JP4624561B2 - 身体内にデバイスを位置決めする方法及び装置 - Google Patents

身体内にデバイスを位置決めする方法及び装置 Download PDF

Info

Publication number
JP4624561B2
JP4624561B2 JP2000573290A JP2000573290A JP4624561B2 JP 4624561 B2 JP4624561 B2 JP 4624561B2 JP 2000573290 A JP2000573290 A JP 2000573290A JP 2000573290 A JP2000573290 A JP 2000573290A JP 4624561 B2 JP4624561 B2 JP 4624561B2
Authority
JP
Japan
Prior art keywords
point
guide
plane
image
stem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000573290A
Other languages
English (en)
Other versions
JP2002526152A5 (ja
JP2002526152A (ja
Inventor
エル. トラウィット,チャールズ
リウ,ハイイン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Minnesota
Original Assignee
University of Minnesota
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Minnesota filed Critical University of Minnesota
Publication of JP2002526152A publication Critical patent/JP2002526152A/ja
Publication of JP2002526152A5 publication Critical patent/JP2002526152A5/ja
Application granted granted Critical
Publication of JP4624561B2 publication Critical patent/JP4624561B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2015Miscellaneous features
    • A61B2018/2025Miscellaneous features with a pilot laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

【0001】
本出願は1998年10月8日に出願された米国特許出願第09/168,792号の一部継続出願(continuation-in-part)であり、該一部継続出願は本明細書中に援用する。
【0002】
(発明の技術分野)
本発明は医療分野に関し、特に、医療用撮像システムを用いて身体内に介挿具(interventional device)を位置決めする方法に関する。
【0003】
(発明の背景)
コンピュータ断層撮影(CT)ガイド式生体組織検査(computed tomography (CT)-guided biopsy)は既に、病巣(lesion)内における位置決めを検証するために断面内における針を可視化する(visualize)ための断面撮像法が(cross sectional imaging modality)が新規な能力を提供することが明らかになったCTスキャンの初期から実施されて来た。ここ15年にわたり、CTガイド式生体組織検査に対する方法は主として試行錯誤的であった。すなわち本質的には、適切な身体部分のスキャンが行われ、コンピュータ制御装置での深度計算(depth calculation)に続き軌跡の演算(mental calculation)が行われる。次に上記深度は、マークを付けられた介挿具(デバイス)へ移される。それからこの介挿具は、配置が適切か不適切かということを確認するために妥当な介挿具位置でのスキャンを反復しながら、挿入、抜き取りおよび再挿入が繰返される。この試行錯誤的な技術は明らかに、望ましくない遅延、リスク、コストをもたらし、場合によっては望ましくない放射線の被爆も引き起こす。
【0004】
CTガイド式生体組織検査の問題に加え、最近では生体組織検査(biopsy)および他の最小侵襲処置(minimally-invasive procedure)を含むMRガイド式手術の分野で多くの研究が行われて来た。現在ではMRによる軌跡位置決定方法(method of trajectory localization under MR)は主として、フレームレス定位概念(frameless stereotactic concept)に基づいている。これは多くの場合に実現可能な方法(methodology)であるが、依然としてコストが問題である。今日まで、MR設置環境(setting)で使用される簡単で正確かつ安価な方法は提案されていない。
【0005】
従って、依然として、身体部分内に介挿具を位置決定するための迅速で更に好都合な方法に対する要望が存在する。
(発明の概要)
一実施例によれば本発明は、ピボット点(pivot point)の回りで回転する(pivoting)ガイドを使用して身体内に介挿具を位置決めする方法であって、ターゲットおよび上記ピボット点の空間座標(またはこの座標に対応する点の画像表示、コンピュータは表示(display)の数学的関係を真の座標に解釈することができるので、この座標は明確に指定されなくてもよい)の位置を決定することと、上記ターゲットおよび上記ピボット点を通って延在する線に沿って、またはこの線のすぐ近くに位置する第3の点を上記身体の外側に決定することと、撮像システムを使用して上記ガイドの軸を上記第3の点にアラインメントさせること(aligning)と、を含む、介挿具の位置決め方法を提供する。
【0006】
別の実施例によれば本発明は、処理ユニットと、この処理ユニット上で動作するコンピュータ・ソフトウェアであって、ターゲット点と、ガイドのピボット点との空間座標を医療用撮像システムのオペレータが位置決定することができるようにし、かつ、上記ターゲットおよび上記ピボット点を通って延在する線に沿って、またはこの線のすぐ近くに位置する第3の点を上記身体の外側に決定する、コンピュータ・ソフトウェアと、を含む医療用撮像システムを提供する。この医療用撮像システムは更に、上記処理ユニット上において動作するコンピュータ・ソフトウェアであって、撮像システムを使用して上記ガイドの軸を上記第3の点とアラインメントさせることができる画像をオペレータが得るのを助けるように動作するコンピュータ・ソフトウェアを含むことができる。
【0007】
別の実施例によれば本発明は、ピボット点と少なくとも第3の点とにおいて軌跡アラインメント用ステム(trajectory alignment stem)上に置かれた一個以上の無線周波数のマイクロコイルからのMR信号を使用し、これらの2個のコイルの空間的位置を決定し、従って上記アラインメント用ステムの方向づけ(orientation)を含め、このアラインメント用ステムの位置を決定する方法を提供する。更に、この決定され、従ってそれによりMRスキャナ・コンピュータに対して既知となる情報を用いて上記軌跡アラインメント用ステムを所望の軌跡と合うように再アラインメントする(realigned)ことができ、この再アラインメントは、手動で、遠隔制御もしくはロボット制御により、または、MRスキャナ・コンピュータ自体の制御により、上記軌跡アラインメント用ステムに直接的にもしくは間接的に取付けられもしくは関連付けられたサーボ機構との連動によって行うことができる。
【0008】
別の実施例によれば本発明は、担体(carrier)内にコード化されたコンピュータ・プログラムを備えた製品(article of manufacture)であって、上記プログラムは医療用撮像システムの処理ユニット上において、ターゲット点とガイドのピボット点の空間座標をその医療用撮像システムのオペレータが位置決定することができるようにし、かつ、上記ターゲットおよび上記ピボット点を通って延在する線に沿って、またはその線のすぐ近くに位置する第3の点を身体の外側に決定することができるように動作する、製品を提供する。
【0009】
更なる別の実施例によれば、本発明によって上記ガイドの軸はソフトウェアの制御下で自動的にアラインメントされる。
(発明の詳細な説明)
以下の好適実施例の詳細な説明においては本明細書の一部を構成する添付図面を参照し、この図面中に本発明が実施される特定実施例を例示する。尚、本発明の範囲から逸脱せずに他の実施例が利用され得ると共に構造的変更がなされ得ることは理解されよう。
【0010】
以下に述べる本発明は、線状(もしくは実質的に線状)で細長(elongate)でありかつ点回転される(point pivoted)介挿具を人体内もしくは動物体内において所定方向にアラインメントする方法および装置を提供する。本明細書中で使用されるように“介挿具(interventional device)”という用語は、生検針(biopsy needle)、プローブもしくは他の型式の針(など)のような任意の医療器具を指している。以下において本発明は実施例に関して記述されるが、この実施例においては本発明は介挿具を人の脳内に位置決めするために適用される。但し、本発明は脳内への介挿具の位置決めの使用に限定されるのではなく、人体もしくは動物の体の任意の部位内に介挿具を位置決めするために広範囲に適用され得ることは理解されよう。
(磁気共鳴撮像法(Magnetic Resonance Imaging)を使用する方法の実施例)
以下に示す実施例は、高部前頭葉病巣(high frontal lobe lesion)の生体組織検査に使用することができる、患者の長軸(long axis)に幾分か平行に方向づけされた軌跡に沿う頭蓋内病巣(intractional lesion)に関連するMRIガイド式生体組織検査方法を提供する。患者の長軸とは、患者の身体の丈とほぼ同軸な軸である。この方法を、MRI画像2A、2Bおよび2Cを夫々示す図1A、図1Bおよび図1Cを参照して述べる。患者に対する静脈内造影剤(intravenous contrast agent)の投与に先立ち、または実施例においてはそれに引き続き、特に企図されたターゲット12の領域を含む頭部5を通る限定されたMRIスキャン画像(limited MRI scan)が得られる。静脈内造影剤を最初に投与する利点は2つある。第1にターゲットにされた病巣自体のコントラストが強調されて病巣の識別が容易になることがかなり多く、第2に、企図された軌跡の領域と重なる皮質静脈(cortical vein)のコントラストが強調されることも多いことである。このような静脈は出血の可能性を最小にするように可能な限り回避されるべき組織であるので、軌跡を決定する前にこのような静脈を識別することは有用である。
【0011】
ターゲット12が識別されたなら、スキャナを使用して軌跡が決定される。進入点(entry point)に対する頭皮上の点が選択されることにより、外科的進入路(surgical approach)が作り出される。この進入路(approach)は、既に得られている画像データの多平面再合成(multiplanar reconstruction)を実施することにより、または、単に所望の軌跡に沿った新たな単一スライス画像を作ることにより検証することができる。もし後者の方法が使用されるなら、スキャン平面は、必要であれば外科的進入路が現在のスキャン図面(current scan plan)の軸に沿うことが決定されるまで容易に調節することができる。代替的には、上記進入点は他の手段により決定される。
【0012】
進入点が決定されたなら、頭蓋冠(calvarium)の表面上、または、この進入点に穿孔されたバー孔(burr hole)内、のいずれかに軌跡ガイド(trajectory guide)10が外科的に差込まれる(implanted)。この軌跡ガイド10のデザインは、図5の実施例のガイド10において示されたようにピボット点の回りで回転するガイド部材17を含むこと以外は本発明にとり重要でない。図5に示されたようにガイド部材17は、基部16に回転可能に接がれた下側部分17Aと、アラインメントのプロセス中に使用される介挿具もしくはガイド・ステム18を受容し得る上側部分17Bとを含む。図5に示された実施例の軌跡ガイド10の更なる情報、および、本発明と共に使用され得る他の可能なガイドに関する情報は、1998年5月14日に出願されて“軌跡ガイドの遠隔作動(Remote Actuation of Trajectory Guide)”と称された米国特許出願第09/078913号で見ることができる。尚、実施例のガイド10のピボット点は身体の表面のすぐ近くに位置決めされるが、このピボット点は、例えばガイド10が関節結合アーム(articulated arm)により身体の上方もしくは外部に吊り下げられる場合には身体の表面の上方とすることができることに注意すべきである。
【0013】
軌跡ガイド10およびアラインメント用ステム18が所定位置に置かれかつ軌跡がスキャン平面(図1Aにおいてはターゲット12と少なくとも軌跡ガイド10の基部16とを包含する平面に沿って取られた画像スライス断面を提供する)と一致(in line)したなら、MRIスキャンの3D空間内には幾つかの空間的位置決定点(spatial location point)が定められる、即ち、ひとつは頭部内、ひとつは頭部の近傍もしくはその上方、ひとつは外部である。先ず最初に、頭部の初期MRIスキャンで得られた画像からターゲット12のx,y,z座標がオペレータにより決定される。次に、ガイド部材17の上記ピボット点のx,y,z座標もまた、単一の(または複数の)MRIスキャン画像からオペレータにより決定される。
【0014】
これらの2個の点が既知となれば、ターゲット12からガイド部材17の上記ピボット点を通り頭部5の外側の空間32へと延在する線30が数学的に決定される。この線は、現在の、もしくは再合成された画像のスキャン平面(上記外科的進入路とアラインメントされた平面)上に表示され得ると共に、介挿具を有する所望のターゲットに到達するために必要な軌跡を表している。本発明の1つの実施例によれば線30は、基部16からステム18の自由端までの距離の約2/3だけ基部16から離れて延在するように引かれる。次に線30に沿って点34が選択される。点34は上記軌跡ガイドのアラインメント用ステム18により描かれる3D円周の円弧上に来るべきであり、そのステム18は、1つの実施例によれば、現在の、もしくは再合成された画像の平面に沿った新たな画像内で明瞭に視認可能にするために、基部16からの点34の距離とほぼ同じ基部16からの距離に位置決めされたMRI可視マーカ(MRI-visible marker)19を含む。ステム18は全体的にMRI可視マーカ材料で作成するか、または、マーカ19はステム18の一部に限定されるようにすることができる。点34は線30がスキャナ・ディスプレイ上に描かれたときにこの線30上にオペレータにより選択されるか、または、それはオペレータの介在なしで数学的に決定されるようにすることができる。
【0015】
尚、本明細書中の記述は数学的法則(mathematical precept)に基づくが、実際には、上記のようにオペレータが座標内に手でタイプ入力することは最近の殆どのCTおよびMRスキャナならびに他の撮像機器においてはもはや不要なことは注目に値する。殆どのスキャナ制御装置は家庭用コンピュータと同様にマウスにより動作し、線を決定するために使用される各点の真の座標をオペレータが知らなくても、1つの点を表すためにカーソルを画面上にドロップすると、1つの点から他の点へとオペレータ用制御装置上で線を描くことができる。但し実際にはコンピュータは画面の裏側で、表示された各点そのものを空間座標ならびにそれに従う数学モデルに変換している。故に実際問題として本明細書中に示された方法を行う殆どのオペレータは、提案されたステップを実際に行う必要は無く、コンピュータのマウスもしくは類似の装置を以て単にポインティングしてクリックすることにより本明細書中に記述された軌跡の幾何的図面(plan)を作り出すことが必要とされるだけである。
【0016】
上述及び以下で更に記述される簡素な方法に加え、上記の軌跡アラインメント用ステムのアラインメントは、上記の点34の位置であるとしてオペレータにより決定された空間内の1点に対して焦点を合わされるレーザ、赤外線、他の周波数の光、または他のエネルギ源のような、他の可視化方法により実行され得ることが想定できる。更に、線30に対して上記軌跡アラインメント用ステムの更に忠実なアラインメントをオペレータが認識する方法は可視的とする必要さえ無く、例えば、上記ステムをアラインメントするためにいろいろと移動させてその移動の成否に依存して反復的発信音(repeating-beep)の反復速度が変り得る(すなわち、線30からステムが更に離れるように移動させているなら発信音を低速で鳴らし、線30に接近しているなら発信音を高速で鳴らし、そして、アラインメントが成功したと見做されたときには連続音とする)ように可聴にすることができることは容易に想定される。
【0017】
線30上において、自動的に計算されるか、または、オペレータにより選択された点から得られた点34のx,y,z座標を使用し、点34を含むようにスキャン平面36が選択されるが、しかし、上記ターゲット自体はその平面内では可視化されない。次に点34は上記軌跡ガイドアラインメント平面上にマーク(38)される。次に、アラインメント用ステム18上のMRI可視マーカ19が視認され、かつ所望のx,y,z座標に位置決めされるような時間になるまで、軌跡ガイドアラインメント用ステム18との相互作用的な位置決め(interactive positioning)で平面36(図1B)に沿って順次的な2次元(2D)のスキャン画像が得られる。図1Bに示されたようにステム18は、空間内のある単一点に関してマーク38とアラインメントされた位置へ容易に移動させることができるように、マーク38のすぐ近くに在り、図1Bの透視図(perspective)から、上記軌跡ガイドアラインメント平面内にある“x”および“y”座標に関してのみアラインメントが必要とされる。ステム18が点“x”および“y”とアラインメントされたなら、ステム18は線30と同軸にアラインメントされるべきであると判断される。故に軌跡ガイド10のアラインメント用ステム18は適切にアラインメントされ(図1C参照)、ガイド部材17はその位置に固定されることにより介挿具もしくは他の器具の挿入を可能とする。
【0018】
更に、上記線が上記軌跡ガイドアラインメント平面と交差する(bisect)と想定するのが最も簡単ではあるが、実際に必要とされることは、上記軌跡ガイドアラインメント平面の画像上で交差箇所の真の点が決定可能であり、かつ軌跡ガイドアラインメント用ステムの縦方向の軸に対する断面で見た軌跡ガイドアラインメント用ステムの方向づけ(orientation)を、上記2個の点をアラインメントさせるように調節することができるように、交差箇所の点が予言可能なことだけである。
【0019】
この点において、必須ではないが検証のために、意図したターゲットを通り、また上記軌跡ガイドの長さ方向を通る1回以上の反復スキャン画像が得られる。選択的に、MR撮像の場合には、適切なアラインメントを確かなものとするために直交する(もしくはほぼ直交する)平面のスキャンが実施されねばならない。代替的に、直交する(もしくはほぼ直交する)多平面再合成(multiplanar reconstruction)がオペレータ用制御装置上で再び行うことができるが、これはアラインメント用ステム18が意図された軌跡に沿って上記ターゲットへ適切にアラインメントされたことを明示するはずである。このようなスキャン画像の例は図2Aおよび図2Bに示されている。
【0020】
上記軌跡ガイドが所定位置に固定されたならアラインメント用ステム18は上記軌跡ガイドから抜き取られ、そして、確認のスキャン画像又は多平面再合成を区画(measure off)することにより、処置の状況に依存して捩れドリル(twist drill)を、または頭蓋冠を貫通して既に孔があけられていれば介挿具自体もしくは他のプローブあるいは器具を、所定の深度まで通すことができる。同様に、上記軌跡ガイドが上記平面内となる程度まで患者の頭部が傾斜されたなら上記軌跡を含むターゲット自体を通る、または、順次的なスキャン画像のひとつにて上記ターゲットに尖端が到達したことを単に示すために、上記ターゲット自体を通る、反復的なスキャン画像を得ることができる。
【0021】
上記の例で記述された方法は、患者の長軸(long axis)に沿ってアプローチされた病巣に関していた。実際には、スキャナの、上記長軸への方向づけとは別の方向づけにおいても同一の方法が等しく良好に機能する。換言すると、時間の経過順の頭葉生体組織検査(temporal lobe biopsy)は患者の長軸に直交する向き(orientotion)に沿ってアプローチされることもある。前者の場合、以下で“軌跡ガイドアラインメント用平面(trajectory guide alignment plane)”と称される平面は、患者の長軸に対して概略的に直交して方向づけされる。後者の場合、この平面は患者の長軸に対して概略的にアラインメントされるが、これは一般的には軸方向(axial)もしくは横方向(transverse)、または、傾斜軸方向(oblique axial)もしくは傾斜横方向(oblique transverse)とも称され、典型的には患者に関して矢状縫合方向(sagittal)もしくは冠状縫合方向(coronal)と称され、あるいは、これらの2つの方向づけの間のどこかである。
【0022】
更に、上記線が上記軌跡ガイドアラインメント平面と交差すると想定するのが最も簡単ではあるが、実際に必要とされることは、上記軌跡ガイドアラインメント平面の画像上で交差箇所の真の点が決定可能であり、かつ軌跡ガイドアラインメント用ステムのその縦軸に対する断面で見たその軌跡ガイドアラインメント用ステムの方向づけを上記2個の点をアラインメントさせるように調節することができるように、交差箇所の点が予言可能なことだけである。
(コンピュータ断層撮影を使用する方法の実施例)
上記実施例において記述された方法はMR撮像ガイダンス(MR imaging guidance)の下で行われる外科処置に関しているが、この方法はCTスキャンガイダンス(CT scanning guidance)に対しても同様に適用することができる。このような場合、必須ではないが、時間および効率の観点からはスパイラルCTスキャナ(spiral CT scanner)を利用するのが好適である。多少なりとも患者の長軸に沿ってアプローチされるべき脳病巣の例においては、必須ではないが典型的には静脈内沃化造影(intravenous iodinated contrast)媒体の注入に続いてベースライン・スパイラルCTスキャン画像(baseline spiral CT scan)が得られる。スキャナ制御装置上に表示された軸方向画像(axial image)からターゲットが選択され、頭皮/頭蓋骨上で表面進入点が選択される。これが達成されたなら、スパイラル(もしくは非スパイラル)データ・セットの多平面再合成が実施され、MRに対して上述された方法が続いて行なわれる。このシナリオにおいて“軌跡ガイド位置決め平面(trajectory guide localizing plane)”と以下で称される平面は、患者の長軸に対して概略的に直交して方向づけされ、実際には、患者を全く通らずに患者の頭部を越えた空中を通りながらも依然として軌跡ガイド・ステム18を通ってスキャンするべきであることもある。一旦アラインメントされたなら、必須ではないが、患者および軌跡ガイド・ステム18を通して反復的なスパイラル(もしくは非スパイラル)データ・セットを得ることができ、確認のために実際の軌跡の長さ方向に沿った(概略)直交する多平面再合成された画像を視認することができる。
【0023】
これに加えて上記方法は、患者に対して縦方向以外に方向づけされた軌跡に沿ってアクセスされる病巣に対するCTに関しても等しく良好に機能し得る。しかしながら、CTはMRIとは異なる方法であり、本明細書中で提案される方法は(患者の長軸に対して直交する)真の軸方向平面内で使用されたときには最適でない。但し、典型的なスキャン方法を僅かに改変することにより、軸平面内で病巣にアクセスするために使用されたときでもこの軌跡方法が成功するようにすることができる。これを達成するための、3つの異なる方法を以下において述べる。
【0024】
第1に、軌跡アラインメント用ステム18は撮像の平面内で容易に操作する(maneuvered)ことができる。上記ターゲットおよびデバイスは両者ともにこの平面内で確かに可視化することができ、針の全長が可視化されれば比較的正確なアプローチが見込まれることを確認できる。
第2に、ターゲット12は、典型的には生体組織(tissue)のある体積にわたってのスパイラル捕捉(spiral acquisition)として上記軸平面内でのスキャンにより選択することができ、従って、多平面再フォーマット(multiplanar reformatting)が実施され得る。次に、元の真の軸平面から離れて幾分か傾斜して進入点が選択可能であり、この時点において上記スキャン平面は角度付けすることができるが、このことは、全てのCTスキャナに共通するものであり、従って、画像平面が計画の軌跡から離れたある適度な角度(例えばあくまで例として、真の軸平面から約5〜15°)となるであろう。これに加えて上記スキャナはまた、軌跡ガイドアラインメント平面を得るために、角度付けられたスキャン平面の逆方向においても角度付けすることができる。更に、上記軌跡ガイドが所定位置に固定されたなら、ターゲットを視認するように軌跡ガイドアラインメント平面が位置決めされるように患者はガントリ(gantry)上で前後に移動させることができる。故に、ターゲットへの前記の介挿具の到達は、上記ガイドを位置決めするために使用されたのと同一の画像平面を使用して決定することができる。但しこのシチュエーションにおいては、以下に記述される数学的計算は依然として効果があり、かつ、上記軌跡と軌跡ガイドのアラインメント平面の交差箇所が予測可能であることは明白であろう。
【0025】
最後に第3の方法によれば、(軸平面内において)ターゲットおよび進入点が一旦選択されたなら、新たなスキャン平面の角度は軌跡線と軌跡アラインメント平面が交差するようなものとなるように、ガントリは(ここでも、例えば単に例として、約5〜15°で)角度を付けることができる。
上記第1および第3の方法において、軌跡は患者に対して真に軸方向であり得る。第2の方法においては、軌跡自体が傾斜軸方向のアプローチへと修正される。これは実際、肝臓生体組織検査に対する典型的なシナリオであり、その場合に肋骨は軸方向の軌跡に対する進入路の線内に在ることが多い。
【0026】
故に上述の如く本発明は実施例において、図3に示されたような下記の方法を提供する(この方法において各ステップは必ずしも下記の順序である必要はない)。
1. 身体内における関心領域が撮像され、ターゲットおよび進入路(approach)の位置が決定される(40)。
【0027】
2. 身体上、身体内もしくは身体の近傍の所定位置に軌跡ガイドが置かれる。軌跡ガイドは固定点の回りで回転するが、この固定点は身体の表面のすぐ近くでも良く近くでなくても良いが、典型的には身体の表面もしくは外側にある(41)。
3. ターゲット点およびピボット点の各座標、ならびに、撮像平面(imaging plane)の方向づけ(orientation)が決定される(42)。
【0028】
4. 軌跡ガイドアラインメント用ステムは、このガイドの方向にほぼ垂直な方向づけを有する平面内において、または、アラインメント用ステムが所望の進入路の線とアラインメントされたときにその平面が少なくともそのアラインメント用ステムと交差するように、撮像される。これは以下において“軌跡ガイドアラインメント平面”と称される(43)。
【0029】
5. 上記2つの点によって定義された線と上記軌跡ガイドアラインメント平面との交点が決定される(44)。
6. 上記交点は、軌跡ガイド画像上における面内ターゲット点として表示される(45)。
7. 実質的に上記ガイド・ステムの軸を見“下ろす”(looking “down”)視界から視認される上記ガイド・ステムの画像が、必須では無いが好適に“リアルタイム”で上記軌跡ガイド画像上の上記面内ターゲット点と(本質的にはアラインメントされるまで上記ステムを“x”および“y”方向で移動させることにより)アラインメントされる(46)。
【0030】
尚、上記軌跡ガイドアラインメント平面は上記ターゲットとピボット点とに交差する線に対して厳密に直交することは不要であることに注意すべきである。むしろ、上記ガイドのステムが上記平面と交差するように、上記線が上記軌跡ガイドアラインメント平面内に完全には包含されないことのみが必要である。
(撮像ソフトウェア/装置の実施例)
本発明の一実施例に依れば、撮像装置上で作動して上記方法を可能とする撮像ソフトウェアが提供される。図4のブロック図に示されるように、撮像システム50は、撮像装置52と、ソフトウェア56を含むコンピュータ処理ユニット54と、ディスプレイ58とを含む。撮像装置52は、X線撮像、磁気共鳴撮像(MRI)ユニット、または、超音波撮像ユニットであってもよい。装置52は画像データをコンピュータ処理ユニット54に供給し、このユニット54はソフトウェア56の制御の下でその画像データを処理し、ディスプレイ58に表示される画像、または、(図示なし)画像印刷システムに対する出力を生成する。
【0031】
本発明のこの実施例によれば、ソフトウェア56は、本発明の方法の適用によってオペレータをガイドするためのユーザ・インタフェースおよび支援コンピュータ処理命令(supporting computer processing instruction)を提供する一個以上のソフトウェア・コンポーネント(software component)60を含む。このユーザ・インタフェースおよび支援処理命令は好適には最小限でもオペレータ用ツールを含むが、このオペレータ用ツールは、ターゲットとガイドのピボット点との座標を特定する(identify)と共に、これらの点を通過する線と、この線と上記軌跡ガイドアラインメント平面との交点とを決定して、上記画像平面上における上記アラインメント点(atignment point)をディスプレイ上で確定してマークするためのものである。一実施例においてこれらのツールは、線30を計算するための座標を確立するために、マウスなどのポインティング装置を使用してターゲットおよびピボット点にカーソル・マークを貼り付けまたは“ドロップ”する機能を含み、これは一旦カーソル・マークが確立されたならば自動的に行われ得るものである。所望であれば、これらのカーソル・マークは“ドラッグおよびドロップ”されることによりディスプレイの種々の箇所に移動させることができる。コンポーネント60はまた好適には、オペレータが上記軌跡ガイドアラインメント平面の位置を指定するのを助力するためのツールも含み、かつ、一旦アラインメント点が特定されたならば、マークされたアラインメント点を用いて上記ガイド・ステムのアラインメントを行なうことができるようにする画像平面のビュー(view)を直ちに選択できるようにする。更にオペレータは、上記ターゲットおよびピボット点をマークしたなら、ステム18が軌跡ガイドアラインメント平面の画像に関してアラインメントされ得るように図1B、図2Aおよび図2Bの画像に示されたような画像と同時に、ステム18が抜き取られ、かつ介挿具が所望位置に挿入されることを更に可能にする、(交互に更新され得る)図2Aおよび図2Bの確認画像を、スキャナ・ディスプレイ上の幾つかの同時ウィンドウ(simultaneous windows)上に自動的に表示するためのコンポーネント60を呼び出す(invoke)ことができることが企図されている。
【0032】
本発明の他の態様に依れば、図4の点線の形で示されたように、上記ガイド・ステムの位置決めが処理ユニット54および電気/機械リンク制御器(electrical to mechanical linkage control)62の制御の下で自動的に達成されるという実施例が提供される。この実施例においては、ソフトウェア・コンポーネント60は、マーカ19の位置を所望のアラインメント点と比較することにより、ステム18がそのアラインメント点の(x、y、z)座標とアラインメントするまでこのステム18を移動することを、ユニット54との適切なインタフェースを介して上記の電気から機械へのリンクに指示するコンピュータ命令を含む。機械的リンク(mechanical linkage)64は、上記で更に十分に特定された米国特許出願第09/078,913号で開示されたような撮像環境と互換性のある任意の設計のもので良い。
【0033】
今、図6および図7を参照すると、ガイド・ステムのアラインメントを容易にする本発明の付加的な代替実施例が示されている。一実施例によれば、処理ユニット54はオーディオ信号を出力し、このオーディオ信号は上記ステムがアラインメントに近づきつつあるか遠ざかっているかを表し、または少なくとも上記ステムが適切にアラインメントされたときの表示を出力する。この表示は例えば可変周波数の発信音(beep)で、この周波数範囲の一端は最も離れた位置を示し、その他端はアラインメント状態を示しても良い。上記ステムのアラインメントの決定は、ユニット54を使用した画像分析により達成され得る。代替的に図7に示されるように上記ステムはマイクロコイル72を含むことができ、このマイクロコイル72は信号源74から信号を受信し、または、受動型で既知周波数で共振するように構成され得る。処理ユニット54は今度は、コイル72により発生された信号を検出し、上記ステムの空間座標を決定するように構成することができる。図6はまた、空間内でステム18がアラインメントされるべき点を示すユニット54からの出力を受信するレーザ光制御ユニット80も示している。ユニット80は一対のレーザ82、84を制御し、これらのレーザ82、84はステム18をアラインメントすることが望まれる空間内の点(例えば34)でビーム83および85が交差するようにするために機械的リンクまたは別の方法によって行なうことができる。そのときにステム18は、画像表示を参照すること無くビームの交点に容易にアラインメントされ得る。その場合、このアラインメントは撮像装置により生成された画像に関して検証され得るのは勿論である。別実施例においてはレーザ光の代わりに、空間内の1点に焦点を合わされる赤外線、他の周波数の光、または他のエネルギ源などの他の光源を使用することもできよう。
【0034】
本発明によれば更に、コンポーネント60は撮像システム50内に組み込むか、あるいは、磁気媒体などの搬送媒体内にまたは電気的もしくは光学的媒体上を搬送されるデジタル・データに分散してコード化されてもよい。
(計算の理論的根拠)
以下に示されるのは、空間内の2個の点を通る線あるいは軌跡を図式的に求めるための本発明で使用され得る技術の一実施例である。この例では、ターゲット点およびピボット点が夫々、
【0035】
【数1】
Figure 0004624561
【0036】
と表されるものと仮定する。本発明の目的の為に、これらの2点の座標は上記撮像システムを使用して測定される。所望の軌跡はこれらの2点(TおよびP)を結ぶ線により定義され、そして、数学的には
【0037】
【数2】
Figure 0004624561
【0038】
として定義され、式中、rは上記線に沿った任意の点のベクトルであり、また、
【0039】
【数3】
Figure 0004624561
【0040】
であり、ここで、rTPはターゲット点Tからピボット点Pへのベクトルを表し、かつ、kは上記線に沿ったターゲット点“T”からの距離を表す(measure)パラメータである。
デカルト座標(Cartesian coordinates)のフレームにおいて、平面は一般に
【0041】
【数4】
Figure 0004624561
【0042】
として定義され、式中、α、β、γは上記平面の法線(normal)に対する3個のパラメータであり、次の関係を満足する。
【0043】
【数5】
Figure 0004624561
【0044】
代替的に、点(r0)を通る平面は
【0045】
【数6】
Figure 0004624561
【0046】
として定義することができ、式中、rは上記平面上の任意の点のベクトルを示し、また、
【0047】
【数7】
Figure 0004624561
【0048】
は(I=1,2)、上記平面に平行な2つの単位ベクトル(unitary vector)であり、m1およびm2は2個の実数である。上記2個の単位ベクトルは、便宜的に相互に直交するように選択され得る。もしそれらが直交すれば、上記2個の単位ベクトルの内積は以下に示される如くゼロである。
【0049】
【数8】
Figure 0004624561
【0050】
また、上記平面の法線ベクトル(normal vector)は以下に示される外積(cross product)により与えられる。
【0051】
【数9】
Figure 0004624561
【0052】
一般的に、上記平面上の点は以下の如く表すことができる。
【0053】
【数10】
Figure 0004624561
【0054】
上記の式は、上記平面上の各点が一対の数(m1およびm2)に対して一義的に(uniquely)対応するということを意味する。
上記の線と上記平面との間の切片点(intercept point)は次のベクトル方程式の解で与えられる:
【0055】
【数11】
Figure 0004624561
【0056】
このベクトル方程式を数値的に解くと、上記切片(interception)の点に対して対応するm1およびm2ならびにパラメータkが常に求められる。この絶対的切片点(absolute interception point)は、限られた視野(limited field of view; FOV)および解像度を有するスキャンされた画像上の点へと変換され得ると共に、図式的に表示され得る。上記の基準ガイドの画像が上記画像上の平面内ターゲット点(in-plane target point)と一致するように調節されたとき、上記基準ガイドは、上記2個の点(ターゲット点およびピボット点)により定義された方向と確実に同一方向となる。
【0057】
このようにして、上記においては、断面撮像システム(cross sectional imaging system)を使用して身体内に介挿具の位置決めをする方法および装置が記述された。また、本発明は一実施例において人の脳内の生体組織検査を行う方法として記述されたが、本発明は生体組織検査を行なうことでの使用または人体に関する使用に限定されない。また、本発明は上記においてMRIスキャナに関して記述されたが、本発明はCTスキャナ、PETスキャナまたは超音波スキャナなどの任意の断面撮像/スキャン・システムに対して適用可能である。本発明は、上記ガイドを適切にアラインメントするための迅速で正確な手法を提供するもので、それにより、スキャン機器の使用効率を改善すると共に処置を迅速化しかつ患者にとって苦痛な時間を短縮する。本発明は好適な形において記述されたが、添付の特許請求の範囲で規定された発明の範囲から逸脱することなしに多くの修正および変更がなされ得ることは理解されよう。
【図面の簡単な説明】
【図1A】 本発明の一実施例の方法を示すMRI画像を示す図(その1)である。
【図1B】 図1Aの線1B−1Bに沿った画像を示す図である。
【図1C】 本発明の一実施例の方法を示すMRI画像を示す図(その2)である。
【図2A】 アラインメント後の画像の概観(その1)を示す図である。
【図2B】 アラインメント後の画像の概観(その2)を示す図である。
【図3】 本発明の一実施例の方法のフローチャートを示す図である。
【図4】 本発明の実施例に係る医療用撮像システムおよびソフトウェア構成要素を示す図である。
【図5】 一実施例の軌跡ガイドを示す図である。
【図6】 本発明の代替実施例(その1)を示す図である。
【図7】 本発明の代替実施例(その2)を示す図である。

Claims (2)

  1. 処理ユニットと、
    該処理ユニット内で動作するコンピュータ・ソフトウェアであって、ターゲット点と、身体内に位置決定されるべき介挿具のためのガイドのピボット点との空間座標を医療用撮像システムのオペレータが位置決定することができるようにし、かつ、前記ターゲット点および前記ピボット点を通って延在する線に沿って存在するかまたは該線に近接して存在する第3の点を前記身体の外側に自動的に決定するコンピュータ・ソフトウェアと、を含み、
    前記第3の点は、該身体の外側の空間内で前記身体からのある距離に位置決定されることにより、前記ターゲット点と、前記ピボット点、および前記第3の点を含む画像平面を得ることができるようにし、
    前記コンピュータ・ソフトウェアは更に、前記処理ユニット上にて、前記第3の点が存在するガイドアラインメント平面であって該ガイドの軸と交差するガイドアラインメント平面上で撮られた画像を表示するように動作し、かつ、更に、前記第3の点の位置を示す前記画像上にマークを表示するように動作することにより、該画像の前記平面内において前記ガイドの前記軸が前記第3の点とアラインメントされ得るようにする、医療用撮像システム。
  2. 身体の表面又は近傍でピボット点の周りで回転するガイドを位置決めすることを支援するためのシステムであって、
    少なくとも1つの撮像装置と、
    前記撮像装置に結合されたディスプレーと、
    前記ディスプレーに結合された処理ユニットであって、前記システムのオペレータが、前記撮像装置を使用して身体内の第1の点にターゲットの位置を決定し、
    前記撮像装置を使用して、前記ガイドの軸上少なくとも1つのマーカの位置を決定し、ここで、前記ガイドの前記軸を規定する線は第2の点に位置決定される前記ピボット点を通過し、
    前記撮像装置を使用して身体の外部の第3の点の位置を決定し、前記第3の点は、前記ピボット点を越えて該ピボット点を通って前記ターゲットから延びている仮想線上に位置決定され、前記第3の点はまた、前記マーカを通り、かつ前記ガイドのステムに垂直な仮想平面上に位置決定され、
    前記マーカと前記第3の点との画像を前記ディスプレー上の前記仮想平面上に表示し、かつ、前記表示された前記マーカと前記第3の点との画像を、前記ガイドのステムを位置決めすることによって前記ディスプレー上でアライメントする、ことを可能にするように動作可能であるコンピュータ・ソフトウェアを含む処理ユニットと、
    を含むシステム。
JP2000573290A 1998-10-08 1999-10-08 身体内にデバイスを位置決めする方法及び装置 Expired - Lifetime JP4624561B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US16879298A 1998-10-08 1998-10-08
US09/168,792 1998-10-08
US09/238,749 US6195577B1 (en) 1998-10-08 1999-01-28 Method and apparatus for positioning a device in a body
US09/238,749 1999-01-28
PCT/US1999/023673 WO2000019927A1 (en) 1998-10-08 1999-10-08 Method and apparatus for positioning a device in a body

Publications (3)

Publication Number Publication Date
JP2002526152A JP2002526152A (ja) 2002-08-20
JP2002526152A5 JP2002526152A5 (ja) 2006-11-30
JP4624561B2 true JP4624561B2 (ja) 2011-02-02

Family

ID=26864458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000573290A Expired - Lifetime JP4624561B2 (ja) 1998-10-08 1999-10-08 身体内にデバイスを位置決めする方法及び装置

Country Status (7)

Country Link
US (2) US6195577B1 (ja)
EP (1) EP1121061B1 (ja)
JP (1) JP4624561B2 (ja)
AU (1) AU1109000A (ja)
CA (1) CA2346613C (ja)
DE (1) DE69922980T2 (ja)
WO (1) WO2000019927A1 (ja)

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603095B2 (en) 1994-09-02 2013-12-10 Puget Bio Ventures LLC Apparatuses for femoral and tibial resection
US6695848B2 (en) * 1994-09-02 2004-02-24 Hudson Surgical Design, Inc. Methods for femoral and tibial resection
DE19956814B4 (de) * 1999-11-25 2004-07-15 Brainlab Ag Formerfassung von Behandlungsvorrichtungen
US7660621B2 (en) * 2000-04-07 2010-02-09 Medtronic, Inc. Medical device introducer
US7321677B2 (en) * 2000-05-09 2008-01-22 Paieon Inc. System and method for three-dimensional reconstruction of an artery
US8256430B2 (en) 2001-06-15 2012-09-04 Monteris Medical, Inc. Hyperthermia treatment and probe therefor
US6793664B2 (en) 2000-06-19 2004-09-21 Image-Guided Neurologics System and method of minimally-invasive exovascular aneurysm treatment
US6902569B2 (en) * 2000-08-17 2005-06-07 Image-Guided Neurologics, Inc. Trajectory guide with instrument immobilizer
EP1341443B1 (en) * 2000-10-18 2010-12-29 Paieon Inc. System for positioning a device in a tubular organ
US8062377B2 (en) 2001-03-05 2011-11-22 Hudson Surgical Design, Inc. Methods and apparatus for knee arthroplasty
US6517546B2 (en) * 2001-03-13 2003-02-11 Gregory R. Whittaker Method and apparatus for fixing a graft in a bone tunnel
US7195642B2 (en) 2001-03-13 2007-03-27 Mckernan Daniel J Method and apparatus for fixing a graft in a bone tunnel
US7594917B2 (en) 2001-03-13 2009-09-29 Ethicon, Inc. Method and apparatus for fixing a graft in a bone tunnel
US6584339B2 (en) * 2001-06-27 2003-06-24 Vanderbilt University Method and apparatus for collecting and processing physical space data for use while performing image-guided surgery
DE10138707C2 (de) * 2001-08-07 2003-10-16 Siemens Ag Vorrichtung zur endorektalen Prostatabiopsie
US6741883B2 (en) * 2002-02-28 2004-05-25 Houston Stereotactic Concepts, Inc. Audible feedback from positional guidance systems
US6942667B1 (en) * 2002-04-02 2005-09-13 Vanderbilt University Bone anchor
WO2003105659A2 (en) 2002-06-17 2003-12-24 Mazor Surgical Technologies Ltd. Robot for use with orthopaedic inserts
IL151315A (en) * 2002-08-18 2010-04-29 Maroon J Abu Nassar Fixture for electrode placement
US7704260B2 (en) 2002-09-17 2010-04-27 Medtronic, Inc. Low profile instrument immobilizer
US20040092786A1 (en) * 2002-11-08 2004-05-13 Memorial Sloan-Kettering Cancer Center Intraoperative dynamic dosimetry for prostate implants
WO2004049935A1 (en) * 2002-11-29 2004-06-17 Wang Shih-Ping Thick-slice display of medical images
JP4253497B2 (ja) * 2002-12-03 2009-04-15 株式会社東芝 コンピュータ支援診断装置
US7636596B2 (en) * 2002-12-20 2009-12-22 Medtronic, Inc. Organ access device and method
US7241298B2 (en) * 2003-01-31 2007-07-10 Howmedica Osteonics Corp. Universal alignment guide
US7896889B2 (en) * 2003-02-20 2011-03-01 Medtronic, Inc. Trajectory guide with angled or patterned lumens or height adjustment
US7559935B2 (en) * 2003-02-20 2009-07-14 Medtronic, Inc. Target depth locators for trajectory guide for introducing an instrument
US6694832B1 (en) * 2003-02-27 2004-02-24 General Electric Company Kit and method for setting probe depth
WO2004081864A2 (en) * 2003-03-13 2004-09-23 Koninklijke Philips Electronics N.V. 3d imaging system and method for signaling an object of interest in a volume of data
US8372061B2 (en) * 2003-05-15 2013-02-12 Noberto Berna Treatment tip incision template
ITPD20030102A1 (it) * 2003-05-15 2004-11-16 Norberto Berna Dima di forma e profondita' per incisioni con punte laser
US20040228509A1 (en) * 2003-05-15 2004-11-18 Beth Israel Deaconess Medical Center, Inc. Automatic spacial identification of tissue implanted linear sources using medical imaging
US7587074B2 (en) * 2003-07-21 2009-09-08 Paieon Inc. Method and system for identifying optimal image within a series of images that depict a moving organ
EP1665130A4 (en) * 2003-09-25 2009-11-18 Paieon Inc SYSTEM FOR THREE-DIMENSIONAL RECONSTRUCTION OF A TUBULAR ORGAN
US20060030854A1 (en) * 2004-02-02 2006-02-09 Haines Timothy G Methods and apparatus for wireplasty bone resection
US8114083B2 (en) * 2004-01-14 2012-02-14 Hudson Surgical Design, Inc. Methods and apparatus for improved drilling and milling tools for resection
US8021368B2 (en) * 2004-01-14 2011-09-20 Hudson Surgical Design, Inc. Methods and apparatus for improved cutting tools for resection
US9814539B2 (en) 2004-01-14 2017-11-14 Puget Bioventures Llc Methods and apparatus for conformable prosthetic implants
WO2005079912A1 (en) 2004-02-13 2005-09-01 Medtronic, Inc. Methods and apparatus for securing a therapy delivery device within a burr hole
US7377924B2 (en) * 2004-09-09 2008-05-27 Howmedica Osteonics Corp. Navigated drill guided resection block
US20060074285A1 (en) * 2004-09-24 2006-04-06 Paieon Inc. Apparatus and method for fusion and in-operating-room presentation of volumetric data and 3-D angiographic data
US9186175B2 (en) 2004-10-28 2015-11-17 Nico Corporation Surgical access assembly and method of using same
US9265523B2 (en) 2011-10-24 2016-02-23 Nico Corporation Surgical access system with navigation element and method of using same
US9387010B2 (en) 2004-10-28 2016-07-12 Nico Corporation Surgical access assembly and method of using same
US9770261B2 (en) 2004-10-28 2017-09-26 Nico Corporation Surgical access assembly and method of using same
US7497863B2 (en) * 2004-12-04 2009-03-03 Medtronic, Inc. Instrument guiding stage apparatus and method for using same
US7744606B2 (en) * 2004-12-04 2010-06-29 Medtronic, Inc. Multi-lumen instrument guide
WO2006081409A2 (en) * 2005-01-28 2006-08-03 Massachusetts General Hospital Guidance and insertion system
US8295577B2 (en) * 2005-03-31 2012-10-23 Michael Zarkh Method and apparatus for guiding a device in a totally occluded or partly occluded tubular organ
JP2008534109A (ja) * 2005-03-31 2008-08-28 パイエオン インコーポレイテッド 管状器官内の機器を位置決めする装置および方法
JP2008539857A (ja) * 2005-05-03 2008-11-20 パイエオン インコーポレイテッド 両心室ペースメーカーのリードおよび電極を配置するための方法および装置
CA2623616A1 (en) * 2005-11-29 2007-06-07 Surgi-Vision, Inc. Mri-guided localization and/or lead placement systems, related methods, devices and computer program products
US20070197895A1 (en) * 2006-02-17 2007-08-23 Sdgi Holdings, Inc. Surgical instrument to assess tissue characteristics
EP1872735B1 (de) * 2006-06-23 2016-05-18 Brainlab AG Verfahren zum automatischen Identifizieren von Instrumenten bei der medizinischen Navigation
US7296365B1 (en) * 2006-11-27 2007-11-20 General Electric Company Method and system for inserting a probe
US7736371B2 (en) * 2007-01-26 2010-06-15 Stryker Leibinger Gmbh & Co. Kg Trajectory guide
WO2008103383A1 (en) * 2007-02-20 2008-08-28 Gildenberg Philip L Videotactic and audiotactic assisted surgical methods and procedures
US8175677B2 (en) * 2007-06-07 2012-05-08 MRI Interventions, Inc. MRI-guided medical interventional systems and methods
US8315689B2 (en) 2007-09-24 2012-11-20 MRI Interventions, Inc. MRI surgical systems for real-time visualizations using MRI image data and predefined data of surgical tools
EP2194906B8 (en) * 2007-09-24 2015-04-22 Mri Interventions, Inc. Mri-guided medical interventional system
US8548569B2 (en) * 2007-09-24 2013-10-01 MRI Interventions, Inc. Head fixation assemblies for medical procedures
US8195272B2 (en) 2007-09-24 2012-06-05 MRI Interventions, Inc. MRI-compatible patches and methods for using the same
WO2009067205A1 (en) * 2007-11-21 2009-05-28 Surgi-Vision, Inc. Methods, systems and computer program products for positioning a guidance apparatus relative to a patient
US20090281452A1 (en) * 2008-05-02 2009-11-12 Marcus Pfister System and method for a medical procedure using computed tomography
US8728092B2 (en) 2008-08-14 2014-05-20 Monteris Medical Corporation Stereotactic drive system
US8747418B2 (en) 2008-08-15 2014-06-10 Monteris Medical Corporation Trajectory guide
US8632468B2 (en) * 2009-02-25 2014-01-21 Koninklijke Philips N.V. Method, system and devices for transjugular intrahepatic portosystemic shunt (TIPS) procedures
US20120150017A1 (en) * 2009-03-12 2012-06-14 National Institute Of Radiological Sciences Open pet/mri hybrid machine
US20110110570A1 (en) * 2009-11-10 2011-05-12 Avi Bar-Shalev Apparatus and methods for generating a planar image
US8376938B2 (en) * 2009-11-20 2013-02-19 Ethicon Endo-Surgery, Inc. Discrete flexion head for single port device
US8353873B2 (en) * 2009-12-11 2013-01-15 Ethicon Endo-Surgery, Inc. Methods and devices for providing access through tissue to a surgical site
US8282546B2 (en) * 2009-12-11 2012-10-09 Ethicon Endo-Surgery, Inc. Inverted conical expandable retractor with coil spring
US8357088B2 (en) * 2009-12-11 2013-01-22 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US8414483B2 (en) * 2009-12-11 2013-04-09 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US8444557B2 (en) * 2009-12-11 2013-05-21 Ethicon Endo-Surgery, Inc. Methods and devices for providing access through tissue to a surgical site
US8435174B2 (en) * 2009-12-11 2013-05-07 Ethicon Endo-Surgery, Inc. Methods and devices for accessing a body cavity
US8460186B2 (en) * 2009-12-11 2013-06-11 Ethicon Endo-Surgery, Inc. Methods and devices for providing access through tissue to a surgical site
US8517932B2 (en) * 2009-12-11 2013-08-27 Ethicon Endo-Surgery, Inc. Methods and devices for providing access through tissue to a surgical site
US8231570B2 (en) * 2009-12-11 2012-07-31 Ethicon Endo-Surgery, Inc. Inverted conical expandable retractor
US8500633B2 (en) * 2009-12-11 2013-08-06 Ethicon Endo-Surgery, Inc. Methods and devices for providing surgical access through tissue to a surgical site
US8603078B2 (en) 2010-10-13 2013-12-10 Ethicon Endo-Surgery, Inc. Methods and devices for guiding and supporting surgical instruments
US8617176B2 (en) 2011-08-24 2013-12-31 Depuy Mitek, Llc Cross pinning guide devices and methods
DE102011085308A1 (de) * 2011-10-27 2013-05-02 Siemens Aktiengesellschaft Verfahren zur Unterstützung einer einen minimalinvasiven Eingriff durchführenden Person und Magnetresonanzeinrichtung
US8556801B2 (en) * 2012-02-23 2013-10-15 Jung-Tung Liu Combined endoscope and surgical instrument guide device
US9757147B2 (en) 2012-04-11 2017-09-12 Nico Corporation Surgical access system with navigation element and method of using same
EP2840976A4 (en) * 2012-04-26 2015-07-15 dBMEDx INC ULTRASONIC APPARATUS AND METHOD FOR MONITORING BODIES
CN104602638B (zh) 2012-06-27 2017-12-19 曼特瑞斯医药有限责任公司 用于影响对组织进行治疗的系统
US9192446B2 (en) 2012-09-05 2015-11-24 MRI Interventions, Inc. Trajectory guide frame for MRI-guided surgeries
US20150265353A1 (en) 2014-03-18 2015-09-24 Monteris Medical Corporation Image-guided therapy of a tissue
WO2015143025A1 (en) 2014-03-18 2015-09-24 Monteris Medical Corporation Image-guided therapy of a tissue
US10675113B2 (en) 2014-03-18 2020-06-09 Monteris Medical Corporation Automated therapy of a three-dimensional tissue region
EP3031400A4 (en) * 2014-09-02 2017-10-11 Olympus Corporation Diagnostic ultrasound apparatus and method for operating diagnostic ultrasound apparatus
US10327830B2 (en) 2015-04-01 2019-06-25 Monteris Medical Corporation Cryotherapy, thermal therapy, temperature modulation therapy, and probe apparatus therefor
US11269028B2 (en) 2015-05-29 2022-03-08 Wisconsin Alumni Research Foundation System and method for real-time interventional device localization using magnetic resonance imaging
US11298041B2 (en) * 2016-08-30 2022-04-12 The Regents Of The University Of California Methods for biomedical targeting and delivery and devices and systems for practicing the same
EP3760145B1 (en) 2016-09-30 2024-01-03 Boston Scientific Scimed, Inc. Access devices and associated methods of production
US11842030B2 (en) * 2017-01-31 2023-12-12 Medtronic Navigation, Inc. Method and apparatus for image-based navigation
US10905497B2 (en) 2017-04-21 2021-02-02 Clearpoint Neuro, Inc. Surgical navigation systems
JP7229989B2 (ja) 2017-07-17 2023-02-28 ボイジャー セラピューティクス インコーポレイテッド 軌道アレイガイドシステム
WO2019182917A1 (en) 2018-03-17 2019-09-26 Canon U.S.A., Inc. Method for virtual device positioning on skin surface in 3d medical image data

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1129333A (en) 1914-06-27 1915-02-23 Robert Henry Clarke Stereotaxic apparatus.
US3055370A (en) 1958-11-28 1962-09-25 William W Mckinney Pallidotomy surgical instrument
US3017887A (en) 1960-01-19 1962-01-23 William T Heyer Stereotaxy device
US3223087A (en) 1960-06-18 1965-12-14 Chirana Praha Np Stereotaxic device
US3135263A (en) 1960-10-05 1964-06-02 Smiths America Corp Surgical instrument positioning device
FR1311384A (fr) 1961-10-27 1962-12-07 Alexandre & Cie Appareil permettant l'exploration complète du cerveau en neurochirurgie stéréotaxique
US3460537A (en) 1966-09-26 1969-08-12 Donald C Zeis Stereotactic guide for use in the creation of destructive brain lesions
US3457922A (en) 1966-12-13 1969-07-29 Charles D Ray Stereotaxic surgical instrument and method
SU745515A1 (ru) 1978-02-27 1980-07-05 Научно-Исследовательский Институт Экспериментальной Медицины Амн Ссср Стереотаксический аппарат
US4608977A (en) 1979-08-29 1986-09-02 Brown Russell A System using computed tomography as for selective body treatment
DE2948986C2 (de) * 1979-12-05 1982-10-28 Siemens AG, 1000 Berlin und 8000 München Medizinische Untersuchungsanlage
US4312337A (en) 1980-09-08 1982-01-26 Donohue Brian T Cannula and drill guide apparatus
US4638798A (en) 1980-09-10 1987-01-27 Shelden C Hunter Stereotactic method and apparatus for locating and treating or removing lesions
DE3108766C2 (de) 1981-03-07 1983-12-15 GMS, Gesellschaft für medizinische Sondentechnik mbH, 2300 Kiel Medizinische Stichsondenmeßvorrichtung
US4618978A (en) 1983-10-21 1986-10-21 Cosman Eric R Means for localizing target coordinates in a body relative to a guidance system reference frame in any arbitrary plane as viewed by a tomographic image through the body
US4617925A (en) 1984-10-01 1986-10-21 Laitinen Lauri V Adapter for definition of the position of brain structures
US4805615A (en) 1985-07-02 1989-02-21 Carol Mark P Method and apparatus for performing stereotactic surgery
US4791934A (en) 1986-08-07 1988-12-20 Picker International, Inc. Computer tomography assisted stereotactic surgery system and method
US4827940A (en) 1987-04-13 1989-05-09 Cardiac Pacemakers, Inc. Soluble covering for cardiac pacing electrode
SE8701719D0 (sv) 1987-04-27 1987-04-27 Elekta Instr Ab Sett att markera ett operationsstelle och anordning for utforande av settet
US4733661A (en) 1987-04-27 1988-03-29 Palestrant Aubrey M Guidance device for C.T. guided drainage and biopsy procedures
US4809694A (en) 1987-05-19 1989-03-07 Ferrara Vincent L Biopsy guide
DE3717871C3 (de) 1987-05-27 1995-05-04 Georg Prof Dr Schloendorff Verfahren und Vorrichtung zum reproduzierbaren optischen Darstellen eines chirururgischen Eingriffes
JPH02503519A (ja) 1987-05-27 1990-10-25 サージカル ナビゲーション テクノロジース インコーポレーティッド(アン アフィリエイティッド カンパニー オブ ソファマー ダンネク グループ インコーポレーティッド) 外科手術を再生可能に光学的に表示するための方法及び装置
US4883053A (en) 1987-09-18 1989-11-28 Beth Israel Hospital Self-supporting angulator device for precise percutaneous insertion of a needle or other object
US4991579A (en) 1987-11-10 1991-02-12 Allen George S Method and apparatus for providing related images over time of a portion of the anatomy using fiducial implants
US5487739A (en) 1987-11-17 1996-01-30 Brown University Research Foundation Implantable therapy systems and methods
US5027818A (en) 1987-12-03 1991-07-02 University Of Florida Dosimetric technique for stereotactic radiosurgery same
EP0326768A3 (en) 1988-02-01 1991-01-23 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US4998938A (en) 1988-06-09 1991-03-12 Neurodynamics, Inc. Removable skull mounted work platform and method of assembling same
US5050608A (en) 1988-07-12 1991-09-24 Medirand, Inc. System for indicating a position to be operated in a patient's body
FI80585C (fi) 1988-11-11 1990-07-10 Instrumentarium Oy Arrangemang foer undersoekning av ett objekt.
US5081997A (en) 1989-03-09 1992-01-21 Vance Products Incorporated Echogenic devices, material and method
US5030223A (en) 1989-06-30 1991-07-09 Iowa State University Research Foundation, Inc. Head mounted stereotaxic apparatus
US5065761A (en) 1989-07-12 1991-11-19 Diasonics, Inc. Lithotripsy system
US5257998A (en) 1989-09-20 1993-11-02 Mitaka Kohki Co., Ltd. Medical three-dimensional locating apparatus
EP0647428A3 (en) 1989-11-08 1995-07-12 George S Allen Interactive image-guided surgery system.
US5222499A (en) 1989-11-15 1993-06-29 Allen George S Method and apparatus for imaging the anatomy
GB2237993A (en) 1989-11-17 1991-05-22 Squibb & Sons Inc Ostomy coupling
US5308352A (en) 1989-11-17 1994-05-03 Koutrouvelis Panos G Stereotactic device
CA2055486C (en) * 1989-11-27 1996-11-26 Anders Magnusson Puncture guide for computer tomography
US5158088A (en) * 1990-11-14 1992-10-27 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic systems for imaging medical instruments within the body
US5125888A (en) 1990-01-10 1992-06-30 University Of Virginia Alumni Patents Foundation Magnetic stereotactic system for treatment delivery
US5269305A (en) 1990-04-27 1993-12-14 The Nomos Corporation Method and apparatus for performing stereotactic surgery
US5452720A (en) 1990-09-05 1995-09-26 Photoelectron Corporation Method for treating brain tumors
DE69133603D1 (de) 1990-10-19 2008-10-02 Univ St Louis System zur Lokalisierung einer chirurgischen Sonde relativ zum Kopf
US5116345A (en) 1990-11-28 1992-05-26 Ohio Medical Instrument Co., Inc. Stereotactically implanting an intracranial device
US5662111A (en) * 1991-01-28 1997-09-02 Cosman; Eric R. Process of stereotactic optical navigation
US5569266A (en) 1991-03-11 1996-10-29 Fischer Imaging Corporation Magnetic resonance imaging device useful for guiding a medical instrument
US5201742A (en) 1991-04-16 1993-04-13 Hasson Harrith M Support jig for a surgical instrument
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5211165A (en) 1991-09-03 1993-05-18 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency field gradients
US5207688A (en) 1991-10-31 1993-05-04 Medco, Inc. Noninvasive head fixation method and apparatus
US5330485A (en) 1991-11-01 1994-07-19 Clayman David A Cerebral instrument guide frame and procedures utilizing it
US5300080A (en) 1991-11-01 1994-04-05 David Clayman Stereotactic instrument guided placement
US5263956A (en) 1992-03-04 1993-11-23 Neuro Navigational Corporation Ball joint for neurosurgery
DE4207901C3 (de) 1992-03-12 1999-10-07 Aesculap Ag & Co Kg Verfahren und Vorrichtung zur Darstellung eines Arbeitsbereiches in einer dreidimensionalen Struktur
US5246448A (en) 1992-05-15 1993-09-21 General Electric Company Method and apparatus for stereotactic trajectory specification
US5647361A (en) 1992-09-28 1997-07-15 Fonar Corporation Magnetic resonance imaging method and apparatus for guiding invasive therapy
US5517990A (en) 1992-11-30 1996-05-21 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5309913A (en) 1992-11-30 1994-05-10 The Cleveland Clinic Foundation Frameless stereotaxy system
US5483961A (en) 1993-03-19 1996-01-16 Kelly; Patrick J. Magnetic field digitizer for stereotactic surgery
ZA942812B (en) 1993-04-22 1995-11-22 Pixsys Inc System for locating the relative positions of objects in three dimensional space
CA2161430C (en) 1993-04-26 2001-07-03 Richard D. Bucholz System and method for indicating the position of a surgical probe
US5387220A (en) 1993-06-15 1995-02-07 Pisharodi; Maohaven Stereotactic frame and localization method
US6120465A (en) 1994-01-24 2000-09-19 Radionics Software Applications, Inc. Virtual probe for a stereotactic digitizer for use in surgery
EP0744925B1 (en) * 1994-02-18 2000-04-05 Implico B.V. Stereotactic pointing device
US5643286A (en) 1994-06-24 1997-07-01 Cytotherapeutics, Inc. Microdrive for use in stereotactic surgery
US5695501A (en) 1994-09-30 1997-12-09 Ohio Medical Instrument Company, Inc. Apparatus for neurosurgical stereotactic procedures
US5891157A (en) 1994-09-30 1999-04-06 Ohio Medical Instrument Company, Inc. Apparatus for surgical stereotactic procedures
EP0869745B8 (en) 1994-10-07 2003-04-16 St. Louis University Surgical navigation systems including reference and localization frames
DE19501069A1 (de) * 1995-01-16 1996-07-18 Wolfgang Kloess Lichtvisier
US5569286A (en) * 1995-03-29 1996-10-29 Becton Dickinson And Company Lancet assembly
US5833627A (en) 1995-04-13 1998-11-10 United States Surgical Corporation Image-guided biopsy apparatus and methods of use
US5638819A (en) 1995-08-29 1997-06-17 Manwaring; Kim H. Method and apparatus for guiding an instrument to a target
US5817106A (en) 1995-09-19 1998-10-06 Real; Douglas D. Stereotactic guide apparatus for use with neurosurgical headframe
US5618288A (en) 1996-01-22 1997-04-08 Calvo; Antonio M. Stereotactic system for surgical procedures
US6290644B1 (en) 1996-02-20 2001-09-18 Cardiothoracic Systems, Inc. Surgical instruments and procedures for stabilizing a localized portion of a beating heart
DE19618945C2 (de) 1996-05-10 2003-02-27 Phonak Ag Staefa Fixierbares Positioniersystem für die feste, spielfreie Anbindung an den menschlichen Schädel
US5980535A (en) 1996-09-30 1999-11-09 Picker International, Inc. Apparatus for anatomical tracking
US5984930A (en) * 1996-09-30 1999-11-16 George S. Allen Biopsy guide
US5902239A (en) * 1996-10-30 1999-05-11 U.S. Philips Corporation Image guided surgery system including a unit for transforming patient positions to image positions
US5810841A (en) * 1997-01-22 1998-09-22 Minrad Inc. Energy guided apparatus and method with indication of alignment
US6267769B1 (en) 1997-05-15 2001-07-31 Regents Of The Universitiy Of Minnesota Trajectory guide method and apparatus for use in magnetic resonance and computerized tomographic scanners
US5993463A (en) 1997-05-15 1999-11-30 Regents Of The University Of Minnesota Remote actuation of trajectory guide
US5957933A (en) * 1997-11-28 1999-09-28 Picker International, Inc. Interchangeable guidance devices for C.T. assisted surgery and method of using same
US6529765B1 (en) * 1998-04-21 2003-03-04 Neutar L.L.C. Instrumented and actuated guidance fixture for sterotactic surgery
US6298262B1 (en) 1998-04-21 2001-10-02 Neutar, Llc Instrument guidance for stereotactic surgery
CA2232795A1 (en) 1998-05-22 1999-11-22 Coroneo Inc. Manipulation and adjustment of surgical instruments
US6110182A (en) 1998-06-22 2000-08-29 Ohio Medical Instruments Company, Inc. Target socket
US6482182B1 (en) 1998-09-03 2002-11-19 Surgical Navigation Technologies, Inc. Anchoring system for a brain lead
US6117143A (en) 1998-09-11 2000-09-12 Hybex Surgical Specialties, Inc. Apparatus for frameless stereotactic surgery
US6321104B1 (en) 1998-11-05 2001-11-20 Medtronic, Inc. Burr hole cap for fixation of cranial lead
US6210417B1 (en) 1999-04-29 2001-04-03 Medtronic, Inc. Medical lead positioning and anchoring system
GB9928248D0 (en) 1999-12-01 2000-01-26 Gill Steven S An implantable guide tube for neurosurgery
NO313573B1 (no) 2000-01-06 2002-10-28 Medinnova Sf Verktöy for bruk ved hjerneoperasjoner, samt system for å bestemme innföringsdybden til en sonde eller lignende vedhjerneoperasjoner og koordinatene til verktöyet og sonden vedhjerneoperasjoner
US6356792B1 (en) 2000-01-20 2002-03-12 Electro Core Technologies, Llc Skull mounted electrode lead securing assembly
US6662035B2 (en) 2001-09-13 2003-12-09 Neuropace, Inc. Implantable lead connector assembly for implantable devices and methods of using it
US9078913B2 (en) 2009-11-06 2015-07-14 University Of Rochester Use of human Biliverdin reductase and fragments thereof protein kinase C-δ and ERK related conditions

Also Published As

Publication number Publication date
AU1109000A (en) 2000-04-26
WO2000019927A1 (en) 2000-04-13
EP1121061A1 (en) 2001-08-08
EP1121061B1 (en) 2004-12-29
US6195577B1 (en) 2001-02-27
DE69922980D1 (de) 2005-02-03
WO2000019927A9 (en) 2002-08-22
JP2002526152A (ja) 2002-08-20
US6782288B2 (en) 2004-08-24
US20010014771A1 (en) 2001-08-16
DE69922980T2 (de) 2005-12-15
CA2346613A1 (en) 2000-04-13
CA2346613C (en) 2009-04-21

Similar Documents

Publication Publication Date Title
JP4624561B2 (ja) 身体内にデバイスを位置決めする方法及び装置
Heilbrun Computed tomography-guided stereotactic systems
JP4156107B2 (ja) 像誘導式の介在的手順のプランニング方法及び装置
US6701173B2 (en) Curved surgical instruments and method of mapping a curved path for stereotactic surgery
US10849650B2 (en) Transperineal needle guidance
US6366796B1 (en) Method and apparatus for planning brachytherapy surgical procedures
KR100972708B1 (ko) 집속된 초음파 치료 시스템
EP1638466B1 (en) Remotely held needle guide for ct fluoroscopy
EP1524011B1 (en) Method and apparatus for determining the position of a surgical tool relative to a target volume inside an animal body
Chen et al. Ultrasound-guided needle insertion robotic system for percutaneous puncture
US6853856B2 (en) Diagnostic imaging interventional apparatus
CN112220557A (zh) 用于颅脑穿刺的手术导航及机器臂装置及定位方法
WO1996025881A1 (en) Method for ultrasound guidance during clinical procedures
Kavanagh Applications of image‐directed robotics in otolaryngologic surgery
Fichtinger et al. Surgical and interventional robotics: Part II
Takizawa Isocentric stereotactic three-dimensional digitizer for neurosurgery
US7477927B2 (en) System and method for laser based computed tomography and magnetic resonance registration
Chen et al. A robotics system for stereotactic neurosurgery and its clinical application
WO2006067676A2 (en) Visualization of a tracked interventional device
US20140343407A1 (en) Methods for the assisted manipulation of an instrument, and associated assistive assembly
US20190000572A1 (en) Robotic assisted prostate surgery device
Kronreif et al. Evaluation of a robotic targeting device for interventional radiology
Zamorano et al. Computer-assisted resection of brain lesions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

R150 Certificate of patent or registration of utility model

Ref document number: 4624561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term