JPWO2009025043A1 - Novel cross-linked polymer, method for producing the same, and use thereof - Google Patents

Novel cross-linked polymer, method for producing the same, and use thereof Download PDF

Info

Publication number
JPWO2009025043A1
JPWO2009025043A1 JP2009528916A JP2009528916A JPWO2009025043A1 JP WO2009025043 A1 JPWO2009025043 A1 JP WO2009025043A1 JP 2009528916 A JP2009528916 A JP 2009528916A JP 2009528916 A JP2009528916 A JP 2009528916A JP WO2009025043 A1 JPWO2009025043 A1 JP WO2009025043A1
Authority
JP
Japan
Prior art keywords
crosslinked polymer
formula
water
double bond
reactive double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009528916A
Other languages
Japanese (ja)
Inventor
眞道 岩間
眞道 岩間
光昭 後藤
光昭 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celagix Research Ltd
Original Assignee
Celagix Research Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celagix Research Ltd filed Critical Celagix Research Ltd
Publication of JPWO2009025043A1 publication Critical patent/JPWO2009025043A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/3311Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group
    • C08G65/3318Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33303Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group
    • C08G65/3331Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group cyclic
    • C08G65/33313Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/3332Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing carboxamide group
    • C08G65/33327Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing carboxamide group cyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33396Polymers modified by chemical after-treatment with organic compounds containing nitrogen having oxygen in addition to nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/52Stabilizers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterized by the type of post-polymerisation functionalisation
    • C08G2650/20Cross-linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Cosmetics (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)
  • Polyethers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

PVLAの生体適合性や水溶性といった優れた特性を維持しながら、そのゲルを作製するための新規な架橋ポリマー、その製造方法及びその用途を提供する。式I:で表されるN−p−ビニルベンジル−D−ラクトンアミドと、2以上の末端にそれぞれ反応性二重結合を有するPEG誘導体とを反応させることにより得られる架橋ポリマー、その製造方法及びその用途。Provided are a novel crosslinked polymer for producing a gel thereof, a production method thereof, and an application thereof while maintaining excellent properties such as biocompatibility and water solubility of PVLA. A crosslinked polymer obtained by reacting an Np-vinylbenzyl-D-lactone amide represented by the formula I: with a PEG derivative having a reactive double bond at each of two or more terminals, a production method thereof, and Its use.

Description

本発明は、N−p−ビニルベンジル−O−β−D−ガラクトピラノシル−(1→4)−D−グルコンアミド(以下、「N−p−ビニルベンジル−D−ラクトンアミド」又は「VLA」という)と、2以上の末端にそれぞれ反応性二重結合を有するポリエチレングリコール(以下「PEG」という)誘導体とを反応させることにより得られる架橋ポリマー、その製造方法及びその用途に関する。   The present invention relates to Np-vinylbenzyl-O-β-D-galactopyranosyl- (1 → 4) -D-gluconamide (hereinafter referred to as “Np-vinylbenzyl-D-lactone amide” or “ VLA ”) and a polyethylene glycol (hereinafter referred to as“ PEG ”) derivative each having a reactive double bond at two or more terminals, and a production method and use thereof.

近年重篤な患者に対して肝臓、腎臓、心臓などを移植することによる治療例が増え、治療を希望する患者も増加してきている。しかし、移植治療ではドナー不足や免疫拒絶反応などのため、実際に治療を受けられる患者は限られているのが現状である。この問題を解決する方法として患者本人の組織から細胞を取り出して、体外で増殖・活性化して体内に戻す再生医療が着目され、盛んに研究が行われている。   In recent years, there have been an increasing number of treatment examples by transplanting the liver, kidney, heart and the like to serious patients, and the number of patients who wish to be treated has also increased. However, there are currently only a limited number of patients who can receive treatment due to a lack of donors or immune rejection in transplantation treatment. As a method for solving this problem, regenerative medicine, in which cells are taken out from the patient's own tissue and proliferated and activated outside the body and returned to the body, has attracted attention, and research has been actively conducted.

体外で機能を有する細胞を分化、増殖する場合、細胞の足場となるマトリックスが重要な役割を果たすことがよく知られている(例えば、非特許文献1参照)。このマトリックスの一つとして、生体適合性や組織・細胞適合性に優れた合成糖鎖高分子である、ポリ[N−p−ビニルベンジル−D−ラクトンアミド](以下、PVLAという)が長年研究されてきた。   It is well known that a matrix serving as a scaffold for cells plays an important role when differentiating and proliferating cells having a function outside the body (for example, see Non-Patent Document 1). As one of these matrices, poly [Np-vinylbenzyl-D-lactone amide] (hereinafter referred to as PVLA), a synthetic sugar chain polymer with excellent biocompatibility and tissue / cell compatibility, has been studied for many years. It has been.

PVLAは血液適合性にも優れ(例えば、特許文献1参照)、また肝実質細胞の培養に有用であることが判明しており、今後の再生医療の発展には重要な役割を果たすことが期待されている。これまでPVLAは培養用のディッシュや他の基材にコーティングすることにより使用されてきたが、培養組織を実用に供するには3次元培養する必要があった。しかし、これまでPVLAの3次元体、すなわちPVLA架橋ポリマーの作製に関する報告はない。   PVLA is excellent in blood compatibility (see, for example, Patent Document 1), and has been found to be useful for culturing hepatocytes, and is expected to play an important role in the future development of regenerative medicine. Has been. Until now, PVLA has been used by coating a culture dish or other substrate, but it has been necessary to perform three-dimensional culture in order to put the cultured tissue into practical use. However, there has been no report on the preparation of a three-dimensional PVLA, that is, a PVLA cross-linked polymer.

PVLAは水中で高分子ミセルを作り、薬など、特に親油性のものを包接することが知られている(例えば、非特許文献1参照)。近年、薬に限らず、油溶性で健康に良い物質が多く見出され、健康食品や化粧品などに使用されているが、水に均一に溶かしたり、分散させるのに苦労している。PVLAでこれらの油溶性物質を水中に分散させることは可能であるが、油溶性物質の分散量を増やすことが難しかった。
特開2005−112987号公報 Mitsuaki Gotoら, Macromol. Chem. Phys., 2001, 202, 1161-1165
PVLA is known to make polymer micelles in water and to enclose particularly lipophilic substances such as drugs (for example, see Non-Patent Document 1). In recent years, not only drugs but also many oil-soluble and health-friendly substances have been found and used in health foods and cosmetics. However, they are struggling to uniformly dissolve or disperse in water. Although it is possible to disperse these oil-soluble substances in water by PVLA, it has been difficult to increase the amount of oil-soluble substances dispersed.
JP-A-2005-112987 Mitsuaki Goto et al., Macromol. Chem. Phys., 2001, 202, 1161-1165

したがって、本発明の課題は、PVLAの生体適合性や水溶性といった優れた特性を維持しながら、そのゲルを作製するための新規な架橋ポリマー、その製造方法及びその用途を提供することである。   Accordingly, an object of the present invention is to provide a novel cross-linked polymer for producing the gel, a method for producing the gel, and an application thereof while maintaining excellent properties such as biocompatibility and water solubility of PVLA.

本発明者らは、PVLAの特性を維持しながらゲルを作製しうる架橋ポリマーを鋭意検討した結果、2以上の末端にそれぞれ反応性二重結合を有するPEG誘導体を架橋剤とし、これをPVLAのモノマー成分であるN−p−ビニルベンジル−D−ラクトンアミドとラジカル重合させることにより得られる架橋ポリマーを見出し、本発明を完成させた。かかる架橋ポリマーは、水中でゲルを形成し、その架橋により形成された三次元網目構造に、油溶性物質を安定に包接することができる。   As a result of intensive studies on a crosslinked polymer capable of producing a gel while maintaining the properties of PVLA, the present inventors used PEG derivatives each having a reactive double bond at two or more ends as a crosslinking agent, A cross-linked polymer obtained by radical polymerization with Np-vinylbenzyl-D-lactone amide as a monomer component was found, and the present invention was completed. Such a crosslinked polymer forms a gel in water and can stably include an oil-soluble substance in the three-dimensional network structure formed by the crosslinking.

すなわち、本発明は、式I:   That is, the present invention provides compounds of formula I:

Figure 2009025043
Figure 2009025043

で表されるN−p−ビニルベンジル−D−ラクトンアミドと、架橋剤とを反応させることにより得られる架橋ポリマーであって、
架橋剤が、2以上の末端にそれぞれ反応性二重結合を有するPEG誘導体であることを特徴とするポリマーを提供する。
A crosslinked polymer obtained by reacting Np-vinylbenzyl-D-lactone amide represented by
A polymer is provided in which the cross-linking agent is a PEG derivative having a reactive double bond at each of two or more terminals.

また、本発明は、前記「2以上の末端にそれぞれ反応性二重結合を有するPEG誘導体」が、式II:   In the present invention, the “PEG derivative having a reactive double bond at each of two or more terminals” is represented by the formula II:

Figure 2009025043
Figure 2009025043

〔式中、
各Xは、−Y−Ar−Rであり、
Rは、ビニル又はアリルであり、
Arは、置換又は非置換のアリーレン又はアラルキレンであり、
Yは、スペーサーである〕
で表される、4官能性PEG誘導体である前記架橋ポリマー、特に、Xが、4−ビニルベンジルカルバモイルペンチルである前記架橋ポリマーを提供する。
[Where,
Each X is -Y-Ar-R;
R is vinyl or allyl,
Ar is a substituted or unsubstituted arylene or aralkylene;
Y is a spacer.
The cross-linked polymer is a tetrafunctional PEG derivative represented by the formula, in particular, the cross-linked polymer in which X is 4-vinylbenzylcarbamoylpentyl.

さらに本発明は、これらの架橋ポリマーの製造方法であって、式I:   The present invention further provides a process for the preparation of these crosslinked polymers of formula I:

Figure 2009025043
Figure 2009025043

で表されるN−p−ビニルベンジル−D−ラクトンアミドを、開始剤の存在下に、2以上の末端にそれぞれ反応性二重結合を有するPEG誘導体と反応させることを特徴とする方法を提供する。 The Np-vinylbenzyl-D-lactone amide represented by the formula (I) is reacted with a PEG derivative each having a reactive double bond at two or more ends in the presence of an initiator. To do.

2以上の末端にそれぞれ反応性二重結合を有するPEG誘導体が、式II:   A PEG derivative having a reactive double bond at each of two or more ends is represented by formula II:

Figure 2009025043
Figure 2009025043

〔式中、
各Xは、−Y−Ar−Rであり、
Rは、ビニル又はアリルであり、
Arは、置換又は非置換のアリーレン又はアラルキレンであり、
Yは、スペーサーである〕
で表される、4官能性PEG誘導体である、前記製造方法;特にXが、4−ビニルベンジルカルバモイルペンチルである、前記製造方法も提供しうる。
[Where,
Each X is -Y-Ar-R;
R is vinyl or allyl,
Ar is a substituted or unsubstituted arylene or aralkylene;
Y is a spacer.
The said manufacturing method which is a tetrafunctional PEG derivative represented by these; Especially the said manufacturing method whose X is 4-vinylbenzylcarbamoyl pentyl can also be provided.

さらに本発明は、前記架橋ポリマーを含有する、アスタキサンチン、コエンザイムQ10(以下、CoQ10という)、ビタミンE又はビタミンKのような脂溶性抗酸化剤の光劣化防止剤、並びにかかる光劣化防止剤を含有する化粧料も提供することができる。Furthermore, the present invention relates to a photodegradation inhibitor of a fat-soluble antioxidant such as astaxanthin, coenzyme Q 10 (hereinafter referred to as CoQ 10 ), vitamin E or vitamin K, and the photodegradation inhibitor. Cosmetics containing can also be provided.

本発明で得られる架橋ポリマーは、水中でゲルを形成し、その三次元網目構造中に、アスタキサンチン、CoQ10、ビタミンE、ビタミンKなどの脂溶性抗酸化剤をはじめとする油溶性物質を、PVLAの高分子ミセルによる包接量をはるかに超える、実用上十分に有用な量を安定に包接することができる。すなわち、本発明により、十分な量の油溶性物質を、安定性を損なうことなく、水を基材として含むような組成物にも配合することが可能となった。The crosslinked polymer obtained by the present invention forms a gel in water, and in its three-dimensional network structure, an oil-soluble substance including a fat-soluble antioxidant such as astaxanthin, CoQ 10 , vitamin E, vitamin K, It is possible to stably include a practically sufficiently useful amount far exceeding the amount of PVLA polymer micelle included. That is, according to the present invention, a sufficient amount of an oil-soluble substance can be added to a composition containing water as a base material without impairing stability.

アスタキサンチン−架橋ポリマー分散体(実施例7:●で示す)とアスタキサンチン−水分散体(比較例1:▲で示す)のUV照射による劣化速度を示した実験結果である。It is an experimental result which showed the deterioration rate by UV irradiation of an astaxanthin-crosslinked polymer dispersion (Example 7: indicated by ●) and an astaxanthin-water dispersion (Comparative Example 1: indicated by ▲).

本発明の式Iで表されるVLAは、公知のモノマーであり、例えば特開2005−112987号公報(前述の特許文献1)に記載の方法によって、市販の原料から、容易に製造することができる。なお、その製造例を、後述の実施例の部に参考例1として詳述する。   VLA represented by the formula I of the present invention is a known monomer, and can be easily produced from a commercially available raw material by, for example, the method described in JP-A-2005-112987 (the above-mentioned Patent Document 1). it can. In addition, the example of manufacture is explained in full detail as the reference example 1 to the part of the Example mentioned later.

本発明の架橋剤として用いられる、2以上の末端にそれぞれ反応性二重結合を有するPEG誘導体は、2以上の末端に官能基を有する多官能性PEGと、反応性二重結合を有する化合物とから構成され、多官能性PEGの各末端官能基に、反応性二重結合を有する化合物を、当業者に公知の方法に従い導入することにより製造することができる。   A PEG derivative having a reactive double bond at each of two or more terminals used as a cross-linking agent of the present invention includes a polyfunctional PEG having a functional group at two or more terminals and a compound having a reactive double bond Can be produced by introducing a compound having a reactive double bond into each terminal functional group of the multifunctional PEG according to a method known to those skilled in the art.

本発明の好ましい実施態様において、本発明の架橋剤を構成する、そのような多官能性PEGは、例えば日本油脂(株)からSUNBRIGHT(登録商標)という製品名で市販されている、2官能性、4官能性又は8官能性PEGである。これらは、各末端にアミノ、チオール又はカルボキシ官能基を有するPEGであり、下記式IIIa〜IIIc:   In a preferred embodiment of the present invention, such a multifunctional PEG constituting the cross-linking agent of the present invention is a bifunctional PEG commercially available, for example, under the product name SUNBRIGHT® from Nippon Oil & Fats Co., Ltd. Tetrafunctional or octafunctional PEG. These are PEGs having amino, thiol or carboxy functional groups at each end, and have the following formulas IIIa-IIIc:

Figure 2009025043
Figure 2009025043

〔式中、X1〜X3は、−CO(CH2m1−COONHS、−(CH2m1−COONHS、−(CH2m1−NH2、又は−(CH2m1−SH(ここで、NHSは、スクシンイミジル基であり、m1は、1〜5の整数である)であり、nは、合計して、その平均分子量(MW)が、約1,000〜30,000となるような数である〕でそれぞれ表される。[Wherein, X 1 to X 3 represent —CO (CH 2 ) m1 —COONHS, — (CH 2 ) m1 —COONHS, — (CH 2 ) m1 —NH 2 , or — (CH 2 ) m1 —SH ( Here, NHS is a succinimidyl group, m1 is an integer of 1 to 5), and n is a sum of the average molecular weight (MW) of about 1,000 to 30,000. It is a number such as

一方、本発明の架橋剤を構成する、反応性二重結合を有する化合物は、その分子内に、ラジカル開始剤の存在下に付加反応を生起することができる炭素−炭素二重結合、好ましくは、ビニル又はアリル基を有する化合物である。反応性二重結合を有する化合物としては、さらに疎水性を付与するアリール部分を含むものが好適である。本発明の架橋ポリマーを構成するVLAモノマーのみならず、架橋剤部分にも疎水性構造を導入することにより、架橋ポリマーの油溶性物質に対する包接能を高めることができる。そのような化合物は、下記式IV:   On the other hand, the compound having a reactive double bond constituting the cross-linking agent of the present invention has a carbon-carbon double bond capable of causing an addition reaction in the presence of a radical initiator in its molecule, preferably , A compound having a vinyl or allyl group. As the compound having a reactive double bond, a compound further containing an aryl moiety imparting hydrophobicity is suitable. By introducing a hydrophobic structure not only to the VLA monomer constituting the crosslinked polymer of the present invention but also to the crosslinking agent portion, the inclusion ability of the crosslinked polymer with respect to the oil-soluble substance can be enhanced. Such compounds are represented by the following formula IV:

Figure 2009025043
Figure 2009025043

〔式中、
Rは、ビニル又はアリルであり、
Arは、置換又は非置換のアリーレン又はアラルキレンであり、特には、フェニレン、ベンジレン又はキシリレンであり、そして
Y’は、多官能性PEGの官能基と反応し、共有結合を形成しうる基である〕で表されるものである。なお、Y’は、かかる化合物を導入する多官能性PEGの末端官能基の種類に応じて、当業者であれば適宜選択することができる。例えば、多官能性PEGの末端官能基がカルボキシ基(又はその活性化誘導体)であれば、Y’はアミノ基、ヒドロキシ基などであり;末端官能基がアミノ基であれば、Y’はカルボキシ基(又はその活性化誘導体)、ハロゲンなどである。反応性二重結合を有する化合物の例は、4−ビニルベンジルアミン、4−ビニルベンジルクロリドなどである。
[Where,
R is vinyl or allyl,
Ar is a substituted or unsubstituted arylene or aralkylene, in particular phenylene, benzylene or xylylene, and Y ′ is a group capable of reacting with a functional group of a polyfunctional PEG to form a covalent bond. ] Is represented. Y ′ can be appropriately selected by those skilled in the art depending on the type of the terminal functional group of the multifunctional PEG into which such a compound is introduced. For example, if the terminal functional group of the multifunctional PEG is a carboxy group (or an activated derivative thereof), Y ′ is an amino group, a hydroxy group, etc .; if the terminal functional group is an amino group, Y ′ is a carboxy group. Groups (or activated derivatives thereof), halogens and the like. Examples of the compound having a reactive double bond are 4-vinylbenzylamine, 4-vinylbenzyl chloride and the like.

本発明の好ましい実施態様において、架橋剤は、上記式IIIa〜IIIcの多官能性PEGであって、その末端にアミノ又はカルボキシ官能基を有するものを、さらに上記式IVの化合物で誘導化することにより得られるものである。架橋剤を構成する多官能性PEGは、それにより形成される三次元網目構造の大きさや、包接を企図する油溶性物質の分子構造などに応じて、その分岐鎖(官能性基)の数や分子量が適宜選択される。特に好ましい実施態様において、架橋剤は、上記式IIIbの4官能性PEGであって、その末端にアミノ又はカルボキシ官能基を有する、MW約10,000〜20,000のものを、その末端のアミノ又はカルボキシ官能基でさらに上記式IVの化合物で誘導化することにより得られるものである。そのようにして得られた4官能性PEG誘導体は、式II:   In a preferred embodiment of the present invention, the cross-linking agent is a polyfunctional PEG of the above formulas IIIa to IIIc, which has an amino or carboxy functional group at its end, and is further derivatized with a compound of the above formula IV Is obtained. The polyfunctional PEG constituting the cross-linking agent has a number of branched chains (functional groups) depending on the size of the three-dimensional network structure formed thereby and the molecular structure of the oil-soluble substance intended for inclusion. And molecular weight are appropriately selected. In a particularly preferred embodiment, the cross-linking agent is a tetrafunctional PEG of formula IIIb above, having an amino or carboxy functionality at its end, with a MW of about 10,000 to 20,000, and a terminal amino acid. Alternatively, it can be obtained by further derivatization with a compound of formula IV above with a carboxy functional group. The tetrafunctional PEG derivative so obtained has the formula II:

Figure 2009025043
Figure 2009025043

〔式中、
各Xは、−Y−Ar−Rであり、nは、合計して、MW約1,000〜30,000となるような数であり、
Rは、ビニル又はアリルであり、
Arは、置換又は非置換のアリーレン又はアラルキレンであり、
Yは、スペーサーである〕
で表されるものである。なお、Yのスペーサーとは、式IIIbの4官能性PEGの末端基X2と、式IVの化合物のY’との間で形成される連結部分であり、好ましくは−CO(CH2m1−CONH−、−(CH2m1−CONH−、−CO(CH2m1−COO−、−(CH2m1−COO−、−(CH2m1−NH−(ここで、m1は前記と同義である)などであり、特に好ましくは、−(CH2m1−CONH−(ここで、m1は前記と同義である)である。さらに好ましい実施態様において、架橋剤は、Xが、4−ビニルベンジルカルバモイルペンチルであり、nが、合計して、MW約10,000〜20,000となるような数である、式IIの4官能性PEG誘導体である。
[Where,
Each X is -Y-Ar-R, and n is a number such that, in total, the MW is about 1,000 to 30,000;
R is vinyl or allyl,
Ar is a substituted or unsubstituted arylene or aralkylene;
Y is a spacer.
It is represented by The Y spacer is a linking moiety formed between the end group X 2 of the tetrafunctional PEG of formula IIIb and Y ′ of the compound of formula IV, preferably —CO (CH 2 ) m1. —CONH—, — (CH 2 ) m1 —CONH—, —CO (CH 2 ) m1 —COO—, — (CH 2 ) m1 —COO—, — (CH 2 ) m1 —NH— (where m1 is And the like, particularly preferably — (CH 2 ) m1 —CONH— (wherein m1 has the same meaning as described above). In a further preferred embodiment, the crosslinker is 4 of formula II, wherein X is 4-vinylbenzylcarbamoylpentyl and n is a number such that the total MW is about 10,000 to 20,000. It is a functional PEG derivative.

本発明の架橋ポリマーは、式I:   The crosslinked polymer of the present invention has the formula I:

Figure 2009025043
Figure 2009025043

で表されるVLAと、2以上の末端にそれぞれ反応性二重結合を有するPEG誘導体とを、開始剤の存在下に反応させることにより得られる。反応に用いられるVLAと架橋剤とのモノマー比は、形成される三次元網目構造の大きさや、包接を企図する油溶性物質の分子構造、架橋剤の分子量などに応じて、適宜選択すればよいが、例えば1:0.005〜1:0.1(重量基準)、好適には1:0.01〜1:0.05の範囲である。反応は、アルゴン、窒素などの不活性雰囲気下、不活性溶媒、例えばジメチルスルホキシド(DMSO)、エタノール、又はそれらの水混合溶媒中、室温(25℃)〜100℃、好ましくは60℃〜85℃の温度範囲で、開始剤の存在下に実施される。開始剤は、通常のラジカル重合反応で使用される開始剤であれば特に制限無く使用され得るが、好ましくは、過酸化ベンゾイル(BPO)、2,2−アゾビス(イソブチロニトリル)(AIBN)、過硫酸カリウムまたは過硫酸アンモニウムなどが挙げられる。 Can be obtained by reacting a PEG derivative having a reactive double bond at each of two or more terminals in the presence of an initiator. The monomer ratio between the VLA and the crosslinking agent used in the reaction may be appropriately selected according to the size of the three-dimensional network structure formed, the molecular structure of the oil-soluble substance intended for inclusion, the molecular weight of the crosslinking agent, etc. For example, it is in the range of 1: 0.005 to 1: 0.1 (weight basis), preferably 1: 0.01 to 1: 0.05. The reaction is carried out in an inert solvent such as dimethyl sulfoxide (DMSO), ethanol, or a water mixed solvent thereof under an inert atmosphere such as argon or nitrogen, and room temperature (25 ° C.) to 100 ° C., preferably 60 ° C. to 85 ° C. In the presence of an initiator in the temperature range of The initiator can be used without any particular limitation as long as it is an initiator used in a normal radical polymerization reaction. Preferably, benzoyl peroxide (BPO), 2,2-azobis (isobutyronitrile) (AIBN) is used. , Potassium persulfate or ammonium persulfate.

かかる反応により得られた本発明の架橋ポリマーは、必要に応じて当業者に公知の方法、例えば透析などの方法により、精製することができる。   The crosslinked polymer of the present invention obtained by such a reaction can be purified by a method known to those skilled in the art, for example, a method such as dialysis, if necessary.

本発明で得られた架橋ポリマーは、水中でゲルを形成し、その網目構造中に、アスタキサンチン、CoQ10、ビタミンE、ビタミンKなどの脂溶性抗酸化剤をはじめとする油溶性物質を、実用上十分に有用な量を安定に包接することができる。加えて、UVによる光劣化を受けやすいこれらの脂溶性抗酸化剤の、光劣化防止剤としても働くことができることが明らかとなり(後述の実施例)、これらの抗酸化剤の光劣化防止剤としても期待される。また本発明の架橋ポリマーは、その基本成分に、生体適合性に優れ、安全なVLAを使用し、水溶性も高いことから、医薬、健康食品、化粧品の分野への応用が期待される。特に、アスタキサンチン、CoQ10、ビタミンE、ビタミンKなどの脂溶性抗酸化剤が有効成分として添加される、ローション、乳剤、皮膚用ゲル剤、皮膚用クリーム、水中油型乳剤性軟膏、メイクアップベースクリーム、乳液状ファンデーション、ハンドクリーム、マッサージゲル、洗顔料、クレンジングクリーム、マスク剤等の様々な剤型の化粧料に、本発明の架橋ポリマーを配合することができる。The crosslinked polymer obtained in the present invention forms a gel in water, and in its network structure, oil-soluble substances including fat-soluble antioxidants such as astaxanthin, CoQ 10 , vitamin E, vitamin K, etc. In addition, a sufficiently useful amount can be stably included. In addition, it became clear that these fat-soluble antioxidants that are susceptible to photodegradation by UV can also act as photodegradation inhibitors (examples described later), and as photodegradation inhibitors of these antioxidants Is also expected. The crosslinked polymer of the present invention is expected to be applied in the fields of pharmaceuticals, health foods, and cosmetics because it uses VLA, which is excellent in biocompatibility as a basic component, and has high water solubility. In particular, lotions, emulsions, skin gels, skin creams, oil-in-water emulsion ointments, makeup bases to which fat-soluble antioxidants such as astaxanthin, CoQ 10 , vitamin E, and vitamin K are added as active ingredients The cross-linked polymer of the present invention can be blended in cosmetics of various dosage forms such as cream, emulsion foundation, hand cream, massage gel, face wash, cleansing cream, masking agent and the like.

〔参考例1〕N−p−ビニルベンジル−D−ラクトンアミド(VLA)の合成[Reference Example 1] Synthesis of Np-vinylbenzyl-D-lactone amide (VLA)

1)4−ビニルベンジルアミン(VBA)の合成
4−(クロロメチル)スチレン 1kgをDMF 3.2L に溶解し、カリウムフタルイミド 1.2kgを加えた。これを50℃、4時間反応させた。エバポレーターを用いてDMFを留去したのち、ベンゼン4.5Lを加えて残渣を溶解した。ベンゼンを0.2N NaOH溶液で数回洗浄した(全量3.25L)。ベンゼンを更に水で数回洗浄し(全量3.25L)、Na2SOで乾燥させた後、エバポレーターを用いて溶媒を留去した。残渣をメタノールから再結晶して1.5kgのビニルベンジルフタルイミドを得た。
1) Synthesis of 4-vinylbenzylamine (VBA) 1 kg of 4- (chloromethyl) styrene was dissolved in 3.2 L of DMF, and 1.2 kg of potassium phthalimide was added. This was reacted at 50 ° C. for 4 hours. After distilling off DMF using an evaporator, 4.5 L of benzene was added to dissolve the residue. Benzene was washed several times with 0.2N NaOH solution (total amount 3.25 L). Benzene was further washed several times with water (total amount 3.25 L), dried over Na 2 SO 4 , and then the solvent was distilled off using an evaporator. The residue was recrystallized from methanol to obtain 1.5 kg of vinylbenzylphthalimide.

適量のセパラブルフラスコ中で上記ビニルベンジルフタルイミド 1kgをエタノール 2.7Lに溶解し、窒素気流下、加熱還流させた。これに滴下ロートを用いて、80%ヒドラジン一水和物 0.36kg/545ml EtOH溶液を約40分かけて滴下した。反応は、90分間、加熱還流させて行った。反応終了後、得られた固体を濾取し、これに、KOH溶液(1kg/6.5L HO)を加えて溶解したのち、エーテルにて抽出した(全量3.6L×3)。エーテル層をさらに、2%KCO溶液で洗浄し、さらに水で数回洗浄した。エーテル層をNaSOで乾燥した後、エーテルを留去し、残さを減圧蒸留し4−ビニルベンジルアミン 0.45kgを得た。1 kg of the above vinylbenzylphthalimide was dissolved in 2.7 L of ethanol in an appropriate amount of separable flask and heated to reflux under a nitrogen stream. A dropping funnel was used to add 80% hydrazine monohydrate 0.36 kg / 545 ml EtOH solution over about 40 minutes. The reaction was performed by heating to reflux for 90 minutes. After completion of the reaction, the obtained solid was collected by filtration, dissolved in KOH solution (1 kg / 6.5 L H 2 O), and extracted with ether (total amount: 3.6 L × 3). The ether layer was further washed with 2% K 2 CO 3 solution and further several times with water. After the ether layer was dried with Na 2 SO 4 , the ether was distilled off and the residue was distilled under reduced pressure to obtain 0.45 kg of 4-vinylbenzylamine.

2)VLAの合成
ラクトース 12gをメタノール 300mlに分散させ、40℃に加熱した。これに、ヨウ素18gのメタノール溶液を滴下し、40分間反応させた。これに、4N KOHメタノール溶液を、ヨウ素の着色が無くなるまで添加した。沈澱を濾取し、冷メタノールで数回洗浄後、エーテルで洗浄し、一旦秤量した。その後、得られた結晶をごく少量の水に溶解し、アンバーライト120Bのプロトン型イオン交換樹脂にアプライし、酸性分画を単離した。得られた水溶液にメタノールとエタノールを添加してエバポレーションした。完全に乾固したのち、再び、メタノールとエタノールを加えて溶解し、エバポレーションした。この操作を数回繰り返し、ラクトースラクトンを作製した。
2) Synthesis of VLA 12 g of lactose was dispersed in 300 ml of methanol and heated to 40 ° C. To this, a methanol solution of 18 g of iodine was dropped and reacted for 40 minutes. To this was added 4N KOH methanol solution until no iodine coloration occurred. The precipitate was collected by filtration, washed several times with cold methanol, washed with ether, and once weighed. Thereafter, the obtained crystals were dissolved in a very small amount of water and applied to a proton-type ion exchange resin of Amberlite 120B, and the acidic fraction was isolated. Methanol and ethanol were added to the obtained aqueous solution for evaporation. After complete drying, methanol and ethanol were added again to dissolve and evaporate. This operation was repeated several times to produce lactose lactone.

前記ラクトースラクトン 1kgをメタノール 5.4Lに70℃で溶解させたのち、これに前記4−ビニルベンジルアミン 0.4kgを加え、120分、70℃で反応させた。反応終了後、アセトン 21.7Lを加えて、VLAを沈殿させた、これを4℃で数時間放置したのち濾取し、沈殿をメタノールから再結晶した。収量は、1.1kgであった。   After 1 kg of the lactose lactone was dissolved in 5.4 L of methanol at 70 ° C., 0.4 kg of the 4-vinylbenzylamine was added thereto and reacted at 70 ° C. for 120 minutes. After completion of the reaction, 21.7 L of acetone was added to precipitate VLA. This was allowed to stand at 4 ° C. for several hours and then collected by filtration. The precipitate was recrystallized from methanol. The yield was 1.1 kg.

〔実施例1〕架橋ポリマー(No.1)の合成
1)4VBA−PEG1の合成
4官能性PEG(日本油脂(株)製、SUNBRIGHT(登録商標)PTE-100HS、MW 10,000;前記式IIIbにおいて、X2がスクシンイミジルカルボキシペンチルである)5gを、クロロホルム 400mlに溶かし、室温で撹拌下、4−ビニルベンジルアミン(参考例1(1)参照)0.5gを加えて2時間反応させた。反応溶液からクロロホルムを留去した後、ジエチルエーテルで3回洗浄して未反応のVBAを除去した。洗浄、乾燥した反応物を水に溶かし、凍結乾燥して、PEGの4つの末端にVBAを導入した化合物(4VBA−PEG1:前記式IIにおいて、Xが4−ビニルベンジルカルバモイルペンチルである)を5.2g得た。
[Example 1] Synthesis of crosslinked polymer (No. 1) 1) Synthesis of 4VBA-PEG1 Tetrafunctional PEG (manufactured by NOF Corporation, SUNBRIGHT (registered trademark) PTE-100HS, MW 10,000; 5 g of X 2 is succinimidyl carboxypentyl) was dissolved in 400 ml of chloroform, and 0.5 g of 4-vinylbenzylamine (see Reference Example 1 (1)) was added and allowed to react for 2 hours while stirring at room temperature. . Chloroform was distilled off from the reaction solution, followed by washing with diethyl ether three times to remove unreacted VBA. The washed and dried reaction product was dissolved in water, freeze-dried, and a compound in which VBA was introduced at the four ends of PEG (4VBA-PEG1: in Formula II, X is 4-vinylbenzylcarbamoylpentyl) 5 .2 g was obtained.

2)架橋ポリマーの合成
VLA 1.0gと4VBA−PEG1 20mgとをジメチルスルホキシド(DMSO)1.5mlに60℃で溶解した後、別途2,2’−アゾビス(イソブチロニトリル)(AIBN:東京化成工業(株)製)50mgをDMSO 0.5mlに溶かして加え、10分間窒素ガスをバブリングさせて脱気した。温度を65℃に昇温させて、2時間反応させた。反応終了後、ゲル状生成物をメタノール 10mlに加えてDMSOなどを洗浄、除去した。メタノールを減圧下除去した後、水 20mlにゲル状生成物を分散させて、純水中で透析膜(三光純薬(株)製、UC30-32)を用い3日間透析した。透析後、凍結乾燥して架橋ポリマー(No.1)0.81gを得た。
2) Synthesis of cross-linked polymer After dissolving 1.0 g of VLA and 20 mg of 4VBA-PEG1 in 1.5 ml of dimethyl sulfoxide (DMSO) at 60 ° C., 2,2′-azobis (isobutyronitrile) (AIBN: Tokyo) was separately prepared. 50 mg of Kasei Kogyo Co., Ltd. was dissolved in 0.5 ml of DMSO, and degassed by bubbling nitrogen gas for 10 minutes. The temperature was raised to 65 ° C. and reacted for 2 hours. After completion of the reaction, the gel product was added to 10 ml of methanol, and DMSO and the like were washed and removed. After removing the methanol under reduced pressure, the gel product was dispersed in 20 ml of water and dialyzed for 3 days in pure water using a dialysis membrane (manufactured by Sanko Junyaku Co., Ltd., UC30-32). After dialysis, freeze-dried to obtain 0.81 g of a crosslinked polymer (No. 1).

〔実施例2〕架橋ポリマー(No.2)の合成
VLA 1.0gと、実施例1(1)で調製した4VBA−PEG1 50mgとをDMSO 1.5mlに60℃で溶解した後、別途AIBN 50mgをDMSO 0.5mlに溶かして加え、10分間窒素ガスをバブリングさせて脱気した。温度を65℃に昇温させて、2時間反応させた。反応終了後、ゲル状生成物をメタノール 10mlに加えてDMSOなどを洗浄、除去した。メタノールを減圧下除去した後、水20mlにゲル状生成物を分散させて、純水中で透析膜(三光純薬(株)製、UC30-32)を用い3日間透析した。透析後、凍結乾燥して架橋ポリマー(No.2)0.89gを得た。
Example 2 Synthesis of Crosslinked Polymer (No. 2) 1.0 g of VLA and 50 mg of 4VBA-PEG1 prepared in Example 1 (1) were dissolved in DMSO 1.5 ml at 60 ° C., and AIBN 50 mg was separately added. Was dissolved in 0.5 ml of DMSO and degassed by bubbling nitrogen gas for 10 minutes. The temperature was raised to 65 ° C. and reacted for 2 hours. After completion of the reaction, the gel product was added to 10 ml of methanol, and DMSO and the like were washed and removed. After removing the methanol under reduced pressure, the gel product was dispersed in 20 ml of water and dialyzed for 3 days in pure water using a dialysis membrane (manufactured by Sanko Junyaku Co., Ltd., UC30-32). After dialysis, freeze-dried to obtain 0.89 g of a crosslinked polymer (No. 2).

〔実施例3〕架橋ポリマー(No.3)の合成
VLA 1.0gと、実施例1(1)で調製した4VBA−PEG1 20mgとを水 1.5mlに60℃で溶解した後、別途AIBN 50mgをエタノール 0.5mlに溶かして加え、10分間窒素ガスをバブリングさせて脱気した。温度を65℃に昇温させて、2時間反応させた。反応終了後、ゲル状生成物を水で洗浄、エタノールなどを除去した。さらにゲル状生成物を透析膜(三光純薬(株)製、UC30-32)を用い、3日間、純水中で透析した。透析後、凍結乾燥して架橋ポリマー(No.3)0.77gを得た。
[Example 3] Synthesis of crosslinked polymer (No. 3) 1.0 g of VLA and 20 mg of 4VBA-PEG1 prepared in Example 1 (1) were dissolved in 1.5 ml of water at 60 ° C, and separately 50 mg of AIBN. Was dissolved in 0.5 ml of ethanol and degassed by bubbling nitrogen gas for 10 minutes. The temperature was raised to 65 ° C. and reacted for 2 hours. After completion of the reaction, the gel product was washed with water to remove ethanol and the like. Further, the gel product was dialyzed in pure water for 3 days using a dialysis membrane (UC30-32, manufactured by Sanko Junyaku Co., Ltd.). After dialysis, freeze-dried to obtain 0.77 g of a crosslinked polymer (No. 3).

〔実施例4〕架橋ポリマー(No.4)の合成
1)4VBA−PEG2の合成
4官能性PEG(日本油脂(株)製、SUNBRIGHT(登録商標)PTE-200HS、MW 20,000;前記式IIIbにおいて、X2がスクシンイミジルカルボキシペンチルである)5gを、クロロホルム400mlに溶かし、室温で撹拌下、VBA 0.4gを加えて2時間反応させた。反応溶液からクロロホルムを留去した後、ジエチルエーテルで3回洗浄して未反応のVBAを除去した。洗浄、乾燥した反応物を水に溶かし、凍結乾燥して、PEGの4つの末端にVBAを導入した化合物(4VBA−PEG1:前記式IIにおいて、Xが4−ビニルベンジルアミノカルボキシペンチルである)を5.0g得た。
[Example 4] Synthesis of crosslinked polymer (No. 4) 1) Synthesis of 4VBA-PEG2 Tetrafunctional PEG (manufactured by NOF Corporation, SUNBRIGHT (registered trademark) PTE-200HS, MW 20,000; 5 g (X 2 is succinimidyl carboxypentyl) was dissolved in 400 ml of chloroform, and 0.4 g of VBA was added with stirring at room temperature and reacted for 2 hours. Chloroform was distilled off from the reaction solution, followed by washing with diethyl ether three times to remove unreacted VBA. A compound in which the washed and dried reaction product was dissolved in water and freeze-dried to introduce VBA at the four ends of PEG (4VBA-PEG1: in Formula II, X is 4-vinylbenzylaminocarboxypentyl). 5.0 g was obtained.

2)架橋ポリマーの合成
VLA 1.0gと4VBA−PEG2 30mgとをDMSO 1.5mlに60℃で溶解した後、別途AIBN 50mgをDMSO 0.5mlに溶かして加え、10分間窒素ガスをバブリングさせて脱気した。温度を65℃に昇温させて、2時間反応させた。反応終了後、ゲル状生成物をメタノール10mlに加えてDMSOなどを洗浄、除去した。メタノールを減圧下除去した後、水20mlにゲル状生成物を分散させて、純水中で透析膜(三光純薬(株)製、UC30-32)を用い3日間透析した。透析後凍結乾燥して架橋ポリマー(No.4)0.84gを得た。
2) Synthesis of cross-linked polymer After dissolving 1.0 g of VLA and 30 mg of 4VBA-PEG2 in 1.5 ml of DMSO at 60 ° C., 50 mg of AIBN was separately dissolved in 0.5 ml of DMSO, and nitrogen gas was bubbled for 10 minutes. I was degassed. The temperature was raised to 65 ° C. and reacted for 2 hours. After completion of the reaction, the gel product was added to 10 ml of methanol to wash and remove DMSO and the like. After removing the methanol under reduced pressure, the gel product was dispersed in 20 ml of water and dialyzed for 3 days in pure water using a dialysis membrane (manufactured by Sanko Junyaku Co., Ltd., UC30-32). After dialysis, freeze-dried to obtain 0.84 g of a crosslinked polymer (No. 4).

〔実施例5〕架橋ポリマーの膨潤率の測定
実施例1〜4で得られた架橋ポリマー各50mgをガラスディッシュにとり、それぞれ約10mlの蒸留水を加え、10日間25℃の恒温槽中で膨潤させた。ガラスディッシュ中の余分な水およびゲルへの付着水を除いた後、天秤で重量測定することにより架橋ポリマーの膨潤率を求めた。膨潤率は、下記式:
膨潤率=含水ゲルの重さ/架橋ポリマーの乾燥重量(g/g)
から算出した。測定結果は以下の表1に示すとおりであった。
[Example 5] Measurement of swelling rate of crosslinked polymer 50 mg of each of the crosslinked polymers obtained in Examples 1 to 4 was placed in a glass dish, and about 10 ml of distilled water was added to each to swell in a thermostatic bath at 25 ° C for 10 days. It was. After removing excess water in the glass dish and water adhering to the gel, the swelling ratio of the crosslinked polymer was determined by weighing with a balance. The swelling rate is the following formula:
Swell ratio = weight of hydrogel / dry weight of crosslinked polymer (g / g)
Calculated from The measurement results were as shown in Table 1 below.

Figure 2009025043
Figure 2009025043

〔実施例6〕アスタキサンチン−架橋ポリマー分散体の調製
実施例1で作製した架橋ポリマー(No.1)11.4mgを水6mlに分散させた後、撹拌下、アスタキサンチン(Sigma社製)の溶液[1mg/ml THF(安定剤不含)]の0.3mlを滴下し、分散体液を調製した。減圧下THFを留去した後、水中で3日間透析したものを凍結乾燥し、分散体(アスタキサンチン分散体)を得た。アスタキサンチン分散体をTHFと水の容積の1対1混合溶剤に分散させ、ソニケーションにかけてアスタキサンチンを混合溶剤相に移した後、7000rpmで5分間遠心分離した。上清の482nmのUV吸収強度測定からアスタキサンチン分散体中に含まれていたアスタキサンチンの濃度を算出した。結果、加えたアスタキサンチンは100%分散体に取り込まれていたことがわかった。
[Example 6] Preparation of Astaxanthin-Crosslinked Polymer Dispersion After 11.4 mg of the crosslinked polymer (No. 1) prepared in Example 1 was dispersed in 6 ml of water, a solution of astaxanthin (manufactured by Sigma) with stirring [ 0.3 mg of 1 mg / ml THF (without stabilizer)] was added dropwise to prepare a dispersion liquid. After evaporating THF under reduced pressure, the product dialyzed in water for 3 days was lyophilized to obtain a dispersion (astaxanthin dispersion). The astaxanthin dispersion was dispersed in a one-to-one mixed solvent having a volume of THF and water, and astaxanthin was transferred to the mixed solvent phase by sonication, followed by centrifugation at 7000 rpm for 5 minutes. The concentration of astaxanthin contained in the astaxanthin dispersion was calculated from the UV absorption intensity measurement at 482 nm of the supernatant. As a result, it was found that the added astaxanthin was incorporated into the 100% dispersion.

〔実施例7〕コエンザイムQ 10 −架橋ポリマー分散体の調製
実施例1で作製した架橋ポリマー(No.1)15mgを水12mlに分散させた後、撹拌下コエンザイムQ10(Sigma社製)の溶液(1mg/ml THF)の0.6mlを滴下し、分散体液を調製した。減圧下THFを留去した後、水中で3日間透析したものを凍結乾燥し、分散体(コエンザイムQ10分散体)を得た。コエンザイムQ10分散体をエタノールに分散させ、ソニケーションにかけてコエンザイムQ10をエタノール相に移した後、7000rpmで5分間遠心分離した。上清の274nmのUV吸収強度測定から架橋ポリマー中に含まれていたコエンザイムQ10の濃度を算出した結果、加えたコエンザイムQ10の内67%はゲルに取り込まれていたことがわかった。
[Example 7] Preparation of coenzyme Q 10 -crosslinked polymer dispersion After 15 mg of the crosslinked polymer (No. 1) prepared in Example 1 was dispersed in 12 ml of water, a solution of coenzyme Q 10 (manufactured by Sigma) was stirred. 0.6 ml of (1 mg / ml THF) was added dropwise to prepare a dispersion liquid. After evaporation under reduced pressure THF, those dialyzed in water for 3 days and lyophilized to give a dispersion (Coenzyme Q 10 dispersion). Coenzyme Q 10 dispersion was dispersed in ethanol, after the coenzyme Q 10 over the sonication were transferred to ethanol phase, and centrifuged for 5 minutes at 7000 rpm. Result of calculating the concentration of coenzyme Q 10 from UV absorption intensity measurement of 274nm of the supernatant were included in the crosslinked polymer, 67% of coenzyme Q 10 was added was found to have been incorporated into the gel.

〔実施例8〕アスタキサンチン−架橋ポリマー分散体のUV安定性の測定
実施例6で作製したアスタキサンチンー架橋ポリマー分散体の9.5mgを水16ml中に再分散させ、分散体を作製した。この分散体を殺菌灯(東芝製ILA33E2)の下でUV照射を行い、UVによるアスタキサンチンの劣化速度を測定した。UV照射位置での照度はデジタル照度計(FUSO株式会社製LX-1108)で測定し40Luxであった。照射時間ごとの分散体の一部をとり、同量のTHFを加えて482nmの吸光度を測定した。アスタキサンチン濃度は、THFと水(1対1)混合溶液の482nmの検量線により求めた。結果を図1に示した。アスタキサンチンは、水分散体(下記比較例1参照)よりも架橋ポリマー分散体中で、UV光に対して長期間の安定性を示した。すなわち、本発明の架橋ポリマーは、光劣化を防止する作用があると認められた。
[Example 8] Measurement of UV stability of astaxanthin-crosslinked polymer dispersion 9.5 mg of the astaxanthin-crosslinked polymer dispersion prepared in Example 6 was redispersed in 16 ml of water to prepare a dispersion. This dispersion was irradiated with UV under a germicidal lamp (ILA33E2 manufactured by Toshiba), and the degradation rate of astaxanthin by UV was measured. The illuminance at the UV irradiation position was 40 Lux as measured with a digital illuminometer (LX-1108 manufactured by FUSO Corporation). A part of the dispersion for each irradiation time was taken, the same amount of THF was added, and the absorbance at 482 nm was measured. The astaxanthin concentration was determined by a calibration curve of 482 nm of a mixed solution of THF and water (1 to 1). The results are shown in FIG. Astaxanthin showed long-term stability to UV light in the crosslinked polymer dispersion rather than the aqueous dispersion (see Comparative Example 1 below). That is, it was recognized that the crosslinked polymer of the present invention has an action of preventing photodegradation.

〔比較例1〕アスタキサンチン−水分散体のUV安定性の測定
アスタキサンチン2.3mgをTHF 100mlに溶解し、この溶液の16mlを実施例8と同じ条件で殺菌灯の下でUV照射を行い、照射時間ごとの溶液の482nmの吸光度を測定し、UVによるアスタキサンチンの劣化速度を測定した。アスタキサンチン濃度は、THF溶液の482nmの検量線により求めた。測定結果を図1に示した。
[Comparative Example 1] Measurement of UV stability of astaxanthin-water dispersion 2.3 mg of astaxanthin was dissolved in 100 ml of THF, and 16 ml of this solution was irradiated with UV under a germicidal lamp under the same conditions as in Example 8. The absorbance at 482 nm of the solution for each hour was measured, and the degradation rate of astaxanthin by UV was measured. The astaxanthin concentration was determined by a calibration curve of 482 nm of THF solution. The measurement results are shown in FIG.

〔実施例9〕VK1−架橋ポリマー分散体の調製とそのUV安定性
架橋ポリマー(No.2)100mgを水80mlに分散させた後、撹拌下ビタミンK1(関東化学(株)製)の溶液(1mg/ml THF)4mlを滴下し、分散体液を調製した。減圧下THFを留去した後、水中で3日間透析したものを凍結乾燥し、分散体(VK1架橋ポリマー分散体)を得た。VK1架橋ポリマー分散体15mgを17mlの水に分散し、実施例8と同じ条件でUV照射を行った。また、比較のためVK1の1mg/ml THF溶液1mlを、16.5mlの水に分散してVK1の水分散体(VK1水分散体)を作製した。VK1水分散体も同様にUV照射した。両者のUV照射によるVK1の劣化速度を248nmの吸光度によって測定した。測定結果を下表に示した。
[Example 9] Preparation of VK1-crosslinked polymer dispersion and dispersion of 100 mg of UV stable crosslinked polymer (No. 2) in 80 ml of water, followed by stirring with a solution of vitamin K1 (manufactured by Kanto Chemical Co., Ltd.) 4 ml of 1 mg / ml THF) was added dropwise to prepare a dispersion liquid. After THF was distilled off under reduced pressure, the product dialyzed in water for 3 days was lyophilized to obtain a dispersion (VK1 crosslinked polymer dispersion). VK1 crosslinked polymer dispersion (15 mg) was dispersed in 17 ml of water, and UV irradiation was performed under the same conditions as in Example 8. For comparison, 1 ml of 1 mg / ml THF solution of VK1 was dispersed in 16.5 ml of water to prepare an aqueous dispersion of VK1 (VK1 aqueous dispersion). The VK1 aqueous dispersion was similarly irradiated with UV. The deterioration rate of VK1 due to UV irradiation of both was measured by absorbance at 248 nm. The measurement results are shown in the table below.

Figure 2009025043
Figure 2009025043

本発明により、本明細書に列挙したような脂溶性抗酸化剤などの油溶性物質を安定に化粧料、特に水溶性基材を用いる化粧料に配合することが可能となった。   According to the present invention, oil-soluble substances such as fat-soluble antioxidants listed in the present specification can be stably blended in cosmetics, particularly cosmetics using a water-soluble base material.

Claims (9)

式I:
Figure 2009025043
で表されるN−p−ビニルベンジル−O−β−D−ガラクトピラノシル−(1→4)−D−グルコンアミドと、架橋剤とを反応させることにより得られる架橋ポリマーであって、
架橋剤が、2以上の末端にそれぞれ反応性二重結合を有するポリエチレングリコール誘導体であることを特徴とするポリマー。
Formula I:
Figure 2009025043
A crosslinked polymer obtained by reacting Np-vinylbenzyl-O-β-D-galactopyranosyl- (1 → 4) -D-gluconamide represented by the formula:
A polymer, wherein the crosslinking agent is a polyethylene glycol derivative having a reactive double bond at each of two or more terminals.
2以上の末端にそれぞれ反応性二重結合を有するポリエチレングリコール誘導体が、式II:
Figure 2009025043
〔式中、
各Xは、−Y−Ar−Rであり、
Rは、ビニル又はアリルであり、
Arは、置換又は非置換のアリーレン又はアラルキレンであり、
Yは、スペーサーである〕
で表される、4官能性ポリエチレングリコール誘導体である、請求項1記載の架橋ポリマー。
Polyethylene glycol derivatives each having a reactive double bond at two or more ends are represented by the formula II:
Figure 2009025043
[Where,
Each X is -Y-Ar-R;
R is vinyl or allyl,
Ar is a substituted or unsubstituted arylene or aralkylene;
Y is a spacer.
The crosslinked polymer according to claim 1, which is a tetrafunctional polyethylene glycol derivative represented by the formula:
Xが、4−ビニルベンジルカルバモイルペンチルである、請求項1又は2記載の架橋ポリマー。   The crosslinked polymer according to claim 1 or 2, wherein X is 4-vinylbenzylcarbamoylpentyl. 請求項1記載の架橋ポリマーの製造方法であって、式I:
Figure 2009025043
で表されるN−p−ビニルベンジル−O−β−D−ガラクトピラノシル−(1→4)−D−グルコンアミドと、2以上の末端にそれぞれ反応性二重結合を有するポリエチレングリコール誘導体とを、開始剤の存在下に反応させることを特徴とする、方法。
A process for producing a crosslinked polymer according to claim 1, comprising the formula I:
Figure 2009025043
Np-vinylbenzyl-O-β-D-galactopyranosyl- (1 → 4) -D-gluconamide and a polyethylene glycol derivative each having a reactive double bond at two or more terminals In the presence of an initiator.
2以上の末端にそれぞれ反応性二重結合を有するポリエチレングリコール誘導体が、式II:
Figure 2009025043
〔式中、
各Xは、−Y−Ar−Rであり、
Rは、ビニル又はアリルであり、
Arは、置換又は非置換のアリーレン又はアラルキレンであり、
Yは、スペーサーである〕
で表される、4官能性ポリエチレングリコール誘導体である、請求項4記載の製造方法。
Polyethylene glycol derivatives each having a reactive double bond at two or more ends are represented by the formula II:
Figure 2009025043
[Where,
Each X is -Y-Ar-R;
R is vinyl or allyl,
Ar is a substituted or unsubstituted arylene or aralkylene;
Y is a spacer.
The manufacturing method of Claim 4 which is a tetrafunctional polyethyleneglycol derivative represented by these.
Xが、4−ビニルベンジルカルバモイルペンチルである、請求項4又は5記載の製造方法。   The production method according to claim 4 or 5, wherein X is 4-vinylbenzylcarbamoylpentyl. 請求項1〜3いずれかに記載の架橋ポリマーを含有する、脂溶性抗酸化剤の光劣化防止剤。   The photodegradation inhibitor of a fat-soluble antioxidant containing the crosslinked polymer according to any one of claims 1 to 3. 脂溶性抗酸化剤が、アスタキサンチン、コエンザイムQ10、ビタミンE又はビタミンKから選択される、請求項7に記載の光劣化防止剤。The photodegradation inhibitor according to claim 7, wherein the fat-soluble antioxidant is selected from astaxanthin, coenzyme Q 10 , vitamin E or vitamin K. 請求項7又は8に記載の光劣化防止剤を含有する化粧料。   Cosmetics containing the photodegradation inhibitor according to claim 7 or 8.
JP2009528916A 2007-08-22 2007-08-22 Novel cross-linked polymer, method for producing the same, and use thereof Pending JPWO2009025043A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/066279 WO2009025043A1 (en) 2007-08-22 2007-08-22 Novel crosslinking polymer, process for producing the same, and use thereof

Publications (1)

Publication Number Publication Date
JPWO2009025043A1 true JPWO2009025043A1 (en) 2010-11-18

Family

ID=40377954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009528916A Pending JPWO2009025043A1 (en) 2007-08-22 2007-08-22 Novel cross-linked polymer, method for producing the same, and use thereof

Country Status (2)

Country Link
JP (1) JPWO2009025043A1 (en)
WO (1) WO2009025043A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218308A (en) * 2019-07-30 2019-09-10 中国海洋大学 Methoxy poly (ethylene glycol) acetic acid astaxanthin ester and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129434A1 (en) * 2008-05-09 2011-06-02 Cleagix, Res. Ltd. Moisturizing agent
JP2011126806A (en) * 2009-12-16 2011-06-30 Kyushu Univ Sugar lactone-azobenzene compound, and use thereof
KR20220160123A (en) 2014-09-26 2022-12-05 더 케무어스 컴퍼니 에프씨, 엘엘씨 Non-fluorinated monomers and polymers for surface effect compositions
CN107001563B (en) 2014-09-26 2020-02-07 科慕埃弗西有限公司 Polyurethanes derived from non-fluorinated or partially fluorinated polymers

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543418A (en) * 1991-08-14 1993-02-23 Pola Chem Ind Inc Cosmetic
JPH05176753A (en) * 1991-12-26 1993-07-20 Nec Corp Substrate for cell culture and method for preparing the same
JPH05244938A (en) * 1992-01-22 1993-09-24 Kao Corp Cell and its culture
JPH09221524A (en) * 1996-02-16 1997-08-26 Neetec:Kk Functional sugar-chain polymer and method for using the same
JPH1045630A (en) * 1996-08-01 1998-02-17 Hisamitsu Pharmaceut Co Inc New graft copolymer, medicine using the same, and incorporation of medicine in specific cells using the same
JPH11171894A (en) * 1997-12-10 1999-06-29 Bio Quest:Kk Sugar chain compound and sugar chain polymer having ultraviolet light-absorbing ability
JP2001037472A (en) * 1999-07-28 2001-02-13 Bio Quest:Kk Three dimensional cell-culturing base medium and cell culture using the same
JP2005112987A (en) * 2003-10-07 2005-04-28 Celagix:Kk Anti-thrombogenic copolymer
JP2007049918A (en) * 2005-08-17 2007-03-01 Onecell Inc Cell culture support, cell culture method, recovery of cell, and cell
JP2007246558A (en) * 2006-03-13 2007-09-27 Celagix:Kk Block copolymer and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543418A (en) * 1991-08-14 1993-02-23 Pola Chem Ind Inc Cosmetic
JPH05176753A (en) * 1991-12-26 1993-07-20 Nec Corp Substrate for cell culture and method for preparing the same
JPH05244938A (en) * 1992-01-22 1993-09-24 Kao Corp Cell and its culture
JPH09221524A (en) * 1996-02-16 1997-08-26 Neetec:Kk Functional sugar-chain polymer and method for using the same
JPH1045630A (en) * 1996-08-01 1998-02-17 Hisamitsu Pharmaceut Co Inc New graft copolymer, medicine using the same, and incorporation of medicine in specific cells using the same
JPH11171894A (en) * 1997-12-10 1999-06-29 Bio Quest:Kk Sugar chain compound and sugar chain polymer having ultraviolet light-absorbing ability
JP2001037472A (en) * 1999-07-28 2001-02-13 Bio Quest:Kk Three dimensional cell-culturing base medium and cell culture using the same
JP2005112987A (en) * 2003-10-07 2005-04-28 Celagix:Kk Anti-thrombogenic copolymer
JP2007049918A (en) * 2005-08-17 2007-03-01 Onecell Inc Cell culture support, cell culture method, recovery of cell, and cell
JP2007246558A (en) * 2006-03-13 2007-09-27 Celagix:Kk Block copolymer and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013016126; 松野 恵,鷲見 幸男,畠 賢一郎,伊藤 優子,坂井 謙介,後藤 光昭,水谷 英樹,上田 実: '細胞組み込み型人口材料の開発に関する実験的研究-第一報 ポリスチレン誘導体による皮膚・粘膜由来線維芽' 日本口腔科学会雑誌 Vol.49,No.6, 20001110, P.344-351 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218308A (en) * 2019-07-30 2019-09-10 中国海洋大学 Methoxy poly (ethylene glycol) acetic acid astaxanthin ester and preparation method thereof

Also Published As

Publication number Publication date
WO2009025043A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
US20190262272A1 (en) Modified alginates for cell encapsulation and cell therapy
Park et al. Novel pH‐sensitive polymers containing sulfonamide groups
CN108623807B (en) Responsive polymer nano particle based on cinnamaldehyde and preparation method thereof
CN109937234B (en) S-nitrosothiol mediated hyperbranched polyesters
TWI503337B (en) Stimulation responsive macromolecule bridging body and its manufacturing method
JPWO2009025043A1 (en) Novel cross-linked polymer, method for producing the same, and use thereof
Ejaz et al. Evaluation of redox-responsive disulfide cross-linked poly (hydroxyethyl methacrylate) hydrogels
CN110041475B (en) Amphiphilic block copolymer, shell-crosslinked micelle thereof, preparation method and application
CN107641201B (en) Preparation method and application of block copolymer containing double selenium bonds with rapid oxidation/reduction dual responsiveness
Zou et al. Supramolecular hydrogels via light-responsive homoternary cross-links
JP7055881B2 (en) Preparation and use of new photosensitizer composite nano-multifunctional materials
Obata et al. Effect of the hydrophobic segment of an amphiphilic block copolymer on micelle formation, zinc phthalocyanine loading, and photodynamic activity
CN109922792A (en) Hydrogel based on functionalization polysaccharide
Kumar et al. Supramolecular phenoxy-alkyl maleate-based hydrogels and their enzyme/pH-responsive curcumin release
CN109988314B (en) Hyperbranched chitosan, and preparation method and application thereof
Lu et al. Synthesis of self-assemble pH-responsive cyclodextrin block copolymer for sustained anticancer drug delivery
Kumari et al. Chemistry, biological activities, and uses of moringa gum
CN108641092B (en) Preparation method of supramolecular polymer composite micelle based on hydrogen bond
CN111592634B (en) Photoreduction self-degradation polymer and preparation method and application thereof
Swami Radiation synthesis of polymeric hydrogels for swelling-controlled drug release studies
CN109821025B (en) Light and redox dual-stimulus response type amphiphilic polymer drug carrier and preparation method and application thereof
Batibay et al. Synthesis of photoactive nanocomposite hydrogels via in-situ photoinitiated thiol-ene click polymerization of acrylates containing norbornene-POSS and norbornene-POSS/Ag NPs
CN112661961B (en) Amphiphilic polyoxazoline copolymer, and preparation method and application thereof
Gajjar et al. Novel hydroxyl terminated dendrimers as potential drug carriers: Sustained release, hemolysis and cytotoxicity study
CN115671297A (en) Intelligent drug carrier with pH sensitivity and active oxygen sensitivity and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910