JP4625153B2 - Plasma etching apparatus and etching method using the same - Google Patents

Plasma etching apparatus and etching method using the same Download PDF

Info

Publication number
JP4625153B2
JP4625153B2 JP35514699A JP35514699A JP4625153B2 JP 4625153 B2 JP4625153 B2 JP 4625153B2 JP 35514699 A JP35514699 A JP 35514699A JP 35514699 A JP35514699 A JP 35514699A JP 4625153 B2 JP4625153 B2 JP 4625153B2
Authority
JP
Japan
Prior art keywords
etching
gas
plasma
sample
magnetic fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35514699A
Other languages
Japanese (ja)
Other versions
JP2001176848A (en
Inventor
孝治 本間
Original Assignee
株式会社ケミトロニクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケミトロニクス filed Critical 株式会社ケミトロニクス
Priority to JP35514699A priority Critical patent/JP4625153B2/en
Publication of JP2001176848A publication Critical patent/JP2001176848A/en
Application granted granted Critical
Publication of JP4625153B2 publication Critical patent/JP4625153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高速に加工するドライエッチング装置に関し、特に半導体ウエーハや絶縁体ウエーハを薄くしたり、深い段差もしくはウエーハに貫通孔を精密に形成することを目的にした装置に関する。
【0002】
【従来の技術】
半導体素子や集積回路を表面に形成した半導体ウエーハは裏面を均一に削って薄くした後、チップに切断してパッケージに組み立てて使われる。チップの薄型化は、チップの放熱効果を高めたり、ダイシングで使用される切断工具(カッタやソー等)の消耗を減らし寿命を延ばしたりする他に、パッケージの高さを減らして高密度実装化する目的に必要である。また、高性能化と高密度化するためにチップを積層する技術にはウエーハの表裏に導通をとるための貫通孔が必要である。また、MMICにも貫通孔と導通電極が使われている。
【0003】
さらに、MEMS(Micro-ElectroMechanical Systems)では超小型部品や装置を形成するために半導体ウエーハやガラスウエーハに深い段差や貫通孔を形成して三次元に加工する技術が必須である。従来、半導体ウエーハの基板結晶を一様に薄くする場合には、研磨装置により半導体ウエーハの裏面に研磨布を介して平板を押し当て、研磨液を供給してウエーハと研磨布の間に研磨液を介在させながら研磨する方法や、研削装置によりダイヤモンド粒子等の固い材料粒子を埋め込み固定した砥石により研削する方法と、最後に加工歪みを除去するためにウエットエッチングによって基板結晶を仕上げる技術が一般に使われている。半導体ウエーハに貫通孔を形成する方法は平行平板やICP(Inductive Coupled Plasma)によるRIE(Reactive-Ion-Etch)によっている。また、ガラスウエーハの場合は、サンドブラスト法やウエットエッチングによっている。
【0004】
【発明が解決しようとする課題】
従来の研磨あるいは研削によるウエーハの薄型化は基板結晶に圧縮応力やせん断応力を加えながら加工するため、薄くなるにつれて半導体ウエーハが破損しやすくなる欠点がある。ウエットエッチングは工程が繁雑でエッチング速度が遅いので生産性が悪い欠点がある。このため、本発明はドライエッチングであるプラズマエッチング法によってウエーハを高速かつ高精度に均一に薄くしたり、貫通孔を形成するための装置と、これを用いた高精度のウエーハの加工方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明では、エッチングガスおよびこれらを含む混合ガスをプラズマ化し、発生した活性種ガスあるいはこれらを含む混合ガスをエッチングのガス流として試料表面に噴出する機構を有するドライエッチング装置において、上記エッチングガス流の中にエッチング支援物質を添加する機構を設けたことを特徴としている。
【0006】
本発明では、上記のエッチング支援物質として磁性体微粒子を用い、これを搬送ガス(ArやH2ガス)とともにエッチングガス中に添加する。エッチングのガス流に含まれた磁性体微粒子と活性種ガスの噴射によって試料のエッチングが深さ方向に優先的に進行し、その結果、加工断面形状の垂直性が改善されエッチング速度も増大する効果がある。さらに、磁性体微粒子を吸引・加速するために、試料側に外部磁場を加えることにより上記効果を高めている。
【0007】
【発明の実施の形態】
図1は本発明によるプラズマエッチング装置の一実施例を示す装置全体の構成概略図である。ガス供給装置14から反応ガス供給管3によりSF6、水素とArの混合ガスをプラズマ発生室23に注入する。マイクロ波発振器1で発生したマイクロ波が導波管2を通りプラズマ発生室で吸収され、前記、混合ガスが活性化され、プラズマ活性領域6が形成される。活性種ガスは活性種ガス供給管13を通ってエッチングノズル4で絞り込まれ、エッチングビームとなって試料(Si半導体ウエーハ)5の表面に高速噴射される。試料(Si半導体ウエーハ)5は、はじめ試料交換室11に挿入され、ここから搬送機構15によりエッチング室9の試料保持機構80に固定セットされる。エッチングノズル4および試料保持機構80付近の詳細構造については、本図では図示を省略している。これらについては、後述の図2を用いて別途説明する。試料保持機構80は、試料移動機構7によってX-Y方向あるいはXーθ方向に可動するので、試料全面を加工することができる。排気部はエッチング室9、排気ヘッド16、試料交換室11および搬送室10にそれぞれ設けられたバルブ18を介して行なわれ、各々が排気される。エッチング室9と排気ヘッド16から出た排気ガスは排気/ガス処理装置17を経て、除害して排気される。さらに本発明の構成では活性種ガス供給管13の中にエッチング支援物質である磁性体微粒子を混合して供給する機構を持つことを特徴とする。これはエッチング支援物質供給装置54と供給管55により磁性体微粒子を活性種ガス供給管13の分岐口に陽圧で供給して活性種ガスに混合される。
【0008】
図2に図1のエッチングガス流噴出機構部分と試料の保持機構部分の詳細を示す。磁性体微粒子(エッチング支援物質)を混合するサイクルは連続的でも、あるいは断続的でもよく、任意にプログラムできる構成が制御装置20に具備されている。また磁性体微粒子は搬送ガス(ArまたはN2)により供給管55中を輸送され、活性種ガス供給管内で活性種ガスと合流する。磁性体微粒子の材質としては、例えば、酸化鉄やフェライトなどを使用できる。また、移動台8の表面近傍に、磁性体微粒子を吸引・加速するための永久磁石板60を配設している。このように、活性種ガス中に添加された磁性体微粒子は試料により多くの加工損傷を加える。その結果、磁性体微粒子を添加しない場合に比べてエッチング速度が増大する。
【0009】
図3〜5の模式断面図に、活性種ガス流に磁性体微粒子を添加・混合させる場合の幾つかの形態例を示す。図3に、磁性体微粒子の供給管35の先端に設けた噴出ノズル37をエッチングノズル4内に配設した例を示す。図4には、磁性体微粒子の供給管45の先端に設けた噴出ノズル47をエッチングノズル4の先端外周部に近接して配設した例を示す。さらに図5には、磁性体微粒子の供給管85の先端に、エッチングノズル4を内包するように微粒子噴出ノズル87を配設した例を示す。
【0010】
以上述べた装置構成により、Si半導体ウエーハの裏面を削り、薄い結晶基板に加工する方法を以下に説明する。この工程は、上記ウエーハの表面に高密度の集積回路が形成されたあとに行われるもので、この後、チップにしてパッケージに組み立てられる。まず、この表面を樹脂テープで保護して裏面をエッチングノズルに向けて装着する。例えば600μmの厚さのSiウエーハを削って50μmの厚さに仕上げる場合は、厚さが約100μmになるまではエッチング支援物質(磁性体微粒子)をエッチングガスに混合してエッチングを行う。これは、上記エッチング支援物質によってSiを飛散させたりあるいはSi表面に加工歪みを残し、これに活性種を含むエッチングガスのビームが噴射されると化学、機械的な相乗効果によってSiを高速に削るためである。エッチング支援物質を混合してSi表面を加工すると表面に加工歪みが残っているので、この場合の加工手順として、最後の50μmにするエッチングはエッチング支援物質の供給を止めて、活性種を含むエッチングガスのビームのみで約50μmの量のエッチングを行う。これは活性種のガスビームのエッチングはドライによる化学研磨であるためSiに損傷が入らないためである。この方法によれば、短時間にSiウエーハの裏面加工処理ができ、この後、ウエットによる化学研磨の工程が不要であるため、同一装置内で裏面加工処理が完結でき、生産性が飛躍的に向上して、この工程を低コスト化できる特徴がある。
【0011】
以上では本発明による装置をSi半導体ウェーハの裏面研削・研磨加工に使用する例を述べたが、本装置はパタンマスクを用いる選択エッチングにも適用できるので、パタンエッチや貫通孔の形成にも応用できる。特にガラス基板の加工においては、ガラスはSiに比べてエッチ速度が小さいが、エッチング支援物質が加わった相乗効果により、従来のサンドブラストやドライエッチよりも速く削れ、貫通孔のテーパ度合も改善される。
【0012】
【発明の効果】
(1)エッチング用ガス流とエッチング支援物質(磁性体微粒子)とを試料表面に噴射することによって、試料の加工を高速に行え、垂直に近い断面形状を形成できるようになる。
(2)本発明の装置により半導体ウエーハの裏面の薄層化加工がドライプロセスでできるようになり、これによって半導体ウエーハの洗浄や貼付け・取外し工程が不要になり大幅な工程の短縮がはかれる。
【0013】
【図面の簡単な説明】
【図1】 本発明の実施例であるプラズマエッチング装置の全体構成の概略図。
【図2】 図1に示す主要部の拡大模式図。
【図3】 本発明装置の別の実施例を示す部分拡大模式図。
【図4】 本発明装置の別の実施例を示す部分拡大模式図。
【図5】 本発明装置の別の実施例を示す部分拡大模式図。
【符号の説明】
1…マイクロ波発振器
2…導波管
3…反応ガス供給管
4…エッチングノズル
5…試料
6…プラズマ活性領域
7…試料移動機構
8…移動台
9…エッチング室
10…搬送室
11…試料交換室
12…結合部
13…活性種ガス供給管
14…ガス供給装置
15…搬送機構
16…排気ヘッド
17…排気/ガス処理装置
18…バルブ
20…制御装置
23…プラズマ発生室
54…エッチング支援物質供給装置
35、45、55、85…供給管
37、47、87…微粒子噴出ノズル
60…磁石板
80…試料保持機構
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dry etching apparatus for processing at high speed, and more particularly to an apparatus for thinning a semiconductor wafer or an insulator wafer or precisely forming a through hole in a deep step or wafer.
[0002]
[Prior art]
A semiconductor wafer having a semiconductor element or an integrated circuit formed on the front surface is used by cutting the back surface uniformly and thinning it, then cutting it into chips and assembling it into a package. Chip thinning not only increases the heat dissipation effect of the chip, reduces the consumption of cutting tools (such as cutters and saws) used in dicing and extends the life, but also reduces the height of the package to achieve high-density mounting. It is necessary for the purpose. In addition, a technique for stacking chips for higher performance and higher density requires through-holes for conducting on the front and back of the wafer. The MMIC also uses through holes and conducting electrodes.
[0003]
Further, in MEMS (Micro-ElectroMechanical Systems), in order to form ultra-compact parts and devices, a technology for forming three-dimensional processing by forming deep steps and through holes in a semiconductor wafer or glass wafer is essential. Conventionally, in order to uniformly thin a substrate crystal of a semiconductor wafer, a polishing apparatus presses a flat plate against the back surface of the semiconductor wafer via a polishing cloth and supplies a polishing liquid between the wafer and the polishing cloth. In general, there are a method of polishing while interposing metal, a method of grinding with a grindstone in which hard material particles such as diamond particles are embedded and fixed by a grinding device, and a technique of finally finishing a substrate crystal by wet etching to remove processing distortion. It has been broken. A method of forming a through hole in a semiconductor wafer is based on a parallel plate or RIE (Reactive-Ion-Etch) using ICP (Inductive Coupled Plasma). In the case of a glass wafer, the sand blast method or wet etching is used.
[0004]
[Problems to be solved by the invention]
Conventional thinning of a wafer by polishing or grinding is performed while applying compressive stress or shear stress to a substrate crystal, so that there is a drawback that the semiconductor wafer is easily damaged as it becomes thinner. Wet etching has a drawback in that productivity is poor because the process is complicated and the etching rate is slow. For this reason, the present invention provides an apparatus for uniformly thinning a wafer at high speed and with high accuracy by a plasma etching method, which is dry etching, and forming a through hole, and a high-accuracy wafer processing method using the same. The purpose is to do.
[0005]
[Means for Solving the Problems]
In the present invention, in the dry etching apparatus having a mechanism for converting the etching gas and a mixed gas containing them into plasma and ejecting the generated active species gas or the mixed gas containing them as a gas flow for etching onto the sample surface, It is characterized in that a mechanism for adding an etching support material is provided.
[0006]
In the present invention, magnetic fine particles are used as the above-mentioned etching support substance, and this is added to the etching gas together with the carrier gas (Ar or H2 gas). The etching of the sample preferentially proceeds in the depth direction by jetting the magnetic fine particles and the active species gas contained in the etching gas flow. As a result, the perpendicularity of the processed cross-sectional shape is improved and the etching rate is increased. There is. Furthermore, in order to attract and accelerate the magnetic fine particles, the above effect is enhanced by applying an external magnetic field to the sample side.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic configuration diagram of the entire apparatus showing an embodiment of a plasma etching apparatus according to the present invention. A gas mixture of SF 6, hydrogen and Ar is injected into the plasma generation chamber 23 from the gas supply device 14 through the reaction gas supply pipe 3. Microwaves generated by the microwave oscillator 1 pass through the waveguide 2 and are absorbed in the plasma generation chamber, and the mixed gas is activated to form a plasma active region 6. The activated species gas is squeezed by the etching nozzle 4 through the activated species gas supply pipe 13 and is jetted onto the surface of the sample (Si semiconductor wafer) 5 at a high speed as an etching beam. The sample (Si semiconductor wafer) 5 is first inserted into the sample exchange chamber 11 and is then fixedly set to the sample holding mechanism 80 in the etching chamber 9 by the transport mechanism 15. The detailed structure near the etching nozzle 4 and the sample holding mechanism 80 is not shown in the drawing. These will be described separately with reference to FIG. Since the sample holding mechanism 80 is moved in the XY direction or the X-θ direction by the sample moving mechanism 7, the entire surface of the sample can be processed. The exhaust section is performed through valves 18 provided in the etching chamber 9, the exhaust head 16, the sample exchange chamber 11, and the transfer chamber 10, and each is exhausted. Exhaust gas emitted from the etching chamber 9 and the exhaust head 16 is exhausted through the exhaust / gas treatment device 17 after detoxification. Furthermore, the configuration of the present invention is characterized in that the active species gas supply pipe 13 has a mechanism for supplying magnetic fine particles, which are etching support substances, by mixing them. In this process, magnetic fine particles are supplied to the branch port of the active species gas supply tube 13 at a positive pressure by the etching assisting substance supply device 54 and the supply tube 55 and mixed with the active species gas.
[0008]
FIG. 2 shows details of the etching gas flow ejection mechanism portion and the sample holding mechanism portion of FIG. The cycle of mixing the magnetic fine particles (etching assisting substance) may be continuous or intermittent, and the controller 20 has a configuration that can be arbitrarily programmed. The magnetic fine particles are transported in the supply pipe 55 by the carrier gas (Ar or N2) and merge with the active species gas in the active species gas supply pipe. For example, iron oxide or ferrite can be used as the material of the magnetic fine particles. In addition, a permanent magnet plate 60 for attracting and accelerating the magnetic fine particles is disposed in the vicinity of the surface of the movable table 8. As described above, the magnetic fine particles added to the activated species gas cause more processing damage to the sample. As a result, the etching rate increases as compared with the case where no magnetic fine particles are added.
[0009]
The schematic cross-sectional views of FIGS. 3 to 5 show some embodiments in the case where magnetic fine particles are added to and mixed with the activated species gas flow. FIG. 3 shows an example in which an ejection nozzle 37 provided at the tip of the magnetic fine particle supply pipe 35 is disposed in the etching nozzle 4. FIG. 4 shows an example in which the ejection nozzle 47 provided at the tip of the magnetic fine particle supply pipe 45 is disposed close to the outer periphery of the tip of the etching nozzle 4. FIG. 5 shows an example in which a fine particle ejection nozzle 87 is disposed at the tip of the magnetic fine particle supply pipe 85 so as to contain the etching nozzle 4.
[0010]
A method of cutting the back surface of the Si semiconductor wafer and processing it into a thin crystal substrate with the apparatus configuration described above will be described below. This step is performed after a high-density integrated circuit is formed on the surface of the wafer. Thereafter, the wafer is assembled into a package as a chip. First, the front surface is protected with a resin tape, and the back surface is attached to the etching nozzle. For example, when a Si wafer having a thickness of 600 μm is cut to a thickness of 50 μm, etching is performed by mixing an etching support substance (magnetic fine particles) with an etching gas until the thickness reaches about 100 μm. This is because Si is scattered by the above-mentioned etching assisting material or processing strain is left on the Si surface, and when etching gas beam containing active species is sprayed on this, Si is scraped at high speed by a chemical and mechanical synergistic effect. Because. When the Si surface is processed by mixing the etching support material, the processing strain remains on the surface. Therefore, as the processing procedure in this case, the etching to make the final 50 μm stops the supply of the etching support material and performs the etching including the active species. Etching is performed in an amount of about 50 μm using only a gas beam. This is because the etching of the active species gas beam is chemical polishing by dry, so that Si is not damaged. According to this method, the back surface processing of the Si wafer can be performed in a short time, and thereafter, the chemical polishing step by wet is unnecessary, so that the back surface processing can be completed in the same apparatus, and the productivity is dramatically improved. There is a feature that this process can be improved and the cost can be reduced.
[0011]
In the above, an example in which the apparatus according to the present invention is used for back grinding / polishing of a Si semiconductor wafer has been described. However, since this apparatus can also be applied to selective etching using a pattern mask, it can also be applied to pattern etching and formation of through holes. it can. Especially in the processing of glass substrates, glass has a lower etch rate than Si, but due to the synergistic effect of adding an etching aid, it can be cut faster than conventional sandblasting and dry etching, and the taper of the through holes is improved. .
[0012]
【The invention's effect】
(1) By jetting an etching gas flow and an etching assisting substance (magnetic fine particles) onto the surface of the sample, the sample can be processed at a high speed and a nearly vertical cross-sectional shape can be formed.
(2) The apparatus of the present invention makes it possible to thin the back surface of a semiconductor wafer by a dry process, which eliminates the need for a semiconductor wafer cleaning, affixing / removing process, and greatly shortening the process.
[0013]
[Brief description of the drawings]
FIG. 1 is a schematic diagram of the overall configuration of a plasma etching apparatus according to an embodiment of the present invention.
FIG. 2 is an enlarged schematic view of the main part shown in FIG.
FIG. 3 is a partially enlarged schematic view showing another embodiment of the device of the present invention.
FIG. 4 is a partially enlarged schematic view showing another embodiment of the device of the present invention.
FIG. 5 is a partially enlarged schematic view showing another embodiment of the device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Microwave oscillator 2 ... Waveguide 3 ... Reaction gas supply pipe 4 ... Etching nozzle 5 ... Sample 6 ... Plasma active region 7 ... Sample moving mechanism 8 ... Moving stand 9 ... Etching chamber 10 ... Transfer chamber 11 ... Sample exchange chamber DESCRIPTION OF SYMBOLS 12 ... Coupling part 13 ... Active species gas supply pipe 14 ... Gas supply apparatus 15 ... Conveying mechanism 16 ... Exhaust head 17 ... Exhaust / gas processing apparatus 18 ... Valve 20 ... Control apparatus 23 ... Plasma generation chamber 54 ... Etching assistance substance supply apparatus 35, 45, 55, 85 ... supply pipes 37, 47, 87 ... fine particle ejection nozzle 60 ... magnet plate 80 ... sample holding mechanism

Claims (2)

エッチングガスを含むエッチング用混合ガスをプラズマ発生室に導入する機構と、プラズマ発生室で発生した活性種ガスを含むエッチング用混合ガス流を試料表面に噴出させる機構を備えたプラズマエッチング装置において、
上記の活性種ガスを含むエッチング用混合ガス流の中に磁性体微粒子を添加する機構と、
主要部を磁石で構成した試料保持機構を有することを特徴とするプラズマエッチング装置。
In a plasma etching apparatus provided with a mechanism for introducing an etching mixed gas containing an etching gas into a plasma generation chamber and a mechanism for jetting an etching mixed gas flow containing an active species gas generated in the plasma generation chamber to the sample surface,
A mechanism for adding magnetic fine particles into the mixed gas stream for etching containing the active species gas;
A plasma etching apparatus having a sample holding mechanism whose main part is composed of a magnet.
請求項1に記載のエッチング装置を用いて、試料表面をエッチング加工することを特徴とするエッチング方法。An etching method comprising etching the sample surface using the etching apparatus according to claim 1.
JP35514699A 1999-12-14 1999-12-14 Plasma etching apparatus and etching method using the same Expired - Fee Related JP4625153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35514699A JP4625153B2 (en) 1999-12-14 1999-12-14 Plasma etching apparatus and etching method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35514699A JP4625153B2 (en) 1999-12-14 1999-12-14 Plasma etching apparatus and etching method using the same

Publications (2)

Publication Number Publication Date
JP2001176848A JP2001176848A (en) 2001-06-29
JP4625153B2 true JP4625153B2 (en) 2011-02-02

Family

ID=18442217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35514699A Expired - Fee Related JP4625153B2 (en) 1999-12-14 1999-12-14 Plasma etching apparatus and etching method using the same

Country Status (1)

Country Link
JP (1) JP4625153B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158329A (en) * 1985-12-28 1987-07-14 Canon Inc Device for spraying fine particle
JP3582916B2 (en) * 1995-10-14 2004-10-27 スピードファム株式会社 Plasma etching equipment
JPH118222A (en) * 1997-06-16 1999-01-12 Seiko Epson Corp Method of processing silicon substrate

Also Published As

Publication number Publication date
JP2001176848A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
KR920003878B1 (en) Surface treatment method of semiconductor substrate
JP2009043992A (en) Treatment method for wafer
US10790193B2 (en) Wafer processing method
WO2007138848A1 (en) Bonded wafer manufacturing method
US10790192B2 (en) Wafer processing method
US20050196940A1 (en) Water jet processing method
JP4625153B2 (en) Plasma etching apparatus and etching method using the same
KR100841038B1 (en) Plasma treating apparatus
JP4153325B2 (en) Semiconductor wafer processing method
JP7154697B2 (en) Workpiece processing method
JP2021190557A (en) Wafer processing method
US20020168879A1 (en) Semiconductor device, method of producing a semiconductor device, and semiconductor substrate cleaning apparatus used for the production method
KR20180004660A (en) Wafer processing method
JPH11149999A (en) Plasma treating device
JP7104558B2 (en) Processing method of work piece
KR101615426B1 (en) The slurry injection nozzle and a substrate processing apparatus using the nozzle
KR100299975B1 (en) Method for manufacturing electrodes of plasma chamber
JP2021027183A (en) Manufacturing method of chip
TW201936476A (en) Peeling method for peeling off substrate from support plate
JP2001176849A (en) Plasma etching system
JP7128064B2 (en) Workpiece processing method
JP4483417B2 (en) Substrate dividing method and element having bonding surface
JP2008041780A (en) Support plate, method for stripping wafer, and method for thinning wafer
JP2002050656A (en) Apparatus and method of mounting electronic component element
JP2004032572A (en) Manufacturing method of piezoelectric vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101105

R150 Certificate of patent or registration of utility model

Ref document number: 4625153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees