JP4625740B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP4625740B2
JP4625740B2 JP2005261502A JP2005261502A JP4625740B2 JP 4625740 B2 JP4625740 B2 JP 4625740B2 JP 2005261502 A JP2005261502 A JP 2005261502A JP 2005261502 A JP2005261502 A JP 2005261502A JP 4625740 B2 JP4625740 B2 JP 4625740B2
Authority
JP
Japan
Prior art keywords
ice making
ice
temperature
count
tray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005261502A
Other languages
Japanese (ja)
Other versions
JP2007071491A (en
Inventor
弘直 釜谷
展昭 荒川
和文 笹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2005261502A priority Critical patent/JP4625740B2/en
Publication of JP2007071491A publication Critical patent/JP2007071491A/en
Application granted granted Critical
Publication of JP4625740B2 publication Critical patent/JP4625740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

本発明は、自動製氷装置を備えた冷蔵庫に関する。   The present invention relates to a refrigerator provided with an automatic ice making device.

自動製氷装置を備えた冷蔵庫の従来例として特許文献1に記載がある。この例は、製氷皿の温度を検出する温度センサーを備え、この温度センサーで検出された温度に基づいて製氷完了が判断されると、離氷動作を行う制御がなされている。   Patent Document 1 describes a conventional example of a refrigerator equipped with an automatic ice making device. In this example, a temperature sensor for detecting the temperature of the ice tray is provided, and when the completion of ice making is determined based on the temperature detected by the temperature sensor, the ice removing operation is controlled.

特許文献2には製氷皿を着脱可能とした冷蔵庫が開示されている。製氷皿を着脱可能な構成とすると温度センサーの取付位置が問題となるため、この例では駆動軸につながる中空パイプ内に温度センサーを配置している。   Patent Document 2 discloses a refrigerator in which an ice tray can be attached and detached. If the ice tray is configured to be detachable, the position of the temperature sensor becomes a problem. In this example, the temperature sensor is arranged in a hollow pipe connected to the drive shaft.

特許文献3には、モータロック時に製氷皿を原点位置まで戻す例が示され、原点位置に製氷皿を戻すことによって自動製氷装置の故障誘発を防ぐものとしている。   Patent Document 3 shows an example in which the ice tray is returned to the origin position when the motor is locked, and failure of the automatic ice making apparatus is prevented by returning the ice tray to the origin position.

特開平6-317371号公報JP-A-6-317371 特開平6-323702号公報JP-A-6-323702 特開平7-305927号公報Japanese Unexamined Patent Publication No. 7-305927

特許文献1では、製氷皿に取り付けられた温度センサーの検出温度に基づいて製氷の制御が行われているが、製氷皿を取り外すと温度センサーもともに取り出されてしまうため、温度センサーと制御装置とを繋ぐ配線等の取り扱いが困難になる。また、温度センサーが取り付けられた状態の製氷皿は、洗浄することが難しかった。   In Patent Document 1, ice making is controlled based on the temperature detected by the temperature sensor attached to the ice tray. However, if the ice tray is removed, both the temperature sensor and the temperature sensor are taken out. It becomes difficult to handle the wiring that connects the two. In addition, the ice tray with the temperature sensor attached was difficult to clean.

特許文献2では駆動軸側に温度センサーが取り付けられているため、製氷皿だけを着脱可能としているが、実際に製氷皿を軸へ着脱するときには、温度センサーを収めた中空パイプを製氷皿の軸受け部を通して係合させる必要があった。特に、係合作業は冷凍室の奥側になるので、作業が困難であった。   In Patent Document 2, since the temperature sensor is attached to the drive shaft side, only the ice tray can be attached / detached. However, when actually attaching / detaching the ice tray to / from the shaft, the hollow pipe containing the temperature sensor is connected to the bearing of the ice tray. It was necessary to engage through the part. In particular, since the engagement work is on the back side of the freezer compartment, the work is difficult.

また、上記のように、製氷皿あるいは製氷皿と隣接する部材に温度センサーが取り付けられている場合には、製氷時間の管理は比較的容易であった。特許文献1では、製氷完了判定温度及び製氷完了判定補助温度を設けて、これらの温度と製氷皿の温度とを比較して製氷の完了を判定しているが、この制御は製氷皿あるいは製氷皿と隣接する部材に温度センサーが取り付けられていることを前提としている。以下、その理由について説明する。   Further, as described above, when the temperature sensor is attached to the ice tray or a member adjacent to the ice tray, it is relatively easy to manage the ice making time. In Patent Document 1, an ice making completion determination temperature and an ice making completion determination assisting temperature are provided, and the completion of ice making is determined by comparing these temperatures with the temperature of the ice making tray. It is assumed that a temperature sensor is attached to an adjacent member. The reason will be described below.

製氷皿に給水された時点では、水の温度は0℃以上となっており、製氷室内で冷却されると徐々に温度が低下する。水の温度が0℃まで低下すると水から氷へ状態変化が起こり、0℃が維持されたまま水が凍結してゆく。製氷皿内の水が全て凍結すると、製氷皿の温度は再び低下してゆくため、この時点で既に製氷が完了しているとも考えられるが、離氷に際しては、複数の製氷ブロック内の全てで製氷が完了していることが必要である。そこで、製氷完了判定温度や積算時間等を管理し、製氷完了の条件を満たした場合に離氷動作を行う。   When the water is supplied to the ice tray, the temperature of the water is 0 ° C. or higher, and the temperature gradually decreases when cooled in the ice making chamber. When the temperature of the water drops to 0 ° C., the state changes from water to ice, and the water freezes while maintaining 0 ° C. If all the water in the ice tray is frozen, the temperature of the ice tray will decrease again, so it is considered that ice making has already been completed at this point. It is necessary that ice making is completed. Therefore, the ice making completion determination temperature and the accumulated time are managed, and the ice removing operation is performed when the ice making completion condition is satisfied.

このように、製氷皿に温度センサーが取り付けられていると、氷点温度及び安全率を考慮した設定温度(例えば、特許文献1のような製氷完了判定温度)によって、製氷の完了を容易に認識できる。   As described above, when the temperature sensor is attached to the ice tray, the completion of ice making can be easily recognized by the set temperature (for example, ice making completion determination temperature as in Patent Document 1) in consideration of the freezing point temperature and the safety factor. .

しかし、着脱可能な製氷皿とした構成においては、上記のような制御が困難であった。すなわち、製氷皿に温度センサーを直接取り付けることができないので、間接的にでも製氷完了を検知する必要がある。そこで、安全率を高く設定することで確実な製氷及び離氷を行うことができると考えられるが、製氷時間が長くなり、製氷効率が低下してしまうという問題があった。   However, in the configuration of a detachable ice tray, the above control is difficult. That is, since the temperature sensor cannot be directly attached to the ice tray, it is necessary to detect the completion of ice making even indirectly. Therefore, although it is considered that reliable ice making and de-icing can be performed by setting the safety factor high, there has been a problem that ice making time becomes long and ice making efficiency is lowered.

また、製氷皿が着脱可能であれば、製氷皿が取り外された状態で給水を行うことが生じ得る。このとき、給水された水は製氷皿ではなく貯氷容器に落下してしまうが、上記の各特許文献には製氷皿が取り外された状態における制御は考慮されていなかった。   In addition, if the ice tray is detachable, it may occur that water is supplied with the ice tray removed. At this time, the supplied water falls into the ice storage container instead of the ice tray, but the above-mentioned patent documents do not consider the control in a state where the ice tray is removed.

また、製氷皿が取り付けられていたとしても、使用者が製氷皿に水を入れて取り付けることがあり得る。例えば、冷蔵庫の使用者が製氷途中の状況を観察し、目視によって製氷完了までの時間を推測する場合も、製氷皿を再び設置するときには水が入った状態となっている。しかし、このような状況で、新たに給水動作を行うと二重給水になり、製氷皿から溢れた水が下方の貯氷容器にこぼれてしまう。このような製氷皿が取り付けられた後の制御については、上記の特許文献では考慮されていなかった。   Moreover, even if an ice tray is attached, a user may put water into the ice tray and attach it. For example, when a user of a refrigerator observes a situation in the middle of ice making and visually estimates the time until ice making is completed, water is still in place when the ice tray is installed again. However, when a new water supply operation is performed in such a situation, double water supply is performed, and water overflowing from the ice tray is spilled into the ice storage container below. The control after the ice tray is attached is not considered in the above-mentioned patent document.

また、各製氷ブロックごとに均等に給水されなかった場合や、二重給水の場合等においては、各製氷ブロック内の氷が繋がって凍結する、いわゆる板状氷ができてしまう場合があった。このときは、離氷時に製氷皿のひねりトルクが増大し、モータロックで異常となる場合がある。製氷皿が傾いた状態で停止すると、製氷皿を引き出した際に庫内の他の部品と干渉してしまい、取り外すことができなくなってしまう。   In addition, when water is not evenly supplied to each ice making block, or when double water is supplied, so-called plate ice may be formed in which ice in each ice making block is connected and frozen. At this time, the twisting torque of the ice tray increases at the time of deicing, which may become abnormal due to motor lock. If the ice tray is stopped in a tilted state, when the ice tray is pulled out, it interferes with other parts in the cabinet and cannot be removed.

特許文献3では、モータロック時に製氷皿を原点位置まで戻すようにしているが、この例はモータロックによって生ずるさらなる故障の誘発を防ぐものであって、モータロックの原因となる異常を解消するものではなかった。   In Patent Document 3, the ice tray is returned to the original position when the motor is locked, but this example prevents further failure caused by the motor lock and eliminates the abnormality that causes the motor lock. It wasn't.

本発明は上記の課題を鑑みてなされたものであり、着脱可能な製氷皿を有する自動製氷装置を備え、使用者の使い勝手の向上、あるいは製氷効率を向上を図った冷蔵庫を提供することを目的としている。   The present invention has been made in view of the above problems, and an object thereof is to provide a refrigerator provided with an automatic ice making device having a detachable ice making tray and improving the usability of the user or improving the ice making efficiency. It is said.

上記目的を達成するために、本発明の冷蔵庫は、製氷室へ冷気を送風する送風機と、前記製氷室内に配設される自動製氷装置と、前記送風機によって前記製氷室の背面から吐出され前記自動製氷装置内の製氷皿へと流れる冷気の通り路から離れたところに取り付けられる製氷室温度センサーと、製氷完了を判断し前記自動製氷装置に離氷動作を行わせるように制御する制御装置とを備え、前記製氷室温度センサーの検出温度が所定温度以下となってから製氷カウントを開始し、該製氷カウントが所定のカウントアップを完了して且つ前記送風機の運転積算時間が前記製氷カウント開始から所定時間となった場合に製氷完了と判断して離氷動作を行うことを特徴とする。
In order to achieve the above object, the refrigerator of the present invention includes a blower that blows cool air to an ice making chamber, an automatic ice making device disposed in the ice making chamber, and an automatic discharge device that is discharged from the back of the ice making chamber by the blower. An ice-making chamber temperature sensor attached to a place away from the path of the cold air flowing to the ice-making tray in the ice-making device, and a control device that determines that ice making is complete and controls the automatic ice-making device to perform the ice removing operation. And the ice making count is started after the temperature detected by the ice making chamber temperature sensor is equal to or lower than a predetermined temperature, the ice making count has completed a predetermined count-up, and the accumulated operation time of the blower is predetermined from the start of the ice making count. When it is time, it is judged that ice making is completed, and the ice removing operation is performed.

また、上記の構成を備えた冷蔵庫において、前記制御装置は、前記製氷室温度センサーの検出温度が、第1の設定温度よりも低いと製氷カウントを継続し、前記第1の設定温度よりも高くなると製氷カウントを一時停止させ、前記第1の設定温度よりも高く設定される第2の設定温度よりも高くなると製氷カウントをリセットすることによって、製氷時間を管理することとした。   In the refrigerator having the above-described configuration, the control device continues the ice making count when the temperature detected by the ice-making chamber temperature sensor is lower than the first set temperature, and is higher than the first set temperature. Then, the ice making count is temporarily stopped, and the ice making time is managed by resetting the ice making count when it becomes higher than the second set temperature set higher than the first set temperature.

また、前記製氷室温度センサーの検出温度が前記第1の設定温度よりも高くなり、製氷カウントが一時停止されると、前記検出温度が前記第1の設定温度よりも低くなっても前記第1の設定温度よりも低く設定される第3の設定温度よりも高い場合には前記製氷カウントの一時停止を継続することとした。   Further, when the detected temperature of the ice making chamber temperature sensor becomes higher than the first set temperature and the ice making count is temporarily stopped, the first temperature is detected even if the detected temperature becomes lower than the first set temperature. When the temperature is higher than the third set temperature set lower than the set temperature, the ice making count is temporarily stopped.

また、前記制御装置は、前記製氷室温度センサーの出力温度が、前記第1の設定温度よりも低く設定される第3の設定温度よりも低い状態が、予め設定される時間継続すると、前記製氷カウントを加速させることとした。   In addition, when the output temperature of the ice making chamber temperature sensor is lower than the third set temperature set lower than the first set temperature, the control device continues the ice making when the preset temperature continues for a preset time. The count was accelerated.

また、前記製氷室を含む冷凍室は扉で閉塞されるとともに、この扉の開閉状態を検出するドアセンサーを備え、前記ドアセンサーからの出力に基づいて製氷完了を判断することとした。   The freezing room including the ice making room is closed with a door, and includes a door sensor for detecting the open / closed state of the door, and the completion of ice making is determined based on the output from the door sensor.

また、製氷が開始されてからの時間によって設定温度の値が異なるものとした。例えば、製氷カウンタがカウントされる上限の温度を、製氷時間の後半では引き上げることとし、製氷皿内の氷の状態でによって条件を変えることとした。   In addition, the value of the set temperature is different depending on the time from the start of ice making. For example, the upper limit temperature at which the ice making counter is counted is raised in the second half of the ice making time, and the conditions are changed depending on the state of ice in the ice making tray.

また、上記のいずれかの冷蔵庫において、前記製氷室温度センサーを前記自動製氷装置の外殻を形成するフレームに取り付けたものとした。   In any one of the refrigerators, the ice making chamber temperature sensor is attached to a frame forming an outer shell of the automatic ice making device.

本発明によれば、着脱可能な製氷皿を有する自動製氷装置を備え、使用者の使い勝手の向上、あるいは製氷効率を向上を図った冷蔵庫を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the automatic ice making apparatus which has a detachable ice-making tray can be provided, and the refrigerator which aimed at the improvement of the usability of a user or the improvement of ice making efficiency can be provided.

以下、本発明の実施の形態を図面を用いて説明する。図1は本実施例の冷蔵庫の斜視図であり、図1(a)は全体の概観を示す斜視図で、図1(b)は製氷室の周辺を拡大して示した斜視図である。図2は、本実施例の要部を示す縦断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a refrigerator according to the present embodiment, FIG. 1A is a perspective view showing an overall appearance, and FIG. 1B is an enlarged perspective view showing the periphery of an ice making chamber. FIG. 2 is a longitudinal sectional view showing a main part of the present embodiment.

冷蔵庫本体1は、上から冷蔵室2、上段冷凍室3、下段冷凍室4、及び野菜室5を有している。冷蔵室2は回転式の冷蔵室扉6によって閉塞され、他の各室は引出し式の扉7〜10によって閉塞されている。上段冷凍室3は左右に区画された2つの貯蔵室が配設され、その一つを製氷室としている。本実施例では、製氷室3aと急速冷凍室3bとが左右に区画される。製氷室3a内には引出し式の製氷室扉7とともに引き出される貯氷容器13が設けられ、急速冷凍室3b内には、同じく引出し式の急速冷凍室扉8とともに引き出される急速冷凍容器14が設けられている。   The refrigerator main body 1 has a refrigerator compartment 2, an upper freezer compartment 3, a lower freezer compartment 4, and a vegetable compartment 5 from above. The refrigerator compartment 2 is closed by a rotary refrigerator compartment door 6, and the other chambers are closed by drawer doors 7-10. The upper freezer compartment 3 is provided with two storage compartments divided into left and right, one of which is an ice making compartment. In this embodiment, the ice making chamber 3a and the quick freezing chamber 3b are divided into left and right. An ice storage container 13 is provided in the ice making chamber 3a with the drawer type ice making door 7 and a quick freezing container 14 with the drawer type quick freezing room door 8 is provided in the quick freezing room 3b. ing.

下段冷凍室4及び野菜室5も同様に、引出し式の冷凍室扉9及び野菜室扉10とともに引き出される冷凍室容器15及び野菜室容器16が、それぞれの貯蔵室に設けられている。   Similarly, in the lower freezer compartment 4 and the vegetable compartment 5, a freezer compartment container 15 and a vegetable compartment container 16 that are pulled out together with the drawer-type freezer compartment door 9 and the vegetable compartment door 10 are provided in the respective storage compartments.

冷蔵室2は製氷室3aに給水する水が貯められる貯水タンク11を備えている。また、製氷室3a内には製氷皿23を備えた自動製氷装置12が配設されている。そして、この製氷皿23に対して貯水タンク11内の水が給水管21を介して給水される。本実施例では、冷蔵室2と製氷室3aは断熱仕切壁24を介して隣接して設けられている。したがって、給水管21は断熱仕切壁24を貫通して貯水タンク11と自動製氷装置12との間を繋ぐ構造となっている。さらに述べれば、貯水タンク11は断熱仕切壁24上に載置されており、自動製氷装置12は断熱仕切壁24の下側面(すなわち、製氷室3aの天井面)に取り付けられている。   The refrigerator compartment 2 includes a water storage tank 11 in which water supplied to the ice making room 3a is stored. In the ice making chamber 3a, an automatic ice making device 12 having an ice making tray 23 is disposed. Then, water in the water storage tank 11 is supplied to the ice tray 23 through the water supply pipe 21. In the present embodiment, the refrigerating chamber 2 and the ice making chamber 3 a are provided adjacent to each other through a heat insulating partition wall 24. Therefore, the water supply pipe 21 has a structure that penetrates the heat insulating partition wall 24 and connects the water storage tank 11 and the automatic ice making device 12. More specifically, the water storage tank 11 is placed on the heat insulating partition wall 24, and the automatic ice making device 12 is attached to the lower surface of the heat insulating partition wall 24 (that is, the ceiling surface of the ice making chamber 3a).

さて、給水に際しては給水ポンプ22が駆動し、製氷皿23に所定の水量だけ給水するように駆動時間が制御される。給水される水量は、例えば80〜100ccであり、製氷される氷の大きさによって制御可能としてもよい。このとき、給水ポンプ22の駆動時間は、例えば5〜10秒程度である。また、自動製氷装置12内の製氷皿23の下方には貯氷容器13が位置しており、自動製氷装置12で製氷された氷が貯められる構成となっている。   Now, when water is supplied, the water supply pump 22 is driven, and the drive time is controlled so that the ice tray 23 is supplied with a predetermined amount of water. The amount of water supplied is, for example, 80 to 100 cc, and may be controllable depending on the size of ice to be made. At this time, the driving time of the water supply pump 22 is, for example, about 5 to 10 seconds. In addition, an ice storage container 13 is located below the ice tray 23 in the automatic ice making device 12 so that the ice made by the automatic ice making device 12 can be stored.

上段冷凍室3及び下段冷凍室4からなる冷凍室の冷却器室内には、冷凍サイクルの一部を構成する冷却器18が配設されている。また、冷却器の上方に送風機19を、下方に除霜用ヒータ20をそれぞれ備えている。冷却器18によって生成された冷気は送風機19によって送風され、冷気通路17を通って製氷室3aを含む各室へと送られる。冷凍室内は冷却器18及び送風機19によって冷却され、−18℃以下の冷凍温度帯となっており、製氷室3a内に置かれた製氷皿23内の水はこの低温下で凍結する。なお、冷却器18に霜が付着すると、除霜用ヒータ20が発熱し、除霜が行われる。この除霜モードの間は、冷凍サイクル及び送風機19は停止するように制御される。   A cooler 18 constituting a part of the refrigeration cycle is disposed in the cooler chamber of the freezer room composed of the upper freezer room 3 and the lower freezer room 4. Further, a blower 19 is provided above the cooler, and a defrosting heater 20 is provided below. The cold air generated by the cooler 18 is blown by the blower 19 and is sent through the cold air passage 17 to each chamber including the ice making chamber 3a. The freezer compartment is cooled by the cooler 18 and the blower 19 and is in a freezing temperature zone of −18 ° C. or lower, and the water in the ice tray 23 placed in the ice making chamber 3a is frozen at this low temperature. If frost adheres to the cooler 18, the defrosting heater 20 generates heat and defrosting is performed. During this defrost mode, the refrigeration cycle and the blower 19 are controlled to stop.

自動製氷装置12は、制御装置から「給水→製氷→離氷」という一連の指示を受けて、製氷皿23は正転及び逆転されるように制御される製氷動作を行い、製氷皿23で作られた氷は離氷されて貯氷容器13に貯められる。   The automatic ice making device 12 receives a series of instructions “water supply → ice making → ice removal” from the control device, and performs the ice making operation controlled so that the ice tray 23 is rotated forward and reverse. The ice is removed from the ice and stored in the ice storage container 13.

次に自動製氷装置12の構成について図3を用いて説明する。図3は自動製氷装置の構成を示す断面図である。図3(a)は貯氷容器13との位置関係を併せて示す横断面図であり、図3(b)は図3(a)のC−C断面図である。   Next, the configuration of the automatic ice making device 12 will be described with reference to FIG. FIG. 3 is a cross-sectional view showing the configuration of the automatic ice making device. FIG. 3A is a transverse sectional view showing the positional relationship with the ice storage container 13, and FIG. 3B is a sectional view taken along the line CC in FIG.

自動製氷装置12の外殻を構成するフレーム27内には、製氷皿23が配置されている。また、製氷皿23の下側には貯氷容器13が配設され、離氷されると貯氷容器13に落下する構造となっている。これらはいずれも製氷室3a内に配設されている。   An ice tray 23 is arranged in a frame 27 constituting the outer shell of the automatic ice making device 12. In addition, an ice storage container 13 is disposed below the ice tray 23, and drops into the ice storage container 13 when the ice is removed. These are all disposed in the ice making chamber 3a.

貯氷容器13に貯められた氷の量は、自動製氷装置12に設けられた検氷レバー30によって検出される。検氷レバー30が貯氷容器13内の氷と接触する高さによって氷の量が把握される。氷が十分に貯められている状態で離氷を行うと、貯氷容器13内の氷が多くなりすぎてしまうので、氷の量が多い場合には離氷は行わないように制御されている。   The amount of ice stored in the ice storage container 13 is detected by an ice detecting lever 30 provided in the automatic ice making device 12. The amount of ice is grasped by the height at which the ice detection lever 30 contacts the ice in the ice storage container 13. If the ice is removed in a state where the ice is sufficiently stored, the ice in the ice storage container 13 becomes too much. Therefore, when the amount of ice is large, it is controlled not to perform the ice removal.

製氷皿23の後方側には駆動モータ26を備えており、駆動モータ26は離氷の際に製氷皿23を回動させる役割を担っている。製氷皿23の手前側は一定の回転角度以上は回転しない規制部材を備えているため、駆動モータ26によって製氷皿23の後方側が駆動されると、製氷皿23が捩られて離氷が行われる。   A drive motor 26 is provided on the rear side of the ice tray 23, and the drive motor 26 plays a role of rotating the ice tray 23 during ice removal. Since the front side of the ice tray 23 is provided with a regulating member that does not rotate more than a certain rotation angle, when the rear side of the ice tray 23 is driven by the drive motor 26, the ice tray 23 is twisted and deicing is performed. .

駆動モータ26から製氷皿23側に突出する出力軸26aは、製氷皿23から後方に突出した軸受軸23bと係合する。この係合は、製氷皿23が後方に押し込まれることによってなされる。したがって、製氷皿23の後方側の軸受軸23bが出力軸26aに係合するように、案内することが必要である。   The output shaft 26 a protruding from the drive motor 26 toward the ice tray 23 is engaged with a bearing shaft 23 b protruding rearward from the ice tray 23. This engagement is made when the ice tray 23 is pushed backward. Therefore, it is necessary to guide the bearing shaft 23b on the rear side of the ice tray 23 so as to engage with the output shaft 26a.

そこで、出力軸26aが載置される載置板28が設けられている。載置板28は、フレーム27内を前後に延伸するレール31に懸架される。本実施例では、レール31に懸架できるように、載置板28の両側に引掛け溝28bを設けている。そして、軸受軸23bが載置板28のU字溝28aに載置されると、軸受軸23bと出力軸26aの高さがほぼ一致する。載置板28は前後に移動可能なように、レール31に懸架されているため、軸受軸23bが載置板28に載置された状態で奥側に押し込まれると両者が係合する。したがって、製氷皿23の奥側における取付動作が容易となり、使用者は製氷皿23の着脱を簡単に行うことができる。   Therefore, a mounting plate 28 on which the output shaft 26a is mounted is provided. The mounting plate 28 is suspended from a rail 31 extending in the front-rear direction in the frame 27. In the present embodiment, hooking grooves 28 b are provided on both sides of the mounting plate 28 so as to be suspended from the rail 31. When the bearing shaft 23b is placed in the U-shaped groove 28a of the placement plate 28, the heights of the bearing shaft 23b and the output shaft 26a substantially coincide. Since the mounting plate 28 is suspended on the rail 31 so as to be movable back and forth, when the bearing shaft 23b is pushed into the back side while being mounted on the mounting plate 28, the both engage. Therefore, the mounting operation on the back side of the ice tray 23 becomes easy, and the user can easily attach and detach the ice tray 23.

製氷皿23が駆動モータ26の出力軸26aに係合すると、製氷動作が可能となるが、自動製氷装置12内に製氷皿23が正常に設置されたことを検出しなければならない。本実施例では、製氷皿検出センサー33を備え、製氷皿23が設置されたことを検出する。このように、軸受軸23bと出力軸26aとが係合する位置まで載置板28が押し込まれると、載置板28が製氷検出センサー33に検出されるものとして、製氷皿23の有無を判別している。   When the ice tray 23 is engaged with the output shaft 26a of the drive motor 26, an ice making operation is possible. However, it must be detected that the ice tray 23 has been normally installed in the automatic ice making device 12. In the present embodiment, an ice tray detection sensor 33 is provided to detect that the ice tray 23 is installed. Thus, when the mounting plate 28 is pushed to a position where the bearing shaft 23b and the output shaft 26a are engaged, it is determined that the mounting plate 28 is detected by the ice making detection sensor 33, and the presence or absence of the ice making tray 23 is determined. is doing.

なお、軸受軸23bに設けた係止部23cは、U字溝28aに挿入される凹形状となっている。したがって、製氷皿23が前後に移動してもフレーム27に懸架された載置板28は係止部23c内から外れない構成としている。   In addition, the latching | locking part 23c provided in the bearing shaft 23b becomes a concave shape inserted in the U-shaped groove 28a. Therefore, even if the ice tray 23 moves back and forth, the mounting plate 28 suspended from the frame 27 is configured not to be detached from the locking portion 23c.

製氷皿23の手前側の軸23aは、軸受25によって回転可能に軸支されている。軸23aは鍔形状部を有する構造としており、この鍔形状部は軸受25に設けた溝25dに挿入される。したがって、軸受25を矢印Qに引き出すと、製氷皿23がともに引き出されるようになっている。   A shaft 23 a on the near side of the ice tray 23 is rotatably supported by a bearing 25. The shaft 23 a has a structure having a flange shape portion, and this flange shape portion is inserted into a groove 25 d provided in the bearing 25. Therefore, when the bearing 25 is pulled out in the arrow Q, the ice tray 23 is pulled out together.

軸受25は、基部25aと蓋部25bとからなっており、蓋部25bを支点25cを中心として矢印Pの方向に開くと、軸23aの上方が開放される。軸受25を矢印Q方向に引き出すと、製氷皿23後方の軸受軸23bと出力軸26aとの係合が外れ、製氷皿23は手前に引き出され、ここで蓋部25bを開くことによって製氷皿23の取外しを行うことができる。   The bearing 25 includes a base portion 25a and a lid portion 25b. When the lid portion 25b is opened in the direction of arrow P around the fulcrum 25c, the upper portion of the shaft 23a is opened. When the bearing 25 is pulled out in the direction of the arrow Q, the engagement between the bearing shaft 23b behind the ice tray 23 and the output shaft 26a is disengaged, and the ice tray 23 is pulled forward, and the ice tray 23 is opened by opening the lid portion 25b. Can be removed.

このように、製氷皿23を着脱可能とすると、製氷皿23に温度センサーを取り付けることができないので、本実施例では、フレーム27の側方に温度センサー40を備えている。この温度センサー40は、少なくとも製氷室3a内に設置されることを要し、製氷室3a内の温度を検出する必要がある。   As described above, if the ice tray 23 is detachable, the temperature sensor cannot be attached to the ice tray 23. Therefore, in this embodiment, the temperature sensor 40 is provided on the side of the frame 27. The temperature sensor 40 needs to be installed at least in the ice making chamber 3a, and needs to detect the temperature in the ice making chamber 3a.

図2に示すように、冷却器18から送風機19によって送られる冷気は、製氷皿23に対して後方から前方に向かって流れる構造となっている。したがって、製氷皿23の後方側には、図示しない冷気吐出口が設けられている。冷気吐出口から吐出された冷気は、製氷皿23の上面をいわば舐めるように流れて製氷を行う。   As shown in FIG. 2, the cool air sent from the cooler 18 by the blower 19 flows from the rear to the front with respect to the ice tray 23. Therefore, a cold air outlet (not shown) is provided on the rear side of the ice tray 23. The cold air discharged from the cold air discharge port flows to lick the upper surface of the ice tray 23 to make ice.

このような構成において、温度センサー40に冷気が直接吹き付けられると、製氷室3a内の温度とともに、吐出冷気の温度を測定してしまうことになる。このとき、温度による製氷完了時間の管理が極めて困難となるため、本実施例では、冷気が直接当たらない位置に温度センサー40を取り付けている。   In such a configuration, when cold air is directly blown onto the temperature sensor 40, the temperature of the discharged cold air is measured together with the temperature in the ice making chamber 3a. At this time, since the management of the ice making completion time by temperature becomes extremely difficult, in this embodiment, the temperature sensor 40 is attached at a position where the cold air does not directly hit.

具体的には、図3に示すように、左右の幅方向の位置は、前記冷気吐出口の開口及び製氷皿23の幅部分から外れた位置であり、前後の奥行方向の位置は製氷皿23の奥行方向中央よりも奥側であり、かつ、高さ方向の位置は、自動製氷装置12の側方投影面内に収まる位置である。この位置に温度センサー40を設置することによって、吐出冷気による温度変化の影響を抑えて製氷時間の管理を行うことができる。   Specifically, as shown in FIG. 3, the positions in the left and right width directions are positions away from the opening of the cold air outlet and the width portion of the ice tray 23, and the positions in the depth direction before and after are ice trays 23. The position in the depth direction from the center in the depth direction and the position in the height direction is a position that falls within the side projection plane of the automatic ice making device 12. By installing the temperature sensor 40 at this position, it is possible to manage the ice making time while suppressing the influence of the temperature change caused by the discharged cold air.

本実施例の温度センサー40は、上記の左右の幅方向位置、前後の奥行方向位置、及び高さ方向位置を満たす位置としてフレーム27の側壁に取り付けている。   The temperature sensor 40 of the present embodiment is attached to the side wall of the frame 27 as a position that satisfies the left and right width direction positions, the front and rear depth direction positions, and the height direction position.

次に、図4を用いて製氷皿23の自動製氷装置12からの着脱について説明する。図4は着脱時の自動製氷装置の構成を示す図であり、図4(a)は製氷皿23を引き出した状態を示し、図4(b)は製氷皿を取り外す状態を示す図である。   Next, attachment / detachment of the ice tray 23 from the automatic ice making device 12 will be described with reference to FIG. FIG. 4 is a diagram showing the configuration of the automatic ice making device at the time of attachment / detachment. FIG. 4 (a) shows a state in which the ice tray 23 is pulled out, and FIG. 4 (b) shows a state in which the ice tray is removed.

軸受25に設けた手掛け部によって製氷皿23が矢印Q方向に引き出されると、係止部23c内に収められた載置板28も引き出され、製氷皿検出センサー33は製氷皿が取り外されたことを検出する。そして、図4(a)に示すように、フレーム27から製氷皿23がほぼ引き出されると、上述したように軸受25の蓋部25bを開いて、軸23aの上方を開放する。このとき、製氷皿23の後方側の軸部は、載置板28のU字溝28b内に載置されている状態である。U字溝28bも上方は開放されているため、軸23aを持ち上げると簡単に製氷皿23を取出すことができる(図4(b))。   When the ice tray 23 is pulled out in the direction of arrow Q by the handle provided on the bearing 25, the mounting plate 28 stored in the locking portion 23c is also pulled out, and the ice tray detection sensor 33 has removed the ice tray. Is detected. Then, as shown in FIG. 4A, when the ice tray 23 is almost pulled out from the frame 27, the cover 25b of the bearing 25 is opened as described above, and the upper portion of the shaft 23a is opened. At this time, the shaft portion on the rear side of the ice tray 23 is placed in the U-shaped groove 28 b of the placement plate 28. Since the U-shaped groove 28b is also opened upward, the ice tray 23 can be easily taken out by lifting the shaft 23a (FIG. 4B).

一方、製氷皿23を取り付けるときは、上記と逆の動作を行えばよく、U字溝28b内に係止部23cを挿入し、図4(b)の矢印Rのように手前側の軸23aを軸受25内に設置すればよい。その後、図4(a)の反矢印Q方向に製氷皿23を押し込めば、軸受軸23bと出力軸26aとが係合し、また、製氷皿検出センサー33が製氷皿23の取付けを認識し、通常の製氷が可能になる。   On the other hand, when attaching the ice tray 23, it is only necessary to perform the reverse operation, and the locking portion 23c is inserted into the U-shaped groove 28b, and the shaft 23a on the near side as shown by the arrow R in FIG. May be installed in the bearing 25. Thereafter, if the ice tray 23 is pushed in the direction of the opposite arrow Q in FIG. 4A, the bearing shaft 23b and the output shaft 26a are engaged, and the ice tray detection sensor 33 recognizes the attachment of the ice tray 23, Normal ice making becomes possible.

以上のような、製氷皿23の着脱が可能な自動製氷装置12を備えた冷蔵庫の制御について、図5乃至図8を用いて説明する。   Control of the refrigerator provided with the automatic ice making device 12 in which the ice tray 23 can be attached and detached as described above will be described with reference to FIGS.

図5は本実施例の制御構成の一部を示すブロック図である。先に説明したように、製氷室3a内には製氷皿検出センサー33及び製氷室3aの温度センサー40(以下、IM室温度センサー40と表記する。)が取り付けられている。これらのセンサーは制御装置37につながれており、制御装置37は製氷皿の有無あるいは製氷室の温度の情報に基づいて各部を制御している。   FIG. 5 is a block diagram showing a part of the control configuration of this embodiment. As described above, the ice making tray detection sensor 33 and the temperature sensor 40 of the ice making chamber 3a (hereinafter referred to as the IM chamber temperature sensor 40) are attached in the ice making chamber 3a. These sensors are connected to a control device 37, and the control device 37 controls each part based on the presence / absence of an ice tray or the temperature information of the ice making chamber.

さらに、制御装置37には、IMモード切替SW38、IMドアセンサー39、冷凍庫ドアセンサー41、ブザー42、IMモード表示LED43、給水ポンプ22、自動製氷装置12、及び製氷皿引出し監視タイマー44が接続されている。   Further, an IM mode switching SW 38, an IM door sensor 39, a freezer door sensor 41, a buzzer 42, an IM mode display LED 43, a water supply pump 22, an automatic ice making device 12, and an ice tray drawer monitoring timer 44 are connected to the control device 37. ing.

これらの各部の作用について説明する。製氷皿検出センサー33は、既述のとおり、製氷皿23が駆動モータ26に正常に繋がっているか否かを検出するセンサーであり、本実施例では載置板28でスイッチがオン/オフされることによって製氷皿の有無を検出する。   The operation of each part will be described. As described above, the ice tray detection sensor 33 is a sensor that detects whether or not the ice tray 23 is normally connected to the drive motor 26. In the present embodiment, the switch is turned on / off by the mounting plate 28. The presence or absence of an ice tray is detected.

IM室温度センサー40は、吐出冷気が直接当たらない位置として、フレーム27の外側壁に取り付けられたセンサーであり、製氷室3a内の温度を検出する。詳細は後述するが、IM室温度センサー40は、製氷皿23の氷を離氷させようとする際に、離氷の条件を満たしているか否かを判別するときに用いられる。   The IM chamber temperature sensor 40 is a sensor attached to the outer wall of the frame 27 as a position where the discharged cold air does not directly hit, and detects the temperature in the ice making chamber 3a. As will be described in detail later, the IM chamber temperature sensor 40 is used to determine whether or not the condition of deicing is satisfied when attempting to deicer the ice in the ice tray 23.

IMモード切替SW38は、自動製氷装置12の運転を中止させることができるスイッチである。IMモード切替SW38がオフとなっているときは、一連の製氷動作の一切を行わない。例えば、冬場のように、冷蔵庫の使用者が氷を使わない時期はこのスイッチをオフとすることで自動製氷が中止される。換言すれば、以後の説明は、全てIMモード切替SW38がオンになっているときの制御を示している。   The IM mode switching SW 38 is a switch that can stop the operation of the automatic ice making device 12. When the IM mode switching SW 38 is off, a series of ice making operations are not performed at all. For example, when the refrigerator user does not use ice, such as in winter, automatic ice making is stopped by turning this switch off. In other words, all of the following description shows control when the IM mode switching SW 38 is on.

IMドアセンサー39は、製氷室扉7の開閉を検出するスイッチであり、製氷室扉7が開かれている場合には、自動製氷装置12への給水動作及び離氷動作が一時的に停止される。製氷室扉7が開かれていると、貯氷容器13は引き出された状態であるため、離氷が行うことができないからである。   The IM door sensor 39 is a switch that detects opening and closing of the ice making room door 7. When the ice making room door 7 is opened, the water supply operation and the ice removing operation to the automatic ice making device 12 are temporarily stopped. The This is because if the ice making chamber door 7 is opened, the ice storage container 13 is pulled out, so that it cannot be deiced.

冷凍室ドアセンサー41は、下段冷凍室4を閉塞する冷凍室扉9の開閉を検出するスイッチである。冷凍室扉9が開かれているときには、冷凍室3、4等に冷気を送る送風機19の運転が停止される。冷凍室扉9が開かれているときに送風機19が運転していると、冷気の逃げが大きくなるため、これを回避するためである。   The freezer compartment door sensor 41 is a switch that detects opening and closing of the freezer compartment door 9 that closes the lower freezer compartment 4. When the freezer compartment door 9 is open, the operation of the blower 19 that sends cold air to the freezer compartments 3, 4, etc. is stopped. If the blower 19 is operating when the freezer compartment door 9 is open, the escape of cold air is increased, and this is avoided.

ブザー42は、製氷皿23が自動製氷装置12内に取り付けられたときに、正常運転に戻るまでの間に音声を報知するものであり、IMモード表示LED43はブザー42が鳴っている間に点灯し、使用者に対して視覚を通して知らせるための表示装置である。これらのブザー42及びIMモードLED43は、どちらか一方でも問題はなく、いずれにしても、製氷皿23が正常運転に戻るまでの時間、その旨を知らせる報知手段であればよい。   The buzzer 42 notifies the sound until the normal operation is resumed when the ice tray 23 is installed in the automatic ice making device 12, and the IM mode display LED 43 is lit while the buzzer 42 is sounding. And a display device for visually informing the user. Either the buzzer 42 or the IM mode LED 43 has no problem. In any case, the buzzer 42 and the IM mode LED 43 may be informing means for notifying the time until the ice tray 23 returns to normal operation.

給水ポンプ12は、上述のように、製氷皿23に対して貯水タンク11内の水を供給する。給水のタイミングや給水時間は制御装置37によって制御される。給水量は可変としても、一定としてもいずれでも構わない。   The water supply pump 12 supplies the water in the water storage tank 11 to the ice tray 23 as described above. Water supply timing and water supply time are controlled by the control device 37. The water supply amount may be variable or constant.

自動製氷装置12内で制御装置37と接続されるものに駆動モータ26が挙げられる。駆動モータ26は一連の製氷の流れにおいては離氷を担当している。制御装置37は駆動モータ26を制御し、製氷皿23内の氷を貯氷容器13内に落下させると、駆動モータ26を逆転させて、製氷皿23を元の位置に戻す。製氷皿23が元の位置に戻ると給水ポンプ12を制御して給水し、再び製氷がなされる。   The drive motor 26 is mentioned as what is connected with the control apparatus 37 in the automatic ice making apparatus 12. The drive motor 26 is in charge of deicing in a series of ice making flows. When the controller 37 controls the drive motor 26 to drop the ice in the ice tray 23 into the ice storage container 13, the controller 37 reverses the drive motor 26 to return the ice tray 23 to its original position. When the ice tray 23 returns to the original position, the water supply pump 12 is controlled to supply water and ice is made again.

通常、駆動モータ26が駆動される条件とは、すなわち、離氷の条件を満たした場合であり、この条件はIM室温度センサ40からの情報に基づいて制御装置37によって判断される。その際は、製氷皿23が自動製氷装置12に取り付けられていること、及び、IMモード切替SW38がオンになっていることを前提としていることはいうまでもない。   Normally, the condition for driving the drive motor 26 is a case where the condition of deicing is satisfied, and this condition is determined by the control device 37 based on information from the IM room temperature sensor 40. In this case, it goes without saying that the ice tray 23 is attached to the automatic ice making device 12 and that the IM mode switching SW 38 is turned on.

製氷皿引出し監視タイマー44は、製氷皿23が取り外されている時間を計るものである。この製氷皿引出し監視タイマー44によって、製氷皿23が駆動モータ26から外されてから、次に再び取り付けられるまでの時間を管理している。   The ice tray drawer monitoring timer 44 measures the time during which the ice tray 23 is removed. The ice tray drawer monitoring timer 44 manages the time from when the ice tray 23 is removed from the drive motor 26 to when it is mounted again.

この製氷皿引出し監視タイマー44を設ける目的は次の通りである。すなわち、第一には、製氷皿23への二重給水を防止する目的があり、第二には、製氷時間が遅延するのを防止する目的である。   The purpose of providing the ice tray drawer monitoring timer 44 is as follows. That is, the first is to prevent double water supply to the ice tray 23, and the second is to prevent the ice making time from being delayed.

図4に示したように、使用者が製氷皿23を着脱可能となったが、製氷皿を取り外す理由は多種多様である。例えば、製氷皿を洗浄するためであったり、製氷完了までの時間を推測すべく、製氷途中の状態を目視及び確認するためや、又は、取付け時に装着不良と考え、その確認のために再度引き出す場合であったり、その他様々な理由が考えられる。また、製氷皿23を洗うために取り出した場合であっても、洗浄後に製氷皿23に水を入れた状態で取り付けてしまうこともあり得る。   As shown in FIG. 4, the user can attach and detach the ice tray 23, but there are various reasons for removing the ice tray. For example, to clean the ice tray, to estimate the time to complete ice making, to visually check the status of the ice making process, or to check the condition of the ice making process, or to consider it as a mounting failure at the time of installation and pull it out again for confirmation. It can be the case or various other reasons. Moreover, even if it is a case where it takes out in order to wash the ice tray 23, it may attach in the state which put water into the ice tray 23 after washing | cleaning.

本実施例では、上記の事情を考慮し、製氷皿23の着脱に際して以下のような制御を行うこととした。まず、製氷皿23を取り付けてから、正常運転に戻るまでの間は、製氷準備動作時間とし、ブザー42、IMモード表示LED43を制御して、使用者に製氷準備動作中であることを知らしめることとした。したがって、製氷皿23を正常に取り付けられるとブザー42やIMモード表示LED43によってそれを知ることができる。このとき、使用者が装着不良と考えることはなく、その確認のために再度引き出すことはない。   In the present embodiment, in consideration of the above circumstances, the following control is performed when the ice tray 23 is attached and detached. First, from the time when the ice tray 23 is attached to the time of returning to normal operation, the ice making preparation operation time is set, and the buzzer 42 and the IM mode display LED 43 are controlled to inform the user that the ice making preparation operation is in progress. It was decided. Therefore, when the ice tray 23 is normally attached, it can be known by the buzzer 42 and the IM mode display LED 43. At this time, the user does not consider the mounting failure and does not pull out again for confirmation.

また、製氷皿23に水を入れたまま取り付けられると、いわゆる二重給水がされる場合がある。すなわち、制御装置37は給水ポンプ12を駆動させ、製氷皿23にさらに給水する場合である。給水量が多いと、製氷皿23の各製氷ブロック間の仕切を超えてしまうため、板状氷となってしまう。板状氷は製氷皿23を駆動モータ26で回転させても離氷が困難である。したがって、離氷動作の途中でモータロックが発生する場合があり、故障の原因となってしまう。そこで、本実施例では、製氷準備動作中に、ブザー42、IMモード表示LED43により表示しながら、製氷皿23を必ず反転させ、製氷皿23を空にする動作を行うこととした。これによって、モータロックによる故障を回避することができる。   In addition, when the ice tray 23 is mounted with water, so-called double water supply may be performed. That is, the control device 37 is a case where the water supply pump 12 is driven to supply water further to the ice tray 23. If the amount of water supply is large, the partition between the ice making blocks of the ice tray 23 is exceeded, so that it becomes plate ice. It is difficult to remove ice from plate ice even if the ice tray 23 is rotated by the drive motor 26. Therefore, a motor lock may occur during the deicing operation, resulting in a failure. Therefore, in the present embodiment, during the ice making preparation operation, while the buzzer 42 and the IM mode display LED 43 are displaying, the ice tray 23 is always reversed and the ice tray 23 is emptied. As a result, failure due to motor lock can be avoided.

しかし、製氷途中の状態を目視するために製氷皿23を引き出し、確認後にすぐに戻した場合にまで製氷準備動作を実施すると、製氷途中の水あるいは氷が落下してしまう。そこで、製氷皿引出し監視タイマー44を設け、これを回避している。具体的には、製氷皿引出し監視タイマー44からの時間情報によって、制御装置37は製氷準備動作を行うか否かを判定する。すなわち、製氷皿23を、例えば5秒以内に戻した場合には、製氷皿23を目視しただけと考えられるので、製氷皿23を外していないのと同義と判定する。一方、5秒以上の場合には、製氷皿23が他の理由(洗浄等)で外されたものとして、製氷皿23が取り付けられると製氷準備動作を行う。   However, if the ice making tray 23 is pulled out in order to visually check the state of ice making, and the ice making preparation operation is performed until it is returned immediately after the confirmation, water or ice in the middle of ice making falls. Therefore, an ice tray drawer monitoring timer 44 is provided to avoid this. Specifically, based on the time information from the ice tray drawer monitoring timer 44, the control device 37 determines whether or not to perform an ice making preparation operation. That is, when the ice tray 23 is returned within, for example, 5 seconds, it is considered that the ice tray 23 has only been visually observed. Therefore, it is determined that the ice tray 23 is not removed. On the other hand, in the case of 5 seconds or more, an ice making preparation operation is performed when the ice making plate 23 is attached on the assumption that the ice making plate 23 has been removed for other reasons (cleaning or the like).

このことにより、使用者が製氷皿23内の氷の確認のために製氷皿23を引き出し、その後すぐに戻したときには、製氷皿23を反転させないこととしたので、上記の不都合を回避できるとともに、後述する製氷時間がリセットされることもなく、製氷時間が遅延するのを防止することができる。   As a result, when the user pulls out the ice tray 23 for checking the ice in the ice tray 23 and returns it immediately thereafter, the ice tray 23 is not inverted, so the above inconvenience can be avoided, It is possible to prevent the ice making time from being delayed without resetting the ice making time described later.

つまり、使用者が製氷皿23を自動製氷装置12から取出しとき、あるいはフレーム27から引き出したときには、製氷皿検出センサー33が製氷皿が無いことを検出する。この状態が一定時間(例えば5秒間)継続したら製氷皿23を取り出したと認識し、短時間で戻された場合(製氷状態の確認程度)は取出しとして認識しないように処理することで、製氷皿の引出し操作の取扱い性が緩和されるとともに、製氷時間を不必要に遅延することがない。   That is, when the user takes out the ice tray 23 from the automatic ice making device 12 or pulls it out from the frame 27, the ice tray detection sensor 33 detects that there is no ice tray. If this state continues for a certain time (for example, 5 seconds), it is recognized that the ice tray 23 has been taken out, and when it is returned in a short time (the degree of confirmation of the ice making state), processing is performed so that it is not recognized as being taken out. The handleability of the drawer operation is eased and the ice making time is not unnecessarily delayed.

また、製氷皿23の洗浄後の取付けにおいては、製氷皿23に水を入れたままもとに戻すことが想定される。これは、駆動モータ26のトルク不足となり駆動モータ26は離氷動作の過程でモータロックの原因となる。従来は、この時点でサービスマンを呼んで修理してもらわざるを得ないものであったが、本実施例の場合には、使用者が製氷皿23を簡単に引き出すことができる。   In addition, when the ice tray 23 is mounted after washing, it is assumed that the ice tray 23 is returned to its original state with water remaining. This causes a torque shortage of the drive motor 26, and the drive motor 26 causes a motor lock in the process of the ice removal operation. Conventionally, a service person has to be repaired at this time, but in the case of the present embodiment, the user can easily pull out the ice tray 23.

以下、モータロックがあった場合に製氷皿23を引き出すための制御について説明する。図5において符号45は、位置確保信号であり、駆動モータ26に異常が発生したときに、制御装置37から発せられる信号を示している。モータロック時に制御装置37から位置確保信号45が発せられると、駆動モータ26は製氷皿23を逆方向(元の位置側)に回転させ、製氷皿23を水平位置へ復帰させ、しかる後に製氷皿23を停止させる。すなわち、位置確保信号45は、製氷皿23を「異常停止」させる働きを有している。   Hereinafter, control for pulling out the ice tray 23 when the motor is locked will be described. In FIG. 5, reference numeral 45 denotes a position securing signal, which indicates a signal that is issued from the control device 37 when an abnormality occurs in the drive motor 26. When the position securing signal 45 is issued from the control device 37 when the motor is locked, the drive motor 26 rotates the ice tray 23 in the reverse direction (original position side) to return the ice tray 23 to the horizontal position, and then the ice tray. 23 is stopped. That is, the position securing signal 45 has a function of “abnormally stopping” the ice tray 23.

異常停止として、敢えて製氷皿23を水平位置に戻すように制御する理由は、使用者が製氷皿23の取外しを可能にするためである。もし製氷皿23をモータロックの位置で放置しておくと、製氷皿23が傾斜した状態となり、引き出すことができない。また、たとえ傾斜角度が小さく、引き出すことができたとしても、製氷皿23を再度取り付けるときには、取り出したときの角度だけ傾けて取り付けなければならない。出力軸26aは製氷室3aの奥側から移動しないので、製氷皿23を戻すことができない。   The reason why the ice tray 23 is controlled to return to the horizontal position as an abnormal stop is to allow the user to remove the ice tray 23. If the ice tray 23 is left at the motor lock position, the ice tray 23 is inclined and cannot be pulled out. Even if the inclination angle is small and can be pulled out, when the ice tray 23 is attached again, it must be attached by being inclined by the angle when it is taken out. Since the output shaft 26a does not move from the back side of the ice making chamber 3a, the ice tray 23 cannot be returned.

本実施例によれば、連結氷によりモータロックがあった場合であっても、製氷皿の取外し及び再度の取付けが可能であるので、サービスマンの力を借りることなく、使用者自身でトラブルの原因を排除することができる。   According to the present embodiment, even when the motor is locked by the connected ice, the ice tray can be removed and reattached. The cause can be eliminated.

また、位置確保信号45が発せられると、ブザー42あるいはIMモード表示LED43に、製氷準備動作のときと異なる音声あるいは表示を行う。このように通常と異なる内容の報知を行うことで、使用者は、異常があったことを知ることができる。   When the position securing signal 45 is issued, a sound or display different from that during the ice making preparation operation is performed on the buzzer 42 or the IM mode display LED 43. Thus, the user can know that there was an abnormality by notifying the contents different from usual.

次に、図6乃至図8を用いて、本実施例の製氷の制御について説明する。図6は本実施例の製氷制御に係る制御構成を示すブロック図である。   Next, the control of ice making in this embodiment will be described with reference to FIGS. FIG. 6 is a block diagram showing a control configuration relating to ice making control of the present embodiment.

本実施例では、IM室温度センサー40、製氷監視カウンタ46、IMドアセンサー39、冷凍室ドアセンサー41、及び送風機ON積算時間カウンタ47からの入力を受けて制御装置37が自動製氷装置12の制御を行う。ただし、これらは必ずしも明確に区別される必要はなく、例えば、製氷装置カウンター46及び送風機ON積算時間カウンタ47を制御装置の機能に含めた制御装置37’としてもよい(破線で図示)。以下では、制御装置37’によってカウントがなされるものとして説明する。   In the present embodiment, the control device 37 controls the automatic ice making device 12 in response to inputs from the IM room temperature sensor 40, the ice making monitoring counter 46, the IM door sensor 39, the freezer compartment door sensor 41, and the blower ON integrated time counter 47. I do. However, these do not necessarily need to be clearly distinguished, and for example, a control device 37 ′ including the ice making device counter 46 and the blower ON integrated time counter 47 in the function of the control device may be used (illustrated by a broken line). In the following description, it is assumed that the control device 37 'performs counting.

これらの構成を備えて制御を行うにあたって、まず各部の作用について説明する。製氷監視カウンタ46がカウントアップされ、所定のカウント数に達すると、制御装置37は製氷が完了したものとみなし、自動製氷装置12が離氷動作を行う。すなわち、製氷監視カウンタ46のカウントが製氷時間に相当している。   In performing control with these configurations, first, the operation of each unit will be described. When the ice making monitoring counter 46 is counted up and reaches a predetermined count, the control device 37 assumes that ice making has been completed, and the automatic ice making device 12 performs the ice removing operation. That is, the count of the ice making monitoring counter 46 corresponds to the ice making time.

製氷監視カウンタ46は、後述するそれぞれの条件を満たしたときに、製氷カウンタ開始46a、製氷カウンタ一時停止46b、製氷カウンタリセット46c、及び製氷カウンタN倍加速46dを実施する。   The ice making monitoring counter 46 performs an ice making counter start 46a, an ice making counter temporary stop 46b, an ice making counter reset 46c, and an ice making counter N-times acceleration 46d when conditions described later are satisfied.

IMドアセンサー39及び冷凍室ドアセンサー41は、既述のように、それぞれの貯蔵室の扉の開閉を検出する。製氷の制御においても、これらのセンサーからの検出情報が用いられる。製氷室扉7又は冷凍室扉9が開かれていた場合には、IMドアセンサー39又は冷凍室ドアセンサー41から制御装置37に扉が開かれているという情報が伝達される。扉の開いた状態が長時間(例えば10分間)継続した場合には、制御装置37は製氷監視カウンタ46がリセットされる。   As described above, the IM door sensor 39 and the freezer compartment door sensor 41 detect opening and closing of the doors of the respective storage compartments. Detection information from these sensors is also used in ice making control. When the ice making room door 7 or the freezing room door 9 is opened, information that the door is opened is transmitted from the IM door sensor 39 or the freezing room door sensor 41 to the control device 37. When the door is open for a long time (for example, 10 minutes), the control device 37 resets the ice making monitoring counter 46.

IM室温度センサー40は、製氷室3a内の温度を検出する。このIM室温度センサー40が検出する温度によって製氷監視カウンタ46がカウントアップされ、又は停止あるいはリセットがされる。   The IM chamber temperature sensor 40 detects the temperature in the ice making chamber 3a. The ice making monitoring counter 46 is incremented by the temperature detected by the IM room temperature sensor 40, or is stopped or reset.

送風機ON積算時間カウンタ47は、送風機19が運転している間、カウントアップされる。送風機19が運転している間は、通常は、冷凍サイクルが運転し、冷気が循環している状態である。したがって、送風機19が運転している間は製氷が進行していると考えられ、本実施例では制御装置37は送風機19の運転状況を監視しながら製氷の制御を行うこととしている。   The blower ON integrated time counter 47 is counted up while the blower 19 is operating. While the blower 19 is in operation, the refrigeration cycle is usually in operation and cold air is circulated. Therefore, it is considered that ice making is in progress while the blower 19 is operating, and in this embodiment, the control device 37 controls ice making while monitoring the operating state of the blower 19.

特に、製氷時間の短縮に最も効果的なのは、製氷皿表面に冷気を流すことである。冷気を流さずに単に低温環境下に置いた場合と比較して、1.5倍あるいはそれ以上の時間の短縮が可能である。本方式では、この事情を考慮して、送風機ON積算時間カウンタ47によって、送風機19の運転時間をカウントすることにした。   In particular, the most effective way to shorten the ice making time is to flow cold air on the surface of the ice tray. The time can be shortened by 1.5 times or more compared with the case where the device is simply placed in a low temperature environment without flowing cold air. In this system, in consideration of this situation, the operation time of the blower 19 is counted by the blower ON integrated time counter 47.

以上のように、IM室温度センサー40が所定温度(例えば−15℃以下)という条件を満たすと、製氷監視カウンタ46が製氷カウントを開始する(46a)。カウントアップが完了すると(例えば、60〜90分)、製氷が完了したと判断して、制御装置37は自動製氷装置12を制御して離氷動作を行う。なお、送風機ON積算時間カウンタ47の積算時間が製氷完了の条件を満たしていることも必要であり、例えば50〜70分間、送風機19が運転していれば、離氷動作を行うが、条件を満たしていない場合には製氷監視カウンタ46のカウントアップが完了していたとしても離氷は行わない。   As described above, when the IM chamber temperature sensor 40 satisfies the condition of a predetermined temperature (for example, −15 ° C. or lower), the ice making monitoring counter 46 starts the ice making count (46a). When the count-up is completed (for example, 60 to 90 minutes), it is determined that the ice making is completed, and the control device 37 controls the automatic ice making device 12 to perform the ice removing operation. It should be noted that the accumulated time of the blower ON accumulated time counter 47 also needs to satisfy the conditions for completion of ice making. For example, if the blower 19 is operating for 50 to 70 minutes, the deicing operation is performed. If not, even if the ice-making monitoring counter 46 has completed counting up, the ice is not removed.

離氷が完了すると、制御装置37は再び給水ポンプ22を駆動し、再度の製氷に備える。   When the ice removal is completed, the control device 37 drives the water supply pump 22 again to prepare for ice making again.

なお、製氷監視カウンタ46は、除霜ヒータ20が通電して除霜モードとなった場合や冷却負荷が大量に庫内に投入された場合、あるいは扉が長時間の開いた状態が続いた場合等のように、製氷室3aの温度が上昇し、製氷カウンタ一時停止46bの条件が満たされた場合にカウントを一時停止する。   Note that the ice making monitoring counter 46 is in a case where the defrost heater 20 is energized to enter the defrost mode, a large amount of cooling load is put into the cabinet, or a case where the door is opened for a long time. As described above, when the temperature of the ice making chamber 3a rises and the condition of the ice making counter temporary stop 46b is satisfied, the count is temporarily stopped.

さらに温度が上昇して、製氷カウンタリセット46cの条件を満たす程度に製氷室3a内の温度が高くなった場合には製氷監視カウンタのリセットが行われる。   When the temperature further rises and the temperature in the ice making chamber 3a becomes high enough to satisfy the condition of the ice making counter reset 46c, the ice making monitoring counter is reset.

また、製氷監視カウンタ46は製氷カウントを加速する機能も有している。カウントアップを加速させても問題ないくらいに製氷室3a内の温度が低下すると製氷カウンタN倍加速46dの条件を満たし、製氷時間が短縮される。   The ice making monitoring counter 46 also has a function of accelerating the ice making count. When the temperature in the ice making chamber 3a is lowered to such an extent that there is no problem even if the count-up is accelerated, the condition of the ice making counter N-fold acceleration 46d is satisfied and the ice making time is shortened.

近年の冷蔵庫は冷凍能力の向上が図られ、急冷凍機能あるいは急製氷機能を備えたものがある。圧縮機及び送風機をフル運転し、設定された時間(例えば1〜2時間)、冷凍室や製氷室の温度を−18℃よりさらに低温の−20℃以下にすることができる。この低温運転時には、製氷に要する時間も短縮される。   Refrigerators in recent years have improved refrigeration capacity, and some have a quick freezing function or a quick ice making function. The compressor and the blower are fully operated, and the set time (for example, 1 to 2 hours) and the temperature of the freezing room or ice making room can be set to -20 ° C or lower, which is lower than -18 ° C. During this low temperature operation, the time required for ice making is also shortened.

特に、本例は、製氷皿に温度センサーを取り付けることができないため、製氷室3aの温度から製氷時間を管理する間接検知を行っている。したがって、急冷凍時であっても凍結状態を直接的に把握することができず、実際の製氷時間が短縮されても、製氷の進行状態に関係なく変化する製氷室3a内の温度を検出しているので、製氷完了の判断を早めることはできなかった。そこで、製氷カウンタN倍加速46dの条件を加え、製氷時間の効率化を図っている。   In particular, in this example, since a temperature sensor cannot be attached to the ice tray, indirect detection for managing the ice making time from the temperature of the ice making chamber 3a is performed. Therefore, even during quick freezing, the frozen state cannot be grasped directly, and even if the actual ice making time is shortened, the temperature in the ice making chamber 3a that changes regardless of the ice making progress is detected. As a result, the decision to complete ice making could not be accelerated. Therefore, the ice making counter N-times acceleration 46d is added to improve the efficiency of ice making time.

これらの制御構成を備えた冷蔵庫において、製氷開始から製氷完了までの流れを図7を用いて説明する。図7(a)は製氷制御フローを示し、図7(b)は製氷開始後の製氷室の温度変化とその制御を示す図である。まず図7(a)を用いて製氷監視について説明する。   The flow from the start of ice making to the completion of ice making in the refrigerator having these control configurations will be described with reference to FIG. FIG. 7 (a) shows an ice making control flow, and FIG. 7 (b) is a view showing the temperature change in the ice making chamber after the start of ice making and its control. First, ice making monitoring will be described with reference to FIG.

製氷皿23に給水されると製氷の準備が完了し、製氷が行われる(A)。製氷監視に際しては、IMドアセンサー39及び冷凍室ドアセンサー41によって冷凍室扉7〜9が閉じられているかを確認する(ステップ48)。扉が開いてる場合は閉じられるまで製氷監視カウンタ46はカウントアップされない。   When water is supplied to the ice tray 23, preparation for ice making is completed and ice making is performed (A). When monitoring ice making, it is confirmed whether the freezer compartment doors 7 to 9 are closed by the IM door sensor 39 and the freezer compartment door sensor 41 (step 48). If the door is open, the ice making monitoring counter 46 is not counted up until it is closed.

冷凍室扉7〜9が閉じているときは、IM室温度センサー40によって検出される製氷室3a内の温度が、予め設定されている製氷開始温度EEPAと比較される。検出温度がEEPAよりも高い場合にはステップ48に戻され、低い場合にはステップ50へと進む(ステップ49)。   When the freezer compartment doors 7 to 9 are closed, the temperature in the ice making chamber 3a detected by the IM chamber temperature sensor 40 is compared with a preset ice making temperature EEPA. If the detected temperature is higher than the EEPROM, the process returns to step 48, and if it is lower, the process proceeds to step 50 (step 49).

冷凍室扉7〜9の状態及び製氷室3a内の温度がステップ48〜49の条件を満たす場合に、製氷監視時間がセットされ、タイマーカウントを開始する(ステップ50及び図6の符号46a)。   When the state of the freezer compartment doors 7 to 9 and the temperature in the ice making chamber 3a satisfy the conditions of steps 48 to 49, the ice making monitoring time is set and the timer count is started (step 50 and reference numeral 46a in FIG. 6).

製氷監視カウンタ46がカウントアップされている最中も、常時IM室温度センサー40によって製氷室3a内の温度が監視される(ステップ51)。ステップ51では、IM室温度センサー40の検出温度が製氷一時停止温度EEPB2と比較される。この製氷一時停止温度EEPB2は、製氷監視温度EEPAよりも高い温度に設定されるが、各設定温度の関係については図7(b)を用いて後述する。   While the ice making monitoring counter 46 is counting up, the temperature in the ice making chamber 3a is constantly monitored by the IM chamber temperature sensor 40 (step 51). In step 51, the detected temperature of the IM chamber temperature sensor 40 is compared with the ice making temporary stop temperature EEPB2. The ice making temporary stop temperature EEPB2 is set to a temperature higher than the ice making monitoring temperature EEPROM, and the relationship between the set temperatures will be described later with reference to FIG.

製氷室3a内の温度が、製氷一時停止温度EEPB2よりも低い場合には、製氷カウントN倍温度のステップ57を経て、送風機ON積算時間カウントアップに至る(ステップ58)。ステップ58では送風機19が予め設定された時間(例えば50分、以下同じ。)だけ運転されているか否かを判定する。製氷開始から50分以上送風機19が運転していると、ステップ59へと進む。なお、ステップ57の詳細については後述する。   When the temperature in the ice making chamber 3a is lower than the ice making temporary stop temperature EEPB2, the fan ON integrated time is counted up through step 57 of the ice making count N times temperature (step 58). In step 58, it is determined whether or not the blower 19 has been operated for a preset time (for example, 50 minutes, the same applies hereinafter). If the blower 19 has been operating for 50 minutes or more from the start of ice making, the process proceeds to step 59. Details of step 57 will be described later.

ステップ59では、製氷監視時間のカウントアップが完了しているか否かを判定する。製氷開始からの製氷監視時間が予め設定された時間(例えば60分、以下同じ。)経過していると、ステップ60へと進む。   In step 59, it is determined whether or not the ice making monitoring time has been counted up. If a preset time (for example, 60 minutes, the same applies hereinafter) has elapsed since the start of ice making, the process proceeds to step 60.

ステップ60では、製氷室3a内の温度が製氷完了温度EEPDよりも低いか否かを判定する。IM室温度センサー40による検出温度が製氷完了温度EEPDよりも低い場合には、製氷が完了したと判断し、離氷動作を行うように制御装置37は自動製氷装置12を制御する(B)。   In step 60, it is determined whether or not the temperature in the ice making chamber 3a is lower than the ice making completion temperature EEPD. When the temperature detected by the IM chamber temperature sensor 40 is lower than the ice making completion temperature EEPD, it is determined that the ice making is completed, and the control device 37 controls the automatic ice making device 12 to perform the ice removing operation (B).

ステップ58〜60からわかるように、製氷完了と判断されるためには、送風機ON積算時間及び製氷監視時間のカウントアップが完了するとともに、製氷室3a内の温度が製氷完了温度EEPDよりも低いという条件を全て満たさなければならない。   As can be seen from steps 58 to 60, in order to determine that the ice making is completed, the count-up of the blower ON integrated time and the ice making monitoring time is completed, and the temperature in the ice making chamber 3a is lower than the ice making completion temperature EEPD. All conditions must be met.

本実施例においては、製氷監視時間を送風機ON積算時間よりも長く設定している。したがって、例えば急速製氷運転モードが設定されると、その間、送風機19が50分以上連続して運転される。このときは、冷凍サイクルも運転して冷却器18が冷気を生成するため、製氷室3a内の温度もEEPDよりも低い状態で維持される。したがって、この間、扉の開閉がなければ、製氷監視時間(60分)が経過した時点で製氷は完了する。   In this embodiment, the ice making monitoring time is set longer than the blower ON integrated time. Therefore, for example, when the rapid ice making operation mode is set, the blower 19 is continuously operated for 50 minutes or more. At this time, since the refrigeration cycle is also operated and the cooler 18 generates cold air, the temperature in the ice making chamber 3a is also maintained lower than the EEPD. Therefore, if the door is not opened and closed during this time, ice making is completed when the ice making monitoring time (60 minutes) elapses.

ステップ58〜60の条件のいずれかを満たさない場合には、ステップ51に戻され、監視が継続される。   If any of the conditions of Steps 58 to 60 is not satisfied, the process returns to Step 51 and monitoring is continued.

ステップ51で、製氷一時停止温度EEPB2よりも製氷室3a内が高温と判定された場合について説明する。このときはステップ52へと進み、製氷監視時間のタイマカウントを一時停止(図6の符号46b)させる。   The case where it is determined in step 51 that the inside of the ice making chamber 3a is higher than the ice making temporary stop temperature EEPROM2 will be described. At this time, the routine proceeds to step 52 where the timer count of the ice making monitoring time is temporarily stopped (reference numeral 46b in FIG. 6).

ステップ51で製氷一時停止温度EEPB2よりも製氷室3a内が高温と判定される要因としては、冷却器18の除霜運転があった場合、冷凍室内に新規な冷却負荷が発生した場合、さらには製氷室扉や冷凍室扉が長時間開いた状態があった場合が挙げられる。   Factors for determining that the inside of the ice making chamber 3a is higher than the ice making temporary stop temperature EEPB2 in step 51 include the case where the defrosting operation of the cooler 18 is performed, the case where a new cooling load is generated in the freezing chamber, The case where the ice making room door or the freezing room door has been open for a long time can be mentioned.

製氷カウンタが一時停止されると、次のステップとしては、(1)一時停止状態が解除されてカウントアップが再開される場合、(2)一時停止状態が維持される場合、及び(3)製氷カウンタがリセットされる場合の3つに大別される。   When the ice making counter is suspended, the next steps are (1) when the suspended state is released and counting up is resumed, (2) when the suspended state is maintained, and (3) ice making. There are three main cases when the counter is reset.

上記の(1)のケースは、
<ステップ53>→<ステップ55>→<ステップ56>
のフローとなり、
(2)のケースは、
<ステップ53>→<ステップ55>→<ステップ53>
のフローとなり、
(3)のケースは、
<ステップ53>→<ステップ54>→<ステップ48>
のフローとなる。
The case of (1) above is
<Step 53> → <Step 55> → <Step 56>
It becomes the flow of
Case (2)
<Step 53> → <Step 55> → <Step 53>
It becomes the flow of
Case (3)
<Step 53> → <Step 54> → <Step 48>
It becomes the flow of.

(1)〜(3)の各ケースについて説明する。ステップ53において、製氷室3a内の温度が製氷リセット温度EEPCと比較され、EEPCよりも低温である場合にはステップ55へと進む。   Each case of (1) to (3) will be described. In step 53, the temperature in the ice making chamber 3a is compared with the ice making reset temperature EEPC, and if the temperature is lower than EEPC, the process proceeds to step 55.

ステップ55では、製氷室3a内の温度が製氷再開温度EEPB1と比較され、EEPB1よりも低温である場合にはステップ56へと進み、製氷開始時間のタイマカウントの一時停止が解除される。このときは、ステップ52で一時停止していた製氷カウンタが再びカウントアップされる(上記の(1)のケース)。   In step 55, the temperature in the ice making chamber 3a is compared with the ice making resumption temperature EEPB1, and if the temperature is lower than EEPB1, the process proceeds to step 56, and the timer stop of the ice making start time is released. At this time, the ice making counter that has been temporarily stopped in step 52 is counted up again (case (1) above).

ステップ55において、製氷室3a内の温度がEEPB1よりも高温である場合にはステップ53へと戻り、これを繰り返す状態となる(上記の(2)のケース)。   In step 55, if the temperature in the ice making chamber 3a is higher than that of the EEPROM 1, the process returns to step 53 and repeats this (case (2) above).

また、ステップ53において、製氷室3a内の温度が製氷リセット温度EEPCよりも高温となっている場合には、ステップ54へと進み、製氷カウンタがリセットされ、製氷カウンタがゼロに設定され、ステップ48へと戻る(上記の(3)のケース)。   In step 53, if the temperature in the ice making chamber 3a is higher than the ice making reset temperature EEPC, the process proceeds to step 54, the ice making counter is reset, the ice making counter is set to zero, and step 48 is executed. Return to (case (3) above).

これらの制御とは別に、IMドアセンサー39や冷凍室ドアセンサー41によって、扉の開状態が予め設定される時間だけ継続すると、製氷監視カウンタをリセットさせる制御や、除霜運転があると無条件に製氷監視カウンタをリセットさせる制御としてもよい。   Apart from these controls, if the door open state continues for a preset time by the IM door sensor 39 and the freezer compartment door sensor 41, the control to reset the ice making monitoring counter or the defrosting operation is unconditional. Alternatively, the ice making monitoring counter may be reset.

ただし、これらの場合であっても、実際の製氷室3a内の温度の上昇の程度を判断して製氷監視カウントを継続あるいは一時停止又はリセットを行うことによって、効率化が図れる。   However, even in these cases, efficiency can be improved by judging the degree of actual temperature rise in the ice making chamber 3a and continuing, temporarily stopping, or resetting the ice making monitoring count.

次に、製氷カウンタN倍温度のステップ57について、判定処理について図7(b)を用いて説明する。図7(b)は製氷開始後の製氷室の温度変化と製氷時の各設定温度の関係を示す図である。図に示すように、予め設定される温度としては、高い順から製氷リセット温度EEPC、製氷一時停止温度EEPB2、製氷再開温度EEPB1、製氷開始温度EEPA、製氷完了温度EEPD、及び加速温度EEPSがある。   Next, the determination process of the step 57 of the ice making counter N times temperature will be described with reference to FIG. FIG. 7B is a diagram showing the relationship between the temperature change in the ice making chamber after the start of ice making and the set temperatures during ice making. As shown in the figure, the preset temperatures include the ice making reset temperature EEPC, the ice making temporary stop temperature EEPB2, the ice making restart temperature EEPB1, the ice making start temperature EEPA, the ice making completion temperature EEPD, and the acceleration temperature EEPROM.

また、これらの各設定温度によって5つの温度帯に分けられる。その温度帯とは、高い順からリセットエリア、一時停止エリア、カウント/一時停止エリア、カウントエリア及び加速カウントエリアである。   Moreover, it is divided into five temperature zones according to each of these set temperatures. The temperature zone is a reset area, a pause area, a count / pause area, a count area, and an acceleration count area in descending order.

これらの温度帯について説明すると、図7(b)に示す如く、高い順から製氷監視時間をリセットする温度帯となる温度(リセットエリア:EEPC以上)、製氷監視時間を一時停止させる温度帯となる温度(一時停止エリア:EEPB2〜EEPC)、製氷監視時間をカウント又は一時停止をさせる温度帯となる温度(カウント/一時停止エリア:EEPB1〜EEPB2)、製氷監視時間をカウントする温度帯となる温度(カウントエリア:EEPS〜EEPB1)、及び製氷監視時間を加速カウントする温度帯となる温度(加速カウントエリア:EEPS以下)に分けられる。   Explaining these temperature zones, as shown in FIG. 7 (b), the temperature is a temperature zone that resets the ice making monitoring time in descending order (reset area: EEPC or higher), and the temperature zone that temporarily stops the ice making monitoring time. Temperature (temporary stop area: EEPB2 to EEPC), temperature that becomes a temperature zone for counting or temporarily stopping ice making monitoring time (count / pause area: EEPROM 1 to EEPROM 2), temperature that becomes a temperature zone for counting ice making monitoring time ( Count area: EEPROM to EEPROM 1), and temperature (acceleration count area: below EPSS), which is a temperature zone in which ice-making monitoring time is accelerated and counted.

カウントエリア内には製氷開始温度EEPAと製氷完了温度EEPDが入っているが、この製氷開始温度EEPAは製氷再開温度EEPB1と同一(EEPA=EEPB1)としても差し支えない。少なくとも、製氷が開始される温度及び製氷が完了する温度は、カウントエリアであることが必要である。   The ice making start temperature EEPROM and ice making completion temperature EEPD are contained in the count area, but the ice making start temperature EEPROM may be the same as the ice making restart temperature EEPROM1 (EEPA = EEPB1). At least the temperature at which ice making is started and the temperature at which ice making is completed need to be a count area.

また、製氷室3a内の温度が加速温度EEPS以下となる場合としては、急速製氷運転モードや急速冷凍運転モードによって冷凍サイクルを連続運転したときなどが挙げられる。   Moreover, as a case where the temperature in the ice making chamber 3a becomes equal to or lower than the acceleration temperature EEPS, there is a case where the refrigeration cycle is continuously operated in the quick ice making operation mode or the quick freezing operation mode.

すなわち、ステップ57において、カウントが加速されるのは、急速製氷運転モード等が実施された場合等のように、製氷室3a温度が加速温度EEPS以下となる状態が、例えば3分以上継続したときであり、この条件を満たした場合には、製氷カウンタをN倍加速し(符号46d)、自動製氷装置12が離氷動作に入る時間を速めることができる。加速の度合いとしては、通常のカウントエリアの1.5倍〜2.0倍とすると、製氷時間の短縮が十分図られるとともに、製氷完了判断の高い精度を維持できる。   That is, in step 57, the count is accelerated when, for example, when the ice making chamber 3a temperature is equal to or lower than the acceleration temperature EEPROM as in the case where the rapid ice making operation mode or the like is performed, for example, for 3 minutes or more. When this condition is satisfied, the ice making counter is accelerated N times (reference numeral 46d), and the time for the automatic ice making device 12 to enter the ice removing operation can be accelerated. When the degree of acceleration is 1.5 to 2.0 times the normal count area, the ice making time can be sufficiently shortened, and the high accuracy of ice making completion determination can be maintained.

各設定温度の具体的な温度として、例えば、EEPCを−5℃、EEPB2を−7.4℃、EEPB1を−8℃、EEPAを−8℃、EEPDを−12℃、EEPSを−20℃とすれば、製氷時間の効率化と高い精度及び製氷完了判断を実現できる。   Specific temperatures of each set temperature are, for example, -5 ° C for EEPC, -7.4 ° C for EEPROMB2, -8 ° C for EEPROM1, -8 ° C for EEPROM, -12 ° C for EEPD, and -20 ° C for EEPROM. If this is done, it is possible to achieve efficiency in ice making time, high accuracy, and ice making completion determination.

次に、図7(b)を用いて、製氷監視中の温度変化に伴う製氷カウントについて説明する。図7(b)の例では、製氷が開始され、まず点Aに至る。点Aはカウントエリアの温度帯にあるので、ステップ50で製氷監視時間がセットされタイマーカウントが継続されている。   Next, with reference to FIG. 7B, the ice making count associated with the temperature change during ice making monitoring will be described. In the example of FIG. 7B, ice making is started, and first reaches point A. Since the point A is in the temperature zone of the count area, the ice making monitoring time is set in step 50 and the timer count is continued.

そして、扉7〜9が開かれ、あるいは冷却負荷が冷凍室内に収納された場合等によって、点Bのカウント/一時停止エリア内の温度まで製氷室3a内の温度が上昇する。この間、ステップ51で監視が継続されているが、点Bの場合は製氷一時停止温度EEPB2に達していないため、タイマーカウントは継続し、カウントアップが進行する。   When the doors 7 to 9 are opened or the cooling load is stored in the freezer compartment, the temperature in the ice making chamber 3a rises to the temperature in the point B count / pause area. During this time, monitoring is continued in step 51. However, in the case of point B, since the ice making temporary stop temperature EEPB2 has not been reached, the timer count continues and the count-up proceeds.

その後、扉7〜9が長い時間開かれ、あるいは冷却負荷が冷凍室内に収納された場合、さらには除霜運転があった場合等によって、一時停止エリア内の温度までIM室温度センサー40による検出温度が上昇し、点Cに至った場合には、ステップ51からステップ52へと進み、タイマーカウントが一時停止される。   After that, when the doors 7 to 9 are opened for a long time or the cooling load is stored in the freezer compartment, or further when there is a defrosting operation, the temperature is detected by the IM room temperature sensor 40 up to the temperature in the temporary stop area. When the temperature rises and reaches point C, the routine proceeds from step 51 to step 52, where the timer count is temporarily stopped.

一時停止されたタイマーカウントは、点Dに至る過程で製氷再開温度EEPB1よりも製氷室3a内の温度が低くなるとカウントアップが再開される。   In the process of reaching the point D, the temporarily stopped timer count is restarted when the temperature in the ice making chamber 3a becomes lower than the ice making restart temperature EEPB1.

すなわち、製氷一時停止温度EEPB2より高く製氷再開温度EEPB1よりも低い温度帯であるカウント/一時停止エリアは、カウントが継続している状態と、カウントが一時停止される状態があり得るというわけである。具体的には、カウントアップが継続された状態で温度が上昇し、カウント/一時停止エリアに突入した場合にはカウントアップが継続され、カウントアップが一時停止された状態で温度が低下し、カウント/一時停止エリアに突入した場合にはカウントアップが一時停止した状態が継続される。   That is, in the count / pause area that is higher than the ice making suspending temperature EEPROM2 and lower than the ice making resuming temperature EEPB1, there can be a state where the counting is continued and a state where the counting is paused. . Specifically, the temperature rises while the count-up continues, the count-up continues when entering the count / pause area, and the temperature drops and counts-down while the count-up is paused. / When entering the temporary stop area, the state where the count-up is temporarily stopped is continued.

点Cから温度が低下し、加速温度EEPSよりも低い温度帯である加速カウントエリアの温度帯内の点Dに至る。この温度帯が例えば3分間継続すると、ステップ57の製氷カウントN倍温度の製氷加速判定処理によって、1.5〜2.0倍、カウントアップが加速される。   The temperature drops from point C to point D in the temperature zone of the acceleration count area, which is a temperature zone lower than the acceleration temperature EEPROM. If this temperature zone continues for, for example, 3 minutes, the count-up is accelerated by 1.5 to 2.0 times by the ice making acceleration determination process of the ice making count N times temperature in step 57.

その後、除霜運転、扉の開状態の継続、冷却負荷の投入が重なった場合には、製氷リセット温度EEPCよりも高いリセットエリアの温度帯まで温度が大きく上昇する(点E)。このときは、既にステップ51を経てカウントアップが一時停止されており、さらに点Eでは、ステップ53からステップ54へと進む。   Thereafter, when the defrosting operation, the continuation of the open state of the door, and the input of the cooling load overlap, the temperature greatly increases to the temperature zone of the reset area higher than the ice making reset temperature EEPC (point E). At this time, the count-up has already been paused through step 51, and at point E, the process proceeds from step 53 to step 54.

リセットエリアの温度帯にまで一度でも製氷室3a内の温度が上昇してしまうと、タイマーカウントはリセットされ、製氷開始温度EEPAまで室温が下がった時点でゼロから製氷がカウントされる。   If the temperature in the ice making chamber 3a rises even once to the temperature zone of the reset area, the timer count is reset, and ice making is counted from zero when the room temperature drops to the ice making start temperature EEPA.

このように、製氷監視カウンタ46で制御することによって、間接温度検出ではあるが製氷の確実な検出が可能である。しかも、製氷に要する時間を不必要に延ばすこともなく、適正な時間で製氷を終わらせることができる。   In this way, by controlling with the ice making monitoring counter 46, it is possible to reliably detect ice making although it is indirect temperature detection. Moreover, the ice making can be completed in an appropriate time without unnecessarily prolonging the time required for ice making.

次に、図8を用いて製氷皿32内の水又は氷の温度と、IM室温度センサー40との関係を説明する。図8は製氷皿32内の水又は氷の温度と温度センサー40による検出温度との関係を示す図である。これらは、製氷カウントの一時停止やリセットがない状態の推移を示している。   Next, the relationship between the temperature of water or ice in the ice tray 32 and the IM chamber temperature sensor 40 will be described with reference to FIG. FIG. 8 is a diagram showing the relationship between the temperature of water or ice in the ice tray 32 and the temperature detected by the temperature sensor 40. These show the transition of the state where there is no pause or reset of the ice making count.

図8に破線で示した曲線αは、製氷開始から製氷完了までの間の水温(氷温)の変化を示し、実線で示した曲線βは、その間のIM室温度センサー40で検出される製氷室3a内の温度を示す。   A curve α indicated by a broken line in FIG. 8 indicates a change in water temperature (ice temperature) from the start of ice making to the completion of ice making, and a curve β indicated by a solid line indicates ice making detected by the IM chamber temperature sensor 40 during that time. The temperature in the chamber 3a is shown.

貯水タンク11から製氷皿23に給水されてから、製氷が完了するまでに要する時間は、60分〜90分(ここでは60分として説明する。)である。この時間のうち、曲線αに示すように、約2/3の時間は0℃前後の未結氷状態となっている。そして、この約2/3の時間を経過した後、残りの製氷完了までの時間は既に凝固が完了して氷となっており、この氷の温度は例えば−12℃以下に達する。   The time required to complete the ice making after the water is supplied from the water storage tank 11 to the ice tray 23 is 60 minutes to 90 minutes (herein, it will be described as 60 minutes). Of this time, as shown by curve α, about 2/3 of the time is in an unfrozen state around 0 ° C. Then, after the time of about 2/3 has elapsed, the remaining time until completion of ice making is already solidified and becomes ice, and the temperature of this ice reaches, for example, −12 ° C. or lower.

この間、IM室温度センサー40によって検出される製氷室3a内の温度は、曲線βのように推移する。製氷室3a内の温度は、製氷が開始されてからカウントエリア内の温度帯で曲線βに示すように推移している。   During this time, the temperature in the ice making chamber 3a detected by the IM chamber temperature sensor 40 changes as shown by a curve β. The temperature in the ice making chamber 3a has changed as indicated by the curve β in the temperature zone in the count area since the start of ice making.

さて、図中に示したエリアPとエリアQは時間帯のエリアを示している。エリアPは上記の未結氷状態が想定される時間帯であり、エリアQは氷となっていることが想定される時間帯である。これらの時間帯エリアによって、製氷継続条件を変化させて製氷時間短縮によるさらなる効率化を図っている。製氷監視カウンタとは別に、あるいは製氷監視カウンタを利用して、製氷開始から予め定められた時間をカウントする。例えば製氷開始から40分を境にエリアPとエリアQを分け、上記の設定温度の一部(又は全てでもよい。)を変化させている。   Now, area P and area Q shown in the figure indicate time zone areas. Area P is a time zone in which the above-mentioned unfrozen state is assumed, and area Q is a time zone in which ice is assumed. Depending on these time zone areas, the ice making continuation conditions are changed to further improve the efficiency by shortening the ice making time. A predetermined time from the start of ice making is counted separately from the ice making monitoring counter or using the ice making monitoring counter. For example, the area P and the area Q are divided at 40 minutes from the start of ice making, and a part (or all) of the set temperature is changed.

製氷時間を2つの時間帯に分けて管理するのは、水と氷の比熱の違いによるものである。すなわち、周囲の温度が上昇しても、水と比較して氷は温度上昇されづらいためである。つまり、扉が開かれた場合や冷却負荷が冷凍室内に投入された場合に製氷室3aの温度が上昇した場合であっても、製氷皿内の水又は氷の状態によって受ける影響が異なっている。そこで、エリアQでは、カウントエリアの上限温度EEPB1をそれより高い温度であるEEPB3まで上げ、カウントエリアの幅を拡大している。   The reason for managing ice making time in two time zones is due to the difference in specific heat between water and ice. That is, even if the ambient temperature rises, it is difficult to raise the temperature of ice compared to water. That is, even when the temperature of the ice making chamber 3a rises when the door is opened or when the cooling load is put into the freezer compartment, the influence received by the state of water or ice in the ice tray is different. . Therefore, in area Q, the count area upper limit temperature EEPROM1 is increased to EEPB3, which is a higher temperature, to increase the width of the count area.

さらに、製氷一時停止温度EEPB2もエリアPより高い温度に設定し、製氷監視カウントが一時停止されずに継続される条件を緩和している。   Further, the ice making temporary stop temperature EEPB2 is also set to a temperature higher than the area P, thereby relaxing the condition that the ice making monitoring count is continued without being paused.

このように時間帯エリアで異なる条件を設定することで、さらに効率的な製氷が可能となる。IM室温度センサー40で検出される製氷室3a内の温度が上昇しても、その上昇の程度によっては、製氷を一時停止する必要がない。エリアQでは温度変化による影響を受けにくいため、カウントエリアが大きく設定されているため、製氷カウントを中断しなくてもよい場合がある。したがって、製氷時間の60分を大幅に延ばすことなく効率的な製氷ができる。   Thus, by setting different conditions in the time zone area, it is possible to make ice making more efficiently. Even if the temperature in the ice making chamber 3a detected by the IM chamber temperature sensor 40 rises, it is not necessary to temporarily stop ice making depending on the degree of the rise. Since the area Q is not easily affected by the temperature change, the count area is set to be large, and therefore the ice making count may not be interrupted. Therefore, efficient ice making can be performed without significantly extending the ice making time of 60 minutes.

これらの時間条件は、製氷される氷の大きさに左右される。給水量を変化させて異なる大きさの氷を作る場合には、カウントする時間を長く設定すればよく、各設定温度を変化させる必要はない。   These time conditions depend on the size of the ice being made. When making different sizes of ice by changing the amount of water supply, it is only necessary to set the counting time longer, and it is not necessary to change each set temperature.

図8のように製氷室3a内の温度が推移すると、製氷開始から製氷完了に至るまでの各カウンタは次のように変化する。この例は、カウントの一時停止やリセットが発生しない例であり、また、急速製氷運転モード等にも設定されず、カウントの加速も発生していない。すなわち、最も単純な場合を示している。   When the temperature in the ice making chamber 3a changes as shown in FIG. 8, each counter from the start of ice making to the completion of ice making changes as follows. This example is an example in which the count is not temporarily stopped or reset, and is not set in the rapid ice making operation mode or the like, and the count is not accelerated. That is, the simplest case is shown.

製氷が開始されると、製氷監視カウンタがカウントされる。製氷監視カウンタは60分でカウントアップが完了するので、60分間、継続的にカウントが続行する。この間、送風機19はONとOFFを繰り返す。送風機ON積算カウンタ47は送風機19が運転している間だけカウントを継続する。   When ice making is started, an ice making monitoring counter is counted. Since the ice-making monitoring counter completes counting up in 60 minutes, the counting continues continuously for 60 minutes. During this time, the blower 19 repeats ON and OFF. The blower ON integration counter 47 continues counting only while the blower 19 is operating.

また、エリアPとエリアQを区別するためのカウンタは、製氷監視カウンタがカウントされている間に、カウントアップされる。このカウンタは40分でカウントアップされるため、製氷が完了する前に必ずエリアPからエリアQへと移る。   A counter for distinguishing between area P and area Q is counted up while the ice making monitoring counter is counted. Since this counter is counted up in 40 minutes, it always moves from area P to area Q before ice making is completed.

エリアQでは上述のように温度条件が変化するが、この例では特にその恩恵を受けず、さらに製氷監視カウンタのカウントが継続し、カウントアップが完了した時点で、送風機ON積算カウンタのカウントアップが終了しているので、製氷完了に至る。この製氷運転は、図7(a)のフロー図では、ステップ51、58、59、60内で処理される例となっている。   In area Q, the temperature condition changes as described above. In this example, however, there is no particular benefit. Further, when the count of the ice making monitor counter continues and the count up is completed, the blower ON integration counter counts up. Since it has been completed, the ice making is completed. This ice making operation is an example of processing in steps 51, 58, 59, and 60 in the flowchart of FIG.

以上説明した実施例によれば、以下の作用効果が得られる。   According to the embodiment described above, the following effects can be obtained.

駆動モータ26を冷凍室の背壁側に設置し、駆動モータ26の出力軸26aで製氷皿23の奥側の軸受軸23bを受け、他方軸23aを蓋付きの軸受25で受けて製氷皿23を保持したため、駆動モータ26との係合を外して製氷皿23を手前側に引き出すことができる。また、駆動モータ26を制御する制御装置37に製氷皿23を脱着したら製氷皿23を反転動作する製氷準備機能を付加したため、使用者は製氷皿の清掃等を容易に行うことができ、また、板状氷となってしまうこともなくモータロックを回避することができる。   The drive motor 26 is installed on the back wall side of the freezer compartment, the output shaft 26a of the drive motor 26 receives the bearing shaft 23b on the back side of the ice tray 23, and the other shaft 23a is received by the bearing 25 with a lid. Therefore, the ice tray 23 can be pulled out to the front side by releasing the engagement with the drive motor 26. In addition, since the ice making tray 23 is inverted when the ice tray 23 is attached to the control device 37 for controlling the drive motor 26, the user can easily clean the ice tray, etc. The motor lock can be avoided without becoming plate ice.

また、モータロックが発生した場合であっても、製氷皿23を原点位置(製氷皿23が水平状態となる位置)に戻す機能を付加したため、サービスマンを頼むことなく使用者自身が製氷皿23を着脱して修正することができる。   Even when the motor lock occurs, the function of returning the ice tray 23 to the origin position (the position at which the ice tray 23 is in a horizontal state) is added, so that the user himself can make the ice tray 23 without asking a serviceman. It can be corrected by attaching and detaching.

また、モータロック等の異常が発生した場合には、外部報知手段で使用者に異常を知らせるようにした。   In addition, when an abnormality such as a motor lock occurs, the abnormality is notified to the user by an external notification means.

また、製氷皿23の取外しが短時間の場合には、製氷皿23の反転動作等を行わずに製氷を継続するように制御することにしたため、製氷状態の確認のために製氷皿を引き出した場合等に、不必要に製氷時間を遅らせることはない。   In addition, when the ice tray 23 is removed for a short time, the ice tray 23 is pulled out for confirmation of the ice making state because the ice making tray 23 is controlled to be continued without performing the reversing operation or the like. In some cases, the ice making time is not unnecessarily delayed.

製氷時間の効率化に関しては、製氷皿の温度を直接的に検出しなくても、製氷時間が遅延することを最小限に抑えることができる。また、時間条件を満たしたとしても、製氷完了温度の条件を満たした場合でなければ離氷を開始しないので、未結氷状態で離氷動作に入ることを確実に防ぐことができる。加えて、時間エリアによって製氷監視の諸条件を変化させているため、さらに効率化を図ることができる。   Regarding efficiency improvement of ice making time, it is possible to minimize delay in ice making time without directly detecting the temperature of the ice making tray. Further, even if the time condition is satisfied, the deicing is not started unless the ice making completion temperature condition is satisfied, so that it is possible to reliably prevent the deicing operation from being performed in an uniced state. In addition, since various conditions of ice making monitoring are changed according to the time area, further efficiency can be achieved.

本実施例の冷蔵庫の斜視図。The perspective view of the refrigerator of a present Example. 本実施例の要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of a present Example. 自動製氷装置の構成を示す断面図。Sectional drawing which shows the structure of an automatic ice making apparatus. 製氷皿着脱時の自動製氷装置の構成を示す図。The figure which shows the structure of the automatic ice making apparatus at the time of ice tray attachment / detachment. 本実施例の制御構成の一部を示すブロック図。The block diagram which shows a part of control structure of a present Example. 本実施例の製氷制御に係る制御構成を示すブロック図。The block diagram which shows the control structure which concerns on the ice making control of a present Example. 製氷制御フロー及び製氷開始後の製氷室の温度変化とその制御を示す図。The figure which shows the temperature change of the ice making chamber after the ice making control flow and ice making start, and its control. 水又は氷の温度と製氷室内の温度との関係を示す図。The figure which shows the relationship between the temperature of water or ice, and the temperature in an ice making chamber.

符号の説明Explanation of symbols

1…冷蔵庫本体、2…冷蔵室、3…上段冷凍室、3a…製氷室、4…下段冷凍室、7…製氷室扉、9…冷凍室扉、11…貯水タンク、12…自動製氷装置、13…貯氷容器、19…送風機、21…給水パイプ、22…給水ポンプ、23…製氷皿、23a…軸、23b…軸受軸、23c…係止部、24…断熱仕切壁、25…軸受、26…駆動モータ、26a…出力軸、27…フレーム、28…載置板、28a…U字溝、30…検氷レバー、33…製氷皿検出センサー、37…制御装置、38…IMモード切換SW、39…IMドアセンサー、40…温度センサー(IM室温度センサー)、41…冷凍室ドアスイッチ、42…ブザー、43…IMモード表示LED、44…製氷皿引出し監視タイマー、45…位置確保信号、46…製氷監視カウンター、47…送風機ON積算時間カウンター。
DESCRIPTION OF SYMBOLS 1 ... Refrigerator main body, 2 ... Refrigeration room, 3 ... Upper stage freezing room, 3a ... Ice making room, 4 ... Lower stage freezing room, 7 ... Ice making room door, 9 ... Freezing room door, 11 ... Water storage tank, 12 ... Automatic ice making apparatus, DESCRIPTION OF SYMBOLS 13 ... Ice storage container, 19 ... Blower, 21 ... Water supply pipe, 22 ... Water supply pump, 23 ... Ice tray, 23a ... Shaft, 23b ... Bearing shaft, 23c ... Locking part, 24 ... Heat insulation partition wall, 25 ... Bearing, 26 DESCRIPTION OF SYMBOLS ... Drive motor, 26a ... Output shaft, 27 ... Frame, 28 ... Mounting plate, 28a ... U-groove, 30 ... Ice detecting lever, 33 ... Ice tray detection sensor, 37 ... Control device, 38 ... IM mode switching SW, 39 ... IM door sensor, 40 ... Temperature sensor (IM room temperature sensor), 41 ... Freezer compartment door switch, 42 ... Buzzer, 43 ... IM mode display LED, 44 ... Ice tray drawer monitoring timer, 45 ... Position securing signal, 46 ... Ice-making monitoring counsel Over, 47 ... blower ON accumulated time counter.

Claims (7)

製氷室へ冷気を送風する送風機と、前記製氷室内に配設される自動製氷装置と、前記送風機によって前記製氷室の背面から吐出され前記自動製氷装置内の製氷皿へと流れる冷気の通り路から離れたところに取り付けられる製氷室温度センサーと、製氷完了を判断し前記自動製氷装置に離氷動作を行わせるように制御する制御装置とを備え、
前記製氷室温度センサーの検出温度が所定温度以下となってから製氷カウントを開始し、該製氷カウントが所定のカウントアップを完了して且つ前記送風機の運転積算時間が前記製氷カウント開始から所定時間となった場合に製氷完了と判断して離氷動作を行うことを特徴とする冷蔵庫。
From a blower that blows cold air to the ice making chamber, an automatic ice making device disposed in the ice making chamber, and a path of cold air that is discharged from the back of the ice making chamber by the blower and flows to the ice making tray in the automatic ice making device An ice-making chamber temperature sensor attached to a remote place, and a control device that determines completion of ice making and controls the automatic ice making device to perform an ice removing operation;
The ice making count is started after the detected temperature of the ice making chamber temperature sensor becomes equal to or lower than a predetermined temperature, the ice making count completes a predetermined count-up, and the accumulated operation time of the blower is a predetermined time from the start of the ice making count. The refrigerator is characterized in that when it becomes, the ice making operation is judged to be completed.
前記制御装置は、前記製氷室温度センサーの検出温度が、第1の設定温度よりも低いと製氷カウントを継続し、前記第1の設定温度よりも高くなると製氷カウントを一時停止させ、前記第1の設定温度よりも高く設定される第2の設定温度よりも高くなると製氷カウントをリセットすることによって、製氷時間を管理することを特徴とする請求項1に記載の冷蔵庫。   The control device continues the ice making count when the detected temperature of the ice making chamber temperature sensor is lower than the first set temperature, and temporarily stops the ice making count when the detected temperature becomes higher than the first set temperature. The refrigerator according to claim 1, wherein the ice making time is managed by resetting the ice making count when the temperature becomes higher than a second set temperature set higher than the set temperature. 前記製氷室温度センサーの検出温度が前記第1の設定温度よりも高くなり、製氷カウントが一時停止されると、前記検出温度が前記第1の設定温度よりも低くなっても前記第1の設定温度よりも低く設定される第3の設定温度よりも高い場合には前記製氷カウントの一時停止を継続することを特徴とする請求項2に記載の冷蔵庫。   When the detected temperature of the ice making chamber temperature sensor becomes higher than the first set temperature and the ice making count is temporarily stopped, the first setting is performed even if the detected temperature becomes lower than the first set temperature. The refrigerator according to claim 2, wherein the ice making count is temporarily stopped when the temperature is higher than a third set temperature set lower than the temperature. 前記制御装置は、前記製氷室温度センサーの出力温度が、前記第1の設定温度よりも低く設定される第3の設定温度よりも低い状態が、予め設定される時間継続すると、前記製氷カウントを加速させることを特徴とする請求項2又は3に記載の冷蔵庫。   The control device counts the ice making count when the output temperature of the ice making chamber temperature sensor is lower than a third set temperature set lower than the first set temperature for a preset time. The refrigerator according to claim 2 or 3, wherein the refrigerator is accelerated. 前記製氷室を含む冷凍室は扉で閉塞されるとともに、この扉の開閉状態を検出するドアセンサーを備え、前記ドアセンサーからの出力に基づいて製氷完了を判断することを特徴とする請求項1乃至4のいずれかに記載の冷蔵庫。   2. The freezing room including the ice making room is closed by a door, and includes a door sensor for detecting an open / closed state of the door, and the completion of ice making is determined based on an output from the door sensor. The refrigerator in any one of thru | or 4. 製氷が開始されてからの時間によって設定温度の値が異なることを特徴とする請求項2乃至5に記載の冷蔵庫。   The refrigerator according to any one of claims 2 to 5, wherein the set temperature value varies depending on the time since ice making is started. 前記製氷室温度センサーは前記自動製氷装置の外殻を形成するフレームに取り付けられていることを特徴とする請求項1乃至6のいずれかに記載の冷蔵庫。   The refrigerator according to any one of claims 1 to 6, wherein the ice making chamber temperature sensor is attached to a frame forming an outer shell of the automatic ice making device.
JP2005261502A 2005-09-09 2005-09-09 refrigerator Active JP4625740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005261502A JP4625740B2 (en) 2005-09-09 2005-09-09 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005261502A JP4625740B2 (en) 2005-09-09 2005-09-09 refrigerator

Publications (2)

Publication Number Publication Date
JP2007071491A JP2007071491A (en) 2007-03-22
JP4625740B2 true JP4625740B2 (en) 2011-02-02

Family

ID=37933086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005261502A Active JP4625740B2 (en) 2005-09-09 2005-09-09 refrigerator

Country Status (1)

Country Link
JP (1) JP4625740B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243776A (en) * 2008-03-31 2009-10-22 Panasonic Corp Refrigerator
JP5262245B2 (en) * 2008-03-31 2013-08-14 パナソニック株式会社 refrigerator
JP5359143B2 (en) * 2008-09-18 2013-12-04 パナソニック株式会社 refrigerator
JP5595158B2 (en) * 2010-07-26 2014-09-24 三菱電機株式会社 refrigerator
CN116045565A (en) * 2022-11-25 2023-05-02 珠海格力电器股份有限公司 Ice storage device, ice maker and control method of ice maker

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130519A (en) * 2001-10-18 2003-05-08 Sanyo Electric Co Ltd Ice maker and freezer refrigerator having this ice maker

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037411B2 (en) * 1972-07-14 1975-12-02
JP2848122B2 (en) * 1991-06-20 1999-01-20 三菱電機株式会社 Refrigerator with automatic ice maker
JPH063002A (en) * 1992-06-16 1994-01-11 Matsushita Refrig Co Ltd Refrigerator
JPH08261613A (en) * 1995-03-27 1996-10-11 Mitsubishi Electric Corp Automatic ice making device
JP3395526B2 (en) * 1996-06-19 2003-04-14 株式会社日立製作所 refrigerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130519A (en) * 2001-10-18 2003-05-08 Sanyo Electric Co Ltd Ice maker and freezer refrigerator having this ice maker

Also Published As

Publication number Publication date
JP2007071491A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4625740B2 (en) refrigerator
WO2015129315A1 (en) Refrigerator
JP2006226615A (en) Refrigerator
JP4334518B2 (en) refrigerator
JP7162339B2 (en) refrigerator
JP5346722B2 (en) Automatic ice making equipment, refrigerator
JPH11223444A (en) Method for controlling refrigerator
JP2007071489A (en) Refrigerator
JP5722160B2 (en) Cooling storage
JP5359143B2 (en) refrigerator
JP2012077947A (en) Refrigerator
EP4273485A1 (en) Refrigerator
JP6995222B2 (en) refrigerator
JP4740072B2 (en) refrigerator
JP2006078107A (en) Freezer-refrigerator
JP2007285641A (en) Freezer-refrigerator
JP2006242499A (en) Refrigerator
JP2003083661A (en) Controller for refrigerator with deep freezer
KR20080108188A (en) Ice making apparatus for refrigerator and control method thereof
JP2835225B2 (en) refrigerator
JP2007113854A (en) Refrigerator
JP2007024474A (en) Freezer device
JP2007101080A (en) Cooling storage box with automatic ice-making machine
JP2006308136A (en) Refrigerator
JP2021162276A (en) Refrigerated storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

R150 Certificate of patent or registration of utility model

Ref document number: 4625740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350