JP2006349295A - Method of burying pipe for heat exchange - Google Patents

Method of burying pipe for heat exchange Download PDF

Info

Publication number
JP2006349295A
JP2006349295A JP2005178556A JP2005178556A JP2006349295A JP 2006349295 A JP2006349295 A JP 2006349295A JP 2005178556 A JP2005178556 A JP 2005178556A JP 2005178556 A JP2005178556 A JP 2005178556A JP 2006349295 A JP2006349295 A JP 2006349295A
Authority
JP
Japan
Prior art keywords
heat exchange
pipe
ground
improvement body
exchange pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005178556A
Other languages
Japanese (ja)
Inventor
Yuichi Komura
雄一 甲村
Masamichi Aoki
雅路 青木
Toshio Yonezawa
敏男 米澤
Yoshiaki Higuchi
祥明 樋口
Tomohiro Kuroki
友裕 黒木
Takuro Kikuchi
卓郎 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2005178556A priority Critical patent/JP2006349295A/en
Publication of JP2006349295A publication Critical patent/JP2006349295A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/53Methods for installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of burying a pipe for heat exchange into a soil improvement body, using the soil improvement body for land formation as the purpose of earth retaining, a liquefaction countermeasure, or securing of a support function of a building. <P>SOLUTION: A stabilizing material such as cement milk is mixed/stirred with a drilled soil in an original position to form a soil improver 7. The pipe for heat exchange 1 is pressed into the soil improver 7 together with an additional heavy load 2 in a stage where the soil improver 7 is not yet hardened to be soft. The additional heavy load 2 is extracted from the underground onto the ground after the pipe for heat exchange 1 reaches a prescribed depth. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、地盤の熱容量を利用して蓄熱した熱エネルギー(冷熱又は温熱)を、必要なときに回収して有効利用する熱交換用配管を地盤中へ埋設する方法の技術分野に属し、更に云えば、山留め又は液状化対策若しくは建物の支持機能の確保を目的として造成する地盤改良体を利用してその中へ埋設する方法に関する。   This invention belongs to the technical field of a method of burying heat exchange pipes in the ground for recovering and effectively using the heat energy (cold heat or heat) stored by utilizing the heat capacity of the ground, That is, the present invention relates to a method of embedding in a ground improvement body constructed for the purpose of securing a mountain or liquefaction measures or supporting a building.

従来、地盤の熱容量を利用することで、例えば昼間や夏期に利用価値の少ない廃熱(温熱)を地中へ蓄熱し、夜間や冬期の暖房、或いは冬期の融雪の熱源に利用することが行われている。逆に夜間や冬期の冷熱を蓄熱し、昼間や夏期の冷房に利用することで、省エネルギー化や環境負荷低減に役立てることが実施されている。例えば図8に示した地中蓄熱システムは、熱交換用配管a…を構造物cの下部地中内部bに、その構造物cの敷地範囲内で、並列に複数埋設した構成である。埋設した各熱交換用配管a…の端部は、送水管dと還水管eとでそれぞれ連結している。前記送水管d及び還水管eは、熱交換器f及び熱源機gを介して、各フロアーの空調機h…および屋上に設置した水冷装置(クーリングタワー)iと接続した構成である。なお、発電の際に生じる熱エネルギーを再度発電に利用する、所謂コージェネレーション設備を実施する場合には、前記熱交換器に代わり発電機及びボイラーを送水管及び還水管に接続する。   Conventionally, by utilizing the heat capacity of the ground, for example, waste heat (heat) with little utility value can be stored in the ground during the daytime or summer, and used as a heat source for nighttime or winter heating, or for melting snow in the wintertime. It has been broken. On the other hand, cold energy at night and winter is stored and used for cooling in the daytime and summer, which is used to save energy and reduce environmental impact. For example, the underground heat storage system shown in FIG. 8 has a configuration in which a plurality of heat exchange pipes a are embedded in parallel in the lower underground portion b of the structure c within the site area of the structure c. The end portions of the buried heat exchange pipes a are connected by a water supply pipe d and a return water pipe e, respectively. The water supply pipe d and the return water pipe e are connected to an air conditioner h of each floor and a water cooling device (cooling tower) i installed on the roof via a heat exchanger f and a heat source machine g. In addition, when implementing what is called a cogeneration facility which uses again the heat energy which arises in power generation for power generation, a generator and a boiler are connected to a water supply pipe and a return pipe instead of the heat exchanger.

図示したような地中蓄熱システムを実施するため、地中の蓄熱エネルギーを回収するための熱交換用配管を地盤中に埋設する方法が種々開発されており、既に実用に供されている。例えば、下記の特許文献1〜4には、熱交換用配管を埋設するための目的で、例えばボーリング掘削機械で地盤を掘削して孔を形成し、該掘削孔の中へ熱交換用配管を挿入して地中に埋設する方法が開示されている。
特許文献5には、原位置の掘削土にセメントミルク等の安定材を注入し混合・攪拌して地盤改良体を造成し、地盤改良体が未だ硬化せず軟らかい段階で、水道管やガス導管等に使用する目的で横に寝かせた直管を所定の位置まで挿入して埋設する方法が開示されている。
In order to implement the underground heat storage system as shown in the figure, various methods for embedding heat exchanging pipes for recovering underground heat storage energy in the ground have been developed and are already in practical use. For example, in the following Patent Documents 1 to 4, for the purpose of burying heat exchange piping, for example, a hole is formed by excavating the ground with a boring excavating machine, and the heat exchange piping is inserted into the excavation hole. A method of inserting and embedding in the ground is disclosed.
According to Patent Document 5, a stabilizer such as cement milk is poured into in-situ excavated soil, mixed and stirred to form a ground improvement body, and the ground improvement body is not yet hardened and is in a soft stage. A method of inserting and burying a straight pipe laid down for the purpose of use to a predetermined position is disclosed.

特開2003−82970号公報JP 2003-82970 A 特開2001−174073号公報JP 2001-174073 A 特開平11−336008号公報JP-A-11-336008 特開平11−182942号公報Japanese Patent Application Laid-Open No. 11-182942 特開2001−164638号公報JP 2001-164638 A

上記特許文献1〜4に開示された埋設方法は、熱交換用配管を埋設する目的のために、わざわざボーリング掘削機械を使用して地盤を掘削するので、その掘削に掛かる費用の負担が大きい。   Since the embedding methods disclosed in Patent Documents 1 to 4 purposely excavate the ground using a boring excavating machine for the purpose of embedding a heat exchange pipe, the burden of the cost for the excavation is large.

特許文献5に開示された埋設方法は、地盤改良体の中へ配管を埋設する点を注目できるが、主に水道管やガス導管等を埋設することを目的としているにすぎず、熱媒を往復流通させる、熱交換用配管を埋設する方法を開示したものではない。   Although the embedding method disclosed in Patent Document 5 can pay attention to the point of embedding piping in the ground improvement body, it is only intended to embed water pipes, gas conduits, etc. It does not disclose a method of burying heat exchange pipes that reciprocate.

本発明の目的は、熱交換用配管を埋設する目的のためだけでなく、山留め又は液状化対策若しくは建物の支持機能の確保を目的として造成する地盤改良体の中へ、熱媒を往復流通させる全体としてU字形状の熱交換用配管を地中へ埋設する方法を提供することであり、施工費用の負担を大幅に削減すると共に、施工性に優れた熱交換用配管の埋設方法を提供することである。   The object of the present invention is to recirculate the heat medium not only for the purpose of burying the heat exchange pipe but also into the ground improvement body created for the purpose of securing the retaining function or liquefaction measures or the support function of the building. It is to provide a method for embedding U-shaped heat exchange pipes in the ground as a whole, providing a method for burying heat exchange pipes with excellent workability while greatly reducing the burden of construction costs. That is.

上記の課題を解決するための手段として、請求項1に記載した発明に係る熱交換用配管の埋設方法において、
熱媒を往復流通させる略U字形状の熱交換用配管1を地中へ埋設する方法であって、
原位置の掘削土にセメントミルク等の安定材を注入し混合・攪拌して地盤改良体7を造成し、前記地盤改良体7が未だ硬化せず軟らかい段階で、前記熱交換用配管1を鋼材等の付加重量物2と共に地盤改良体7の中へ押し込み、前記熱交換用配管1が所定の深度に達した後に、前記鋼材等の付加重量物2を地中から地上へ引き上げ回収することを特徴とする。
As a means for solving the above problems, in the method for burying heat exchange pipe according to the invention described in claim 1,
A method of embedding a substantially U-shaped heat exchange pipe 1 for reciprocating a heat medium into the ground,
A stabilizer such as cement milk is poured into the original excavated soil, mixed and stirred to form a ground improvement body 7, and when the ground improvement body 7 is still hard and soft, the heat exchange pipe 1 is made of steel. After being pushed into the ground improvement body 7 together with the additional weight object 2 such as the heat exchange pipe 1 has reached a predetermined depth, the additional weight object 2 such as the steel material is lifted from the ground to the ground and recovered. Features.

請求項2に記載した発明は、請求項1に記載した熱交換用配管の埋設方法おいて、
熱交換用配管1の下端部に前記付加重量物2を載置して、又は熱交換用配管1の下端部に突起部8を設けて該突起部8へ付加重量物2を掛止めて熱交換用配管1を地盤改良体7の中へ押し込むことを特徴とする。
The invention described in claim 2 is the method for burying heat exchange pipes described in claim 1,
The additional weight 2 is placed on the lower end of the heat exchanging pipe 1 or the protrusion 8 is provided on the lower end of the heat exchanging pipe 1 to hook the additional heavy object 2 on the protrusion 8 and heat The replacement pipe 1 is pushed into the ground improvement body 7.

請求項3に記載した発明は、請求項1に記載した熱交換用配管の埋設方法において、
熱交換用配管1の下端部に補強材3を取付け、該補強材3の上に付加重量物2を載置して、又は補強材3に突起部8を設けて該突起部8へ付加重量物2を掛止めて熱交換用配管1を地盤改良体7の中へ押し込むことを特徴とする。
According to a third aspect of the present invention, in the method for burying a heat exchange pipe according to the first aspect,
A reinforcing material 3 is attached to the lower end of the heat exchanging pipe 1 and an additional weight 2 is placed on the reinforcing material 3 or a protruding portion 8 is provided on the reinforcing material 3 to add an additional weight to the protruding portion 8. The object 2 is hooked and the heat exchange pipe 1 is pushed into the ground improvement body 7.

請求項4に記載した発明は、請求項1〜3のいずれか一に記載した熱交換用配管の埋設方法おいて、
熱交換用配管1の管内部へ付加重量物2を兼ねて水を充填し、鋼材等の付加重量物2と共に前記熱交換用配管1を地盤改良体7の中へ押し込み、熱交換用配管1が所定の深度に達した後、前記鋼材等の付加重量物2を地中から地上へ引き上げて回収し、前記管内の水は熱交換用配管1の管内部に残したままにして該水の重量で地盤改良体内7における熱交換用配管1の埋設状態を安定化させることを特徴とする。
The invention described in claim 4 is the method for burying a heat exchange pipe according to any one of claims 1 to 3,
The inside of the pipe for heat exchange 1 is filled with water as an additional weight 2, and the heat exchange pipe 1 is pushed into the ground improvement body 7 together with the additional weight 2 such as steel, and the heat exchange pipe 1 After reaching a predetermined depth, the additional weight 2 such as steel is lifted from the ground to the ground and collected, and the water in the pipe is left in the pipe of the heat exchange pipe 1 and the water is removed. The embedded state of the heat exchange pipe 1 in the ground improvement body 7 is stabilized by weight.

本発明の埋設方法によれば、山留め又は液状化対策若しくは建物の支持機能の確保を目的として施工した地盤改良体7が未だ硬化せず軟らかい段階で、その中へ熱媒を往復流通させる略U字形状の熱交換用配管1を押し込み埋設するので、熱交換用配管1を埋設する目的のためにわざわざ地盤を改良する手間と費用が省けて、施工費用の負担を大幅に削減することができる。熱交換用配管1は鋼材等の付加重量物2を利用して強制的に所定深度まで押し込むので、地盤改良体7による抵抗にも十分強力に確実に速やかに押し込むことができ、施工性に優れている。また、使用した鋼材等の付加重量物2は用済み後には地上に引き上げて回収し、更に転用するので、鋼材等のコスト負担も少なくて済む。   According to the embedding method of the present invention, the ground improvement body 7 constructed for the purpose of securing a mountain or liquefaction countermeasures or ensuring the support function of a building is not yet hardened, and in a soft stage, the heating medium is reciprocated through the U Since the heat exchange pipe 1 is pushed in and embedded, the labor and cost of improving the ground for the purpose of burying the heat exchange pipe 1 can be saved, and the burden of construction costs can be greatly reduced. . The heat exchanging pipe 1 is forcibly pushed to a predetermined depth by using an additional heavy object 2 such as a steel material, so that it can be pushed into the resistance by the ground improvement body 7 sufficiently strongly and surely and has excellent workability. ing. Moreover, since the additional weights 2 such as used steel materials are used up and collected after being used, and further diverted, the cost burden of the steel materials can be reduced.

原位置の掘削土にセメントミルク等の安定材を注入し混合・攪拌して地盤改良体7を造成し、前記地盤改良体7が未だ硬化せず軟らかい段階で、前記熱交換用配管1を鋼材等の付加重量物2と共に地盤改良体7の中へ押し込み、前記熱交換用配管1が所定の深度に達した後に、前記鋼材等の付加重量物2を地中から地上へ引き上げ回収する。   A stabilizer such as cement milk is poured into the original excavated soil, mixed and stirred to form a ground improvement body 7, and when the ground improvement body 7 is still hard and soft, the heat exchange pipe 1 is made of steel. After being pushed into the ground improvement body 7 together with the additional weight object 2 such as the above, the heat exchange pipe 1 reaches a predetermined depth, and then the additional weight object 2 such as the steel material is pulled up from the ground to the ground and recovered.

以下に、本発明を図示した実施例に基づいて説明する。
図1(A)は、従来公知の地盤改良機5による施工図を示す。そして、図1(B)の(イ)〜(ニ)は、前記地盤改良機5を用いて、山留め又は液状化対策若しくは建物の支持機能を確保する地盤改良を、周知の深層混合処理工法やソイルミキシングウォール工法等により実施する枢要な工程を順に示している。即ち、地盤改良機5で軟弱地盤6を深度10m〜20m程度の範囲まで改良施工し、原位置の掘削土にセメントミルク等の安定材を注入し混合・攪拌して地盤改良体7を造成する。前記セメントミルク等の安定材が硬化するまでには時間を要し、地盤改良体7を造成した直後は、しばらくの間は未だ硬化せず軟らかい状態である。そこで図2に示したように、前記地盤改良体7が未だ硬化せず軟らかい段階で、前記未硬化状態の地盤改良体7の中へ、熱媒を往復流通させる略U字形状の熱交換用配管1を、その上方部分の一部分が地表に残る状態に埋設する。
Hereinafter, the present invention will be described based on illustrated embodiments.
FIG. 1A shows a construction drawing by a conventionally known ground improvement machine 5. And (i)-(d) of FIG. 1 (B) uses the said ground improvement machine 5, the ground improvement which secures the retaining function or liquefaction measures, or the support function of a building, a well-known deep-mixing processing method, The key steps to be implemented by the soil mixing wall method are shown in order. That is, the ground improvement machine 5 is used to improve the soft ground 6 to a depth of about 10 m to 20 m, and a ground improvement body 7 is formed by injecting a stabilizer such as cement milk into the original excavated soil and mixing and stirring. . It takes time for the stabilizer such as cement milk to harden. Immediately after the ground improvement body 7 is formed, it is not hardened for a while and is in a soft state. Therefore, as shown in FIG. 2, when the ground improvement body 7 is not yet hardened and is soft, a substantially U-shaped heat exchange for recirculating a heat medium into the unhardened ground improvement body 7 is provided. The pipe 1 is embedded in a state where a part of the upper part remains on the ground surface.

図3(A)〜(D)は、本発明の方法を実施する準備として、前記熱交換用配管1の下端部に保護をも兼ねる鉄板等の補強材3を溶接して補強して、同補強材3の上に付加重量物としてのH形鋼2aを載置した状態を示す。また、図4は、熱交換用配管1の下端部の両側に鉄板等の補強材3、3を溶接により挟み着ける配置に補強し、前記補強材3の上に付加重量物としてのH形鋼2aを載せた状態を示す。本発明は、前記熱交換用配管1をH形鋼2aと共にその全体をクレーンで地盤改良体7の中へ吊り込み、前記H形鋼2aの重量を利用して地盤改良体7の中へ押し込む(請求項3記載の発明)。なお、熱交換用配管1の下端部が強度を有する場合には、前記補強材3を設けることなく、熱交換用配管1の下端部に付加重量物を直接載置して熱交換用配管1を地盤改良体7の中へ押し込んでもよい(請求項2記載の発明)。前記付加重量物は、図5に示した溝形鋼2bのほか、図示は省略したが厚手の鉄板でもよい。かくすると、熱交換用配管1は地盤改良体7の抵抗に負けることなく、十分強力に確実に速やかに押し込むことができる。更に、保護を兼ねて補強材3で補強した下端部は、H形鋼2aの重量や造成した地盤改良体7に含まれた小石等との接触が原因で変形したり破損する心配がない。
但し、前記H形鋼2aは熱交換用配管1の前記補強材3に載せる方法に限らない。図6(A)、(B)に示したように熱交換用配管1に突起部8を設け、又は図6(C)に示したように補強材3に突起部8を設け、該突起部8に付加重量物2を掛止めて熱交換用配管1を地盤改良体7の中へ押し込む方法を実施することもできる。
なお、前記付加重量物は鋼材2aや2bに限らない。例えばプレキャスト部材等でもよく、要するに熱交換用配管1を地盤改良体7の抵抗に負けることなく強力に押し込むことができる重量と強度、剛性を有するものであればよい。
3 (A) to 3 (D) show, as preparations for carrying out the method of the present invention, a reinforcing material 3 such as an iron plate that also serves as a protection is welded to the lower end of the heat exchanging pipe 1 for reinforcement. The state which mounted the H-section steel 2a as an additional weight thing on the reinforcing material 3 is shown. Further, FIG. 4 shows that the reinforcing members 3, 3 such as iron plates are reinforced by welding on both sides of the lower end portion of the heat exchanging pipe 1, and the H-shaped steel as an additional weight is placed on the reinforcing member 3. The state which mounted 2a is shown. In the present invention, the heat exchanging pipe 1 together with the H-shaped steel 2a is suspended in the ground improvement body 7 by a crane and is pushed into the ground improvement body 7 by using the weight of the H-shaped steel 2a. (Invention of Claim 3). In addition, when the lower end part of the heat exchange pipe 1 has strength, the additional material is directly placed on the lower end part of the heat exchange pipe 1 without providing the reinforcing material 3, and the heat exchange pipe 1. May be pushed into the ground improvement body 7 (the invention according to claim 2). In addition to the channel steel 2b shown in FIG. 5, the additional weight may be a thick iron plate, although not shown. In this way, the heat exchanging pipe 1 can be pushed in quickly and sufficiently powerfully without losing the resistance of the ground improvement body 7. Further, the lower end portion reinforced with the reinforcing material 3 also serves as a protection, and there is no fear that the lower end portion is deformed or broken due to the weight of the H-shaped steel 2a or contact with pebbles included in the ground improvement body 7 formed.
However, the H-section steel 2a is not limited to the method of placing on the reinforcing material 3 of the heat exchange pipe 1. As shown in FIGS. 6A and 6B, the protrusion 8 is provided on the heat exchanging pipe 1, or the protrusion 8 is provided on the reinforcing member 3 as shown in FIG. It is also possible to carry out a method in which the additional heavy object 2 is hooked on 8 and the heat exchange pipe 1 is pushed into the ground improvement body 7.
The additional weight is not limited to the steel materials 2a and 2b. For example, it may be a precast member or the like, and in short, any material may be used as long as it has a weight, strength, and rigidity that allow the heat exchange pipe 1 to be pushed in strongly without losing the resistance of the ground improvement body 7.

前記熱交換用配管1の材質は、ステンレス管、鋼管又は銅管のように熱伝導率の大きいものが好適であるが、塩化ビニル管やポリエチレン管等の場合でも問題なく埋設できる。   The heat exchange pipe 1 is preferably made of a material having a high thermal conductivity such as a stainless steel pipe, a steel pipe or a copper pipe, but can be embedded without problems even in the case of a vinyl chloride pipe or a polyethylene pipe.

前記熱交換用配管1の形状は、全体として熱媒を往復流通させる往路と復路を有するU字形状であればよく、例えばコの字形状やH字形状の配管でもよい。   The shape of the heat exchanging pipe 1 may be a U shape having a forward path and a return path through which the heat medium reciprocates as a whole. For example, a U-shaped pipe or an H-shaped pipe may be used.

地盤改良体7の中へ押し込んだ前記熱交換用配管1が所定の深度に達した後に、前記H形鋼2aのみをクレーンで地中から地上へ引き上げて回収し、熱交換用配管1は地盤改良体7の中へ設計通りの姿勢で埋設する。つまり、H形鋼2aは、単に熱交換用配管1を地上から強制的に押し込む役割のものであり、用済み後には地上に引き上げて回収し、更に転用する。よってH形鋼2aのコストの負担は少なくて済む。   After the heat exchanging pipe 1 pushed into the ground improvement body 7 reaches a predetermined depth, only the H-shaped steel 2a is recovered by lifting it from the ground to the ground with a crane. Embed the modified body 7 in the posture as designed. In other words, the H-section steel 2a simply has a role of forcibly pushing the heat exchange pipe 1 from the ground, and after being used, it is pulled up to the ground to be recovered and further diverted. Therefore, the cost burden of the H-section steel 2a can be reduced.

前記地盤改良体7による浮力の大きさが問題となる場合には、熱交換用配管1の管内部へ付加重量物2を兼ねて水を充填し、付加重量物としたH形鋼2aと共に前記熱交換用配管1を地盤改良体の中へ押し込む方法を実施する。前記熱交換用配管1が所定の深度に達した後、H形鋼2aは引き上げるが、前記管内の水は熱交換用配管1の管内部に残したままにして、同水の重量で地盤改良体7内における熱交換用配管1の埋設状態を安定化させ、また、管体の変形を防止する(請求項4記載の発明)。   When the size of the buoyancy due to the ground improvement body 7 becomes a problem, the inside of the pipe for heat exchange 1 is filled with water as an additional weight 2 and the H-section steel 2a used as the additional weight is added to the above. A method of pushing the heat exchange pipe 1 into the ground improvement body is carried out. After the heat exchanging pipe 1 reaches a predetermined depth, the H-section steel 2a is pulled up, but the water in the pipe is left inside the pipe of the heat exchanging pipe 1 and the ground is improved by the weight of the water. The embedded state of the heat exchanging pipe 1 in the body 7 is stabilized and the deformation of the pipe body is prevented (the invention according to claim 4).

上記方法の施工に先立ち、予め熱交換用配管1の上端の両開口部へ例えばプラスチック等で成型された上蓋をガムテープ等の接着手段で塞ぎ熱交換用配管1の内部を完全に密閉した状態にしておくと、砂利や泥等の異物が施工中或いは施工後に熱交換用配管1の管内部へ進入することを防止できる。   Prior to the construction of the above method, the upper lid molded with plastic or the like is closed in advance on both openings at the upper end of the heat exchanging pipe 1 with an adhesive means such as gum tape so that the inside of the heat exchanging pipe 1 is completely sealed. In this case, foreign matter such as gravel and mud can be prevented from entering the pipe of the heat exchanging pipe 1 during or after the construction.

本発明の埋設方法は、山留め又は液状化対策若しくは建物の支持機能の確保を目的として施工する地盤改良体7を利用するので、熱交換用配管1を埋設するためにわざわざ地盤を掘削する手間が省け、施工費用の負担を大幅に削減できる。   Since the embedding method of the present invention uses the ground improvement body 7 which is constructed for the purpose of securing a mountain or liquefaction countermeasures or the support function of a building, it is troublesome to excavate the ground in order to embed the heat exchange pipe 1. It can save, and the burden of construction cost can be greatly reduced.

図7は、複数本の熱交換用配管1を一気に設計通りの姿勢、並びで前記地盤改良体7の内部へ埋設する方法の実施例を示している。本実施例で埋設する熱交換用配管1は、埋設する前段階として複数並列させた各熱交換用配管1の複数箇所を治具4で繋ぎ連結する。付加重量物として使用するH形鋼2aには、形成した1組の熱交換用配管1…の横幅よりも少し長めのウェブを有するものを使用する。かくすると、複数の熱交換用配管1を埋設する場合に、施工の手間が省け、工期の短縮に寄与する。   FIG. 7 shows an embodiment of a method for embedding a plurality of heat exchange pipes 1 at once in a posture as designed and arranged inside the ground improvement body 7. The heat exchanging pipes 1 to be embedded in the present embodiment are connected by connecting a plurality of locations of the heat exchanging pipes 1 arranged in parallel as a stage before being embedded with a jig 4. As the H-section steel 2a used as the additional weight, one having a web slightly longer than the width of the formed pair of heat exchange pipes 1 ... is used. Thus, when a plurality of heat exchange pipes 1 are embedded, the labor of construction is saved, which contributes to shortening the construction period.

なお、以上に本発明の実施例を説明したが、本発明のこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の形態で実施し得る。   In addition, although the Example of this invention was described above, it is not limited to such an Example of this invention at all, In the range which does not deviate from the summary of this invention, it can implement with a various form.

(A)は地盤改良機の施工図、(B)における(イ)〜(ニ)は地盤改良工事の枢要な工程を示す説明図である。(A) is a construction drawing of the ground improvement machine, (i) ~ (d) in (B) is an explanatory diagram showing the key steps of the ground improvement construction. 熱交換用配管を地盤改良体の中へ埋設した段階を示す立面図である。It is an elevation view which shows the step which embed | buried the pipe for heat exchange in the ground improvement body. (A)〜(D)は補強材の上にH形鋼を載せた熱交換用配管の斜視図、立断面図、側面図及び平面図である。(A)-(D) are the perspective view of the piping for heat exchange which mounted H-section steel on the reinforcing material, an elevational sectional view, a side view, and a top view. 図3と異なる補強材の上にH形鋼を載せた熱交換用配管の斜視図である。It is a perspective view of piping for heat exchange which mounted H-section steel on the reinforcing material different from FIG. 付加重量物としての溝形鋼を熱交換用配管に載置した実施例を示す斜視図である。It is a perspective view which shows the Example which mounted the grooved steel as an additional weight thing in piping for heat exchange. (A)は熱交換用配管に設けた突起部に付加重量物を載置した実施例を示す斜視図、(B)は(A)と異なる突起部に付加重量物を載置した実施例を示す斜視図、(C)は補強材に設けた突起部に付加重量物を載置した実施例を示す斜視図である。(A) is a perspective view showing an embodiment in which an additional weight is placed on a protrusion provided on a heat exchange pipe, and (B) is an embodiment in which an additional weight is placed on a protrusion different from (A). (C) is a perspective view showing an embodiment in which an additional weight is placed on a protrusion provided on a reinforcing material. (A)、(B)は複数箇所を治具で繋ぎ連結した熱交換用配管を示す正面図及び平面図である。(A), (B) is the front view and top view which show piping for heat exchange which connected and connected several places with the jig | tool. 熱交換用配管を利用した地中蓄熱システムの実施例の一例を概念的に示す説明図である。It is explanatory drawing which shows notionally an example of the Example of the underground heat storage system using piping for heat exchange.

符号の説明Explanation of symbols

1 熱交換用配管
2 付加重量物
3 補強材
7 地盤改良体
8 突起部
DESCRIPTION OF SYMBOLS 1 Heat exchange piping 2 Additional weight 3 Reinforcement material 7 Ground improvement body 8 Protrusion part

Claims (4)

熱媒を往復流通させる略U字形状の熱交換用配管を地中へ埋設する方法であって、
原位置の掘削土にセメントミルク等の安定材を注入し混合・攪拌して地盤改良体を造成し、前記地盤改良体が未だ硬化せず軟らかい段階で、前記熱交換用配管を鋼材等の付加重量物と共に地盤改良体の中へ押し込み、前記熱交換用配管が所定の深度に達した後に、前記鋼材等の付加重量物を地中から地上へ引き上げ回収することを特徴とする、熱交換用配管の埋設方法。
It is a method of burying a substantially U-shaped heat exchange pipe that recirculates a heat medium into the ground,
Stabilizer such as cement milk is poured into the original excavated soil, mixed and stirred to create a ground improvement body, and when the ground improvement body is not yet hardened, the heat exchange pipe is added with steel, etc. It is pushed into the ground improvement body together with a heavy object, and after the heat exchanging pipe reaches a predetermined depth, the additional heavy object such as the steel material is pulled up from the ground to the ground and recovered. How to embed piping.
熱交換用配管の下端部に前記付加重量物を載置して、又は熱交換用配管の下端部に突起部を設けて該突起部へ付加重量物を掛止めて熱交換用配管を地盤改良体の中へ押し込むことを特徴とする、請求項1に記載した熱交換用配管の埋設方法。   Place the additional weight on the lower end of the heat exchanging pipe, or provide a protrusion on the lower end of the heat exchanging pipe and hook the additional heavy object on the protuberance to improve the ground The method for embedding a heat exchange pipe according to claim 1, wherein the heat exchange pipe is pushed into a body. 熱交換用配管の下端部に補強材を取付け、該補強材の上に付加重量物を載置して、又は前記補強材に突起部を設けて該突起部へ付加重量物を掛止めて熱交換用配管を地盤改良体の中へ押し込むことを特徴とする、請求項1に記載した熱交換用配管の埋設方法。   Heat is applied by attaching a reinforcing material to the lower end of the heat exchange pipe and placing an additional heavy object on the reinforcing material, or by providing a protrusion on the reinforcing material and hooking the additional heavy object on the protrusion. The method for burying a heat exchange pipe according to claim 1, wherein the exchange pipe is pushed into the ground improvement body. 熱交換用配管の管内部へ付加重量物を兼ねて水を充填し、鋼材等の付加重量物と共に前記熱交換用配管を地盤改良体の中へ押し込み、熱交換用配管が所定の深度に達した後、前記鋼材等の付加重量物を地中から地上へ引き上げて回収し、前記管内の水は熱交換用配管の管内部に残したままにして該水の重量で地盤改良体内における熱交換用配管の埋設状態を安定化させることを特徴とする、請求項1〜3のいずれか一に記載した熱交換用配管の埋設方法。   The heat exchange pipe is filled with water as an additional weight, and the heat exchange pipe is pushed into the ground improvement body together with the additional weight such as steel, so that the heat exchange pipe reaches a predetermined depth. After that, the additional weight such as the steel material is pulled up from the ground to the ground and collected, and the water in the pipe is left inside the pipe of the heat exchange pipe, and heat exchange in the ground improvement body is performed by the weight of the water. The method for burying a heat exchange pipe according to any one of claims 1 to 3, wherein the burial state of the pipe for use is stabilized.
JP2005178556A 2005-06-17 2005-06-17 Method of burying pipe for heat exchange Pending JP2006349295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005178556A JP2006349295A (en) 2005-06-17 2005-06-17 Method of burying pipe for heat exchange

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005178556A JP2006349295A (en) 2005-06-17 2005-06-17 Method of burying pipe for heat exchange

Publications (1)

Publication Number Publication Date
JP2006349295A true JP2006349295A (en) 2006-12-28

Family

ID=37645328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005178556A Pending JP2006349295A (en) 2005-06-17 2005-06-17 Method of burying pipe for heat exchange

Country Status (1)

Country Link
JP (1) JP2006349295A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060247A (en) * 2008-09-05 2010-03-18 Mitsubishi Materials Techno Corp Soil heat exchanger of heat pump system using soil heat
DE102009023142A1 (en) * 2009-05-28 2010-12-02 Tracto-Technik Gmbh & Co. Kg Method for inserting geothermal energy probe into the soil, involves constructing bore hole in soil by boring fixture and simultaneously or subsequently inserting geothermal energy probe into bore hole
JP2011106230A (en) * 2009-11-20 2011-06-02 Ohbayashi Corp Method for constructing earth retaining wall
JP2011184857A (en) * 2010-03-04 2011-09-22 Mitsubishi Materials Techno Corp Method for burying tube for underground heat exchange
JP2012037161A (en) * 2010-08-09 2012-02-23 Kajima Corp Method of executing heat gathering piping
JP4928644B1 (en) * 2011-07-21 2012-05-09 秀樹 中込 Convection type underground heat exchange well
JP2012172937A (en) * 2011-02-23 2012-09-10 Chiyoda Kako Kensetsu Kk Construction method of pipe for heat extraction
JP2014031914A (en) * 2012-08-02 2014-02-20 Mitani Sekisan Co Ltd Method for burying heat exchange pipe of underground heat, and propeller for burying
JP2014059066A (en) * 2012-08-21 2014-04-03 Japan Pile Corp Precast pile installation device for earth thermal utilizing heat exchange tube
JP2014152941A (en) * 2013-02-05 2014-08-25 Mitsubishi Materials Techno Corp Installation method of underground heat exchanger and installation apparatus of underground heat exchanger
JP2015063858A (en) * 2013-09-25 2015-04-09 三谷セキサン株式会社 Device for burying pipe for heat exchange
JP2015113645A (en) * 2013-12-12 2015-06-22 東京瓦斯株式会社 Steel sheet pile
JP2017096095A (en) * 2016-12-28 2017-06-01 三谷セキサン株式会社 Method for burying heat exchange pipe for underground heat
JP2018076763A (en) * 2016-11-11 2018-05-17 バウアー マシーネン ゲーエムベーハー Foundation element and foundation element manufacturing method
WO2019039696A1 (en) * 2017-08-21 2019-02-28 주식회사 서영엔지니어링 Structure of underground heat exchange device including perforated core

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060247A (en) * 2008-09-05 2010-03-18 Mitsubishi Materials Techno Corp Soil heat exchanger of heat pump system using soil heat
DE102009023142B4 (en) * 2009-05-28 2014-06-26 Tracto-Technik Gmbh & Co. Kg Method and device for introducing a geothermal probe into the soil
DE102009023142A1 (en) * 2009-05-28 2010-12-02 Tracto-Technik Gmbh & Co. Kg Method for inserting geothermal energy probe into the soil, involves constructing bore hole in soil by boring fixture and simultaneously or subsequently inserting geothermal energy probe into bore hole
JP2011106230A (en) * 2009-11-20 2011-06-02 Ohbayashi Corp Method for constructing earth retaining wall
JP2011184857A (en) * 2010-03-04 2011-09-22 Mitsubishi Materials Techno Corp Method for burying tube for underground heat exchange
JP2012037161A (en) * 2010-08-09 2012-02-23 Kajima Corp Method of executing heat gathering piping
JP2012172937A (en) * 2011-02-23 2012-09-10 Chiyoda Kako Kensetsu Kk Construction method of pipe for heat extraction
JP4928644B1 (en) * 2011-07-21 2012-05-09 秀樹 中込 Convection type underground heat exchange well
JP2014031914A (en) * 2012-08-02 2014-02-20 Mitani Sekisan Co Ltd Method for burying heat exchange pipe of underground heat, and propeller for burying
JP2014059066A (en) * 2012-08-21 2014-04-03 Japan Pile Corp Precast pile installation device for earth thermal utilizing heat exchange tube
JP2014152941A (en) * 2013-02-05 2014-08-25 Mitsubishi Materials Techno Corp Installation method of underground heat exchanger and installation apparatus of underground heat exchanger
JP2015063858A (en) * 2013-09-25 2015-04-09 三谷セキサン株式会社 Device for burying pipe for heat exchange
JP2015113645A (en) * 2013-12-12 2015-06-22 東京瓦斯株式会社 Steel sheet pile
JP2018076763A (en) * 2016-11-11 2018-05-17 バウアー マシーネン ゲーエムベーハー Foundation element and foundation element manufacturing method
US10711424B2 (en) 2016-11-11 2020-07-14 Bauer Spezialtiefbau Gmbh Foundation element and method for producing a foundation element
JP2017096095A (en) * 2016-12-28 2017-06-01 三谷セキサン株式会社 Method for burying heat exchange pipe for underground heat
WO2019039696A1 (en) * 2017-08-21 2019-02-28 주식회사 서영엔지니어링 Structure of underground heat exchange device including perforated core

Similar Documents

Publication Publication Date Title
JP2006349295A (en) Method of burying pipe for heat exchange
JP5063669B2 (en) Tunnel construction method and its heat exchange path fixture.
CN203533977U (en) Pile foundation buried pipe heat exchange mechanism of ground source side of ground-source heat pump system
CN102839672B (en) A kind of foundation pit supporting method preventing the displacement of soft base cement mixing pile from transfiniting
JP5363399B2 (en) Construction method of underground heat exchanger
CN207959264U (en) Soft clay foundation adjoins High-filled emkankment pipe gallery
CN109944264A (en) Earth source heat pump horizontal coiled pipe system is embedded in the construction method of basic internal
CN108797653A (en) A kind of construction method carrying out structural anti-buoyancy using deep foundation pit fender post
KR100654151B1 (en) Geothermal exchanger using hollow of pile and method of construction thereof
CN104775418A (en) Underground continuous wall for energy collection and construction method thereof
KR101621751B1 (en) Underground heat exchanger insertion method before excavation using a guide
CN109252542A (en) A kind of root pile lightweight barricade and its construction method for road widening
CN207512777U (en) Assembled underground pipe gallery
CN106498957A (en) Steel sheet pile cofferdam construction platform and integral construction method
CN103410155B (en) A kind of recyclable preposition assembling braced cuts structure and application process thereof
JP3870317B2 (en) Construction method of underground wall heat exchange device and its underground wall heat exchange device
CN212026335U (en) Underground pipe gallery and space collaborative enclosure structure crouches down thereof
JP5638111B2 (en) Construction method of underground heat exchanger
JP2007017141A (en) Auxiliary burying material
JP2007010183A (en) Heat exchange pipe burying structure of underground thermal energy storage system and its burying method
CN111749253A (en) Take hydrologic cycle&#39;s side slope processing system
CN111305268A (en) Underground pipe gallery, underground space collaborative enclosure structure and construction method thereof
CN205116203U (en) Solid slag energy stake of thick liquid
CN216194870U (en) Pile foundation structure with small masonry amount of combined rod piece
JP4619105B2 (en) Construction method of geothermal facilities