料を提
供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide a medical device which comes into contact with a living body or a biological component.
Specifically, an object of the present invention is to provide a biocompatible material suitable for artificial organs such as an artificial kidney and an artificial heart-lung machine, medical instruments such as blood tubes used for the same, blood filters and blood component adsorbents.

【0012】[0012]

【課題を解決するための手段】一般に、血液と接触した
材料表面にはアルブミン、γ−グロブリン、フィブリノ
ーゲンのような血漿蛋白質が吸着し、その後、これらは
高次構造を変化させる。この高次構造の変化により、更
なる蛋白質の吸着が促進され、材料表面には多層の蛋白
吸着層が形成される。このような多層蛋白吸着層は、こ
れと接触する血小板を活性化させ、最終的には血液が凝
固することとなる。そのため、血漿蛋白質の材料表面へ
の吸着を抑制し、血小板の活性化を回避することが血液
適合性をはじめとする生体適合性を得る上で重要である
と考えられている。
In general, plasma proteins such as albumin, γ-globulin and fibrinogen are adsorbed on the surface of a material that has come into contact with blood, and then these proteins change their higher-order structure. This change in the higher-order structure promotes further protein adsorption, and a multilayer protein adsorption layer is formed on the material surface. Such a multi-layer protein adsorption layer activates the platelets in contact therewith, and eventually causes the blood to coagulate. Therefore, it is considered important to suppress the adsorption of plasma proteins to the surface of the material and avoid the activation of platelets in order to obtain biocompatibility such as blood compatibility.

【0013】例えば、「高分子と医療」(竹本喜一ほ
か,P5,三田出版会(1989))によれば、血漿タンパク
質との相互作用が著しく低い材料表面は、優れた抗凝血
性を示すことが指摘されている。材料表面への蛋白質の
吸着に関しては、材料に収着された水の構造が材料表面
と蛋白質との相互作用をコントロールする重要な因子で
あり、収着水構造がバルク水の構造と類似している場合
にタンパク質の吸着が大幅に抑制されることをすでに本
出願人が見出している(特開平09-122462号公報)。
For example, according to “Polymer and medical treatment” (Kiichi Takemoto et al., P5, Mita Publishing Co., Ltd. (1989)), a material surface having extremely low interaction with plasma protein shows excellent anticoagulant property. Has been pointed out. Regarding protein adsorption on the material surface, the structure of water sorbed on the material is an important factor that controls the interaction between the material surface and proteins, and the structure of sorbed water is similar to that of bulk water. The present applicant has already found that the adsorption of protein is greatly suppressed in the case of (Japanese Patent Application Laid-Open No. 09-122462).

【0014】すなわち、材料表面と高分子溶質の存在す
る水溶液が接する面においては、通常、様々な界面現象
が観測される。例えば、高分子溶質が蛋白質であり、材
料が疎水性の強いものであれば、多量の蛋白質の吸着が
観測される。材料表面を親水性に加工することによっ
て、ある程度の吸着の抑制は可能であるが、多くの例外
が認められ、親水性(濡れ性)、すなわち、蛋白非吸着
表面といえる程単純な現象ではないことが知られてい
る。
That is, various interface phenomena are usually observed on the surface where the material surface and the aqueous solution containing the polymer solute are in contact. For example, if the polymer solute is a protein and the material is strongly hydrophobic, adsorption of a large amount of protein is observed. By processing the material surface to be hydrophilic, it is possible to suppress adsorption to some extent, but there are many exceptions, and the phenomenon is not as simple as hydrophilic (wetting), that is, a protein non-adsorbing surface. It is known.

【0015】本出願人は、材料近傍の水構造に着目し、
収着水構造を解析する上で赤外吸収スペクトルを用い、
種々の官能基を有する材料の収着水構造と蛋白質の吸着
特性に関し研究を行った結果、赤外吸収スペクトルにお
ける材料表面と相互作用した水の吸収バンドの分布がバ
ルク水のそれに近いほど、材料表面への蛋白質の吸着が
抑制される傾向があることを見出している。本発明者
は、種々の官能基に相互作用する水の構造に関して鋭意
検討した結果、スルホン基、スルホキシド基に相互作用
する水の構造が特にバルク水に近いことを発見し、これ
らの官能基を含有するポリマーが蛋白質の吸着を大幅に
抑制し得るこを見出し、本発明を完成するに至ったもの
である。
The present applicant has focused on the water structure near the material,
Using the infrared absorption spectrum to analyze the sorption water structure,
As a result of studying the sorption water structure and protein adsorption characteristics of materials having various functional groups, the closer the distribution of the absorption band of water interacting with the material surface in the infrared absorption spectrum to that of bulk water, It has been found that the adsorption of proteins to the surface tends to be suppressed. The present inventors have conducted intensive studies on the structure of water that interacts with various functional groups, and have found that the structure of water that interacts with sulfone groups and sulfoxide groups is particularly close to bulk water. The present inventors have found that the contained polymer can significantly suppress protein adsorption, and have completed the present invention.

【0016】すなわち、本発明は、スルホン及び/又は
スルホキシドの官能基と脂肪族鎖とから形成されるポリ
マーからなる生体適合性材料である。本発明の材料は生
体適合性に優れているために、特に、生体や生体成分に
接触する医療器具、具体的には人工臓器、人工臓器を使
用するための各種器具、医療基材等の材料として用いた
場合、長期にわたって使用することができる。
That is, the present invention is a biocompatible material comprising a polymer formed from a sulfone and / or sulfoxide functional group and an aliphatic chain. Since the material of the present invention is excellent in biocompatibility, particularly, medical devices that come into contact with a living body or a biological component, specifically, artificial organs, various devices for using artificial organs, materials such as medical base materials When used as, it can be used for a long time.

【0017】[0017]

【発明の実施の形態】以下、本発明について詳細に説明
する。材料表面の収着水構造を評価するために、本発明
者らは、赤外吸収スペクトルの収着水由来である340
0cm-1付近の吸収ピークの重心波数を用いた。赤外吸
収スペクトルにおける3400cm-1付近の吸収ピーク
を3650cm -1付近、3550cm-1付近、3450
cm-1付近、3250cm-1付近の4種のコンポーネン
トにカーブフィッティングプログラムを用いて分離す
る。得られた各コンポーネントのピーク波数及び相対面
積比より、相対面積比を重みとして重みつき平均により
重心波数(Cwn)を求める。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
I do. To evaluate the sorption water structure on the material surface, the present invention
We found that 340 from the sorption water in the infrared absorption spectrum
0cm-1The centroid wave number of the nearby absorption peak was used. Infrared absorption
3400 cm in the yield spectrum-1Near absorption peak
3650cm -1Around, 3550cm-1Nearby, 3450
cm-1Near 3250cm-14 types of components nearby
Using a curve fitting program
You. Peak wave number and relative surface of each component obtained
From the product ratio, the relative area ratio is used as the weight and the weighted average is used.
Center of gravity wave number (Cwn).

【0018】一般に、表面への蛋白吸着が比較的多いと
みられる、例えば、芳香族ポリスルホンやポリメタクリ
ル酸メチル、ポリアクリロニトリルの主たる官能基であ
る、芳香環、エステル結合、ニトリル基を有するトルエ
ン、酢酸メチル、アセトニトリルに水を1質量%添加し
相互作用した水の赤外吸収スペクトルを調べてみると、
その重心波数はそれぞれ3653cm-1、3573cm
-1、3549cm-1であり、バルク水の3366cm-1
より大きく高波数側に偏っている。
In general, protein adsorption on the surface is considered to be relatively large. For example, toluene, acetic acid having an aromatic ring, an ester bond, or a nitrile group, which are main functional groups of aromatic polysulfone, polymethyl methacrylate, and polyacrylonitrile. Examining the infrared absorption spectrum of water that interacted with 1% by mass of water added to methyl and acetonitrile,
Its center of gravity wave numbers are 3653 cm -1 and 3573 cm, respectively.
-1, a 3549Cm -1, the bulk water 3366Cm -1
Larger bias toward higher wavenumbers.

【0019】これに対して、一般に、蛋白質の吸着を抑
制する傾向のある、例えば、ポリエチレングリコールや
ポリビニルピロリドンの主たる官能基であるエーテル結
合、アミド結合を有するテトラヒドロフラン、ジメチル
ホルムアミドに水を1質量%添加し相互作用した水の赤
外吸収スペクトルを調べると、その重心波数は3507
cm-1、3480cm-1と比較的バルク水に近い数字を
示した。このことから相互作用する水の構造がバルク水
に近くなる官能基を有する材料表面ほど蛋白質の吸着が
抑制されることが推定される。
On the other hand, water is generally added to tetrahydrofuran or dimethylformamide having an ether bond or an amide bond, which is a main functional group of polyethylene glycol or polyvinylpyrrolidone, which tends to suppress the adsorption of protein, to 1% by mass of water. Examination of the infrared absorption spectrum of the added and interacted water shows that the centroid wave number is 3507.
cm -1, showed relatively close to the bulk water numerals as 3480cm -1. From this, it is presumed that the surface of a material having a functional group in which the structure of interacting water is closer to that of bulk water suppresses protein adsorption.

【0020】ところが、親水性の官能基として、スルホ
ン基、スルホキシド基を有するジメチルスルホン、ジメ
チルスルホキシドに水を1質量%添加し、相互作用した
水の赤外吸収スペクトルを調べると、驚くべきことに、
その重心波数はそれぞれ3405cm-1、3440cm
-1で、バルク水のそれにさらに近いことがわかった。本
発明者らはこの知見をもとに、スルホン基、スルホキシ
ド基を有するポリマーとしてエチレンスルホンプロピレ
ンスルホン共重合体及びエチレンスルホキシドプロピレ
ンスルホキシド共重合体を合成し、その膜を作製して蛋
白質の吸着を調べてみたところ、予想通り、大幅な蛋白
吸着抑制効果が達成されることを確認できた。
However, it was surprisingly found that 1% by mass of water was added to dimethyl sulfone or dimethyl sulfoxide having a sulfone group or a sulfoxide group as a hydrophilic functional group, and the interacted water was examined for infrared absorption spectrum. ,
The center of gravity wave numbers are 3405 cm -1 and 3440 cm, respectively.
At -1 , it turned out to be even closer to that of bulk water. Based on this finding, the present inventors synthesized an ethylene sulfone propylene sulfone copolymer and an ethylene sulfoxide propylene sulfoxide copolymer as a polymer having a sulfone group and a sulfoxide group, and prepared a membrane to absorb protein. Upon examination, it was confirmed that a significant effect of suppressing protein adsorption was achieved as expected.

【0021】ポリマーの構造としては、スルホン基、ス
ルホキシド基の特性をより顕著に発揮させるため、それ
以外の構造の影響はできるだけ小さい方がよい。疎水性
の強い芳香族鎖は避けるべきで、脂肪族鎖が好ましく、
しかも可能な限り鎖長は短い方がよい。本発明の生体適
合性材料を形成する脂肪族鎖は、直鎖状、枝分かれ状の
いずれでもよく、このようなものとしては、例えば、ス
ルホン基やスルホキシド基がポリマーの主鎖にある場
合、炭素数2の場合はエチレン鎖、炭素数3の場合は
1,3−プロピレン鎖、1−メチルエチレン鎖、炭素数
4の場合は1,4−ブチレン鎖、1−メチル−1,3−
プロピレン鎖、2−メチル−1,3−プロピレン鎖、
1,1−ジメチルエチレン鎖、1,2−ジメチルエチレ
ン鎖、炭素数5の場合は1,5−ペンチレン鎖、1−メ
チル−1,4−ブチレン鎖、2−メチル−1,4−ブチ
レン鎖、1,1−ジメチル−1,3−プロピレン鎖、
1,2−ジメチル−1,3−プロピレン鎖、1,3−ジ
メチル−1,3−プロピレン鎖、1−エチル−1,3−
プロピレン鎖、2−エチル−1,3−プロピレン鎖、1
−プロピルエチレン鎖、2−プロピルエチレン鎖、炭素
数6の場合は1,6−へキシレン鎖、1−メチル−1,
5−ペンチレン鎖、2−メチル−1,5−ペンチレン
鎖、3−メチル−1,5−ペンチレン鎖、1,1−ジメ
チル1,4−ブチレン鎖、1,2ジメチル−1,4−ブ
チレン鎖、1,3−ジメチル−1,4−ブチレン鎖、
1,4−ジメチル−1,4−ブチレン鎖、2,3−ジメ
チル−1,4−ブチレン鎖、1−エチル−1,4−ブチ
レン鎖、2−エチル−1,4−ブチレン鎖、1−(1−
プロピル)1,3−プロピレン鎖、1−(2−プロピ
ル)1,3−プロピレン鎖、2−(1−プロピル)1,
3−ブチレン鎖、2−(2−プロピル)1,3−プロピ
レン鎖、1−エチル−2−メチル−1,3−プロピレン
鎖、1−エチル−3−メチル−1,3−プロピレン鎖、
1−メチル−2−メチル−1,3−プロピレン鎖、1,
2,3−トリメチル−1,3−プロピレン鎖、1−ブチ
ルエチレン鎖、1−メチルプロピルエチレン鎖、2−メ
チルプロピルエチレン鎖、2−メチル−2−プロピルエ
チレン鎖、1−(1−プロピル)−2−メチルエチレン
鎖、1−(2−プロピル)−2−メチルエチレン鎖、1
−(1−プロピル)−1−メチルエチレン鎖、1−(2
−プロピル)−1−メチルエチレン鎖、1,2−ジエチ
ルエチレン鎖などが挙げられる。スルホン基やスルホキ
シド基がグラフトなど側鎖にある場合も炭素の基本骨格
は上記と同様である。
As for the structure of the polymer, the influence of other structures should be as small as possible so that the characteristics of the sulfone group and the sulfoxide group can be more remarkably exhibited. Strongly aromatic chains should be avoided, aliphatic chains are preferred,
Moreover, the shorter the chain length, the better. Aliphatic chains forming the biocompatible material of the present invention may be linear or branched, and include, for example, those having a sulfone group or a sulfoxide group in the main chain of the polymer. In the case of the number 2, the ethylene chain, in the case of the carbon number 3, 1,3-propylene chain, 1-methylethylene chain, in the case of the carbon number 4, 1,4-butylene chain, 1-methyl-1,3-
Propylene chain, 2-methyl-1,3-propylene chain,
1,1-dimethylethylene chain, 1,2-dimethylethylene chain, 1,5-pentylene chain, 1-methyl-1,4-butylene chain, 2-methyl-1,4-butylene chain in the case of 5 carbon atoms A 1,1-dimethyl-1,3-propylene chain,
1,2-dimethyl-1,3-propylene chain, 1,3-dimethyl-1,3-propylene chain, 1-ethyl-1,3-
Propylene chain, 2-ethyl-1,3-propylene chain, 1
-Propylethylene chain, 2-propylethylene chain, and 1,6-hexylene chain in the case of 6 carbon atoms, 1-methyl-1,
5-pentylene chain, 2-methyl-1,5-pentylene chain, 3-methyl-1,5-pentylene chain, 1,1-dimethyl-1,4-butylene chain, 1, dimethyl-1,4-butylene chain A 1,3-dimethyl-1,4-butylene chain,
1,4-dimethyl-1,4-butylene chain, 2,3-dimethyl-1,4-butylene chain, 1-ethyl-1,4-butylene chain, 2-ethyl-1,4-butylene chain, 1- (1-
Propyl) 1,3-propylene chain, 1- (2-propyl) 1,3-propylene chain, 2- (1-propyl) 1,
3-butylene chain, 2- (2-propyl) 1,3-propylene chain, 1-ethyl-2-methyl-1,3-propylene chain, 1-ethyl-3-methyl-1,3-propylene chain,
1-methyl-2-methyl-1,3-propylene chain, 1,
2,3-trimethyl-1,3-propylene chain, 1-butylethylene chain, 1-methylpropylethylene chain, 2-methylpropylethylene chain, 2-methyl-2-propylethylene chain, 1- (1-propyl) -2-methylethylene chain, 1- (2-propyl) -2-methylethylene chain, 1
-(1-propyl) -1-methylethylene chain, 1- (2
-Propyl) -1-methylethylene chain, 1,2-diethylethylene chain and the like. When a sulfone group or a sulfoxide group is present in a side chain such as a graft, the basic skeleton of carbon is the same as described above.

【0022】本発明の化合物の合成法の例としては、触
媒を用いて重合したポリアルキルスルフィドを酸化して
得る方法が挙げられる。ポリアルキルスルフィドはエピ
スルフィド類のカリウム−t−ブトキシド等を用いたア
ニオン重合、ジエチル亜鉛、過塩素酸マグネシウムなど
を触媒とした開環重合、ビニルスルフィドやアリルスル
フィドのラジカル重合、ジハロアルカンとジチオールの
縮重合等の方法で得ることができる。ポリアルキルスル
フィド中のスルフィド基を過酸化水素水と酢酸の混合液
もしくは過酸化水素水と蟻酸の混合液により酸化して、
目的のスルホキシドやスルホンの官能基を含有する脂肪
族鎖を有するポリマーを得ることができる。スルホキシ
ドやスルホンの官能基はそれぞれ単独のみでもいいし、
両者が任意の割合で混在していてもよい。
As an example of a method for synthesizing the compound of the present invention, there is a method obtained by oxidizing a polymerized polyalkyl sulfide using a catalyst. Polyalkyl sulfides include anionic polymerization using potassium tert-butoxide of episulfides, ring-opening polymerization catalyzed by diethyl zinc, magnesium perchlorate, etc., radical polymerization of vinyl sulfide and allyl sulfide, condensation of dihaloalkane and dithiol It can be obtained by a method such as polymerization. The sulfide group in the polyalkyl sulfide is oxidized by a mixture of hydrogen peroxide and acetic acid or a mixture of hydrogen peroxide and formic acid,
A desired polymer having an aliphatic chain containing a functional group of sulfoxide or sulfone can be obtained. The functional groups of sulfoxide and sulfone may be each alone,
Both may be mixed at an arbitrary ratio.

【0023】本発明の化合物でスルホン基を有するもの
は、工業的には、対応するオレフィン類と二酸化硫黄の
共重合で直接合成することができる。さらに還元剤を用
いて容易にスルホキシド基を有するものへの変換が可能
である。還元の程度を制御することにより、スルホン基
とスルホキシド基を任意の割合で含有するポリマーを得
ることもできる。この方法は原料コストが非常に安価で
あり、大量生産に適した優れた製造方法である。
The compounds of the present invention having a sulfone group can be industrially synthesized directly by copolymerization of the corresponding olefins and sulfur dioxide. Further, conversion to a compound having a sulfoxide group is easily possible using a reducing agent. By controlling the degree of reduction, a polymer containing a sulfone group and a sulfoxide group at an arbitrary ratio can be obtained. This method has a very low raw material cost and is an excellent production method suitable for mass production.

【0024】スルホン基やスルホキシド基が側鎖にある
場合の化合物の合成法としては、分子内にスルフィド基
とエチレン結合(炭素二重結合)を有するモノマー、例
えばビニルメチルスルフィドやアリルメチルスルフィド
などを、ラジカル重合やイオン重合などで炭素二重結合
の開裂により重合したポリマーを上記と同様の方法で酸
化して得る方法が挙げられる。スルフィド基ではなく、
スルホン基やスルホキシド基を有しているモノマーであ
れば、重合後に酸化する必要はない。
As a method for synthesizing a compound having a sulfone group or a sulfoxide group in a side chain, a monomer having a sulfide group and an ethylene bond (carbon double bond) in a molecule, such as vinyl methyl sulfide or allyl methyl sulfide, is used. And a method obtained by oxidizing a polymer polymerized by cleavage of a carbon double bond by radical polymerization or ionic polymerization in the same manner as described above. Not a sulfide group,
As long as the monomer has a sulfone group or a sulfoxide group, it is not necessary to oxidize after polymerization.

【0025】本発明の化合物は、その赤外線吸収スペク
トルが1020cm−1付近においてスルホキシド基由
来の特性吸収、1120cm−1及び1320cm-1
近においてスルホン基由来の特性吸収を示すので、これ
によって同定することができる。本発明の化合物は、脂
肪族鎖の構造を選択することにより、水や有機溶剤に対
する溶解性を制御することができる。本発明の化合物が
水溶性であると、水分の含有量の多い生体や生体成分に
接した際、使用に耐えうる十分な強度が維持できなくな
り、基材として好ましくない。また、別素材の基材にコ
ーティングした場合や基材ポリマーにブレンドした場
合、使用時に本発明の化合物が水分の含有量の多い生体
や生体成分側に溶出してしまい、基材に付与した生体適
合性の効力を損なう恐れがある。
The compounds of the present invention, the infrared absorption spectrum characteristic absorption derived sulfoxide groups in the vicinity of 1020 cm -1, it indicates characteristic absorption derived from a sulfonic group in the vicinity of 1,120 cm -1 and 1320 cm -1, be identified by this Can be. The compounds of the present invention can control the solubility in water or organic solvents by selecting the structure of the aliphatic chain. When the compound of the present invention is water-soluble, when it comes into contact with a living body or a biological component having a high water content, it cannot maintain sufficient strength to withstand use, which is not preferable as a base material. In addition, when coated on a base material of another material or when blended with a base material polymer, the compound of the present invention elutes into a living body or a biological component having a high water content when used, and the living body applied to the base material Compatibility may be compromised.

【0026】本発明の化合物を他の素材にコーティング
したりブレンドする場合、ジメチルアセトアミドやジメ
チルスルホキシド、N−メチルピロリドンなどの有機極
性溶媒に可溶であることが好ましい。脂肪族ポリスルホ
キシドの場合、例えば、脂肪族鎖がエチレン鎖とプロピ
レン鎖のとき、エチレン:プロピレン比がモル比で6:
4を越えると有機溶媒に溶けず、2:8未満であると水
に溶解する。一方、脂肪族ポリスルホンは脂肪族ポリス
ルホキシドに比べると水溶性は低い傾向がある。エチレ
ン:プロピレン比が4:6以下では、ジメチルアセトア
ミドやジメチルスルホキシド、N−メチルピロリドンな
どの有機極性溶媒に実質的に溶解可能であり、しかも水
に不溶である。エチレン:プロピレン比が4:6を越え
ると有機溶媒に溶けなくなる。
When the compound of the present invention is coated or blended with another material, it is preferably soluble in an organic polar solvent such as dimethylacetamide, dimethylsulfoxide and N-methylpyrrolidone. In the case of aliphatic polysulfoxide, for example, when the aliphatic chain is an ethylene chain and a propylene chain, the ethylene: propylene ratio is 6:
If it exceeds 4, it will not be dissolved in an organic solvent, and if it is less than 2: 8, it will be dissolved in water. On the other hand, aliphatic polysulfone tends to have lower water solubility than aliphatic polysulfoxide. When the ethylene: propylene ratio is 4: 6 or less, it is substantially soluble in organic polar solvents such as dimethylacetamide, dimethylsulfoxide, and N-methylpyrrolidone, and is insoluble in water. When the ethylene: propylene ratio exceeds 4: 6, it becomes insoluble in organic solvents.

【0027】本発明の化合物の分子量は、それ自体を基
材として用いる場合は、数平均分子量で30,000〜
300,000が好ましい。数平均分子量が300,0
00を越えると成形が難しくなり、30,000未満に
なると機械的強度が低下する。他の基材材料にブレンド
したりコーティングしたりして用いる場合は、数平均分
子量で5,000〜100,000が好ましい。数平均
分子量が100,000を越えるとコーティングが困難
になり、5,000未満では水に溶出しやすくなる。
When the compound of the present invention is used as a substrate, the number average molecular weight of the compound is preferably from 30,000 to
300,000 is preferred. Number average molecular weight of 300,0
If it exceeds 00, molding becomes difficult, and if it is less than 30,000, the mechanical strength decreases. When used by blending or coating with another base material, the number average molecular weight is preferably 5,000 to 100,000. When the number average molecular weight exceeds 100,000, coating becomes difficult, and when the number average molecular weight is less than 5,000, elution to water becomes easy.

【0028】本発明の化合物は、分子量や脂肪族鎖の構
造を適当に選ぶことにより、基材そのものとして用いる
ことができるが、用途によっては本発明品を溶剤に溶解
し、他の基材表面にコーティングしてもよく、他のポリ
マーとブレンドして用いることもできる。いずれの場合
でも、本発明のポリマーは水に不溶なので、使用時に溶
出することなく、優れた生体適合性を持続して発揮する
ことができる。
The compound of the present invention can be used as a base material itself by appropriately selecting the molecular weight and the structure of the aliphatic chain. However, depending on the application, the product of the present invention may be dissolved in a solvent and the surface of another base material may be dissolved. Or a blend with other polymers. In any case, since the polymer of the present invention is insoluble in water, it does not elute at the time of use and can continuously exhibit excellent biocompatibility.

【0029】[0029]

【発明の実施の形態】実施例によって本発明を具体的に
説明するが、本発明はこれらの例によって限定されるも
のではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0030】[0030]

【参考例1】ジメチルスルホン(関東化成製)10gに
蒸留水(和光純薬製)0.1gを添加し、60℃で十分
攪拌混合したのち、少量採取し、これを赤外吸収スペク
トル測定用窓材である2枚のフッ化カルシウム板にはさ
み、日本分光製FT/IR300を用い、25℃で15
回積算測定して透過法赤外吸収スペクトルを求めた。予
め、蒸留水を添加していないジメチルスルホンの赤外吸
収スペクトルを測定しておき、差スペクトルをとること
により、ジメチルスルホンと相互作用した水の赤外吸収
スペクトルを得た。
Reference Example 1 0.1 g of distilled water (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 10 g of dimethyl sulfone (manufactured by Kanto Kasei), and the mixture was sufficiently stirred and mixed at 60 ° C. Using FT / IR300 manufactured by JASCO, sandwiched between two calcium fluoride plates as window materials,
The total number of times of measurement was measured, and the transmission method infrared absorption spectrum was determined. The infrared absorption spectrum of dimethyl sulfone to which no distilled water was added was measured in advance, and an infrared absorption spectrum of water interacting with dimethyl sulfone was obtained by taking a difference spectrum.

【0031】得られた赤外吸収スペクトルにおける水の
伸縮振動の吸収に由来する3400cm-1付近の吸収ピ
ークを、約3650cm-1、約3550cm-1、約34
50cm-1及び約3250cm-1を中心とする4種のコ
ンポーネントにカーブフィッティングプログラムを用い
て分離した。得られた各コンポーネントのピーク波数及
び相対面積比より、相対面積比を重みとして重みつき平
均により重心波数を求め、Cwn=3405cm-1を得
た。
In the obtained infrared absorption spectrum, the absorption peak at around 3400 cm −1 due to the absorption of stretching vibration of water was changed to about 3650 cm −1 , about 3550 cm −1 , about 34
Were separated using curve fitting program four components centered at 50 cm -1 and about 3250cm -1. From the obtained peak wave number and relative area ratio of each component, the center-of-gravity wave number was obtained by weighted averaging using the relative area ratio as a weight, and C wn = 3405 cm −1 was obtained.

【0032】[0032]

【参考例2】ジメチルスルホキシド(和光純薬製)10
gに蒸留水(和光純薬製)0.1gを添加し、25℃で
十分攪拌混合したのち、少量採取し、赤外吸収スペクト
ル測定用窓材である2枚のフッ化カルシウム板にはさ
み、参考例1と同様の条件で赤外吸収スペクトルを測定
した。別途、蒸留水を添加していないジメチルスルホキ
シドの赤外吸収スペクトルを測定しておき、差スペクト
ルをとることにより、ジメチルスルホキシドと相互作用
した水の赤外吸収スペクトルを得た。得られた赤外吸収
スペクトルから参考例1と同様にして重心波数を求め、
wn=3440cm-1を得た。
Reference Example 2 Dimethyl sulfoxide (manufactured by Wako Pure Chemical Industries) 10
0.1 g of distilled water (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the resulting mixture, and the mixture was sufficiently stirred and mixed at 25 ° C. A small amount was collected and sandwiched between two calcium fluoride plates serving as window materials for infrared absorption spectrum measurement. The infrared absorption spectrum was measured under the same conditions as in Reference Example 1. Separately, an infrared absorption spectrum of dimethyl sulfoxide to which distilled water was not added was measured in advance, and a difference spectrum was obtained to obtain an infrared absorption spectrum of water interacting with dimethyl sulfoxide. The center-of-gravity wave number was obtained from the obtained infrared absorption spectrum in the same manner as in Reference Example 1,
C wn = 3440 cm −1 was obtained.

【0033】[0033]

【参考例3】酢酸メチル(和光純薬製)10gに蒸留水
(和光純薬製)0.1gを添加し、25℃で十分攪拌混
合したのち、少量採取し、赤外吸収スペクトル測定用窓
材である2枚のフッ化カルシウム板にはさみ、参考例1
と同様の条件で赤外吸収スペクトルを測定した。別途、
蒸留水を添加していない酢酸メチルの赤外吸収スペクト
ルを測定しておき、差スペクトルをとることにより、酢
酸メチルと相互作用した水の赤外吸収スペクトルを得
た。得られた赤外吸収スペクトルから参考例1と同様に
して重心波数を求め、Cwn=3573cm-1を得た。
[Reference Example 3] 0.1 g of distilled water (manufactured by Wako Pure Chemical) was added to 10 g of methyl acetate (manufactured by Wako Pure Chemical), and the mixture was sufficiently stirred and mixed at 25 ° C. Sandwiched between two calcium fluoride plates as materials, Reference Example 1
The infrared absorption spectrum was measured under the same conditions as described above. Separately,
An infrared absorption spectrum of methyl acetate to which no distilled water was added was measured in advance, and an infrared absorption spectrum of water interacting with methyl acetate was obtained by taking a difference spectrum. The center-of-gravity wave number was determined from the obtained infrared absorption spectrum in the same manner as in Reference Example 1 to obtain C wn = 3573 cm -1 .

【0034】[0034]

【参考例4】少量の蒸留水(バルク水)を赤外吸収スペ
クトル測定用窓材である2枚のフッ化カルシウム板には
さみ、参考例1と同様の条件で赤外吸収スペクトルを測
定した。得られた赤外吸収スペクトルから参考例1と同
様にして重心波数を求め、C wn=3366cm-1を得
た。その赤外吸収スペクトルとカーブフィッティングし
た様子を図1に示す。
[Reference Example 4] A small amount of distilled water (bulk water) was
Two calcium fluoride plates that are window materials
Then, the infrared absorption spectrum was measured under the same conditions as in Reference Example 1.
Specified. The same as Reference Example 1 from the obtained infrared absorption spectrum.
The wave number of the center of gravity as wn= 3366cm-1Get
Was. Curve fitting with its infrared absorption spectrum
1 is shown in FIG.

【0035】[0035]

【実験例1】本実施例で用いられる蛋白付着量評価法と
して、マイクロBCA法による定量法を示す。ウシγ−
グロブリン20mg(SIGMA社製)を2mlの1M燐酸
緩衝液(和光純薬製)に溶解し、その蛋白溶液に試験平
膜(約1×1cm)を37℃で1時間浸漬させた。その
後、試験片を1M燐酸緩衝液で洗浄し、1%のドデシル
硫酸ナトリウム(和光純薬製)を溶解させた1M燐酸緩
衝液0.5mlに37℃で4時間浸漬して吸着した蛋白
を溶解させた。この液中の蛋白濃度をマイクロBCAプ
ロテインアッセイキット(PIERCE社製)を用いて
定量した。
EXPERIMENTAL EXAMPLE 1 As a method for evaluating the amount of protein attached used in this example, a quantitative method by the micro BCA method will be described. Bovine γ-
20 mg of globulin (manufactured by SIGMA) was dissolved in 2 ml of 1M phosphate buffer (manufactured by Wako Pure Chemical Industries), and a test flat membrane (about 1 × 1 cm) was immersed in the protein solution at 37 ° C. for 1 hour. Thereafter, the test piece was washed with 1 M phosphate buffer, and immersed in 0.5 ml of 1 M phosphate buffer in which 1% sodium dodecyl sulfate (manufactured by Wako Pure Chemical) was dissolved at 37 ° C. for 4 hours to dissolve the adsorbed protein. I let it. The protein concentration in this solution was quantified using a micro BCA protein assay kit (manufactured by PIERCE).

【0036】マイクロBCAキットによる蛋白の定量は
取り扱い説明書に従って行った。試料を0.5ml採取
し、調製済みのマイクロBCA試薬液を0.5ml加え
て軽く攪拌し、60℃で1時間加熱した後、紫外分光光
度計で562nmの波長における吸光度を測定した。あ
らかじめ作製した検量線を使って蛋白濃度を求め、膜の
単位面積あたりの蛋白吸着量を算出した。
The protein was quantified using the micro BCA kit according to the instruction manual. 0.5 ml of a sample was collected, 0.5 ml of the prepared micro BCA reagent solution was added, the mixture was gently stirred, heated at 60 ° C. for 1 hour, and the absorbance at a wavelength of 562 nm was measured with an ultraviolet spectrophotometer. The protein concentration was determined using a previously prepared calibration curve, and the protein adsorption amount per unit area of the membrane was calculated.

【0037】[0037]

【実施例1】エチレンスルフィド4.9gとプロピレン
スルフィド14.0g(ともに関東化成製)を過塩素酸
マグネシウム44.8mg(和光純薬製)を溶解した酢
酸エチル254mgと混合し、密閉容器に入れて70℃
で5時間攪拌して重合した。これを40mlの1−メチ
ル−2−ピロリドン(和光純薬製)に溶解して1000
mlのエタノールに滴下し、ポリマーの白色沈殿物を得
た。
EXAMPLE 1 4.9 g of ethylene sulfide and 14.0 g of propylene sulfide (manufactured by Kanto Kasei) were mixed with 254 mg of ethyl acetate in which 44.8 mg of magnesium perchlorate (manufactured by Wako Pure Chemical Industries) was dissolved, and the mixture was placed in a closed container. 70 ° C
For 5 hours to carry out polymerization. This was dissolved in 40 ml of 1-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries) and 1000
The solution was added dropwise to ml of ethanol to obtain a white precipitate of the polymer.

【0038】沈殿物をエタノールでよく洗浄して60℃
で減圧下エタノールを除去して、ポリスルフィド14.
0gを得た。次に、このポリスルフィド1gを60ml
の1−メチル−2−ピロリドンに溶解したものに、30
%過酸化水素水4mlと蟻酸20mlの混合液を撹拌し
ながらゆっくり滴下した。すぐに発熱が起り、スルフィ
ドはスルホンに酸化され、エチレンスルホンプロピレン
スルホン共重合体の沈殿が生成した。これを遠心沈降し
て上澄みを入れ替える洗浄法を3回繰り返して精製した
後、60℃で4時間減圧乾燥して白色固体エチレンスル
ホンプロピレンスルホン共重合体0.85gを得た。
The precipitate is thoroughly washed with ethanol, and
13. The ethanol is removed under reduced pressure with a polysulfide.
0 g was obtained. Next, 1 g of this polysulfide was added to 60 ml
Dissolved in 1-methyl-2-pyrrolidone in
A mixed solution of 4% aqueous hydrogen peroxide and 20 ml of formic acid was slowly added dropwise with stirring. Immediate exotherm occurred, sulfide was oxidized to sulfone, and a precipitate of ethylene sulfone propylene sulfone copolymer was formed. This was purified by repeating the washing method of centrifuging and replacing the supernatant three times, and then dried under reduced pressure at 60 ° C. for 4 hours to obtain 0.85 g of a white solid ethylene sulfone propylene sulfone copolymer.

【0039】次に、このエチレンスルホンプロピレンス
ルホン共重合体0.1gをジメチルスルホキシド(和光
純薬製)0.6gに溶解した溶液をポリエチレンシート
上にドクターブレードで流延し、減圧下60℃で5時間
加熱して脱溶媒しエチレンスルホンプロピレンスルホン
共重合体の平膜Aを得た。得られた平膜Aを湿度70%
RH、温度25℃の雰囲気下に1時間静置した後、手早
く2枚のフッ化カルシウム板に挟んで赤外吸収スペクト
ルを測定した。別途、乾燥した同膜の赤外吸収スペクト
ルを測定しておき、差スペクトルをとることにより、膜
に収着した水の赤外吸収スペクトルを得た。
Next, a solution prepared by dissolving 0.1 g of this ethylene sulfone propylene sulfone copolymer in 0.6 g of dimethyl sulfoxide (manufactured by Wako Pure Chemical Industries) was cast on a polyethylene sheet with a doctor blade, and the solution was heated at 60 ° C. under reduced pressure at 60 ° C. The solvent was removed by heating for 5 hours to obtain a flat membrane A of an ethylene sulfone propylene sulfone copolymer. 70% humidity
After standing for 1 hour in an atmosphere of RH and a temperature of 25 ° C., an infrared absorption spectrum was immediately measured between two calcium fluoride plates. Separately, an infrared absorption spectrum of the dried film was measured, and a difference spectrum was obtained to obtain an infrared absorption spectrum of water sorbed on the film.

【0040】参考例1と同様の測定条件とカーブフィッ
ティング条件で平膜Aの収着水の重心波数(Cwn)を求
めた。その結果を表1に示す。得られた平膜Aについて
実験例1に従って蛋白吸着試験を実施した。その結果を
表2に示す。
Under the same measurement conditions and curve fitting conditions as in Reference Example 1, the gravity wave number (C wn ) of the sorption water of the flat membrane A was determined. Table 1 shows the results. The obtained flat membrane A was subjected to a protein adsorption test according to Experimental Example 1. Table 2 shows the results.

【0041】[0041]

【実施例2】アリルメチルスルフィド10gに10mg
のアゾイソブチロニトリルを添加して密閉容器に仕込
み、脱気操作を行った後、60℃で10時間攪拌して重
合した。その後、重合物を40mlの1−メチル−2−
ピロリドン(和光純薬製)に溶解して1000mlのエ
タノールに滴下し、ポリマーの褐色沈殿物を得た。沈殿
物をエタノールでよく洗浄して60℃で減圧下エタノー
ルを除去して、ポリスルフィド7.5gを得た。
Example 2 10 mg to 10 g of allyl methyl sulfide
Of azoisobutyronitrile was added, and the mixture was charged into a closed vessel, deaerated, and then polymerized by stirring at 60 ° C. for 10 hours. Thereafter, 40 ml of 1-methyl-2-
It was dissolved in pyrrolidone (manufactured by Wako Pure Chemical Industries) and dropped into 1000 ml of ethanol to obtain a brown precipitate of a polymer. The precipitate was thoroughly washed with ethanol, and ethanol was removed at 60 ° C. under reduced pressure to obtain 7.5 g of polysulfide.

【0042】次に、このポリスルフィド1gを60ml
の1−メチル−2−ピロリドンに溶解したものに、30
%過酸化水素水4mlと蟻酸20mlの混合液を撹拌し
ながらゆっくり滴下した。すぐに発熱が起り、スルフィ
ドはスルホンに酸化され、ポリアリルメチルスルホンの
沈殿が生成した。これを遠心沈降して上澄みを入れ替え
る洗浄法を3回繰り返して精製した後、60℃で4時間
減圧乾燥して白色固体ポリアリルメチルスルホン0.8
1gを得た。
Next, 1 g of this polysulfide was added to 60 ml
Dissolved in 1-methyl-2-pyrrolidone in
A mixed solution of 4% aqueous hydrogen peroxide and 20 ml of formic acid was slowly added dropwise with stirring. An exotherm occurred immediately and the sulfide was oxidized to the sulfone and a precipitate of polyallylmethyl sulfone formed. This was purified by repeating a washing method of centrifuging and replacing the supernatant three times, followed by drying under reduced pressure at 60 ° C. for 4 hours to obtain 0.8% of white solid polyallylmethyl sulfone.
1 g was obtained.

【0043】次に、このポリアリルメチルスルホン0.
1gをジメチルスルホキシド(和光純薬製)0.6gに
溶解した溶液をポリエチレンシート上にドクターブレー
ドで流延し、減圧下60℃で5時間加熱して脱溶媒し、
ポリアリルメチルスルホンの平膜Bを得た。得られた平
膜Bを湿度70%RH、温度25℃の雰囲気下に1時間
静置した後、手早く2枚のフッ化カルシウム板にはさん
で赤外吸収スペクトルを測定した。別途乾燥した同膜の
赤外吸収スペクトルを測定しておき、差スペクトルをと
ることにより、膜に収着した水の赤外吸収スペクトルを
得た。参考例1と同様の測定条件とカーブフィッティン
グ条件で平膜Bの収着水の重心波数(Cwn)を求めた。
その結果を表1に示す。得られた平膜Bについて実験例
1に従って蛋白吸着試験を実施した。その結果を表2に
示す。
Next, the polyallylmethyl sulfone 0.1.
A solution prepared by dissolving 1 g in 0.6 g of dimethyl sulfoxide (manufactured by Wako Pure Chemical Industries) was cast on a polyethylene sheet by a doctor blade, and heated at 60 ° C. for 5 hours under reduced pressure to remove the solvent.
A flat membrane B of polyallylmethyl sulfone was obtained. After the obtained flat film B was allowed to stand for 1 hour in an atmosphere at a humidity of 70% RH and a temperature of 25 ° C., the infrared absorption spectrum was quickly measured by immediately sandwiching the two calcium fluoride plates. The infrared absorption spectrum of the separately dried film was measured, and a difference spectrum was obtained to obtain an infrared absorption spectrum of water sorbed on the film. Under the same measurement conditions and curve fitting conditions as in Reference Example 1, the gravity wave number (C wn ) of the sorption water of the flat membrane B was determined.
Table 1 shows the results. A protein adsorption test was performed on the obtained flat membrane B in accordance with Experimental Example 1. Table 2 shows the results.

【0044】[0044]

【比較例1】ポリ塩化ビニル(和光純薬製)1gをN,
N−ジメチルホルムアミド(和光純薬製)6gに溶解し
た溶液をガラス板にドクターブレードで流延し、減圧下
60℃で5時間加熱して脱溶媒しポリ塩化ビニルの平膜
Cを得た。得られた平膜Cを湿度98%RH、温度25
℃の雰囲気下に1時間静置した後、手早く2枚のフッ化
カルシウム板に挟んで赤外吸収スペクトルを測定した。
別途、乾燥した同膜の赤外吸収スペクトルを測定してお
き、差スペクトルをとることにより、膜に収着した水の
赤外吸収スペクトルを得た。参考例1と同様の測定条件
とカーブフィッティング条件で平膜Cの収着水の重心波
数(Cwn)を求めた。その結果を表1に示す。得られた
平膜Cについて実験例1に従って蛋白吸着試験を実施し
た。その結果を表2に示す。
Comparative Example 1 1 g of polyvinyl chloride (manufactured by Wako Pure Chemical Industries) was
A solution dissolved in 6 g of N-dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd.) was cast on a glass plate with a doctor blade, and heated at 60 ° C. for 5 hours under reduced pressure to remove the solvent, thereby obtaining a polyvinyl chloride flat film C. The obtained flat film C was subjected to a humidity of 98% RH and a temperature of 25%.
After standing for 1 hour in an atmosphere of ° C, the infrared absorption spectrum was quickly measured between two calcium fluoride plates.
Separately, an infrared absorption spectrum of the dried film was measured, and a difference spectrum was obtained to obtain an infrared absorption spectrum of water sorbed on the film. Under the same measurement conditions and curve fitting conditions as in Reference Example 1, the centroid wave number (C wn ) of the sorption water of the flat membrane C was determined. Table 1 shows the results. A protein adsorption test was performed on the obtained flat membrane C in accordance with Experimental Example 1. Table 2 shows the results.

【0045】[0045]

【実験例2】本実施例で用いられる蛋白付着量評価法と
して赤外吸収スペクトルによる定量法を示す。ウシγ−
グロブリン20mg(SIGMA社製)を2mlの1M燐酸
緩衝液(和光純薬製)に溶解し、その蛋白溶液に試験平
膜(約1×1cm)を37℃で1時間浸漬させた。試験
片を1M燐酸緩衝液で洗浄後、精製水で洗浄してデシケ
ーター中で乾燥させた。十分乾燥した試験平膜につい
て、赤外吸収スペクトルを測定した。
[Experimental Example 2] As a method for evaluating the amount of attached protein used in this example, a quantitative method using an infrared absorption spectrum is shown. Bovine γ-
20 mg of globulin (manufactured by SIGMA) was dissolved in 2 ml of 1M phosphate buffer (manufactured by Wako Pure Chemical Industries), and a test flat membrane (about 1 × 1 cm) was immersed in the protein solution at 37 ° C. for 1 hour. The test piece was washed with a 1 M phosphate buffer, then washed with purified water, and dried in a desiccator. The infrared absorption spectrum of the sufficiently dried test flat membrane was measured.

【0046】測定条件は、日本分光製赤外分光光度計F
T/IR300を用いて温度25℃、湿度20%以下で
透過で測定した。得られたスペクトルにおいてγ−グロ
ブリンの吸収に基づく1600cm-1から1720cm
-1の範囲の吸収強度を求め吸着蛋白量の指標とした。
The measurement conditions were as follows: infrared spectrophotometer F manufactured by JASCO
The transmission was measured using a T / IR300 at a temperature of 25 ° C. and a humidity of 20% or less. In the obtained spectrum, 1600 cm −1 to 1720 cm based on the absorption of γ-globulin
The absorption intensity in the range of -1 was determined and used as an index of the amount of adsorbed protein.

【0047】[0047]

【実施例3】エチレンスルフィド9.7gとプロピレン
スルフィド8.0gを過塩素酸マグネシウム44.8m
gを溶解した酢酸エチル254mgと混合し、密閉容器
に入れて70℃で5時間攪拌して重合した。これを40
mlの1−メチル−2−ピロリドンに溶解して1000
mlのエタノールに滴下し、ポリマーの白色沈殿物を得
た。
Example 3 9.7 g of ethylene sulfide and 8.0 g of propylene sulfide were added to 44.8 m of magnesium perchlorate.
g was dissolved in 254 mg of ethyl acetate, and the mixture was placed in a closed container and stirred at 70 ° C. for 5 hours to carry out polymerization. This is 40
dissolved in 1-methyl-2-pyrrolidone
The solution was added dropwise to ml of ethanol to obtain a white precipitate of the polymer.

【0048】沈殿物をエタノールでよく洗浄して60℃
で減圧下エタノールを除去し、ポリスルフィド16gを
得た。次に、このポリスルフィド1gを60mlの1−
メチル−2−ピロリドンに溶解したものに、30%過酸
化水素水4mlと酢酸20mlの混合液を撹拌しながら
ゆっくり滴下した。30℃で一晩放置すると、ポリスル
ホキシドが沈殿した。エタノールで沈殿をよく洗浄した
後、60℃で4時間減圧下エタノールを除去して、白色
固体エチレンスルホキシドプロピレンスルホキシド共重
合体0.70gを得た。
The precipitate is thoroughly washed with ethanol,
The ethanol was removed under reduced pressure with to obtain 16 g of polysulfide. Next, 1 g of this polysulfide was added to 60 ml of 1-
A mixture of 4 ml of 30% aqueous hydrogen peroxide and 20 ml of acetic acid was slowly added dropwise to the solution dissolved in methyl-2-pyrrolidone with stirring. Upon standing overnight at 30 ° C., polysulfoxide precipitated. After thoroughly washing the precipitate with ethanol, the ethanol was removed under reduced pressure at 60 ° C. for 4 hours to obtain 0.70 g of a white solid ethylene sulfoxide-propylene sulfoxide copolymer.

【0049】続いて、芳香族ポリスルホン(UDEL
P−1700(登録商標)、テイジンアモコエンジニア
リングプラスチックス株式会社製)22質量部を1−メ
チル−2−ピロリドン76質量部に溶解したものに、エ
チレンスルホキシドプロピレンスルホキシド共重合体2
質量部を添加して溶解し、製膜用ドープを調整した。ド
クターブレードを用いて、得られたドープをガラス板上
にキャストした後、50℃に温調された1−メチル−2
−ピロリドン:水=95:5の凝固浴中へ1分間浸漬
し、続いて1−メチル−2−ピロリドン:水=50:5
0の凝固浴中へ20分間浸漬して相分離させた後、60
℃の熱水で20分づつ3回繰り返し洗浄して平膜Dを得
た。
Subsequently, aromatic polysulfone (UDEL)
P-1700 (registered trademark, manufactured by Teijin Amoko Engineering Plastics Co., Ltd.) (22 parts by mass) dissolved in 76 parts by mass of 1-methyl-2-pyrrolidone was mixed with ethylene sulfoxide-propylene sulfoxide copolymer 2
A part by mass was added and dissolved to prepare a dope for film formation. After casting the obtained dope on a glass plate using a doctor blade, 1-methyl-2 adjusted to 50 ° C.
-Immersion in a coagulation bath of pyrrolidone: water = 95: 5 for 1 minute, followed by 1-methyl-2-pyrrolidone: water = 50: 5
After immersion in a coagulation bath for 20 minutes to separate phases, 60
Washing was repeated three times with hot water of 20 ° C. for 20 minutes to obtain a flat membrane D.

【0050】得られた平膜Dを湿度98%RH、温度2
5℃の雰囲気下に1時間静置した後、手早く2枚のフッ
化カルシウム板に挟んで赤外吸収スペクトルを測定し
た。別途、乾燥した同膜の赤外吸収スペクトルを測定し
ておき、差スペクトルをとることにより、膜に収着した
水の赤外吸収スペクトルを得た。参考例1と同様の測定
条件とカーブフィッティング条件で平膜Dの収着水の重
心波数(Cwn)を求めた。その結果を表3に示す。平膜
Dについて実験例2に従って蛋白付着率を評価した結果
を表3に示す。
The obtained flat film D was subjected to a humidity of 98% RH and a temperature of 2%.
After standing for 1 hour in an atmosphere of 5 ° C., an infrared absorption spectrum was measured quickly by sandwiching between two calcium fluoride plates. Separately, an infrared absorption spectrum of the dried film was measured, and a difference spectrum was obtained to obtain an infrared absorption spectrum of water sorbed on the film. Under the same measurement conditions and curve fitting conditions as in Reference Example 1, the gravity center wave number (C wn ) of the sorption water of the flat membrane D was determined. Table 3 shows the results. Table 3 shows the results of evaluating the protein adhesion rate of the flat membrane D according to Experimental Example 2.

【0051】[0051]

【実施例4】実施例3において製膜用ドープの組成を芳
香族ポリスルホン17質量部、1−メチル−2−ピロリ
ドン76質量部、エチレンスルホキシドプロピレンスル
ホキシド共重合体7質量部とすること以外同様の操作を
行い、平膜Eを得た。得られた平膜Eについて実施例3
と同様にして平膜Eの収着水の重心波数(C wn)を求め
た。その結果を表3に示す。平膜Eについて実験例2に
従って蛋白付着率を評価した結果を表3に示す。
Example 4 The composition of the film forming dope in Example 3 was
17 parts by mass of aromatic polysulfone, 1-methyl-2-pyrroli
76 parts by mass of don, ethylene sulfoxide propylene sulf
A similar operation is performed except that the amount of the hydroxide copolymer is 7 parts by mass.
Then, a flat membrane E was obtained. Example 3 about the obtained flat film E
In the same manner as above, the gravity wave number (C wn)
Was. Table 3 shows the results. Experimental example 2 for flat membrane E
Accordingly, Table 3 shows the results of evaluation of the protein adhesion rate.

【0052】[0052]

【実施例5】実施例3において製膜用ドープの組成を芳
香族ポリスルホン12質量部、1−メチル−2−ピロリ
ドン76質量部、エチレンスルホキシドプロピレンスル
ホキシド共重合体12質量部とすること以外同様の操作
を行い、平膜Fを得た。得られた平膜Fについて実施例
3と同様にして平膜Fの収着水の重心波数(C wn)を求
めた。その結果を表3に示す。さらにその際得た赤外吸
収スペクトル及びそれを4つのコンポーネントに分けて
カーブフィッティングしたところを図2に示す。概ね、
図1のバルク水に近いが、3250cm-1付近の成分の
比率がやや小さい。平膜Fについて実験例2に従って蛋
白付着率を評価した結果を表3に示す。
Example 5 The composition of the film forming dope in Example 3 was
12 parts by mass of aromatic polysulfone, 1-methyl-2-pyrroli
76 parts by mass of don, ethylene sulfoxide propylene sulf
The same operation except for using 12 parts by mass of the hydroxide copolymer
Was performed to obtain a flat film F. Example of the obtained flat membrane F
In the same manner as in Example 3, the centroid wave number (C wn)
I did. Table 3 shows the results. In addition, the infrared absorption
Splitting the spectrum into four components
FIG. 2 shows the result of the curve fitting. Generally,
Close to the bulk water of FIG. 1, but 3250 cm-1Of nearby components
The ratio is slightly small. The flat membrane F was prepared according to Experimental Example 2.
Table 3 shows the results of evaluating the white adhesion rate.

【0053】[0053]

【実施例6】プロピレンスルフィド20.0gを過塩素
酸マグネシウム44.8mgを溶解した酢酸エチル25
4mgと混合し、密閉容器に入れて70℃で5時間攪拌
して重合した。これを40mlの1−メチル−2−ピロ
リドンに溶解して1000mlのエタノールに滴下し、
ポリマーの白色沈殿物を得た。沈殿物をエタノールでよ
く洗浄して60℃で減圧下エタノールを除去して、ポリ
プロピレンスルフィド16.0gを得た。
Example 6 Ethyl acetate 25 in which 20.0 g of propylene sulfide was dissolved in 44.8 mg of magnesium perchlorate
The mixture was mixed with 4 mg, put in a closed container, and stirred at 70 ° C. for 5 hours to carry out polymerization. This was dissolved in 40 ml of 1-methyl-2-pyrrolidone and added dropwise to 1000 ml of ethanol,
A white precipitate of the polymer was obtained. The precipitate was thoroughly washed with ethanol, and ethanol was removed at 60 ° C. under reduced pressure to obtain 16.0 g of polypropylene sulfide.

【0054】次に、このポリプロピレンスルフィド1g
を60mlの1−メチル−2−ピロリドンに溶解したも
のに、30%過酸化水素水4mlと蟻酸20mlの混合
液を撹拌しながらゆっくり滴下した。すぐに発熱が起
り、スルフィドはスルホンに酸化された。室温で十分反
応させた後、200mlの水に投入するとポリプロピレ
ンスルホンの沈殿が生成した。これを遠心沈降して上澄
みを入れ替える洗浄法を3回繰り返して精製した後、6
0℃で4時間減圧乾燥して白色固体ポリプロピレンスル
ホン0.75gを得た。
Next, 1 g of this polypropylene sulfide
Was dissolved in 60 ml of 1-methyl-2-pyrrolidone, and a mixture of 4 ml of 30% aqueous hydrogen peroxide and 20 ml of formic acid was slowly added dropwise with stirring. An exotherm occurred immediately and the sulfide was oxidized to the sulfone. After sufficiently reacting at room temperature, the mixture was poured into 200 ml of water to produce a precipitate of polypropylene sulfone. This was centrifuged down and the supernatant was replaced with a washing method three times to purify.
Drying under reduced pressure at 0 ° C. for 4 hours gave 0.75 g of white solid polypropylene sulfone.

【0055】続いて、芳香族ポリスルホン(UDEL
P−1700(商標登録)、テイジンアモコエンジニア
リングプラスチックス株式会社製)22質量部を1−メ
チル−2−ピロリドン76質量部に溶解したものにポリ
プロピレンスルホン2質量部を添加して溶解し、製膜用
ドープを調整した。ドクターブレードを用いて、得られ
たドープをガラス板上にキャストした後、50℃に温調
された1−メチル−2−ピロリドン:水=95:5の凝
固浴中へ1分間浸漬し、次いで、1−メチル−2−ピロ
リドン:水=50:50の凝固浴中へ20分間浸漬して
相分離させた後、60℃の熱水で20分づつ3回繰り返
し洗浄して平膜Gを得た。得られた平膜Gについて実施
例3と同様にして平膜Gの収着水の重心波数(C wn)を
求めた。その結果を表3に示す。平膜Gについて実験例
2に従って蛋白付着率を評価した結果を表3に示す。
Subsequently, aromatic polysulfone (UDEL)
P-1700 (registered trademark), Teijin Amoko Engineer
Ring Plastics Co., Ltd.)
Polyethylene was dissolved in 76 parts by mass of tyl-2-pyrrolidone.
Add 2 parts by weight of propylene sulfone and dissolve for film formation
The dope was adjusted. Using a doctor blade,
After casting the dope on a glass plate, adjust the temperature to 50 ° C.
1-methyl-2-pyrrolidone: water = 95: 5
Immerse in a solid bath for 1 minute, then add 1-methyl-2-pyro
Immersion in a 50:50 coagulation bath for 20 minutes
After the phases are separated, it is repeated with hot water of 60 ° C. three times for 20 minutes each.
After washing, a flat membrane G was obtained. Performed on the obtained flat membrane G
In the same manner as in Example 3, the centroid wave number (C wn)
I asked. Table 3 shows the results. Experimental example of flat membrane G
Table 3 shows the results of evaluating the protein adhesion rate according to Example 2.

【0056】[0056]

【実施例7】実施例6において製膜用ドープの組成を芳
香族ポリスルホン17質量部、1−メチル−2−ピロリ
ドン76質量部、ポリプロピレンスルホン7質量部とす
ること以外同様の操作を行い、平膜Hを得た。得られた
平膜Hについて実施例3と同様にして平膜Hの収着水の
重心波数(C wn)を求めた。その結果を表3に示す。さ
らにその際得た赤外吸収スペクトル及びそれを4つのコ
ンポーネントに分けてカーブフィッティングしたところ
を図3に示す。概ね、図1のバルク水に近いが、365
0cm-1付近の成分の比率がやや大きい。平膜Hについ
て実験例2に従って蛋白付着率を評価した結果を表3に
示す。
Example 7 The composition of the film-forming dope in Example 6 was changed.
17 parts by mass of aromatic polysulfone, 1-methyl-2-pyrroli
76 parts by mass of dong and 7 parts by mass of polypropylene sulfone
The same operation was performed except that the flat membrane H was obtained. Got
About the flat membrane H, the sorption water of the flat membrane H
Center of gravity wave number (C wn). Table 3 shows the results. Sa
The infrared absorption spectrum obtained at that time and the four
After performing curve fitting separately for each component
Is shown in FIG. Generally close to the bulk water of FIG.
0cm-1The ratio of nearby components is slightly large. About flat membrane H
Table 3 shows the results of the evaluation of the protein adhesion rate according to Experimental Example 2.
Show.

【0057】[0057]

【比較例2】芳香族ポリスルホン(UDEL P−17
00<商標登録>、テイジンアモコエンジニアリングプ
ラスチックス株式会社製)24質量部、1−メチル−2
−ピロリドン76質量部からなるドープを調整した。ド
クターブレードを用いて、得られたドープをガラス板上
にキャストした後、50℃に温調された1−メチル−2
−ピロリドン:水=95:5の凝固浴中へ1分間浸漬
し、続いて、1−メチル−2−ピロリドン:水=50:
50の凝固浴中へ20分間浸漬して相分離させた後、6
0℃の熱水で20分づつ3回繰り返し洗浄して平膜Iを
得た。
Comparative Example 2 Aromatic Polysulfone (UDEL P-17)
00 <trademark registration>, manufactured by Teijin Amoko Engineering Plastics Co., Ltd.) 24 parts by mass, 1-methyl-2
A dope consisting of 76 parts by weight of pyrrolidone was prepared. After casting the obtained dope on a glass plate using a doctor blade, 1-methyl-2 adjusted to 50 ° C.
-Immersion in a coagulation bath of pyrrolidone: water = 95: 5 for 1 minute, followed by 1-methyl-2-pyrrolidone: water = 50:
After immersion in a coagulation bath for 50 minutes for phase separation, 6
The membrane was repeatedly washed with hot water of 0 ° C. three times for 20 minutes to obtain a flat membrane I.

【0058】得られた平膜Iについて、実施例3と同様
にして平膜Iの収着水の重心波数(Cwn)を求めた。そ
の結果を表3に示す。さらにその際得た赤外吸収スペク
トル及びそれを4つのコンポーネントに分けてカーブフ
ィッティングしたところを図4に示す。図1のバルク水
に比べると大きく異なり、低波側の3250cm-1付近
の成分が消失し、3450cm-1付近の比率も小さい。
相対的に3650cm -1付近と3550cm-1付近の高
波数側の成分の比率が大きくなっている。
The obtained flat film I was the same as in Example 3.
And the center of gravity wave number (Cwn). So
Table 3 shows the results. In addition, the infrared absorption spec
Turtle and its four components
FIG. 4 shows the result of the fitting. Figure 1 Bulk water
3250cm on the low wave side-1near
Disappears, 3450cm-1The ratio in the vicinity is also small.
3650cm relatively -1Near and 3550cm-1Nearby high
The ratio of components on the wave number side is large.

【0059】平膜Iについて実験例2に従って蛋白付着
率を評価した結果を表3に示す。添加材無添加の芳香族
ポリスルホン膜に吸着された蛋白の赤外吸収スペクトル
における吸収強度を1.00(基準)として、脂肪族ポ
リスルホキシドや脂肪族ポリスルホンを添加した芳香族
ポリスルホン膜の場合と比較した。
Table 3 shows the results of evaluating the protein adhesion rate of the flat membrane I in accordance with Experimental Example 2. The absorption intensity in the infrared absorption spectrum of the protein adsorbed on the aromatic polysulfone membrane without additives was set to 1.00 (standard), and compared with the case of the aromatic polysulfone membrane to which aliphatic polysulfoxide or aliphatic polysulfone was added. did.

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【表2】 [Table 2]

【0062】[0062]

【表3】 [Table 3]

【0063】[0063]

【発明の効果】本発明のポリマーは生体適合性に優れる
ため、蛋白質や血球などの生体成分の吸着が少なく、吸
着した蛋白質の変性や接触した血小板の粘着、活性化を
抑制することができる。本発明のポリマーの利用分野と
しては、例えば、直接血液成分と接触して用いることが
主たる目的となる医療用材料として、人工腎臓、人工心
肺等の人工臓器類、人工血管、血液透析膜用や人工心肺
用の血液チューブ、ブラッドアクセス、又は血液バッ
グ、カテーテル、さらに血漿分離膜や血球分離膜等の血
液フィルターや血液成分吸着材等に用いることができ
る。
Since the polymer of the present invention is excellent in biocompatibility, it has little adsorption of biological components such as proteins and blood cells, and can suppress denaturation of the adsorbed protein and adhesion and activation of contacted platelets. As a field of application of the polymer of the present invention, for example, as a medical material mainly used in direct contact with blood components, artificial kidneys, artificial organs such as heart-lung machine, artificial blood vessels, hemodialysis membrane and It can be used as a blood tube for artificial heart lung, blood access, a blood bag, a catheter, a blood filter such as a plasma separation membrane or a blood cell separation membrane, or a blood component adsorbent.

【0064】また、血液や細胞など生体へ及ぼす影響が
少ないことから、各種細胞培養の担体やDDSのキャリ
アや創傷被覆材などにも優れた性能を発揮する。このよ
うな材料として本発明のポリマーを用いる場合、材料自
体を基材として用いて中空糸、シート、フィルム、チュ
ーブとして成形するのみならず、種々の他のポリマーと
ブレンドして用いることもできる。さらに本発明のポリ
マーを溶媒に溶解し、この溶液を各種基材表面に塗布
し、生体接触表面のみを改質することも可能である。
Further, since it has little effect on living organisms such as blood and cells, it also exhibits excellent performance as a carrier for various cell cultures, a carrier for DDS, a wound dressing material, and the like. When the polymer of the present invention is used as such a material, not only can the material itself be used as a substrate to form a hollow fiber, a sheet, a film, or a tube, but also a blend with various other polymers can be used. Furthermore, it is also possible to dissolve the polymer of the present invention in a solvent, apply this solution to the surface of various substrates, and modify only the biocontact surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】バルク水の赤外吸収スペクトル及びそれを4つ
のコンポーネントに分けてカーブフィッティングしたと
ころを示す図。
FIG. 1 is a diagram showing an infrared absorption spectrum of bulk water and a curve fit obtained by dividing the infrared absorption spectrum into four components.

【図2】実施例5の平膜Fに収着した水の赤外吸収スペ
クトル及びそれを4つのコンポーネントに分けてカーブ
フィッティングしたところを示す図。
FIG. 2 is a diagram showing an infrared absorption spectrum of water sorbed on a flat membrane F of Example 5 and a curve fitting of the infrared absorption spectrum divided into four components.

【図3】実施例7の平膜Hに収着した水の赤外吸収スペ
クトル及びそれを4つのコンポーネントに分けてカーブ
フィッティングしたところを示す図。
FIG. 3 is a diagram showing an infrared absorption spectrum of water sorbed on a flat membrane H of Example 7 and a curve fitting of the infrared absorption spectrum divided into four components.

【図4】比較例2の平膜Iに収着した水の赤外吸収スペ
クトル及びそれを4つのコンポーネントに分けてカーブ
フィッティングしたところを示す図。
FIG. 4 is a diagram showing an infrared absorption spectrum of water sorbed on a flat membrane I of Comparative Example 2 and a curve fitting of the spectrum divided into four components.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 スルホン及び/又はスルホキシドの官能
基と脂肪族鎖とから形成されるポリマーからなる生体適
合性材料。
1. A biocompatible material comprising a polymer formed from a functional group of sulfone and / or sulfoxide and an aliphatic chain.
【請求項2】 スルホン及び/又はスルホキシドの官能
基と上記脂肪族鎖とが交互に結合されて主鎖のコポリマ
ーを形成している請求項1記載の生体適合性材料。
2. The biocompatible material according to claim 1, wherein the functional groups of the sulfone and / or the sulfoxide and the aliphatic chain are alternately bonded to form a main chain copolymer.
【請求項3】 脂肪族鎖がエチレン基、プロピレン基、
ブチレン基、ペンチレン基及びヘキシレン基から選ばれ
た一種又は二種以上の組み合わせである請求項2記載の
生体適合性材料。
3. An aliphatic chain having an ethylene group, a propylene group,
The biocompatible material according to claim 2, wherein the material is one or a combination of two or more selected from a butylene group, a pentylene group, and a hexylene group.
【請求項4】 脂肪族鎖がエチレン基、プロピレン基、
ブチレン基及びペンチレン基から選ばれた一種又は二種
以上の組み合わせである請求項2記載の生体適合性材
料。
4. An aliphatic chain having an ethylene group, a propylene group,
The biocompatible material according to claim 2, wherein the biocompatible material is one or a combination of two or more selected from a butylene group and a pentylene group.
【請求項5】 上記脂肪族鎖がエチレン基、プロピレン
基及びブチレン基から選ばれた一種又は二種以上の組み
合わせである請求項2記載の生体適合性材料。
5. The biocompatible material according to claim 2, wherein said aliphatic chain is one or a combination of two or more selected from an ethylene group, a propylene group and a butylene group.
【請求項6】 脂肪族鎖がエチレン基、プロピレン基、
又はエチレン基とプロピレン基との組み合わせである請
求項2記載の生体適合性材料。
6. An aliphatic chain having an ethylene group, a propylene group,
3. The biocompatible material according to claim 2, wherein the biocompatible material is a combination of an ethylene group and a propylene group.
【請求項7】 官能基がスルホン、脂肪族鎖がエチレン
基とプロピレン基の組み合わせであり、エチレン基とプ
ロピレン基の比率がモル比で4:6〜0:10である請
求項2記載の生体適合性材料。
7. The living body according to claim 2, wherein the functional group is a sulfone, the aliphatic chain is a combination of an ethylene group and a propylene group, and the molar ratio of the ethylene group to the propylene group is from 4: 6 to 0:10. Compatible material.
【請求項8】 官能基がスルホキシド、脂肪族鎖がエチ
レン基とプロピレン基の組み合わせであり、脂肪族鎖の
エチレン基とプロピレン基の比率がモル比で6:4〜
2:8である請求項2記載の生体適合性材料。
8. The functional group is a sulfoxide, the aliphatic chain is a combination of an ethylene group and a propylene group, and the molar ratio of the ethylene group to the propylene group in the aliphatic chain is from 6: 4 to 8.
The biocompatible material according to claim 2, wherein the ratio is 2: 8.
【請求項9】 脂肪族鎖が主鎖を形成し、スルホン及び
/又はスルホキシドの官能基が側鎖に含まれる構造のポ
リマーからなる請求項1記載の生体適合性材料。
9. The biocompatible material according to claim 1, wherein the material is composed of a polymer having a structure in which an aliphatic chain forms a main chain and a functional group of sulfone and / or sulfoxide is included in a side chain.
JP2001067280A 2001-03-09 2001-03-09 Biocompatible material Pending JP2002263183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001067280A JP2002263183A (en) 2001-03-09 2001-03-09 Biocompatible material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001067280A JP2002263183A (en) 2001-03-09 2001-03-09 Biocompatible material

Publications (1)

Publication Number Publication Date
JP2002263183A true JP2002263183A (en) 2002-09-17

Family

ID=18925658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001067280A Pending JP2002263183A (en) 2001-03-09 2001-03-09 Biocompatible material

Country Status (1)

Country Link
JP (1) JP2002263183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085606A1 (en) * 2003-03-24 2004-10-07 National Institute For Environmental Studies Cell culture medium and solidified preparation of cell adhesion protein or peptide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238170A (en) * 1985-08-09 1987-02-19 マイケル・モンゴメリ−・ウオ−カ− Artificial organ improved in adhesion to bone and method
JPH05317409A (en) * 1992-05-20 1993-12-03 Nippon Sherwood Kk Artificial trachea
JPH06254158A (en) * 1992-06-12 1994-09-13 Gambro Dialysatoren Gmbh & Co Kg Diaphragm and its preparation
JPH08302018A (en) * 1995-04-28 1996-11-19 Bayer Ag Polysulfone/polyether block copolycondensate
JPH09131396A (en) * 1995-11-07 1997-05-20 Terumo Corp Anti-thrombogenic medical base and its manufacture
JPH10212347A (en) * 1996-03-29 1998-08-11 Teijin Ltd Application of polyalkyl-ether-unit-containing sulfone and ketone to medical materials
JP2003519280A (en) * 2000-01-05 2003-06-17 ノバルティス アクチエンゲゼルシャフト Hydrogel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238170A (en) * 1985-08-09 1987-02-19 マイケル・モンゴメリ−・ウオ−カ− Artificial organ improved in adhesion to bone and method
JPH05317409A (en) * 1992-05-20 1993-12-03 Nippon Sherwood Kk Artificial trachea
JPH06254158A (en) * 1992-06-12 1994-09-13 Gambro Dialysatoren Gmbh & Co Kg Diaphragm and its preparation
JPH08302018A (en) * 1995-04-28 1996-11-19 Bayer Ag Polysulfone/polyether block copolycondensate
JPH09131396A (en) * 1995-11-07 1997-05-20 Terumo Corp Anti-thrombogenic medical base and its manufacture
JPH10212347A (en) * 1996-03-29 1998-08-11 Teijin Ltd Application of polyalkyl-ether-unit-containing sulfone and ketone to medical materials
JP2003519280A (en) * 2000-01-05 2003-06-17 ノバルティス アクチエンゲゼルシャフト Hydrogel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085606A1 (en) * 2003-03-24 2004-10-07 National Institute For Environmental Studies Cell culture medium and solidified preparation of cell adhesion protein or peptide
US8304238B2 (en) 2003-03-24 2012-11-06 Nat'l Institute for Environmental Studies Cell culture medium and immobilized preparation of cell adhesion protein or peptide

Similar Documents

Publication Publication Date Title
Cheng et al. Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes
JP2561309B2 (en) Medical material and manufacturing method thereof
US6258371B1 (en) Method for making biocompatible medical article
JP4961133B2 (en) Medical materials
KR100525604B1 (en) Application of sulfone, ketone and ester containing polyalkyl ether units to medical materials
Ye et al. Hollow fiber membrane modification with functional zwitterionic macromolecules for improved thromboresistance in artificial lungs
EP2518100B1 (en) Hydrophilic polymer compound having anticoagulation effect
WO2012176861A1 (en) Medical supply
Zaman et al. Recent advancement challenges with synthesis of biocompatible hemodialysis membranes
JPH07184989A (en) High polymer material having compatibility with blood for medical treatment and medical treating material
JP2000279512A (en) Material for medical treatment and manufacture thereof
JPH0751355A (en) Medical synthetic high polymer and medical material
JP2002263183A (en) Biocompatible material
JP4338351B2 (en) Blood compatible material
JPH07184990A (en) High polymer material for medical treatment and medical treating material
Ask et al. In vivo comparison study of FDA-approved surface-modifying additives and poly-2-methoxyethylacrylate circuit surfaces coatings during cardiopulmonary bypass
JP2004298223A (en) Biocompatible material
JP4626005B2 (en) Hemocompatible composition and medical device coated therewith
JP2004357826A (en) Medical instrument
Kennedy Novel designed polyisobutylene-based biopolymers: synthesis, characterization, and biological testing of amphiphilic chameleon networks
KR19990038671A (en) Hemocompatible Polyurethane-Hydrophilic Polymer Blend
JPH10151192A (en) Anti-thrombot composition and medical material
KR930002210B1 (en) Blood compatible polymer having sulfonic acidized polyethylene oxide
JPH03103264A (en) Medical implement having surface excellent in bioadaptability and production thereof
JPH10212347A (en) Application of polyalkyl-ether-unit-containing sulfone and ketone to medical materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904