KR100985854B1 - Method for constructing grouting of closed-loop vertical ground heat exchanger - Google Patents

Method for constructing grouting of closed-loop vertical ground heat exchanger Download PDF

Info

Publication number
KR100985854B1
KR100985854B1 KR1020100051171A KR20100051171A KR100985854B1 KR 100985854 B1 KR100985854 B1 KR 100985854B1 KR 1020100051171 A KR1020100051171 A KR 1020100051171A KR 20100051171 A KR20100051171 A KR 20100051171A KR 100985854 B1 KR100985854 B1 KR 100985854B1
Authority
KR
South Korea
Prior art keywords
heat exchanger
grouting
ground
aggregate
filling
Prior art date
Application number
KR1020100051171A
Other languages
Korean (ko)
Inventor
김인호
이용현
이장호
Original Assignee
코오롱환경서비스주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱환경서비스주식회사 filed Critical 코오롱환경서비스주식회사
Priority to KR1020100051171A priority Critical patent/KR100985854B1/en
Application granted granted Critical
Publication of KR100985854B1 publication Critical patent/KR100985854B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/11Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

PURPOSE: A method for constructing a grouting of a vertical closed-loop ground heat exchanger is provided to improve thermal conductivity by the grouting construction of a ground heat exchanger using gravel and non-shrink mortar. CONSTITUTION: A method for constructing a grouting of a vertical closed-loop ground heat exchanger comprises following steps. An excavation of 50~300m depth is formed underground. An underground heat exchanger is installed to the bottom of the excavation. First grouting is performed by filling from the bottom of the excavation to the rock bed portion with aggregate. Second grouting is performed by filling from the rock bed portion o the top of the ground with asystole mortar.

Description

수직밀폐형 지중열교환기의 그라우팅 시공방법{Method for Constructing Grouting of Closed-Loop Vertical Ground Heat Exchanger} Method for Constructing Grouting of Closed-Loop Vertical Ground Heat Exchanger

본 발명은 수직밀폐형 지중열교환기의 그라우팅 시공방법에 관한 것으로, 더욱 상세하게는 지중열을 이용하여 냉난방을 할 수 있도록 지중에 설치되는 수직밀폐형 지중열교환기의 열전도성능 향상과 외부 오염물의 유입방지를 위한 그라우팅 시공방법에 관한 것이다.
The present invention relates to a grouting construction method of a vertically sealed underground heat exchanger, and more particularly, to improve heat conduction performance and prevent inflow of external contaminants of a vertically sealed underground heat exchanger installed in the ground so as to perform air conditioning using underground heat. It relates to a grouting construction method for.

일반적으로 냉난방을 위하여 사용되는 에너지원으로서는 석탄, 석유, 천연가스 등과 같은 화석연료를 이용하거나, 또는 이들 화석연료를 이용하여 생산된 전력 에너지를 많이 사용하고 있다.In general, as an energy source used for cooling and heating, fossil fuels such as coal, petroleum, and natural gas are used, or a lot of power energy produced using these fossil fuels is used.

그러나 화석 연료는 연소과정에서 발생하는 각종 공해물질로 인하여 수질 및 환경을 오염시키는 단점이 있으므로, 근래에는 이를 대신할 수 있는 대체 에너지 개발이 활발하게 진행되고 있다.However, since fossil fuels have a disadvantage of polluting water quality and the environment due to various pollutants generated during the combustion process, in recent years, development of alternative energy to replace them has been actively conducted.

이러한 대체에너지 중에서도 무한한 에너지원을 갖는 풍력, 태양열, 지열 등에 관한 연구와 이를 이용한 냉난방장치가 사용되고 있는데, 이들 에너지원은 공기오염과 기후변화에 거의 영향을 미치지 않으면서 에너지를 얻을 수 있는 장점이 있는 반면 에너지 밀도가 대단히 낮은 단점이 있다.Among these alternative energies, research on wind power, solar heat, geothermal energy, etc., which have infinite energy sources, and air-conditioning devices using them are used. These energy sources have the advantage of obtaining energy with little effect on air pollution and climate change. On the other hand, the energy density is very low.

특히 풍력과 태양열을 이용하여 에너지를 얻기 위해서는 설치장소의 한계와 함께 넓은 면적이 확보되어야하며, 이 장치들은 단위장치 당 에너지 생산용량이 적고 또한 설치 및 유지관리에 많은 비용이 소요된다.In particular, in order to obtain energy using wind and solar heat, a large area must be secured along with the limit of the installation site. These devices have a small energy production capacity per unit and are expensive to install and maintain.

따라서 설치 및 유지관리에 상대적으로 저렴한 비용이 소요되는 지열 에너지를 이용한 냉난방장치들이 많이 이용되고 있는데, 이것은 온도가 10~20℃인 지중의 열에너지를 이용하는 기술이다.Therefore, many air-conditioning and heating devices using geothermal energy, which require relatively low cost for installation and maintenance, are used. This is a technology using underground thermal energy with a temperature of 10 to 20 ° C.

통상적으로 사용되는 지열냉난방장치는 지중과 열을 교환하기 위한 지중열교환기와, 회수한 지열을 필요한 온도로 승온 및 감온하는 히트펌프와 필요한 장소로 이동시켜 냉난방을 행하도록 하는 순환펌프로 구성된다.Commonly used geothermal air conditioning system is composed of an underground heat exchanger for exchanging heat with the ground, a heat pump for raising and lowering the collected geothermal heat to a required temperature, and a circulation pump for cooling and heating by moving to a required place.

지열교환기의 설치는 대략 수직방향으로 지하 약 50m~300m 정도 깊이의 천공홀(boreholes)을 소정의 간격으로 천공한 다음, 천공된 각각의 천공홀에 "U"자형 또는 코일형의 열교환 파이프를 삽입하고, 인접된 파이프들을 직렬 또는 병렬로 연결한 후, 연결된 파이프의 유입부와 유출부를 순환펌프를 거친 후 히트펌프와 연결하는 방법으로 설치한다.The installation of the geothermal heat exchanger drills bores in the vertical direction about 50 m to 300 m deep at a predetermined interval, and then inserts a U-shaped or coil heat exchange pipe into each of the drilled holes. Then, adjacent pipes are connected in series or in parallel, and then the inlet and the outlet of the connected pipes are installed through a circulation pump and then connected to a heat pump.

그리고 열교환 파이프가 설치된 각각의 천공홀에는 열교환 파이프와 지반의 열전도가 원활하게 될 수 있도록 그라우팅 작업을 실시한다.In addition, grouting is performed in each of the perforated holes in which the heat exchange pipes are installed so that the heat conduction of the heat exchange pipes and the ground can be smoothed.

이러한 지중열교환기가 설치된 천공홀의 그라우팅 작업시 사용되는 그라우트재는 통상적으로 방수기능을 갖는 벤토나이트(bentonite)를 사용하며, 이 벤토나이트를 적정량의 물과 혼합하여 천공홀에 채워 넣는 방법으로 그라우팅 작업을 행하고 있다.The grout material used for grouting the boring hole in which the underground heat exchanger is installed uses bentonite having a waterproof function.

그러나, 상기와 같이 벤토나이트를 이용하여 그라우팅 작업을 수행할 경우, 벤토나이트의 물성 특성상 급격하게 팽창하므로 시공상의 어려움이 있으며, 지중열교환기의 천공 깊이가 200m보다 깊어질 경우 지중열교환기 배관 내외부의 이질재료에 의한 밀도차로 인해 배관의 손상이 빈번하게 발생하고 있으며, 또한 배관단면의 수축으로 설계 유량의 불균형이 발생되고 있다.
However, when the grouting operation is performed using bentonite as described above, there is difficulty in construction because it rapidly expands due to the properties of bentonite, and when the depth of the underground heat exchanger is deeper than 200 m, foreign materials inside and outside the underground heat exchanger pipes Due to the difference in density, damage to the pipe frequently occurs, and uneven design flow rate is caused by shrinkage of the pipe section.

한편, 정부의 신재생에너지 보급촉진 정책에 발맞추어 일정규모 이상의 공공 건축물에서는 신재생에너지를 의무적으로 이용하고 있다. 그 중 지열을 이용한 냉난방시스템의 경우 타 신재생에너지와 비교하여 동일 용량당 설치단가가 가장 저렴하여 최근 들어 시공사례가 크게 증가하고 있다. Meanwhile, in line with the government's policy to promote renewable energy, new and renewable energy is mandatory in public buildings over a certain scale. Among them, geothermal heating and cooling system has the lowest installation cost per same capacity compared to other renewable energy, and the construction cases have increased greatly in recent years.

하지만, 지역 특성에 따른 지반 특성을 감안하지 않은 채 획일적으로 지열을 이용한 냉난방시스템을 시공함으로써, 적정 열용량을 취득하지 못하고 있는 실정이다. 예를 들어 인천 송도, 청라지구, 전북 새만금 등의 매립지 또는 해안 인근의 경우 지중의 지하수가 염분을 포함하고 있어 일반적인 그라우팅 재료로 사용되는 벤토나이트를 사용할 경우 벤토나이트의 결합특성을 저해시켜 본연의 그라우팅 재료로써의 기능을 전혀 하지 못하고 있다. 또한, 일반시멘트 모르타르를 그라우팅 재료로 사용할 경우 시멘트의 경화 과정에서 수축이 발생하여 그라우팅의 구비조건 중 하나인 열전도율이 향상되지 못하는 문제점이 발생되어 매립지역의 지열을 이용한 히트펌프 냉난방시스템의 적용이 보류되고 있다.
However, it is not possible to obtain proper heat capacity by constructing a geothermal heating and cooling system without considering ground characteristics according to local characteristics. For example, in the case of landfills such as Songdo, Cheongna district, Saemangeum, Jeonbuk, or near the coast, underground groundwater contains salinity. Has not functioned at all. In addition, when using general cement mortar as the grouting material, shrinkage occurs during the hardening process of cement, which leads to a problem that the thermal conductivity, which is one of the conditions for grouting, is not improved. Therefore, the application of a heat pump air-conditioning system using geothermal heat in a buried area is suspended. It is becoming.

이에, 본 발명자들은 상기 문제점을 해결하기 위하여 예의 노력한 결과, 통상적으로 사용되는 벤토나이트 그라우트 대신에 천공홀의 바닥부로부터 암반 출현부까지 골재를 충진시키고, 암반 출현부로부터 지반 상부까지 무수축모르타르를 충진시켜 그라우팅을 수행할 경우, 지중에 설치된 지중열교환기의 지반침하에 의한 손상을 방지하고, 열전도성능을 증가시킬 뿐만 아니라, 외부 오염물의 유입을 효과적으로 차단할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.
Accordingly, the present inventors have diligently tried to solve the above problems, and as a result, instead of the bentonite grout which is commonly used, the aggregate is filled from the bottom of the drill hole to the rock appearance portion, and the non-condensed mortar is filled from the rock appearance portion to the upper portion of the ground. When the grouting is performed, it was confirmed that the ground heat exchanger installed in the ground prevents damage due to ground subsidence, increases heat conduction performance, and effectively blocks inflow of external contaminants, thereby completing the present invention.

본 발명의 목적은 매립지역의 특성상 빈번하게 발생되는 지반침하에 의한 지중열교환기의 훼손을 방지하면서, 열전도성능이 우수하고, 외부 오염물의 유입을 효과적으로 차단할 수 있는 수직밀폐형 지중열교환기의 그라우팅 시공방법을 제공하는데 있다.An object of the present invention is a grouting construction method of a vertically sealed underground heat exchanger, which prevents damage of the ground heat exchanger due to ground subsidence that is frequently generated due to the characteristics of a landfill area, and which has excellent thermal conductivity and can effectively block inflow of external contaminants. To provide.

본 발명의 다른 목적은 염수와 접촉시 결합이 파괴되어 그라우팅 재료로 이용될 수 없는 벤토나이트를 대체하는 신규의 그라우팅 재료를 이용한 수직밀폐형 지중열교환기의 그라우팅 시공방법을 제공하는데 있다.
Another object of the present invention is to provide a grouting construction method of a vertically sealed ground heat exchanger using a new grouting material which replaces bentonite, which cannot be used as a grouting material due to a bond breaking upon contact with brine.

상기 목적을 달성하기 위하여, 본 발명은 (a) 지중에 50~300m 깊이의 천공홀을 형성하는 단계; (b) 상기 천공홀 내의 바닥부까지 지중열교환기를 설치하는 단계; (c) 상기 천공홀의 바닥부로부터 암반 출현부까지 골재를 충진시켜 제1 그라우팅을 수행하는 단계; 및 (d) 상기 암반 출현부로부터 지반 상부까지 무수축모르타르를 충진시켜 제2 그라우팅을 수행하는 단계를 포함하는 수직밀폐형 지중열교환기의 그라우팅 시공방법을 제공한다.
In order to achieve the above object, the present invention (a) forming a hole 50 ~ 300m deep in the ground; (b) installing an underground heat exchanger to the bottom of the perforation hole; (c) filling the aggregate from the bottom of the hole to the appearance of rock to perform a first grouting; And (d) filling the non-condensed mortar from the rock appearing part to the upper part of the ground to perform a second grouting step to provide a grouting construction method of the vertically sealed underground heat exchanger.

본 발명에 따른 수직밀폐형 지중열교환기의 그라우팅 시공방법은 육지뿐만 아니라 지중의 지하수가 염분을 함유하고 있는 해양 매립지에서도 지중에 설치된 지중열교환기의 지반침하에 의한 손상을 방지하면서, 열전도성능을 증가시키고, 외부 오염물의 유입을 효과적으로 차단할 수 있으므로, 경제적, 공간적 제약없이 지열을 이용한 히트펌프 냉난방시스템을 적용시켜 신재생에너지 보급촉진에 이바지 할 수 있다.
The grouting construction method of the vertically sealed underground heat exchanger according to the present invention increases the thermal conductivity performance while preventing damage due to ground subsidence of the underground heat exchanger installed in the ground, as well as on land and in marine landfills containing groundwater. As it can effectively block the inflow of external contaminants, it can contribute to the promotion of new and renewable energy by applying the heat pump air-conditioning system using geothermal heat without economical and spatial constraints.

도 1은 본 발명의 일 실시예에 따른 수직밀폐형 지중열교환기의 그라우팅 시공 설명도 이다.1 is a diagram illustrating the grouting construction of a vertically sealed underground heat exchanger according to an embodiment of the present invention.

본 발명에서는 물과 반응시 급격히 팽창되며, 특히 염수와 접촉시 결합특성이 저해되는 문제점을 가지는 벤토나이트 그라우트 대신에 천공홀의 바닥부로부터 암반 출현부까지 골재를 충진시키고, 암반 출현부로부터 지반 상부까지 무수축모르타르를 충진시켜 그라우팅을 수행할 경우, 지중에 설치된 지중열교환기 내외부의 밀도차가 발생하지 않아 배관의 손상 및 단면 수축 등이 일어나지 않고, 열전도성능을 증가시킬뿐만 아니라, 외부 오염물의 유입을 효과적으로 차단시킬 수 있다는 것을 확인하고자 하였다.
In the present invention, the expansion is rapidly expanded when reacting with water, and in particular, the aggregate is filled from the bottom of the drill hole to the rock appearance portion instead of the bentonite grout, which has a problem that the bonding characteristics are impaired in contact with the brine, and from the rock appearance portion to the top of the ground When grouting by filling shrinkage mortar, there is no difference in density inside and outside the underground heat exchanger installed in the ground, which does not cause damage to the pipe or shrinkage of the cross section, and increases the thermal conductivity performance and effectively blocks the inflow of external contaminants. We wanted to confirm that it can be done.

따라서, 본 발명은 일 관점에서, (a) 지중에 50~300m 깊이의 천공홀을 형성하는 단계; (b) 상기 천공홀 내의 바닥부까지 지중열교환기를 설치하는 단계; (c) 상기 천공홀의 바닥부로부터 암반 출현부까지 골재를 충진시켜 제1 그라우팅을 수행하는 단계; 및 (d) 상기 암반 출현부로부터 지반 상부까지 무수축모르타르를 충진시켜 제2 그라우팅을 수행하는 단계를 포함하는 수직밀폐형 지중열교환기의 그라우팅 시공방법에 관한 것이다.
Therefore, the present invention in one aspect, (a) forming a hole 50 ~ 300m deep in the ground; (b) installing an underground heat exchanger to the bottom of the perforation hole; (c) filling the aggregate from the bottom of the hole to the appearance of rock to perform a first grouting; And (d) filling the non-condensed mortar from the rock appearing part to the upper part of the ground to perform a second grouting process.

본 발명에 있어서, 상기 지중(地中)이라 함은 땅을 뚫고 들어갔을 때의 그 속을 의미하는 것으로서, 지중의 지하수에 염분이 없거나 미량 함유되어 있는 육지뿐만 아니라 지중의 지하수에 염분이 다량 함유되어 있는 해양 매립지를 모두 포함할 수 있다.In the present invention, the "ground" means the inside of the ground when it penetrates the ground, and contains a large amount of salt in the groundwater as well as the ground which contains no or a small amount of salt in the groundwater of the ground. It can include any marine landfills that are already in place.

통상적으로 수직밀폐형 지중열교환기의 경우 지중 50~300m 깊이의 천공홀을 형성한 후, 지중열 교환기를 설치할 수 있다. 지중은 깊이에 따라서 특성을 달리하는데, 내륙지역의 경우 지층에서 10~15m의 깊이, 매립지의 경우 지층에서 30~80m의 깊이에 토질부가 존재하고, 그 아래로 암반부가 존재한다. Typically, in the case of a vertically sealed underground heat exchanger, the underground heat exchanger may be installed after forming a drilling hole having a depth of 50 to 300 m underground. Underground lands vary in depth, with inland areas being 10-15 m deep and landfills 30-80 m deep, with rock formations beneath them.

본 발명에 있어서, 상기 암반 출현부는 토질부 하부에 위치하며, 암반부가 시작되는 위치를 의미한다.In the present invention, the rock appearance part is located under the soil part, and means a position where the rock part starts.

본 발명에 있어서, 상기 지중열교환기는 통상적으로 사용되는 고밀도 폴리에틸렌 파이프(HDPE; High Density Polyethylene pipe)를 사용할 수 있다. In the present invention, the ground heat exchanger may use a high density polyethylene pipe (HDPE) that is commonly used.

본 발명에 있어서, 상기 골재로는 천공부의 채움 작업시 브릿지 현상을 일으키지 않는 적정크기의 자연석 또는 인조석을 이용하거나 이들을 혼합하여 사용할 수 있다. In the present invention, the aggregate may be used by using a natural stone or artificial stone of a suitable size that does not cause a bridge phenomenon during the filling operation of the perforated portion or by mixing them.

상기 자연석은 산, 강 등에 있는 가공하지 않은 돌을 의미하며, 상기 인조석은 천연석의 모조로서 모르타르나 콘크리트의 표면에 각종 돌가루, 돌조각을 넣은 건축재료를 의미한다. 상기 인조석의 경우 그 성분이 지하수를 오염시키지 않는 소재인 것이 바람직하다. The natural stone means an unprocessed stone in a mountain, a river, etc. The artificial stone refers to a building material in which various stone powders and pieces of stone are put on the surface of mortar or concrete as imitation of natural stone. In the case of the artificial stone, the component is preferably a material that does not contaminate groundwater.

상기 골재로 콩자갈을 예시할 수 있는데, 상기 콩자갈은 암석이 마모되어 둥그스름해진 조립(粗粒) 석재로서, 시멘트콘크리트용이나 아스팔트콘크리트용 골재, 도로 포장, 구조물 기초 등의 재료로 널리 사용되고 있다. Soybean gravel can be exemplified as the aggregate, and the soybean gravel is a granulated stone rounded by wear of rocks, and is widely used as a material for cement concrete, asphalt concrete aggregate, road pavement, structure foundation, and the like. .

본 발명에서, 상기 골재의 평균지름은 5~30㎜ 바람직하게는 10~25㎜이다. In the present invention, the average diameter of the aggregate is 5 to 30 mm, preferably 10 to 25 mm.

상기 골재의 지름이 5㎜ 미만인 경우 고가로 시공비가 크게 상승하는 문제점이 있고, 30㎜를 초과할 경우 천공부 내부에 브릿지 현상을 일으켜 채움작업이 원활하게 이루어지지 못하는 문제점이 있다. When the diameter of the aggregate is less than 5mm, there is a problem that the construction cost is greatly increased at a high cost, and if it exceeds 30mm, there is a problem that the filling work is not made smoothly by causing a bridge phenomenon in the perforated part.

본 발명에 있어서, 상기 골재를 이용하여 제1 그라우팅을 수행할 경우, 지중열교환기로 사용되는 고밀도 폴리에틸렌 파이프(HDPE) 내외부의 압력차를 해소시켜 HDPE의 손상을 방지하고, 그라우팅 재료사이에 자연스럽게 지하수가 충만되어 열사이펀 작용에 의한 열전달 성능을 향상시킬 수 있다.
In the present invention, when performing the first grouting using the aggregate, the pressure difference between the inside and outside of the high density polyethylene pipe (HDPE) used as the ground heat exchanger is eliminated to prevent damage to the HDPE, and the groundwater naturally between the grouting materials It can be filled to improve the heat transfer performance by the thermosiphon action.

본 발명에서는 천공홀의 바닥부로부터 암반 출현부까지 골재를 충진시켜 제1 그라우팅을 수행시킨 다음, 상기 암반 출현부로부터 지반 상부까지는 무수축모르타르를 충진시켜 제2 그라우팅을 수행한다. 단 무수축모르타르 충진 시작지점은 무수축모르타르의 그라우팅 종료 후 하단부가 암반부에 정착되어 토질부분의 지중열교환기를 충분히 지지할 수 있는 위치여야 한다.In the present invention, the first grouting is performed by filling the aggregate from the bottom of the perforation hole to the rock appearance part, and then the second grouting is performed by filling the non-contraction mortar from the rock appearance part to the upper part of the ground. However, the start point of non-condensed mortar filling should be such that the lower end is fixed to the rock after the grouting of the non-condensed mortar is sufficiently supported to support the ground heat exchanger of the soil part.

상기 제 2 그라우팅을 무수축모르타르(mortar)가 아닌 통상의 시멘트 모르타르를 이용하여 수행할 경우 경화과정에서 수축이 발생하여 열전달 효과가 저감된다. When the second grouting is performed using a conventional cement mortar rather than an anhydrous mortar, shrinkage occurs during the curing process, thereby reducing the heat transfer effect.

상기 무수축모르타르를 이용하여 암반 출현부로부터 지반 상부까지 제 2 그라우팅을 수행하면 상기 문제점을 해결할 수 있으며, 또한 외부 오염물질이 수직 천공부를 통해 유입되는 것을 방지하고 매립지의 지반침하에 의한 수직력에 의하여 지중열교환기로 사용되는 고밀도 폴리에틸렌 파이프(HDPE)가 손상되는 것을 방지할 수 있다.
By performing the second grouting from the rock appearance part to the upper part of the ground using the non-contraction mortar, the above problem can be solved, and the external contaminants are prevented from entering through the vertical perforations and the vertical force due to the ground subsidence of the landfill It is possible to prevent the high-density polyethylene pipe (HDPE) used as the ground heat exchanger by the damage.

[실시예][Example]

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예 1: 콩자갈과 무수축모르타르를 이용한 지중열 교환기의 시공Example 1: Construction of a ground heat exchanger using soybean and non-condensed mortar

송도테크노파크 IT센터 부근에 150m 깊이의 천공홀을 형성하고, 상기 천공홀 내의 바닥부까지 지중열교환기(한국PEM, HDPE)를 설치하였다. 다음으로 천공홀의 바닥부로부터 암반 출현부(지반 상부에서 50m 되는 지점)까지 지름 10~15㎜의 콩자갈을 충진시킨 후, 지반 상부까지 무수축모르타르(GP-400 상품명)를 충진시켰다. 시공된 지중열교환기의 지중 열전도도를 건양대학교 기계공학과에 의뢰하여 측정한 결과를 하기 표 1에 나타내었다.
A 150 m deep drilling hole was formed near the Songdo Techno Park IT Center, and an underground heat exchanger (Korea PEM, HDPE) was installed to the bottom of the drilling hole. Next, after filling soybeans having a diameter of 10 to 15 mm from the bottom of the perforation hole to a rock appearance part (a point 50 m from the top of the ground), non-condensed mortar (GP-400 trade name) was filled up to the top of the ground. The ground heat conductivity of the constructed ground heat exchanger was calculated by requesting the Department of Mechanical Engineering, Konyang University in Table 1 below.

비교예 1: 벤토나이트를 이용한 지중열 교환기의 시공Comparative Example 1: Construction of Ground Heat Exchanger Using Bentonite

인천시 연구수 송도동 부근에 200m 깊이의 천공홀을 형성하고, 상기 천공홀 내의 바닥부까지 지중열교환기(한국PEM, HDPE)를 설치하였다. 다음으로 천공홀의 바닥부로부터 지반 상부까지 벤토나이트(Hydrogel)를 충진시켰다. 시공된 지중열교환기의 지중 열전도도를 한국냉동공조인증센터에 의뢰하여 측정한 결과를 하기 표 1에 나타내었다.A 200 m deep drilling hole was formed in the vicinity of Songdo-dong, Incheon Research Center, and an underground heat exchanger (Korea PEM, HDPE) was installed to the bottom of the drilling hole. Next, bentonite (Hydrogel) was filled from the bottom of the hole to the top of the ground. The ground heat conductivity of the constructed ground heat exchanger was requested from the Korea Refrigeration and Air Conditioning Certification Center.

시험항목Test Items 단위unit 실시예 1Example 1 비교예 1Comparative Example 1 규격standard 평균전압Average voltage vv 395.51395.51 217.11217.11 지식경제부 고시 제2008-3호Ministry of Knowledge Economy Notice No. 2008-3 평균전류Average current AA 15.1415.14 57.7557.75 평균전력Average power kWkW 10.3710.37 12.53812.538 유량flux ㎥/hr㎥ / hr 2.562.56 -- 기울기inclination -- 1.8751.875 2.202.20 열전도도Thermal conductivity W/mkW / mk 2.942.94 2.272.27

표 1에 나타난 바와 같이, 자갈과 무수축모르타르를 이용하여 지중열 교환기를 그라우팅 시공한 실시예 1은 벤토나이트를 이용하여 지중열 교환기를 그라우팅 시공한 비교예 1보다 열전도도가 월등하게 우수한 것을 확인할 수 있었다.
As shown in Table 1, Example 1 in which the ground heat exchanger was grouted using gravel and non-condensed mortar was found to have superior thermal conductivity than Comparative Example 1 in which the ground heat exchanger was grouted using bentonite. there was.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail the specific parts of the present invention, it is apparent to those skilled in the art that such specific description is merely a preferred embodiment, thereby not limiting the scope of the present invention. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (3)

다음의 단계를 포함하는 수직밀폐형 지중열교환기의 그라우팅 시공방법:
(a) 지중에 50~300m 깊이의 천공홀을 형성하는 단계;
(b) 상기 천공홀 내의 바닥부까지 지중열교환기를 설치하는 단계;
(c) 상기 천공홀의 바닥부로부터 암반 출현부까지 골재를 충진시켜 제1 그라우팅을 수행하는 단계; 및
(d) 상기 암반 출현부로부터 지반 상부까지 무수축모르타르를 충진시켜 제2 그라우팅을 수행하는 단계.
Grouting construction method of vertical hermetic underground heat exchanger comprising the following steps:
(a) forming a drill hole having a depth of 50 to 300 m in the ground;
(b) installing an underground heat exchanger to the bottom of the perforation hole;
(c) filling the aggregate from the bottom of the hole to the appearance of rock to perform a first grouting; And
(d) filling the non-condensed mortar from the rock appearing part to the upper part of the ground to perform a second grouting.
제1항에 있어서, 상기 골재는 자연석, 인조석 및 이들의 혼합물로 구성된 군으로부터 선택되는 것을 특징으로 하는 시공방법.
The method of claim 1, wherein the aggregate is selected from the group consisting of natural stone, artificial stone and mixtures thereof.
제2항에 있어서, 상기 골재의 평균지름은 5~30㎜인 것을 특징으로 하는 시공방법.The method of claim 2, wherein the average diameter of the aggregate is 5 ~ 30mm.
KR1020100051171A 2010-05-31 2010-05-31 Method for constructing grouting of closed-loop vertical ground heat exchanger KR100985854B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100051171A KR100985854B1 (en) 2010-05-31 2010-05-31 Method for constructing grouting of closed-loop vertical ground heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100051171A KR100985854B1 (en) 2010-05-31 2010-05-31 Method for constructing grouting of closed-loop vertical ground heat exchanger

Publications (1)

Publication Number Publication Date
KR100985854B1 true KR100985854B1 (en) 2010-10-08

Family

ID=43135083

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100051171A KR100985854B1 (en) 2010-05-31 2010-05-31 Method for constructing grouting of closed-loop vertical ground heat exchanger

Country Status (1)

Country Link
KR (1) KR100985854B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101220897B1 (en) * 2011-02-21 2013-01-21 (주)그린이엔티 equipment for exchanging terrestrial heat
EP3415838A1 (en) 2017-06-15 2018-12-19 Min Bai Geothermal heat exchange system and construction method thereof
KR20180136889A (en) 2017-06-15 2018-12-26 배민 Geothermal Heat Exchanging System and Construction Method thereof
CN109339707A (en) * 2018-11-15 2019-02-15 中铁建工集团有限公司 Deep basal pit ground-source heat pump system earth's surface drilling well is without pressure down pipe method and vertical underground pipe
CN111691452A (en) * 2019-03-14 2020-09-22 湖北工业大学 Ground source heat pump integration technology based on building underground structure and construction method thereof
KR102309872B1 (en) * 2021-03-04 2021-10-07 주식회사 대한수자원 Grouting structure of well and building methods thereby
CN113668547A (en) * 2021-08-26 2021-11-19 北京市华清地热开发集团有限公司 Buried pipe construction method suitable for building foundation operation
CN111691452B (en) * 2019-03-14 2024-04-19 湖北工业大学 Ground source heat pump integrated equipment based on building underground structure and construction method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040045780A (en) * 2002-11-25 2004-06-02 코오롱건설주식회사 Setting method and structure for geothermal exchanger
KR100778936B1 (en) 2006-09-08 2007-11-22 지앤에스건설 주식회사 Ground reinforcement method integrating geothermal pipe for heat pump
KR100941731B1 (en) 2008-04-14 2010-02-11 대림산업 주식회사 Geothermal exchanging system and constructing method the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040045780A (en) * 2002-11-25 2004-06-02 코오롱건설주식회사 Setting method and structure for geothermal exchanger
KR100778936B1 (en) 2006-09-08 2007-11-22 지앤에스건설 주식회사 Ground reinforcement method integrating geothermal pipe for heat pump
KR100941731B1 (en) 2008-04-14 2010-02-11 대림산업 주식회사 Geothermal exchanging system and constructing method the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101220897B1 (en) * 2011-02-21 2013-01-21 (주)그린이엔티 equipment for exchanging terrestrial heat
EP3415838A1 (en) 2017-06-15 2018-12-19 Min Bai Geothermal heat exchange system and construction method thereof
KR20180136889A (en) 2017-06-15 2018-12-26 배민 Geothermal Heat Exchanging System and Construction Method thereof
US10527319B2 (en) 2017-06-15 2020-01-07 Bic Inc. Geothermal heat exchange system and construction method thereof
CN109339707A (en) * 2018-11-15 2019-02-15 中铁建工集团有限公司 Deep basal pit ground-source heat pump system earth's surface drilling well is without pressure down pipe method and vertical underground pipe
CN109339707B (en) * 2018-11-15 2023-10-31 中铁建工集团有限公司 Non-pipe pressing method for surface well drilling of deep foundation pit ground source heat pump system
CN111691452A (en) * 2019-03-14 2020-09-22 湖北工业大学 Ground source heat pump integration technology based on building underground structure and construction method thereof
CN111691452B (en) * 2019-03-14 2024-04-19 湖北工业大学 Ground source heat pump integrated equipment based on building underground structure and construction method thereof
KR102309872B1 (en) * 2021-03-04 2021-10-07 주식회사 대한수자원 Grouting structure of well and building methods thereby
CN113668547A (en) * 2021-08-26 2021-11-19 北京市华清地热开发集团有限公司 Buried pipe construction method suitable for building foundation operation

Similar Documents

Publication Publication Date Title
KR100985854B1 (en) Method for constructing grouting of closed-loop vertical ground heat exchanger
Brandl Energy foundations and other thermo-active ground structures
Barla et al. Energy from geo-structures: a topic of growing interest
TW202140914A (en) Method for forming high efficiency geothermal wellbores using phase change materials
CN1945164A (en) Engineering abandoned water lowering well type water source heat pump pipe well
KR101124359B1 (en) Subterranean heat of Heat pump system use Heat exchanger
KR101061494B1 (en) Heat exchange system using an earth heat
KR100654151B1 (en) Geothermal exchanger using hollow of pile and method of construction thereof
Kovačević et al. Possibilities of underground engineering for the use of shallow geothermal energy
KR101621751B1 (en) Underground heat exchanger insertion method before excavation using a guide
CN104963341A (en) Coupling type ground source heat pump mixed backfill technology and backfill material
McCray Guidelines for the construction of vertical boreholes for closed loop heat pump systems
KR101303575B1 (en) Combined type geothermal system and construction method using large aperture punchung
KR101403687B1 (en) Geothermal heating and cooling system for heat exchanger
McCartney et al. Application of geoexchange experience to geothermal foundations
KR100771934B1 (en) Heat exchanger used in underground in a geothmal heat pump sysyem
KR102400336B1 (en) Grouting material for underground heat exchangers and method of construction using the same
KR20190014800A (en) A method for protecting geothermal heat exchanging pipe by using protective cap
KR101220897B1 (en) equipment for exchanging terrestrial heat
KR20120078271A (en) Geothermal exchanger
KR101576690B1 (en) the method of conversation of water leak of Geothermal Exchanger
KR20080023626A (en) Geothermal heat exchanger around precast pile and installation method
KR20190021122A (en) A method for protecting geothermal heat exchanging pipe by using protective pipe
Kovačević et al. Mogućnosti podzemnog inženjerstva u iskorištavanju plitke geotermalne energije
Wagner et al. The performance of artificial frozen barriers

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130828

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140513

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150618

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170511

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190626

Year of fee payment: 10