JP4630179B2 - Method for producing exhaust gas purifying catalyst - Google Patents

Method for producing exhaust gas purifying catalyst Download PDF

Info

Publication number
JP4630179B2
JP4630179B2 JP2005337091A JP2005337091A JP4630179B2 JP 4630179 B2 JP4630179 B2 JP 4630179B2 JP 2005337091 A JP2005337091 A JP 2005337091A JP 2005337091 A JP2005337091 A JP 2005337091A JP 4630179 B2 JP4630179 B2 JP 4630179B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
pores
storage material
catalyst metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005337091A
Other languages
Japanese (ja)
Other versions
JP2007136421A (en
Inventor
秀治 岩国
誠治 三好
明秀 高見
知広 本田
智明 浦井
良太 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Toda Kogyo Corp
Original Assignee
Mazda Motor Corp
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toda Kogyo Corp filed Critical Mazda Motor Corp
Priority to JP2005337091A priority Critical patent/JP4630179B2/en
Publication of JP2007136421A publication Critical patent/JP2007136421A/en
Application granted granted Critical
Publication of JP4630179B2 publication Critical patent/JP4630179B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、排気ガス浄化用触媒の製造方法に関する。     The present invention relates to a method for producing an exhaust gas purification catalyst.

自動車用の排気ガス浄化用触媒は、基本的にはアルミナ等の多孔質担体に触媒金属を担持させて構成されている。この触媒金属の担体への担持に関し、特許文献1には、担体に触媒金属溶液を含浸させ、次いでアンモニア水によって触媒金属を水酸化物に変換して担体に不溶化させた状態で固定化し、次いで不活性雰囲気又は減圧雰囲気で加熱する活性化処理を行なうことが記載されている。この活性化処理は触媒金属を0価の金属単体にするというものである。また、特許文献2には、担体粒子に触媒金属溶液を含浸させ、乾燥及び焼成を行なうにあたり、当該含浸粒子を遊動状態で乾燥処理を行なうことにより、一つの粒子の全表面からの水分蒸発速度が均一になるようにして触媒金属の高分散化を図ること、その乾燥処理を減圧下で行なうことにより、蒸発水分を系外に排出することが記載されている。
特開平10−137587号公報 特開平11−169729号公報
An exhaust gas purifying catalyst for automobiles is basically configured by supporting a catalytic metal on a porous carrier such as alumina. Regarding the loading of the catalyst metal on the carrier, Patent Document 1 describes that the carrier is impregnated with a catalyst metal solution, then the catalyst metal is converted into a hydroxide by ammonia water and immobilized in an insoluble state on the carrier, It describes that an activation treatment is performed by heating in an inert atmosphere or a reduced-pressure atmosphere. This activation treatment is to make the catalyst metal a zero-valent metal element. Further, in Patent Document 2, when impregnating a carrier particle with a catalyst metal solution, and drying and firing, the impregnated particle is subjected to a drying treatment in a floating state, whereby a moisture evaporation rate from the entire surface of one particle is obtained. Describes that the catalyst metal is highly dispersed so as to be uniform, and that the dried water is discharged under reduced pressure to discharge evaporated water out of the system.
Japanese Patent Laid-Open No. 10-137487 Japanese Patent Laid-Open No. 11-169729

ところで、排気ガス浄化用触媒は、触媒金属等の金属成分を高分散化させて排気ガス成分との接触機会を増やすとともに、それら金属成分のシンタリング防止を図ることが重要である。そのために、上記金属成分を担持する酸化物担体の比表面積を大きくすることが望まれ、特に酸素吸蔵材については、当該触媒が三元触媒として働くA/Fウインド(空燃比の幅)の拡大や、該酸素吸蔵材が担持する金属成分の還元(即ち、還元による活性の維持)に大きな役割を果たすので、高温の排気ガスに晒された後でも高い比表面積を有することが要望される。     By the way, it is important for the exhaust gas purification catalyst to increase the chance of contact with the exhaust gas component by highly dispersing metal components such as a catalyst metal and to prevent sintering of these metal components. For this purpose, it is desired to increase the specific surface area of the oxide carrier supporting the metal component. Especially for the oxygen storage material, the A / F window (the width of the air-fuel ratio) where the catalyst acts as a three-way catalyst is expanded. In addition, since it plays a major role in reducing the metal component carried by the oxygen storage material (that is, maintaining the activity by reduction), it is desired to have a high specific surface area even after being exposed to high-temperature exhaust gas.

上記担体は通常一次粒子が凝集してなる二次粒子で形成されている。従って、上記比表面積の増大には、一次粒子の粒径を小さくすることが有効である。しかし、一次粒子径が小さくなると、一次粒子間に形成される細孔の孔径が小さくなるため、通常の含浸法や蒸発乾固法では、触媒金属溶液が細孔内に入り難くなる。その結果、触媒金属が細孔内部には担持されずに、担体表面のみに担持された状態になり易い。すなわち、触媒金属の担体における分散度が低くなり、触媒性能の向上を図ることが難しくなる。     The carrier is usually formed of secondary particles obtained by agglomerating primary particles. Therefore, to increase the specific surface area, it is effective to reduce the particle size of the primary particles. However, when the primary particle size is reduced, the pore size of the pores formed between the primary particles is reduced, so that the catalyst metal solution is difficult to enter the pores by a normal impregnation method or evaporation to dryness method. As a result, the catalyst metal is not supported inside the pores, and tends to be supported only on the support surface. That is, the degree of dispersion of the catalyst metal carrier becomes low, and it becomes difficult to improve the catalyst performance.

そこで、本発明は、Ce−Zr系複酸化物よりなる担体の比表面積を大きくするとともに、その微細な細孔内にも触媒金属を確実に担持できるようにすることを課題とする。     Accordingly, an object of the present invention is to increase the specific surface area of a support made of a Ce—Zr-based double oxide and to ensure that the catalyst metal can be supported in the fine pores.

本発明は、そのために、微細な一次粒子が凝集してなる中空状の二次粒子担体に、減圧脱気法によって触媒金属を担持させるようにした。     Therefore, in the present invention, a catalyst metal is supported on a hollow secondary particle carrier formed by agglomerating fine primary particles by a vacuum degassing method.

すなわち、請求項1に係る発明は、CeとZrとを含有する複酸化物よりなり且つ平均粒径10nm未満の一次粒子が凝集して内部に細孔を有するシェルが形成されている中空状の二次粒子担体を得る工程と、
上記二次粒子担体を触媒金属イオンの水溶液に分散させてなる懸濁液を、容器内で減圧脱気しつつ加熱することにより、水分を蒸発させ、触媒金属を上記二次粒子担体の表面及び上記細孔内に担持させる工程とを備えていることを特徴とする排気ガス浄化用触媒の製造方法である。
That is, the invention according to claim 1 is a hollow-shaped structure in which a primary oxide having a mean particle size of less than 10 nm is agglomerated to form a shell having pores therein, which is made of a double oxide containing Ce and Zr. Obtaining a secondary particle carrier;
A suspension obtained by dispersing the secondary particle carrier in an aqueous solution of catalyst metal ions is heated while degassing in a container under reduced pressure to evaporate water, and the catalyst metal is removed from the surface of the secondary particle carrier and And a step of supporting the catalyst in the pores.

従って、担体は、その結晶子が凝集してなる一次粒子径が小さいことから、細孔はその孔径が微細になり、担体の比表面積が大きなものになる。しかも中空状であることによって比表面積がさらに大きくなる。そうして、減圧脱気により、上記微細細孔内の空気が除去されると同時に、その細孔内に触媒金属イオンの水溶液が入ることになる。その状態で加熱されて水分が蒸発するため、触媒金属が酸素吸蔵材の表面だけでなく、細孔内にも確実に担持されることになる。よって、触媒金属が担体の表面から微細細孔内に亘って略均一に担持された高比表面積の触媒が得られ、微細細孔に入ってきた排気ガス成分と触媒金属との接触が図れるから、排気ガス浄化性能の向上に有利になる。     Therefore, since the support has a small primary particle diameter formed by agglomeration of the crystallites, the pores have a fine pore diameter and a large specific surface area of the support. Moreover, the specific surface area is further increased due to the hollow shape. Thus, the air in the fine pores is removed by degassing under reduced pressure, and at the same time, an aqueous solution of catalytic metal ions enters the pores. Since the water is evaporated by heating in this state, the catalyst metal is reliably supported not only on the surface of the oxygen storage material but also in the pores. Therefore, a catalyst having a high specific surface area in which the catalyst metal is supported substantially uniformly from the surface of the support to the inside of the fine pores can be obtained, and contact between the exhaust gas component entering the fine pores and the catalytic metal can be achieved. This is advantageous for improving exhaust gas purification performance.

また、上記担体はCeとZrとを含有する複酸化物よりなるから、酸素吸蔵能を有し、一次粒子の粒径が微小であることによって、酸素の吸蔵放出が速やかに行なわれ、さらに、中実状(塊状)となっている場合に比べて、表面(シェルの外面及び内面を含む)に露出する一次粒子が多くなるとともに、排気ガスが当該担体のシェル壁を通り抜けやすくなり、一次粒子に担持されている触媒金属と排気ガスとが接触し易くなる。このことが、触媒活性(ライトオフ性能)の向上に有利に働く。     In addition, since the carrier is made of a double oxide containing Ce and Zr, it has an oxygen storage ability, and the primary particles have a very small particle size, so that oxygen can be stored and released quickly. Compared to a solid (lumped) shape, the primary particles exposed on the surface (including the outer and inner surfaces of the shell) increase, and the exhaust gas easily passes through the shell wall of the carrier. The supported catalyst metal and the exhaust gas are easily brought into contact with each other. This is advantageous for improving the catalyst activity (light-off performance).

しかも、一次粒子径が小さいにも拘わらず、中空状になっていることにより、触媒が高温の排気ガスに晒された後でも比較的大きな比表面積を有するようになり、触媒金属のシンタリングも抑制され、高い排気ガス浄化性能を長期間にわたって確保する上で有利になる。     Moreover, despite the small primary particle size, the hollow shape allows the catalyst to have a relatively large specific surface area even after being exposed to high-temperature exhaust gas. This is advantageous for ensuring high exhaust gas purification performance over a long period of time.

上記一次粒子の平均粒径が過度に小さくなると、上記一次粒子間に形成されている細孔径が小さくなりすぎて排気ガス成分の細孔内への拡散進入が難しくなる。従って、上記平均粒径の下限は、特に限定するわけではないが、例えば3〜4nm程度を目安にすればよい。     If the average particle size of the primary particles becomes excessively small, the pore diameter formed between the primary particles becomes too small, making it difficult for the exhaust gas component to diffuse into the pores. Therefore, the lower limit of the average particle diameter is not particularly limited, but may be about 3 to 4 nm, for example.

また、上記容器内圧力は10kPa以上30kPa以下程度にすることが好ましく、また、容器内温度は65℃以上にすることが好ましい。     The internal pressure of the container is preferably about 10 kPa to 30 kPa, and the internal temperature is preferably 65 ° C. or higher.

請求項2に係る発明は、請求項1において、
上記水溶液を上記触媒金属イオンとNOx吸蔵材となる金属イオンとの混合液とし、触媒金属及びNOx吸蔵材を上記二次粒子担体の表面及び細孔内に担持させることを特徴とする。
The invention according to claim 2 is the invention according to claim 1,
The aqueous solution is a mixed solution of the catalyst metal ions and the metal ions serving as the NOx storage material, and the catalyst metal and the NOx storage material are supported on the surface and pores of the secondary particle carrier.

従って、触媒金属及びNOx吸蔵材とを担体の表面から細孔内に亘って略均一に担持させることができ、NOx浄化性能の向上に有利になる。すなわち、エンジンのA/Fリーン時に排気ガス中のNOxをNOx吸蔵材に吸蔵し、A/Fリッチ時に該NOx吸蔵材から放出されるNOxを上記触媒金属で還元浄化することができ、NOx浄化性能の向上に有利になる。     Therefore, the catalyst metal and the NOx occlusion material can be supported substantially uniformly from the surface of the carrier to the inside of the pores, which is advantageous in improving the NOx purification performance. That is, NOx in the exhaust gas can be stored in the NOx storage material when the engine is A / F lean, and NOx released from the NOx storage material can be reduced and purified with the catalyst metal when the A / F is rich. This is advantageous for improving performance.

上記各発明において、触媒金属としては、Pt、Rh、Ir等の貴金属が好ましく、また、NOx吸蔵材としては、Ba等のアルカリ土類金属、K等のアルカリ金属を採用することが好ましい。     In each of the above inventions, the catalyst metal is preferably a noble metal such as Pt, Rh, or Ir, and the NOx storage material is preferably an alkaline earth metal such as Ba or an alkali metal such as K.

以上のように、本発明に係る排気ガス浄化用触媒の製造方法によれば、CeとZrとを含有する複酸化物よりなり且つ平均粒径10nm未満の一次粒子が凝集して内部に細孔を有するシェルが形成されている中空状の二次粒子担体を得る工程と、この二次粒子担体を触媒金属イオンの水溶液に分散させてなる懸濁液を、容器内で減圧脱気しつつ加熱することにより、水分を蒸発させ、触媒金属を上記二次粒子担体の表面及び上記細孔内に担持させる工程とを備えているから、触媒金属が比表面積の大きな中空状担体の表面から微細細孔内に亘って略均一に担持された触媒が得られ、触媒活性の向上、触媒金属のシンタリング抑制に有利になる。     As described above, according to the method for producing an exhaust gas purifying catalyst according to the present invention, primary particles made of a double oxide containing Ce and Zr and having an average particle size of less than 10 nm aggregate to form pores. A step of obtaining a hollow secondary particle carrier in which a shell having a surface is formed, and a suspension obtained by dispersing the secondary particle carrier in an aqueous solution of catalytic metal ions is heated while degassing in a container under reduced pressure By evaporating moisture and supporting the catalyst metal on the surface of the secondary particle carrier and the pores, the catalyst metal is finely divided from the surface of the hollow carrier having a large specific surface area. A catalyst supported substantially uniformly over the pores is obtained, which is advantageous for improving the catalytic activity and suppressing sintering of the catalytic metal.

以下、本発明の実施形態を図面に基づいて説明する。     Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明に係る排気ガス浄化用触媒の製造方法は、自動車エンジンの排気ガス中のHC、CO及びNOxを浄化する三元触媒の製造、或いは適宜A/Fリーンで運転されるエンジンの排気ガス中のNOxの浄化に適したNOx吸蔵触媒の製造に特に有用である。排気ガスの浄化にあたっては、コージェライト等の無機多孔質によって形成されたハニカム形状等の担体上に触媒をバインダによって担持させ、これを排気通路に配置する。     The method for producing an exhaust gas purifying catalyst according to the present invention includes the production of a three-way catalyst for purifying HC, CO and NOx in the exhaust gas of an automobile engine, or in the exhaust gas of an engine operated with an A / F lean as appropriate. This is particularly useful for the production of NOx storage catalysts suitable for the purification of NOx. In purifying exhaust gas, a catalyst is supported by a binder on a honeycomb-shaped carrier formed of inorganic porous material such as cordierite, and this is disposed in the exhaust passage.

当該製造方法は、CeとZrとを含有する複酸化物よりなり且つ平均粒径10nm未満の一次粒子が凝集して内部に細孔を有するシェルが形成されている中空状の二次粒子担体を得て、この二次粒子担体を触媒金属イオンの水溶液に分散させてなる懸濁液を、容器内で減圧脱気しつつ加熱することにより、水分を蒸発させ、触媒金属を上記二次粒子担体の表面及び上記細孔内に担持させる点に特徴がある。以下、NOx吸蔵触媒を例に具体的に説明する。     The manufacturing method includes a hollow secondary particle carrier made of a double oxide containing Ce and Zr and having a shell having pores formed by agglomerating primary particles having an average particle size of less than 10 nm. The suspension obtained by dispersing the secondary particle carrier in an aqueous solution of the catalyst metal ions is heated while degassing in a container under reduced pressure to evaporate the water, thereby removing the catalyst metal from the secondary particle carrier. It is characterized in that it is supported on the surface of the metal and the pores. Hereinafter, the NOx occlusion catalyst will be specifically described as an example.

<実施例及び比較例>
−実施例−
酸素吸蔵材を噴霧熱分解法によって調製した。すなわち、オキシ硝酸ジルコニウム、硝酸セリウム及び硫酸マグネシウムの各所定量を水に溶解させることにより、原料溶液を調製した(原料溶液調製)。ここで、硫酸マグネシウムは、中空状酸素吸蔵材を製造する際の一次粒子のシンタリングを抑制する、一次粒子同士の接触点を減らしつつ中空構造に導く、という作用を有するものとして、各種添加化合物の中から選定されたものであり、その添加量、濃度等は適宜決定することができる。
<Examples and Comparative Examples>
-Example-
Oxygen storage material was prepared by spray pyrolysis method. That is, a raw material solution was prepared by dissolving predetermined amounts of zirconium oxynitrate, cerium nitrate, and magnesium sulfate in water (preparation of raw material solution). Here, magnesium sulfate has various actions such as suppressing the sintering of primary particles when producing a hollow oxygen storage material and leading to a hollow structure while reducing the contact points between primary particles. The amount added, concentration, etc. can be determined as appropriate.

次いで、上記原料溶液を、空気をキャリアガスとして噴霧することにより、液滴化させて加熱炉に供給した(超音波噴霧熱分解)。加熱炉の温度は1000℃に設定した。加熱炉を出た粒子はバグフィルターによって捕集し、これを水洗後、乾燥させることにより、当該中空状酸素吸蔵材(Ce−Zr複酸化物)を得た。この実施例においては、CeO2:ZrO2=75:25(質量比)となるようにした。 Next, the raw material solution was sprayed using air as a carrier gas to form droplets and supplied to a heating furnace (ultrasonic spray pyrolysis). The temperature of the heating furnace was set to 1000 ° C. The particles exiting the heating furnace were collected by a bag filter, washed with water, and dried to obtain the hollow oxygen storage material (Ce—Zr double oxide). In this example, CeO 2 : ZrO 2 = 75: 25 (mass ratio).

次いで、上記中空状酸素吸蔵材、γ−アルミナ粉末、貴金属溶液(ジニトロジアミン白金硝酸溶液及び硝酸ロジウム溶液)、NOx吸蔵材(酢酸バリウム、酢酸ストロンチウム)及び水の各所定量を容器に入れ攪拌することにより懸濁液とした(懸濁液調製)。この懸濁液を攪拌しながら容器内圧力を20kPaに減圧することにより、脱気しつつ70〜80℃に加熱することにより、水分を蒸発させた(減圧脱気)。     Next, the hollow oxygen storage material, γ-alumina powder, noble metal solution (dinitrodiamine platinum nitric acid solution and rhodium nitrate solution), NOx storage material (barium acetate, strontium acetate) and water are put in a container and stirred. To prepare a suspension (suspension preparation). While this suspension was stirred, the internal pressure of the container was reduced to 20 kPa, and the water was evaporated by heating to 70 to 80 ° C. while degassing (vacuum degassing).

上記減圧脱気で得られた乾固物を粉砕して粉末状にした(粉砕)。得られた粉末を500℃の温度に2時間加熱保持する焼成を行なうことにより、上記酸素吸蔵材及びγ−アルミナ粉末をサポート材として、これに貴金属及びNOx吸蔵材が担持された触媒粉末を得た(焼成)。     The dried product obtained by degassing under reduced pressure was pulverized into a powder (pulverization). The obtained powder is fired at a temperature of 500 ° C. for 2 hours to obtain a catalyst powder in which the oxygen storage material and the γ-alumina powder are used as a support material and on which the noble metal and NOx storage material are supported. (Fired).

次に上記触媒粉末を塩基性Zrバインダ及び水と混合してスラリーとした(スラリー化)。このスラリーにコージェライト製ハニカム担体(1平方インチ(約6.54cm2)当たりのセル数400、相隣るセルを隔てる壁厚4ミル(約0.10mm))に浸漬して引き上げ、余分なスラリーをエアブローで吹き飛ばした(触媒コート層の形成)。次いで、コート層を乾燥させた後、500℃の温度に2時間加熱保持する焼成を行なうことにより、排気ガス浄化用触媒を得た(焼成)。ハニカム担体1L当たりの酸素吸蔵材担持量は150g/L、γ−アルミナ担持量は150g/L、Pt担持量は3.5g/L、Rh担持量は0.3g/L、Ba担持量は35g/L、Sr担持量5g/Lである。 Next, the catalyst powder was mixed with a basic Zr binder and water to form a slurry (slurry). This slurry is dipped in a cordierite honeycomb carrier (400 cells per square inch (about 6.54 cm 2 ), wall thickness of 4 mil (about 0.10 mm) separating adjacent cells) and pulled up. The slurry was blown off by air blow (formation of catalyst coat layer). Next, after drying the coat layer, the catalyst for exhaust gas purification was obtained (calcination) by performing calcination by heating and holding at a temperature of 500 ° C. for 2 hours. Oxygen storage material loading per 1 L of honeycomb carrier is 150 g / L, γ-alumina loading is 150 g / L, Pt loading is 3.5 g / L, Rh loading is 0.3 g / L, Ba loading is 35 g. / L, Sr loading 5 g / L.

−酸素吸蔵材のTEM写真−
図1及び図2は実施例に係る酸素吸蔵材のTEM(透過型電子顕微鏡)写真である。この酸素吸蔵材は、図2に示すように、粒径が4〜10nmの一次粒子がシェル材となって凝集した中空状の二次粒子となったものであり、一次粒子間には孔径数nmの細孔が形成されている。
-TEM photograph of oxygen storage material-
1 and 2 are TEM (transmission electron microscope) photographs of the oxygen storage material according to the example. As shown in FIG. 2, this oxygen storage material is a hollow secondary particle in which primary particles having a particle size of 4 to 10 nm are aggregated into shell materials, and the number of pores is between the primary particles. nm pores are formed.

−比較例1−
貴金属及びNOx吸蔵材の担持に、上記減圧脱気法に代えて常圧蒸発乾固法を採用する他は実施例と同じ方法で排気ガス浄化用触媒を得た。
-Comparative Example 1-
Exhaust gas purifying catalysts were obtained in the same manner as in Example except that the atmospheric pressure evaporation / drying method was adopted instead of the above-mentioned reduced pressure degassing method for supporting the noble metal and NOx occlusion material.

すなわち、上記中空状酸素吸蔵材、γ−アルミナ粉末、貴金属溶液(ジニトロジアミン白金硝酸溶液及び硝酸ロジウム溶液)、NOx吸蔵材(酢酸バリウム、酢酸ストロンチウム)及び水の各所定量を容器に入れ攪拌することにより懸濁液とした。この懸濁液を攪拌しながら大気圧下で100℃まで加熱することにより、水分を蒸発させて粉末を得た(常圧蒸発乾固)。     That is, a predetermined amount of each of the above hollow oxygen storage material, γ-alumina powder, noble metal solution (dinitrodiamine platinum nitrate solution and rhodium nitrate solution), NOx storage material (barium acetate, strontium acetate) and water is placed in a container and stirred. To make a suspension. The suspension was heated to 100 ° C. under atmospheric pressure with stirring to evaporate the water and obtain a powder (normal pressure evaporation to dryness).

そうして、得られた乾固物に対して実施例と同じく粉砕及び焼成の処理を行なうことにより、触媒粉末を得て、さらに同様のスラリー化、触媒コート層の形成、乾燥・焼成の処理を行なうことにより、比較例1に係る排気ガス浄化用触媒を得た。     Then, the obtained dried solid product is pulverized and fired in the same manner as in the examples to obtain a catalyst powder. Further, the same slurrying, formation of a catalyst coat layer, and drying / firing treatment are performed. As a result, an exhaust gas purifying catalyst according to Comparative Example 1 was obtained.

従って、比較例1の中空状酸素吸蔵材の一次粒子の粒径は実施例と同じく10nm未満であり、触媒の組成も実施例と同じである。     Therefore, the particle size of the primary particles of the hollow oxygen storage material of Comparative Example 1 is less than 10 nm as in the example, and the composition of the catalyst is the same as in the example.

−比較例2−
酸素吸蔵材を平均粒径10nm未満の一次粒子が凝集した中実状(塊状)の二次粒子とする他は比較例1と同じ方法(常圧蒸発乾固)で排気ガス浄化用触媒を得た。触媒の組成は実施例と同じである。
-Comparative Example 2-
Exhaust gas purification catalyst was obtained by the same method (atmospheric pressure evaporation to dryness) as in Comparative Example 1 except that the oxygen storage material was solid (lumped) secondary particles in which primary particles having an average particle size of less than 10 nm were agglomerated. . The composition of the catalyst is the same as in the examples.

−NOx浄化性能の評価−
上記実施例及び比較例1,2の各触媒について、大気雰囲気で750℃の温度に24時間保持するエージングを行なった後、モデルガス流通反応装置と排気ガス分析装置とを用いて、NOx浄化性能を調べた。
-Evaluation of NOx purification performance-
Each catalyst of the above Examples and Comparative Examples 1 and 2 is subjected to aging that is maintained at a temperature of 750 ° C. for 24 hours in an air atmosphere, and then is subjected to NOx purification performance using a model gas flow reactor and an exhaust gas analyzer. I investigated.

すなわち、A/Fリーンのモデル排気ガスを60秒間流し、次にガス組成をA/Fリッチのモデル排気ガスに切り換えてこれを60秒間流す、というサイクルを数回繰り返した後、ガス組成をA/FリッチからA/Fリーンに切り換えた時点から60秒間のNOx浄化率(リーンNOx浄化率)と、ガス組成をA/FリーンからA/Fリッチに切り換えた時点から60秒間のNOx浄化率(リッチNOx浄化率)とを測定した。触媒入口ガス温度は400℃とした。結果を図3に示す。     That is, after repeating the cycle of flowing the A / F lean model exhaust gas for 60 seconds, then switching the gas composition to the A / F rich model exhaust gas and flowing it for 60 seconds, the gas composition was changed to A NOx purification rate (lean NOx purification rate) for 60 seconds from the time of switching from / F rich to A / F lean and NOx purification rate for 60 seconds from the time of switching the gas composition from A / F lean to A / F rich (Rich NOx purification rate) was measured. The catalyst inlet gas temperature was 400 ° C. The results are shown in FIG.

リーンNOx浄化率及びリッチNOx浄化率のいずれも、実施例は比較例1,2よりも高くなっている。このように実施例のNOx浄化性能が高いのは、減圧脱気法の採用により、酸素吸蔵材のシェルの微細な細孔内の空気が除去されると同時に、その細孔内に触媒貴金属及びNOx吸蔵材の水溶液が入り、それらが酸素吸蔵材の表面だけでなく、細孔内にも同様に担持されているためと認められる。比較例1のNOx浄化率が比較例2よりも高いのは酸素吸蔵材が中空状になっているためであるが、実施例はこの比較例2よりもNOx浄化率が高くなっており、減圧脱気法の効果が明瞭に現れている、ということができる。     In both the lean NOx purification rate and the rich NOx purification rate, the example is higher than the comparative examples 1 and 2. Thus, the NOx purification performance of the example is high because the air in the fine pores of the shell of the oxygen storage material is removed by adopting the vacuum degassing method, and at the same time, the catalyst noble metal and It is recognized that an aqueous solution of NOx occlusion material enters and they are supported not only on the surface of the oxygen occlusion material but also in the pores. The NOx purification rate of Comparative Example 1 is higher than that of Comparative Example 2 because the oxygen storage material is hollow, but the Example has a higher NOx purification rate than Comparative Example 2, and the pressure reduction It can be said that the effect of the degassing method is clearly shown.

本発明の実施例に係る酸素吸蔵材のTEM写真である。It is a TEM photograph of the oxygen storage material concerning the example of the present invention. 同酸素吸蔵材の異なる倍率でのTEM写真である。It is a TEM photograph in a different magnification of the oxygen storage material. 本発明の実施例触媒及び比較例触媒のNOx浄化率を示すグラフ図である。It is a graph which shows the NOx purification rate of the Example catalyst of this invention, and a comparative example catalyst.

符号の説明Explanation of symbols

なし     None

Claims (2)

CeとZrとを含有する複酸化物よりなり且つ平均粒径10nm未満の一次粒子が凝集して内部に細孔を有するシェルが形成されている中空状の二次粒子担体を得る工程と、
上記二次粒子担体を触媒金属イオンの水溶液に分散させてなる懸濁液を、容器内で減圧脱気しつつ加熱することにより、水分を蒸発させ、触媒金属を上記二次粒子担体の表面及び上記細孔内に担持させる工程とを備えていることを特徴とする排気ガス浄化用触媒の製造方法。
A step of obtaining a hollow secondary particle carrier made of a double oxide containing Ce and Zr and having primary particles with an average particle size of less than 10 nm aggregated to form a shell having pores inside;
A suspension obtained by dispersing the secondary particle carrier in an aqueous solution of catalyst metal ions is heated while degassing in a container under reduced pressure to evaporate water, and the catalyst metal is removed from the surface of the secondary particle carrier and A process for supporting the exhaust gas in the pores.
請求項1において、
上記水溶液を上記触媒金属イオンとNOx吸蔵材になる金属イオンとの混合液とし、触媒金属及びNOx吸蔵材を上記二次粒子担体の表面及び上記細孔内に担持させることを特徴とする排気ガス浄化用触媒の製造方法。
In claim 1,
An exhaust gas characterized in that the aqueous solution is a mixed liquid of the catalyst metal ions and metal ions that become the NOx storage material, and the catalyst metal and the NOx storage material are supported on the surface of the secondary particle carrier and in the pores. A method for producing a purification catalyst.
JP2005337091A 2005-11-22 2005-11-22 Method for producing exhaust gas purifying catalyst Expired - Fee Related JP4630179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337091A JP4630179B2 (en) 2005-11-22 2005-11-22 Method for producing exhaust gas purifying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337091A JP4630179B2 (en) 2005-11-22 2005-11-22 Method for producing exhaust gas purifying catalyst

Publications (2)

Publication Number Publication Date
JP2007136421A JP2007136421A (en) 2007-06-07
JP4630179B2 true JP4630179B2 (en) 2011-02-09

Family

ID=38199908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337091A Expired - Fee Related JP4630179B2 (en) 2005-11-22 2005-11-22 Method for producing exhaust gas purifying catalyst

Country Status (1)

Country Link
JP (1) JP4630179B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248347A (en) * 2001-02-23 2002-09-03 Toyota Central Res & Dev Lab Inc Compound oxide powder and catalyst and manufacturing method thereof
JP2005334791A (en) * 2004-05-28 2005-12-08 Toda Kogyo Corp Catalyst for cleaning exhaust gas and oxygen storage material for the catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248347A (en) * 2001-02-23 2002-09-03 Toyota Central Res & Dev Lab Inc Compound oxide powder and catalyst and manufacturing method thereof
JP2005334791A (en) * 2004-05-28 2005-12-08 Toda Kogyo Corp Catalyst for cleaning exhaust gas and oxygen storage material for the catalyst

Also Published As

Publication number Publication date
JP2007136421A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
US4619909A (en) Process for producing monolithic catalyst for purifying exhaust gases
JP2019523699A (en) Core / shell catalyst particles and manufacturing method
JP5635410B2 (en) Exhaust gas purification catalyst and purification method using the same
JP2003517921A (en) Catalyst device
JP2004174490A (en) Catalyst material and method for manufacturing the same
KR20170110100A (en) Rhodium-containing catalysts for automobile exhaust treatment
JP2006334490A (en) Catalyst for cleaning exhaust gas
JP4714568B2 (en) Exhaust gas purification catalyst and method for producing the same
JPWO2008091004A1 (en) Exhaust gas purification catalyst and exhaust gas purification honeycomb catalyst structure
JP4296908B2 (en) Catalyst body and method for producing the same
WO2011052676A1 (en) Exhaust cleaner for internal combustion engine
JP5789715B2 (en) Low-temperature oxidation catalyst with remarkable hydrophobicity for the oxidation of organic pollutants
JP2007136420A (en) Exhaust gas purification catalyst and method of fabricating the same
JP4240250B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
CN109937088B (en) Catalyst for exhaust gas purification and method for exhaust gas purification
WO2015087781A1 (en) Exhaust gas purifying catalyst
JP4630179B2 (en) Method for producing exhaust gas purifying catalyst
JP2004025013A (en) Catalyst for exhaust gas purification and its manufacturing method
JP2015044194A (en) Exhaust gas purification catalyst and exhaust gas purifying method using the same
JP4698505B2 (en) Exhaust gas purification catalyst
JP3897483B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP2005021878A (en) Exhaust gas purification catalyst and its production method
JP2009078202A (en) Catalytic metal-deposited oxygen storage material, method for manufacturing the same and catalyst using the same
JP2005169280A (en) Catalyst for cleaning exhaust gas
JP2012110864A (en) Oxide carrier for exhaust gas purifying catalyst, method for producing the same, exhaust gas purifying catalyst and structure for exhaust gas purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4630179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees