JP4625726B2 - Piping burial structure for heat exchange of underground heat storage system and burial method - Google Patents

Piping burial structure for heat exchange of underground heat storage system and burial method Download PDF

Info

Publication number
JP4625726B2
JP4625726B2 JP2005189025A JP2005189025A JP4625726B2 JP 4625726 B2 JP4625726 B2 JP 4625726B2 JP 2005189025 A JP2005189025 A JP 2005189025A JP 2005189025 A JP2005189025 A JP 2005189025A JP 4625726 B2 JP4625726 B2 JP 4625726B2
Authority
JP
Japan
Prior art keywords
ground
heat
heat storage
underground
storage system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005189025A
Other languages
Japanese (ja)
Other versions
JP2007010183A (en
Inventor
雄一 甲村
雅路 青木
敏男 米澤
祥明 樋口
友裕 黒木
卓郎 菊池
健郎 三井
正朗 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2005189025A priority Critical patent/JP4625726B2/en
Publication of JP2007010183A publication Critical patent/JP2007010183A/en
Application granted granted Critical
Publication of JP4625726B2 publication Critical patent/JP4625726B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Description

この発明は、地盤の液状化対策、又は建物等の支持能力の増大を兼ねて、地中蓄熱システムの熱媒を往復流通させる熱交換用配管を地中へ多数埋設した構造およびその埋設方法の技術分野に属し、更に云えば、構造物の下部地盤を含む広い地盤改良体を有効に利用して熱交換用配管が多数埋設された大規模(大容量)な地中蓄熱システムの熱交換用配管埋設構造およびその埋設方法に関する。   The present invention provides a structure in which a large number of heat exchanging pipes for reciprocating a heat medium of an underground heat storage system are buried in the ground, and a method for burying the ground, which also serves as a countermeasure for ground liquefaction or an increase in support capacity of a building or the like It belongs to the technical field, and more specifically, for heat exchange of large-scale (large-capacity) underground heat storage systems in which a large number of heat exchanging pipes are embedded by effectively utilizing a wide ground improvement body including the lower ground of the structure. The present invention relates to a pipe burying structure and a burying method thereof.

従来、地盤の熱容量を利用することで、例えば昼間や夏期に利用価値の少ない廃熱(温熱)を地中へ蓄熱し、夜間や冬期の暖房、或いは冬期の融雪の熱源に利用することが行われている。逆に夜間や冬期の冷熱を蓄熱し、昼間や夏期の冷房に利用することで、省エネルギー化や環境負荷低減に役立てることが実施されている。例えば図11に示した地中蓄熱システムは、熱媒を往復流通させる熱交換用配管aを構造物bの下部地盤中に多数埋設して、地中に温熱又は冷熱を蓄熱して利用する。各熱交換用配管a…は、その端部を送水管cと還水管dとにそれぞれ連結され、前記送水管c及び還水管dは、熱交換器e及び熱源機fを介して、各フロアーの空調機g…および屋上に設置した水冷装置(クーリングタワー)hと接続されている。なお、発電の際に生じる熱エネルギーを再度発電に利用する、所謂コージェネレーション設備を実施する場合、前記送水管c及び還水管dは熱交換器eに代えて発電機及びボイラーに接続される。   Conventionally, by utilizing the heat capacity of the ground, for example, waste heat (heat) with little utility value can be stored in the ground during the daytime or summer, and used as a heat source for nighttime or winter heating, or for melting snow in the wintertime. It has been broken. On the other hand, cold energy at night and winter is stored and used for cooling in the daytime and summer, which is used to save energy and reduce environmental impact. For example, the underground heat storage system shown in FIG. 11 embeds a large number of heat exchange pipes a for reciprocating a heat medium in the lower ground of the structure b, and stores and uses hot or cold heat in the ground. Each of the heat exchange pipes a is connected at its end to a water supply pipe c and a return water pipe d, and the water supply pipe c and the return water pipe d are connected to each floor via a heat exchanger e and a heat source machine f. Are connected to a water cooling device (cooling tower) h installed on the roof. In addition, when implementing what is called a cogeneration facility which uses again the thermal energy generated in the time of electric power generation for electric power generation, the said water pipe c and the return water pipe d are connected to a generator and a boiler instead of the heat exchanger e.

図示したような地中蓄熱システムを実施するため、地中に温熱又は冷熱を蓄熱し利用する熱交換用配管埋設構造およびその埋設方法が種々開発されており、既に実用に供されている。例えば下記の特許文献1には、熱交換用配管を構造物の地盤掘削工事の際に利用するソイルセメント鋼製地中連続壁に形成した閉鎖空間の中に埋設された構造が開示されている。また、特許文献2には、螺旋状に形成された熱交換用配管が打設した場所打ちコンクリート杭の内部へ埋設された構造およびその埋設方法が開示されている。   In order to implement the underground heat storage system as illustrated, various heat exchanging pipe embedding structures and methods for embedding and using hot or cold heat in the ground have been developed and put into practical use. For example, the following Patent Document 1 discloses a structure embedded in a closed space formed on a soil cement steel underground continuous wall in which heat exchanging piping is used for ground excavation work of a structure. . Patent Document 2 discloses a structure embedded in a cast-in-place concrete pile in which a heat exchange pipe formed in a spiral shape is embedded, and a method for burying the structure.

特開2004−101115号公報JP 2004-101115 A 特開2004−324913号公報JP 2004-324913 A

上記特許文献1及び2に開示された地中蓄熱システムの熱交換用配管埋設構造およびその埋設方法は、熱交換用配管を埋設するために地盤を掘削する必要がないので、その掘削に掛かる費用の負担を軽減できる点で注目できる。しかし、特許文献1に記載されたソイルセメント鋼製地中連続壁は、通常構造物の外周部となる配置に施工する。そのため、熱交換用配管は構造物の下部地盤の外周部にしか設置されず、その適用範囲(面積)が狭いから、熱交換用配管の本数や位置が制限され、十分な温熱又は冷熱を蓄熱できず利用効率が悪い。同様に、特許文献2の熱交換用配管埋設構造も、熱交換用配管の埋設本数や埋設位置が場所打ちコンクリート杭の本数や位置に左右されるので、やはり適用範囲(面積)が狭く、利用効率が悪い。   In the underground heat storage system disclosed in Patent Documents 1 and 2, the heat exchanging pipe burying structure and the embedding method do not require excavation of the ground in order to embed the heat exchanging pipe. It can be noticed in that it can reduce the burden. However, the soil cement steel underground continuous wall described in Patent Document 1 is usually constructed in an arrangement that becomes the outer peripheral portion of the structure. For this reason, the heat exchange pipes are installed only on the outer periphery of the lower ground of the structure, and since the applicable range (area) is narrow, the number and position of the heat exchange pipes are limited, and sufficient heat or cold is stored. It is not possible and usage efficiency is bad. Similarly, the heat exchanging pipe embedment structure of Patent Document 2 also has a narrow application range (area) because the number and position of the heat exchanging pipe depends on the number and position of cast-in-place concrete piles. ineffective.

本発明の目的は、地盤の液状化対策、又は建物等の支持能力の増大を兼ねて、構造物の下部地盤を含む広い地中蓄熱の対象地盤へ施工した地盤改良体を有効に利用して熱交換用配管が多数埋設された、必要十分に大規模(大容量)な地中蓄熱システムの熱交換用配管埋設構造およびその埋設方法を提供することである。   The object of the present invention is to effectively utilize a ground improvement body constructed on a ground subject to large underground heat storage including the lower ground of the structure, which also serves as a countermeasure for liquefaction of the ground or an increase in support capacity of a building or the like. It is to provide a heat exchange pipe burying structure and a burying method for a necessary and sufficiently large-scale (large capacity) underground heat storage system in which many heat exchange pipes are buried.

本発明の次の目的は、必要十分に大規模(大容量)な地中蓄熱システムの熱交換用配管埋設構造であると共に、その規模を区分して(システムブロックに分割して)、効率的で使い勝手に優れた地中蓄熱システムの実現を可能とする熱交換用配管埋設構造およびその埋設方法を提供することである。   The next object of the present invention is a piping structure for heat exchange of an underground heat storage system of a sufficiently large and large scale (large capacity), and the scale is divided (divided into system blocks) for efficient It is to provide a heat exchanging pipe burying structure and its burying method that can realize an underground heat storage system excellent in usability.

上記の課題を解決するための手段として、請求項1に記載した発明に係る地中蓄熱システムの熱交換用配管埋設構造
地中蓄熱システムの熱媒を往復流通させる熱交換用配管1が地中へ多数埋設された構造において、
地中蓄熱の対象地盤4に地盤改良工事が施工され、造成した改良体2が固結する以前に、最外周部分を除く内側の改良体2の中へ、略U字形状の熱交換用配管1を押し込み埋設する工程を繰り返して、多数の熱交換用配管1…が地中へ埋設されていることを特徴とする。
As means for solving the above-mentioned problem, the underground piping structure for heat exchange of the underground heat storage system according to the invention described in claim 1 is :
In a structure in which a number of heat exchange pipes 1 for reciprocating the heat medium of the underground heat storage system are buried in the ground,
Before the ground improvement work is carried out on the ground 4 subject to underground heat storage and the improved body 2 that has been formed is consolidated , a substantially U-shaped heat exchange pipe into the inner side improved body 2 excluding the outermost peripheral part. 1 by repeating the steps of embedding and pushing a 1 ... a number of pipe heat exchanger, characterized in that it is buried into the ground.

請求項に記載した発明に係る地中蓄熱システムの熱交換用配管埋設構造は、
地中蓄熱システムの熱媒を往復流通させる熱交換用配管1が地中へ多数埋設された構造において、
地中蓄熱の対象地盤4に地盤改良工事が連続する壁状に、且つ最外周の壁状部分は平面視を閉鎖形状に施工され、造成した改良体2が固結する以前に略U字形状の熱交換用配管1を前記壁状の改良体2の中へ押し込み埋設する工程を繰り返して、多数の熱交換用配管1…が地中へ埋設されていることを特徴とする。
The underground heat storage system burial structure for heat exchange according to the invention described in claim 2 is:
In a structure in which a number of heat exchange pipes 1 for reciprocating the heat medium of the underground heat storage system are buried in the ground,
The ground improvement work is in the shape of a wall where the ground improvement work continues on the target ground 4 and the outermost wall-like part is closed in plan view. Before the improvement body 2 is solidified, it is approximately U-shaped. The heat exchanging pipe 1 is pushed into the wall-like improvement body 2 and embedded, and a large number of heat exchanging pipes 1 are buried in the ground.

請求項に記載した発明に係る地中蓄熱システムの熱交換用配管埋設構造は、
地中蓄熱システムの熱媒を往復流通させる熱交換用配管が地中へ多数埋設された構造において、
地中蓄熱の対象地盤4に地盤改良工事が平面視を格子状配置に連続する壁状に施工され、造成した改良体2が固結する以前に略U字形状の熱交換用配管1を前記壁状の改良体2の中へ押し込み埋設する工程を繰り返して、多数の熱交換用配管1…が地中へ埋設されていることを特徴とする。
The underground structure for heat exchange of the underground heat storage system according to the invention described in claim 3 is:
In the structure where many heat exchanging pipes that recirculate the heat medium of the underground heat storage system are buried in the ground,
The ground improvement work is applied to the ground 4 subject to underground heat storage in the shape of a wall that continues in a lattice arrangement in plan view, and the heat exchange pipe 1 having a substantially U shape is formed before the improved body 2 is consolidated. The process of pushing and embedding into the wall-shaped improvement body 2 is repeated, and a large number of heat exchange pipes 1 are buried in the ground.

請求項に記載した発明は、請求項又はに記載した地中蓄熱システムの熱交換用配管埋設構造おいて、
熱交換用配管1は、造成された改良体2のうち、最外周の壁状部分を除く内側の壁状改良体2の中へ多数埋設されていることを特徴とする。
The invention described in claim 4 is the pipe-buried structure for heat exchange of the underground heat storage system according to claim 2 or 3 ,
A large number of heat exchange pipes 1 are embedded in the inner wall-like improvement body 2 excluding the outermost wall-like portion of the created improvement body 2.

請求項に記載した発明は、請求項又はに記載した地中蓄熱システムの熱交換用配管埋設構造おいて、
連続する壁状に造成された改良体2のうち、最外周の壁状部分及びその内側に区画される枡目を形成する改良体2は難透水層8に到達する深さまで造成され、同最外周の枡目中の地盤は地下水位を低下させて断熱層3aに形成されていることを特徴とする。
The invention described in claim 5 is the pipe-buried structure for heat exchange of the underground heat storage system according to claim 2 or 3 ,
Among the improved bodies 2 formed in a continuous wall shape, the improved body 2 forming the outermost wall-shaped portion and the meshes defined inside thereof is formed to a depth reaching the hardly water-permeable layer 8. The ground in the outer perimeter is formed in the heat insulating layer 3a by lowering the groundwater level.

請求項に記載した発明は、請求項又はに記載した地中蓄熱システムの熱交換用配管埋設構造おいて、
連続する壁状に造成された改良体2で区画される枡目3のうち、複数連続する配置に選択した枡目3を形成する改良体2は難透水層8に到達する深さまで造成され、前記枡目3中の地盤は地下水位を低下させて断熱層3b、3cに形成され、前記断熱層3b、3cによって区分される改良体2及びそこに埋設した熱交換用配管群1…毎に複数のシステムブロック9、10及び11〜14に分割され、各システムブロック毎に熱交換用配管群1…を地中蓄熱に使い分けることが可能に構成されていることを特徴とする。
The invention described in claim 6 is the pipe-buried structure for heat exchange of the underground heat storage system described in claim 2 or 3 ,
Among the meshes 3 defined by the continuous improvement body 2 formed in a continuous wall shape, the improvement body 2 forming the meshes 3 selected for a plurality of continuous arrangements is formed to a depth reaching the hardly permeable layer 8; The ground in the grid 3 is formed in the heat insulating layers 3b and 3c by lowering the groundwater level, and the improved body 2 divided by the heat insulating layers 3b and 3c and the heat exchanging pipe group 1 embedded therein It is divided into a plurality of system blocks 9, 10 and 11 to 14, and is configured to be able to use the heat exchanging pipe group 1 for each system block for underground heat storage.

請求項に記載した発明に係る地中蓄熱システムの熱交換用配管埋設方法は、
地中蓄熱システムの熱媒を往復流通させる熱交換用配管1を地中へ多数埋設する方法において、
地中蓄熱の対象地盤4に地盤改良工事を連続する壁状に、且つ最外周の壁状部分は平面視を閉鎖形状に施工し、造成した改良体2が固結する以前に略U字形状の熱交換用配管1を前記壁状の改良体2の中へ押し込み埋設する工程を繰り返して、多数の熱交換用配管1…を地中へ埋設することを特徴とする。
The underground heat storage system burying method for heat exchange according to the invention described in claim 7 is:
In a method of burying a large number of heat exchanging pipes 1 for reciprocating the heat medium of the underground heat storage system in the ground,
The ground improvement work on the ground 4 subject to underground heat storage is made into a continuous wall shape, and the outermost wall-like portion is constructed in a closed shape in plan view, and before the improved body 2 is solidified, it is substantially U-shaped. The heat exchanging pipe 1 is pushed into the wall-like improvement body 2 and buried, and a large number of heat exchanging pipes 1 are buried in the ground.

請求項1、2、3及び請求項に係る地中蓄熱システムの熱交換用配管埋設構造およびその埋設方法によれば、地盤の液状化対策、又は建物等の支持能力の増大を兼ねて、構造物7の下部地盤を含む広い地中蓄熱の対象地盤4の地中に、地盤改良体2を造成して熱交換用配管1を多数埋設するので、簡単、容易な手法で能率良く、必要十分に大規模(大容量)な熱交換用配管埋設構造を実現できる。 According to the underground heat storage system heat exchanging pipe embedment structure and the embedment method according to claims 1, 2 , 3, and claim 7 , the ground liquefaction countermeasures, or an increase in support capacity of buildings, etc. A large number of heat exchange pipes 1 are buried in the ground 4 of the target ground 4 for the wide underground heat storage including the lower ground of the structure 7, so that a simple and easy method is necessary and efficient. A sufficiently large-scale (large-capacity) heat exchange piping buried structure can be realized.

請求項及び請求項に係る地中蓄熱システムの熱交換用配管埋設構造およびその埋設方法によれば、連続する壁状に造成した地盤改良体2の中に熱交換用配管1を多数埋設するので、地中蓄熱システムの大規模な熱交換用配管埋設構造を実現できる。 According to the underground heat storage system burial structure and the burial method of the underground heat storage system according to claims 2 , 3 and 7 , the heat exchange pipe 1 is placed in the ground improvement body 2 formed into a continuous wall shape. Since a large number of burials are buried, a large-scale heat exchanging pipe burial structure of the underground heat storage system can be realized.

しかも、請求項1、4及び5本発明に係る地中蓄熱システムの熱交換用配管埋設構造によれば、造成した改良体2のうち、最外周の改良体部分又は壁状部分2aは、熱の出入りを遮断する断熱壁2aとして、或いは最外周の枡目3の地層を断熱層3aとして利用するので、温熱又は冷熱を効率良く蓄熱でき、利用効率を高められる。 In addition, according to the heat exchanging pipe embedded structure of the underground heat storage system according to the first, fourth, and fifth aspects of the present invention, the outermost improved body portion or the wall-shaped portion 2a of the improved body 2 is As the heat insulating wall 2a that blocks the entry / exit of the water, or the formation of the outermost mesh 3 is used as the heat insulating layer 3a, it is possible to efficiently store heat or cold, and to improve the utilization efficiency.

また、請求項の発明に係る地中蓄熱システムの熱交換用配管埋設構造によれば、連続する壁状に造成した改良体で区画される枡目の中から複数連続する配置に選択した枡目の地層を断熱層に形成して大規模な熱交換用配管埋設構造を複数のシステムブロックに分割するので、一つのシステムブロックは温熱の蓄熱に、他方のシステムブロックは冷熱の蓄熱に用いる、といった多様な蓄熱システムに使い分けることができ、効率的で使い勝手に優れた地中蓄熱システムを実現できる。 Further, according to the underground heat storage system heat exchanging pipe embedment structure according to the sixth aspect of the present invention, a plurality of contiguous arrangements are selected from among the meshes defined by the improved body formed into a continuous wall shape. Since the formation of the eye is formed into a heat insulation layer and the large-scale heat exchanging piping embedded structure is divided into a plurality of system blocks, one system block is used for heat storage, and the other system block is used for storage of cold heat. It can be used properly for various heat storage systems such as this, and an efficient and easy-to-use underground heat storage system can be realized.

地中蓄熱の対象地盤4に地盤改良工事を施工し、造成した改良体が固結する以前に略U字形状の熱交換用配管1を前記改良体2の中へ押し込み埋設する工程を繰り返して、多数の熱交換用配管1…を地中へ埋設する。   Repeat the process of constructing the ground improvement work on the target ground 4 for underground heat storage, and pushing and embedding the substantially U-shaped heat exchange pipe 1 into the improved body 2 before the improved body consolidated. A large number of heat exchange pipes 1 are buried in the ground.

以下に、本発明を図示した実施例に基づいて説明する。
図1(A)は、請求項2、3及び請求項に記載した発明の実施例である。特に云えば、地盤の液状化対策、又は建物等の支持能力の増大を兼ねて、平面視において最外周の壁状部分が閉鎖形状で、その中に格子状配置に連続する壁状に地盤改良工事が施工された地中蓄熱システムの熱交換用配管埋設構造の実施例を示している。図中符号3は、壁状の地盤改良体2で区画された枡目ないし未改良地盤地層を指す。
Hereinafter, the present invention will be described based on illustrated embodiments.
FIG. 1A shows an embodiment of the invention described in claims 2, 3 and 7 . In particular, in order to prevent ground liquefaction or to increase the support capacity of buildings, etc., the outermost wall-like part in a plan view is closed, and the ground is improved into a wall that is continuous in a grid pattern. The Example of the piping burial | buried structure for heat exchange of the underground thermal storage system where construction was constructed is shown. Reference numeral 3 in the figure indicates a square or unimproved ground strata partitioned by a wall-shaped ground improvement body 2.

図1(A)の実施例は、地中蓄熱の対象地盤4に、地盤改良工事を、平面視が格子状配置に連続する壁状に施工したもので、造成した改良体2が固結する以前に、略U字形状の熱交換用配管1を、図2に詳示したように、同熱交換用配管1の上方部分が地表に残る状態に前記改良体2の中へ押し込み埋設する工程を繰り返し、壁状に連続する改良体2の中に順に多数の熱交換用配管1…を埋設している。ここで、地中蓄熱の対象地盤4とは、通例図11のように建物直下の基礎地盤を指すが、敷地内地盤の任意の場所であってもよい。   In the embodiment of FIG. 1 (A), the ground improvement work is applied to the target ground 4 for underground heat storage in the shape of a wall that is continuous in a lattice arrangement in plan view, and the created improved body 2 is consolidated. Previously, as shown in detail in FIG. 2, the substantially U-shaped heat exchange pipe 1 is pushed into the improved body 2 so that the upper part of the heat exchange pipe 1 remains on the ground surface. Are repeated, and a large number of heat exchange pipes 1 are embedded in order in a wall-like improved body 2. Here, the target ground 4 for underground heat storage generally refers to the foundation ground directly under the building as shown in FIG. 11, but may be an arbitrary place on the ground in the site.

上記の地盤改良工事は、通例図3(A)に示す従来公知の地盤改良機5を用いて行う。図3(B)の(イ)〜(ニ)に地盤改良工事の枢要な工程を順に示したように、液状化対策若しくは建物の支持機能を確保する目的を兼ねた(但し、前記目的を兼ねることは必要条件ではない。)地盤改良を、公知の深層混合処理工法やソイルミキシングウォール工法等により行う。地盤改良機5で軟弱地盤を深度10m〜20m程度の範囲まで改良施工し、原位置の掘削土にセメントミルク等の安定材を注入し混合・攪拌して一部分がラップした柱列状の地盤改良体2を撹拌翼軸6の本数ずつ造成する。前記セメントミルク等の安定材が硬化するまでには時間を要し、地盤改良体2を造成した直後は、しばらくの間は未だ軟らかい状態を保つ。そこで前記地盤改良体2が未だ軟らかい段階で、前記のように造成した未硬化状態である前記柱列状の地盤改良体2の中へ1本ずつ(又は柱列の本数によって2本以上もあり得る。)熱交換用配管1を押し込んで埋設する。因みに、熱交換用配管1の押し込みは、具体的に図示することは省略したが、略U字形状の熱交換用配管1の下端部に補強材を取り付けて、該補強材の上に付加重量物としてH形鋼等の鋼材を載せ、更には管体の変形等を防ぐ保護材を取り付けるなどして、強制的に速やかに行う(特願2005−178556号記載の発明を参照)。なお、前記熱交換用配管1は、熱媒を往復流通させる往路と復路を有する全体としてU字形状であればよく、例えばコの字形状やH形状でもよい。   The above ground improvement work is usually performed using a conventionally known ground improvement machine 5 shown in FIG. As shown in (b) to (d) of FIG. 3 (B) in order of the important steps of the ground improvement work, it also served the purpose of securing liquefaction countermeasures or the support function of the building (however, it also served the purpose) This is not a necessary condition.) The ground is improved by a well-known deep mixing method or a soil mixing wall method. Improving the soft ground to a depth of about 10m to 20m with the ground improvement machine 5, injecting a stabilizer such as cement milk into the original excavated soil, mixing and stirring, and improving the columnar ground with partly wrapped The body 2 is created for each of the stirring blade shafts 6. It takes time for the stabilizer such as cement milk to harden, and immediately after the ground improvement body 2 is formed, it remains soft for a while. Therefore, at the stage where the ground improvement body 2 is still soft, there are two or more pieces in the columnar ground improvement body 2 in the uncured state formed as described above (or two or more depending on the number of columnar rows). ) Push in the heat exchange pipe 1 and embed it. Incidentally, the pushing of the heat exchanging pipe 1 is not specifically shown, but a reinforcing material is attached to the lower end of the substantially U-shaped heat exchanging pipe 1 and an additional weight is provided on the reinforcing material. For example, a steel material such as an H-shaped steel is placed as an object, and a protective material for preventing deformation of the pipe body is attached, forcibly and quickly. The heat exchanging pipe 1 may be U-shaped as a whole having a forward path and a return path through which the heat medium reciprocates, and may be, for example, a U-shape or an H-shape.

上記した工程を繰り返すことにより、地盤改良体2は壁状に連続させることができ、熱交換用配管1の埋設本数を列状配置に増やすことができる。したがって、地盤改良工事の規模に応じて、必要十分な本数の熱交換用配管1を埋設した、大規模な又は大容量の熱交換用配管埋設構造を容易に実現できる。   By repeating the above-described steps, the ground improvement body 2 can be made continuous in a wall shape, and the number of embedded heat exchange pipes 1 can be increased to a row arrangement. Therefore, it is possible to easily realize a large-scale or large-capacity heat exchange pipe embedded structure in which a necessary and sufficient number of heat exchange pipes 1 are embedded in accordance with the scale of ground improvement work.

因みに、図1(A)に示した大規模な熱交換用配管埋設構造の使用方法としては、全面一様に使用する場合のほか、図1(B)に模式図を示したように、図1(A)に示した熱交換用配管を例えば4つの領域15〜18に区画して、最初は領域15で地中蓄熱を行い、熱交換用配管1と同熱交換用配管1の周辺地盤との温度差が小さくなった場合には、今度は領域16で地中蓄熱を行い、次いで領域17、領域18といったように、適宜、領域15〜18を使い分けて使用することで、熱交換の効率を高めることもできる。   Incidentally, as a method of using the large-scale heat exchanging pipe buried structure shown in FIG. 1 (A), in addition to the case of using the entire surface uniformly, as shown in the schematic diagram of FIG. 1 (B), The heat exchanging pipe shown in FIG. 1A is divided into, for example, four areas 15 to 18, and first, underground heat storage is performed in the area 15, and the ground around the heat exchanging pipe 1 and the same heat exchanging pipe 1. When the temperature difference between the two is smaller, the underground heat storage is performed in the region 16 and then the regions 15 to 18 are appropriately used as in the region 17 and the region 18 so that the heat exchange is performed. Efficiency can also be increased.

もっとも、前記熱交換用配管埋設構造の実施態様は、図1に示す、平面視が格子状配置の壁状改良体に施工する方式に限らない。敷地の形状や地中蓄熱の対象地盤4の形状、或いは地盤の液状化対策、又は建物などの支持能力の増強などの目的、効果に応じて、例えば平面視において最外周の壁状部分を閉鎖形状とされた、三角形状(図4(A)参照)、四角形状(図4(B)参照)、ハニカム形状(図4(C)参照)、円形状や楕円形状(図4(D)参照)のように、多種多様に実施することができる。或いは、最外周の閉鎖形状の壁状部分を有しない、平面視が井桁形状の如き開放形状で実施することもできる(図5参照)。
更に、極端な実施例としては、壁状に連続する施工方法に限らず、図6のように、改良体を面状に連続させる全面改良の施工(請求項1記載の発明)を実施することもできる。この場合、熱交換用配管1は、図示した行列配置に埋設することに限らない。地中蓄熱システムの利便性、或いは地盤の利用形式によっては、いくつかのグループに分散した群状配置に埋設してもよい。
But the embodiment of the said heat exchanging pipe | burr embedded structure is not restricted to the system shown in FIG. Depending on the shape of the site, the shape of the target ground 4 for underground heat storage, the liquefaction countermeasure of the ground, or the enhancement of the support capacity of the building, etc., the outermost wall-like part is closed in plan view, for example Shaped, triangular (see FIG. 4A), square (see FIG. 4B), honeycomb (see FIG. 4C), circular or elliptical (see FIG. 4D) ) Can be implemented in a wide variety. Alternatively, it can be implemented in an open shape such as a cross-girder shape in plan view, which does not have an outermost closed wall-shaped portion (see FIG. 5).
Furthermore, an extreme example is not limited to the construction how continuous in a wall shape, as shown in FIG. 6, the entire surface improvement of facilities Engineering for continuous improvement body surface (the invention of claim 1 Symbol placement) It can also be implemented. In this case, the heat exchanging pipe 1 is not limited to being embedded in the illustrated matrix arrangement. Depending on the convenience of the underground heat storage system or the use form of the ground, it may be embedded in a grouped arrangement dispersed in several groups.

図7は、請求項に記載した発明の実施例である。特に云えば、熱交換用配管1を上述した平面視が格子状配置に連続する壁状に造成した改良体2のうち、最外周の壁状部分を除く内側の壁状改良体2の中へ順に、熱交換用配管1を多数埋設する。最外周の壁状部分には熱交換用配管1を埋設しないで、断熱壁2aとして構成した実施例を示している。その結果、断熱壁2aで囲まれた内部の壁状改良体2において地中蓄熱を実施するので、地中蓄熱が地下水流等によって出入りすること(熱ロス)を防止でき、温熱又は冷熱を効率良く蓄熱でき、利用効率を高めることができる。 FIG. 7 shows an embodiment of the invention described in claim 4 . In particular, out of the improved body 2 in which the heat exchanging pipe 1 is formed in a wall shape in which the plan view described above is continuous in a lattice arrangement, the inner wall-shaped improved body 2 excluding the outermost wall-shaped portion is entered. In order, a large number of heat exchange pipes 1 are buried. In the embodiment, the heat exchanging pipe 1 is not embedded in the outermost wall-like portion, and the heat insulating wall 2a is configured. As a result, underground heat storage is performed in the inner wall-shaped improvement body 2 surrounded by the heat insulating wall 2a, so that the underground heat storage can be prevented from entering and exiting due to the groundwater flow or the like (heat loss), and the heat or cold can be efficiently performed. It can store heat well and can improve utilization efficiency.

同様な考えにより、図6のように、全面改良の施工をする場合には、造成された改良体2のうち、最外周部分(例えば柱列にして1本ないし数本分程度の厚さ)を除くその内側の改良体2の中へ熱交換用配管1を多数埋設し、最外周部分を断熱層とする実施例も好ましい(請求項記載の発明)。 Based on the same idea, as shown in FIG. 6, when the entire surface is improved, the outermost peripheral portion (for example, one or several columns in thickness) of the improved body 2 that has been created. An embodiment in which a large number of heat exchanging pipes 1 are embedded in the improved body 2 on the inner side except the outermost part and the outermost peripheral portion is a heat insulating layer is also preferable (the invention of claim 1 ).

図8(A)、(B)は、請求項に記載した発明の実施例である。特に云えば、連続する壁状に造成された改良体のうち、最外周の壁状部分2a及びその内側に区画される枡目を形成する改良体2bを、図8(B)に示したように、難透水層8(例えば粘土層等)に到達する深さまで造成し、同最外周の枡目中の地盤の地下水位を低下させて断熱層3aとして構成した熱交換用配管埋設構造の実施例を示している。なお、図8(B)中の符号7は透水性(例えば礫層や砂層等)の周辺地盤を指す。
本実施例の熱交換用配管埋設構造も、上記実施例2と略同様に、断熱層3aで囲まれた内側の壁状改良体2において地中蓄熱を実施するので、地中蓄熱が地下水流等によって出入りすることを防止でき、温熱又は冷熱を効率良く蓄熱でき、利用効率を高めることができる。なお、難透水層8が地表面近傍である場合には、前記改良体2を造成する深さを考慮する必要はなく、最外周の枡目3a中の地盤の地下水位を低下させるだけでよい。因みに、地下水位を低下させる方法は、従来公知技術のディープウェル工法(重力排水)、或いはウェルポイント工法(強制排水)等で実施することができる。
FIGS. 8A and 8B show an embodiment of the invention described in claim 5 . In particular, among the improved bodies formed in a continuous wall shape, the outermost peripheral wall-shaped portion 2a and the improved body 2b that forms the cells defined inside thereof are shown in FIG. 8B. In addition, a heat exchanging pipe embedded structure constructed as a heat insulating layer 3a is formed to a depth that reaches the hardly permeable layer 8 (for example, a clay layer) and lowers the groundwater level of the ground in the outermost mesh of the same An example is shown. In addition, the code | symbol 7 in FIG. 8 (B) points out the surrounding ground of water permeability (for example, a gravel layer, a sand layer, etc.).
Since the heat exchanging pipe embedment structure of the present embodiment also performs underground heat storage in the inner wall-shaped improvement body 2 surrounded by the heat insulating layer 3a, as in the second embodiment, the underground heat storage is performed in the groundwater flow. It can prevent going in and out by etc., can store heat or cold efficiently, and can improve utilization efficiency. When the hardly water-permeable layer 8 is near the ground surface, it is not necessary to consider the depth for forming the improved body 2, and it is only necessary to lower the groundwater level of the ground in the outermost mesh 3a. . Incidentally, the method for lowering the groundwater level can be carried out by a well-known deep well method (gravity drainage) or a well point method (forced drainage).

図9(A)、(B)は、請求項に記載した発明の実施例である。特に云えば、連続する壁状に造成された改良体2で区画される枡目のうち、例えば縦一列に連続する配置に選択した枡目3bを形成する壁状改良体2c、2dを難透水層8に到達する深さまで造成し、前記枡目3b中の地盤は地下水位を低下させて断熱層3bに形成している。即ち、大規模な熱交換用配管埋設構造を前記断熱層3b(改良体2及びそこに埋設した熱交換用配管群1)を左右2つのシステムブロック9及び10に区分した実施例を示している。つまり、本実施例の熱交換用配管埋設構造によれば、区分された2つのシステムブロック9及び10は、前記断熱層3bで熱的に完全に遮断した構成なので、例えばシステムブロック9に温熱の蓄熱に、システムブロック10は冷熱の蓄熱に用いるといった効率的で使い勝手に優れた地中蓄熱システムを実現できる。因みに、上記実施例3と同様に、地表面近傍が難透水層8である場合には、造成する前記改良体2の深さを考慮する必要はない。 FIGS. 9A and 9B show an embodiment of the invention described in claim 6 . In particular, among the meshes defined by the continuous wall-like improvement body 2, for example, the wall-like improvement bodies 2c and 2d forming the grid 3b selected to be arranged continuously in a vertical row are not easily permeable. It is formed to a depth that reaches the layer 8, and the ground in the mesh 3b is formed in the heat insulating layer 3b by lowering the groundwater level. That is, an embodiment in which the heat insulating layer 3b (the improved body 2 and the heat exchanging pipe group 1 embedded therein) is divided into two left and right system blocks 9 and 10 in a large-scale heat exchanging pipe embedding structure is shown. . That is, according to the heat exchanging pipe embedment structure of the present embodiment, the divided two system blocks 9 and 10 are configured to be thermally shut off completely by the heat insulating layer 3b. For heat storage, the system block 10 can realize an efficient and easy-to-use underground heat storage system that is used for cold heat storage. Incidentally, when the ground surface vicinity is the hardly water-permeable layer 8 like the said Example 3, it is not necessary to consider the depth of the said improvement body 2 to produce.

更に、図10は、前記縦一列に選択した枡目3bを区画する壁状改良体2c、2dのほか、横一列に連続する配置に選択した枡目3cを形成する改良体2e、2fも難透水層8に到達する深さまで造成し、同枡目3c中の地盤の地下水位を低下させて断熱層を形成することで、熱交換用配管埋設構造を上下左右に4つのシステムブロック11〜14に区分した構成の実施例を示している。4つのシステムブロック11〜14を多様に使い分けることができる。勿論、上記縦一列に連続する枡目3bと横一列に連続する枡目3cをそれぞれ複数列選択して、上述した断熱層を形成することで、更に多数のブロックに区分することもできる。   Further, FIG. 10 shows difficulty in the improvement bodies 2e and 2f forming the meshes 3c selected in a continuous arrangement in addition to the wall-like improvement bodies 2c and 2d that define the grids 3b selected in the vertical row. By constructing to a depth that reaches the water permeable layer 8 and lowering the groundwater level of the ground in the same mesh 3c to form a heat insulation layer, the heat exchanging pipe buried structure is vertically and horizontally arranged in four system blocks 11-14. The embodiment of the structure divided into these is shown. The four system blocks 11 to 14 can be used in various ways. Of course, it is possible to further divide into a plurality of blocks by selecting a plurality of rows of cells 3b that are continuous in the vertical row and a row of cells 3c that are continuous in the horizontal row and forming the above-described heat insulation layer.

なお、以上に本発明の実施例を説明したが、本発明は上述した実施例に何ら限定されるものではない。本発明の要旨を逸脱しない範囲において、種々の形態で実施し得る。例えば、熱交換用配管1を壁状改良体2の縦方向又は横方向にのみ、或いは前記壁状改良体2の1列おき又は多数列おきに間隔をあけて列状配置に埋設して実施することもできる。   In addition, although the Example of this invention was described above, this invention is not limited to the Example mentioned above at all. The present invention can be implemented in various forms without departing from the gist of the present invention. For example, the heat exchange pipes 1 are embedded in a row arrangement only in the vertical or horizontal direction of the wall-shaped improvement body 2 or at intervals of every other row or every other row of the wall-like improvement body 2 You can also

(A)は請求項及び請求項に記載した発明に係る熱交換用配管埋設構造および埋設方法の実施例を示す平面図、(B)は(A)の熱交換用配管埋設構造を4つの領域に区画した模式図である。(A) is a plan view showing an embodiment of a heat exchanging pipe embedding structure and an embedding method according to the inventions of claims 2 , 3 and 7 , and (B) is a heat exchanging pipe embedding structure of (A). It is the schematic diagram which divided into 4 area | regions. 熱交換用配管を地盤改良体の中へ埋設した段階を示す立面図である。It is an elevation view which shows the step which embed | buried the pipe for heat exchange in the ground improvement body. (A)は地盤改良機の立面図、(B)における(イ)〜(ニ)は地盤改良工事の工程図である。(A) is an elevation view of the ground improvement machine, and (b) to (d) in (B) are process diagrams of the ground improvement work. (A)〜(D)は壁状改良体の異なる平面形状を示す説明図である。(A)-(D) are explanatory drawings which show the different planar shape of a wall-shaped improvement body. 平面視が井桁形状の如き開放形状の熱交換用配管埋設構造を示す平面図である。It is a top view which shows the piping embedded structure for heat exchange of open shape like a cross-beam shape in planar view. 請求項1に記載した発明に係る熱交換用配管埋設構造を示す平面図である。It is a top view which shows the piping burying structure for heat exchange which concerns on the invention described in Claim 1 . 請求項に記載した発明に係る熱交換用配管埋設構造を示す平面図である。It is a top view which shows the piping burying structure for heat exchange which concerns on the invention described in Claim 4 . 請求項に記載した発明に係る熱交換用配管埋設構造を示す平面図である。It is a top view which shows the piping burying structure for heat exchange which concerns on the invention described in Claim 5 . 請求項に記載した発明に係る熱交換用配管埋設構造を示す平面図である。It is a top view which shows the piping burying structure for heat exchange which concerns on the invention described in Claim 6 . 請求項に記載した発明に係る異なる熱交換用配管埋設構造を示す平面図である。It is a top view which shows the piping burial | buried structure for different heat exchange which concerns on the invention described in Claim 6 . 従来の地中蓄熱システムの一例を示した概略図である。It is the schematic which showed an example of the conventional underground heat storage system.

符号の説明Explanation of symbols

1 熱交換用配管
2 壁状改良体
3 枡目(未改良地盤地層)
3a 断熱層
4 対象地盤
9〜14 システムブロック
1 Heat Exchange Piping 2 Wall-shaped Improvement 3 Hokume (Unmodified Ground Formation)
3a Thermal insulation layer 4 Target ground 9-14 System block

Claims (7)

地中蓄熱システムの熱媒を往復流通させる熱交換用配管が地中へ多数埋設された構造において、
地中蓄熱の対象地盤に地盤改良工事が施工され、造成した改良体が固結する以前に、最外周部分を除く内側の改良体の中へ、略U字形状の熱交換用配管を押し込み埋設する工程を繰り返して、多数の熱交換用配管が地中へ埋設されていることを特徴とする、地中蓄熱システムの熱交換用配管埋設構造。
In the structure where many heat exchanging pipes that recirculate the heat medium of the underground heat storage system are buried in the ground,
Is construction has ground improvement work to target ground underground heat storage, before the improved body was constructed to consolidate, into the inside of the improved body except for the outermost peripheral portion, and press the heat exchange pipe substantially U-shaped The heat exchanging pipe burying structure of the underground heat storage system is characterized in that a large number of heat exchanging pipes are buried in the ground by repeating the embedding process.
地中蓄熱システムの熱媒を往復流通させる熱交換用配管が地中へ多数埋設された構造において、
地中蓄熱の対象地盤に地盤改良工事が連続する壁状に、且つ最外周の壁状部分は平面視を閉鎖形状に施工され、造成した改良体が固結する以前に略U字形状の熱交換用配管を前記壁状の改良体の中へ押し込み埋設する工程を繰り返して、多数の熱交換用配管が地中へ埋設されていることを特徴とする、地中蓄熱システムの熱交換用配管埋設構造。
In the structure where many heat exchanging pipes that recirculate the heat medium of the underground heat storage system are buried in the ground,
The wall shape where the ground improvement work is continued on the target ground for underground heat storage, and the outermost wall part is closed in plan view. The heat exchanging pipe of the underground heat storage system is characterized in that a large number of heat exchanging pipes are buried in the ground by repeating the process of pushing and embedding the replacement pipes into the wall-like improved body. Buried structure.
地中蓄熱システムの熱媒を往復流通させる熱交換用配管が地中へ多数埋設された構造において、
地中蓄熱の対象地盤に地盤改良工事が平面視を格子状配置に連続する壁状に施工され、造成した改良体が固結する以前に略U字形状の熱交換用配管を前記壁状の改良体の中へ押し込み埋設する工程を繰り返して、多数の熱交換用配管が地中へ埋設されていることを特徴とする、地中蓄熱システムの熱交換用配管埋設構造。
In the structure where many heat exchanging pipes that recirculate the heat medium of the underground heat storage system are buried in the ground,
Ground improvement work is applied to the ground subject to underground heat storage in the shape of a wall that continues in a grid arrangement in plan view, and before the improved body is consolidated, the substantially U-shaped heat exchange pipe is A heat exchanging pipe burying structure for an underground heat storage system, wherein a number of heat exchanging pipes are buried in the ground by repeating the process of being pushed into the improved body and buried.
熱交換用配管は、造成された改良体のうち、最外周の壁状部分を除く内側の壁状改良体の中へ多数埋設されていることを特徴とする、請求項又はに記載した地中蓄熱システムの熱交換用配管埋設構造。 4. The heat exchanging pipe is embedded in the inner wall-like improvement body excluding the outermost wall-like portion among the created improvement bodies, according to claim 2 or 3 . Piping structure for heat exchange of underground heat storage system. 連続する壁状に造成された改良体のうち、最外周の壁状部分及びその内側に区画される枡目を形成する改良体は難透水層に到達する深さまで造成され、同最外周の枡目中の地盤は地下水位を低下させて断熱層に形成されていることを特徴とする、請求項又はに記載した地中蓄熱システムの熱交換用配管埋設構造。 Of the improvements made in a continuous wall shape, the outermost wall-like portion and the improvement forming the meshes defined inside are formed to a depth reaching the hardly permeable layer, The underground structure for heat exchange in an underground heat storage system according to claim 2 or 3 , wherein the ground in the center is formed in a heat insulating layer by lowering the groundwater level. 連続する壁状に造成された改良体で区画される枡目のうち、複数連続する配置に選択した枡目を形成する改良体は難透水層に到達する深さまで造成され、前記枡目中の地盤は地下水位を低下させて断熱層に形成され、前記断熱層によって区分される改良体及びそこに埋設した熱交換用配管群毎に複数のシステムブロックに分割され、各システムブロック毎に熱交換用配管群を地中蓄熱に使い分けることが可能に構成されていることを特徴とする、請求項又はに記載した地中蓄熱システムの熱交換用配管埋設構造。 Among the meshes defined by the improvement body formed in a continuous wall shape, the improvement body forming the meshes selected for a plurality of continuous arrangements is formed to a depth reaching the hardly permeable layer, The ground is formed in a heat insulating layer by lowering the groundwater level, and divided into a plurality of system blocks for each of the improved body divided by the heat insulating layer and the heat exchanging piping group embedded therein, and heat exchange is performed for each system block. characterized in that it selectively using use pipe group underground heat storage is configured to be, according to claim 2 or 3 heat exchanging pipe buried structure of the underground heat storage system described. 地中蓄熱システムの熱媒を往復流通させる熱交換用配管を地中へ多数埋設する方法において、
地中蓄熱の対象地盤に地盤改良工事を連続する壁状に、且つ最外周の壁状部分は平面視を閉鎖形状に施工し、造成した改良体が固結する以前に略U字形状の熱交換用配管を前記壁状の改良体の中へ押し込み埋設する工程を繰り返して、多数の熱交換用配管を地中へ埋設することを特徴とする、地中蓄熱システムの熱交換用配管埋設方法。
In a method of burying a large number of heat exchange pipes that reciprocate the heat medium of the underground heat storage system into the ground,
The ground improvement work is continued on the ground subject to underground heat storage, and the outermost wall part is closed in a plan view. Before the improved body is solidified, the heat is approximately U-shaped. A method for burying heat exchange pipes in an underground heat storage system, characterized in that a large number of heat exchange pipes are buried in the ground by repeating the process of pushing and burying the replacement pipes into the wall-like improved body. .
JP2005189025A 2005-06-28 2005-06-28 Piping burial structure for heat exchange of underground heat storage system and burial method Expired - Fee Related JP4625726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005189025A JP4625726B2 (en) 2005-06-28 2005-06-28 Piping burial structure for heat exchange of underground heat storage system and burial method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005189025A JP4625726B2 (en) 2005-06-28 2005-06-28 Piping burial structure for heat exchange of underground heat storage system and burial method

Publications (2)

Publication Number Publication Date
JP2007010183A JP2007010183A (en) 2007-01-18
JP4625726B2 true JP4625726B2 (en) 2011-02-02

Family

ID=37748937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005189025A Expired - Fee Related JP4625726B2 (en) 2005-06-28 2005-06-28 Piping burial structure for heat exchange of underground heat storage system and burial method

Country Status (1)

Country Link
JP (1) JP4625726B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10450954B2 (en) 2016-03-17 2019-10-22 General Electric Company Internally heated engine inlet screen for aircraft engines
EP3321424B1 (en) * 2016-11-11 2021-09-29 BAUER Spezialtiefbau GmbH Foundation element and procedure to produce of a foundation element
JP7221815B2 (en) * 2019-06-20 2023-02-14 三井住友建設株式会社 Thermal insulation structure of thermal storage tank

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172558A (en) * 2001-12-03 2003-06-20 Honmagumi:Kk Heat exchanging device for underground wall and its constructing method
JP2004101115A (en) * 2002-09-11 2004-04-02 Nippon Steel Corp Underground heat exchange system using underground continuous wall

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172558A (en) * 2001-12-03 2003-06-20 Honmagumi:Kk Heat exchanging device for underground wall and its constructing method
JP2004101115A (en) * 2002-09-11 2004-04-02 Nippon Steel Corp Underground heat exchange system using underground continuous wall

Also Published As

Publication number Publication date
JP2007010183A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP2006349295A (en) Method of burying pipe for heat exchange
CN105040679A (en) Heat transfer pipe embedded in prefabricated pipe piles and embedding method of heat transfer pipe
JP2008292044A (en) Natural heat hybrid soil thermal storage system
JP4625726B2 (en) Piping burial structure for heat exchange of underground heat storage system and burial method
JP2011214798A (en) Underground heat exchanger using temporary underground continuous wall and method of constructing the same
KR200480326Y1 (en) Box type Geothermal Heat Exchanger
KR101650231B1 (en) Construction structures with wave power generator of semipermeable breakwater
KR100985854B1 (en) Method for constructing grouting of closed-loop vertical ground heat exchanger
JP4906931B2 (en) Civil engineering block
KR100654151B1 (en) Geothermal exchanger using hollow of pile and method of construction thereof
CN111636404B (en) Construction method of offshore wind power compacted sand pile foundation bed
JP2004101115A (en) Underground heat exchange system using underground continuous wall
JP4609946B2 (en) Underground heat storage system and reserve water source for seasonal energy use
CN203741852U (en) Tubular groundwater drainage and seepage blind ditch
CN215252932U (en) Deep foundation pit PC steel pipe combination Larsen steel sheet pile double row pile supporting system
JP5638111B2 (en) Construction method of underground heat exchanger
CN114687321A (en) Construction method of energy dissipation type gabion retaining wall revetment structure
JP4504864B2 (en) Dam body reinforcement structure with wave-dissipating function
DE102011114158A1 (en) Floating energy self-sufficient platforms and methods for their production
KR101457388B1 (en) Method for construction of ground heat exchanger system using floor space of the underground structures
KR101091316B1 (en) Head cap device of energy pile type earth tube heat exchanger
WO2009144693A1 (en) Construction of a tidal wall
KR20020056430A (en) An air conditioning system using the heat of the earth and method of constructing a large heat-exchanging pipe
KR20100035778A (en) Improvement surface processing method of construction of the very soft ground
RU2583107C1 (en) Cooling structure for earth structures on permanently frozen soils and erection method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

R150 Certificate of patent or registration of utility model

Ref document number: 4625726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees