JP4624002B2 - Engine-driven air conditioner - Google Patents

Engine-driven air conditioner Download PDF

Info

Publication number
JP4624002B2
JP4624002B2 JP2004157219A JP2004157219A JP4624002B2 JP 4624002 B2 JP4624002 B2 JP 4624002B2 JP 2004157219 A JP2004157219 A JP 2004157219A JP 2004157219 A JP2004157219 A JP 2004157219A JP 4624002 B2 JP4624002 B2 JP 4624002B2
Authority
JP
Japan
Prior art keywords
engine
conditioning load
compressor
air conditioning
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004157219A
Other languages
Japanese (ja)
Other versions
JP2005274116A (en
Inventor
亮太 平田
輝一 樋口
茂 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004157219A priority Critical patent/JP4624002B2/en
Priority to CNB2004100926270A priority patent/CN100339654C/en
Priority to KR1020040109102A priority patent/KR100658557B1/en
Publication of JP2005274116A publication Critical patent/JP2005274116A/en
Application granted granted Critical
Publication of JP4624002B2 publication Critical patent/JP4624002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、各室内ユニットの空調負荷に応じて能力可変に空調運転を行うエンジン駆動式空気調和装置に関するものである。   The present invention relates to an engine-driven air conditioner that performs air-conditioning operation with variable capacity according to the air-conditioning load of each indoor unit.

これまでのエンジン駆動式空気調和装置は、エンジンの駆動力で駆動される圧縮機と室外熱交換器とを備える室外ユニットと、室内熱交換器を備える1台または複数台の室内ユニットとを冷媒配管で接続して構成されており、各室内ユニットの、例えば、室内温度センサで検出される室内温度と、各室内ユニットの操作部に設定された設定温度との温度差に基づいて、夫々の室内ユニットの空調負荷が算出され、これら空調負荷を前記室外ユニットで集計して合計の空調負荷を算出し、この合計の空調負荷に応じて前記エンジンの運転を行って空調運転を行わせていた(例えば、特許文献1参照)。
特開平09−236299号公報
Conventional engine-driven air conditioners use a refrigerant driven by an outdoor unit including a compressor driven by the driving force of the engine and an outdoor heat exchanger, and one or more indoor units including an indoor heat exchanger. Connected by piping, each of the indoor units, for example, based on the temperature difference between the indoor temperature detected by the indoor temperature sensor and the set temperature set in the operation unit of each indoor unit, The air conditioning load of the indoor unit was calculated, the air conditioning load was calculated by the outdoor unit, the total air conditioning load was calculated, and the engine was operated according to the total air conditioning load to perform the air conditioning operation. (For example, refer to Patent Document 1).
JP 09-236299 A

しかし、これまでのエンジン駆動式空気調和装置では、前記空調負荷に基づいて空調運転を行っているため、エンジンの運転効率、および、このエンジンの駆動力で駆動される圧縮機の運転効率の夫々の運転効率の最も良い回転数で安定させた運転を行わせることができず、このエンジン駆動式空気調和装置の有するCOP(成績係数)を十分に生かした省エネルギー運転を行うことができなかった。   However, in the conventional engine-driven air conditioner, since the air-conditioning operation is performed based on the air-conditioning load, the operation efficiency of the engine and the operation efficiency of the compressor driven by the driving force of the engine are each Thus, it was not possible to perform a stable operation at the rotation speed with the best operating efficiency, and it was not possible to perform an energy saving operation making full use of the COP (coefficient of performance) of the engine-driven air conditioner.

そこで、本発明は、係る課題を解決するために成されたものであり、さらに、省エネルギー運転を促進した空調運転が行えるエンジン駆動式空気調和装置を提供するものである。   Therefore, the present invention has been made to solve such problems, and further provides an engine-driven air conditioner that can perform air-conditioning operation that promotes energy-saving operation.

第1の発明は、エンジンの駆動力で駆動される圧縮機と室外熱交換器とを備える室外ユニットと、室内熱交換器を備える1台または複数台の室内ユニットとを冷媒配管で接続して構成し、前記室内ユニットで検出される空調負荷に応じて能力可変に空調運転を行うエンジン駆動式空気調和装置において、前記室内ユニットに備えられた温度センサ等に基づいて空調負荷を算出し、この空調負荷に基づいて、前記エンジンおよび前記圧縮機の双方の運転効率が最も良くなる回転数で且つ前記空調負荷の所定能力範囲内で運転を行わせることを特徴とするものである。 1st invention connects the outdoor unit provided with the compressor and outdoor heat exchanger which are driven with the driving force of an engine, and the 1 unit or several indoor unit provided with an indoor heat exchanger by refrigerant | coolant piping. In an engine-driven air conditioner that performs air conditioning operation with variable capacity according to the air conditioning load detected by the indoor unit, the air conditioning load is calculated based on a temperature sensor provided in the indoor unit, and the like. Based on the air conditioning load, the engine and the compressor are operated at a rotational speed at which the operating efficiency of the engine and the compressor is the best and within a predetermined capacity range of the air conditioning load.

第2の発明は、エンジンの駆動力で駆動される圧縮機と室外熱交換器とを備える室外ユニットと、室内熱交換器を備える1台または複数台の室内ユニットとを冷媒配管で接続して構成し、前記室内ユニットで検出される空調負荷に応じて能力可変に空調運転を行うエンジン駆動式空気調和装置において、前記室内ユニットに備えられた温度センサ等に基づいて空調負荷を算出し、この空調負荷に基づいて求められた回転数で前記エンジンおよび前記圧縮機の運転制御を行う通常運転手段と、前記エンジンおよび前記圧縮機の双方の運転効率が最も良くなる回転数で且つ前記空調負荷の所定能力範囲内で前記エンジンおよび前記圧縮機の運転を行わせる省エネルギー運転手段とを備えることを特徴とする。 According to a second aspect of the present invention, an outdoor unit including a compressor driven by an engine driving force and an outdoor heat exchanger and one or a plurality of indoor units including an indoor heat exchanger are connected by a refrigerant pipe. In an engine-driven air conditioner that performs air conditioning operation with variable capacity according to the air conditioning load detected by the indoor unit, the air conditioning load is calculated based on a temperature sensor provided in the indoor unit, and the like. Normal operating means for controlling the operation of the engine and the compressor at the rotational speed determined based on the air conditioning load, and the rotational speed at which the operating efficiency of both the engine and the compressor is the best, and the air conditioning load And an energy saving operation means for operating the engine and the compressor within a predetermined capacity range.

第3の発明は、通常運転手段と、前記省エネルギー運転手段とは、前記エンジン駆動式空気調和装置の運転を指示する操作部の操作により選択される運転手段であることを特徴とする。 According to a third aspect of the present invention, the normal operation means and the energy saving operation means are operation means selected by operation of an operation unit that instructs operation of the engine-driven air conditioner.

第4の発明は、空調負荷の所定能力範囲内とは、空調負荷の80%〜120%であることを特徴とする。 The fourth invention is characterized in that the air conditioning load within the predetermined capacity range is 80% to 120% of the air conditioning load.

本発明によれば、エンジンおよび圧縮機の双方の運転効率が最も良くなる回転数での空調運転を行う省エネルギー運転を行わせることにより、更に進んだ省エネルギーを行えるとともに、前記省エネルギー運転と、これまでの各室内ユニットの空調負荷を算出して運転を行う通常の空調運転とのいずれかを操作部の操作で選択できるようにしているため、任意に前記省エネルギー運転と前記通常運転との選択を行うことができる。さらに、単位体積あたりの体積能力が大きく、圧力損失の少ない代替冷媒R410Aを使用すること、および、前記省エネルギー運転を前記空調負荷に基づく所定能力範囲内で行わせるものとすることにより、使用者に不快感を与えずに、この省エネルギー運転の効果をさらに促進することができる。   According to the present invention, further energy saving can be achieved by performing the energy saving operation in which the air conditioning operation is performed at the rotation speed at which the operating efficiency of both the engine and the compressor is the best. Since the air conditioning load of each indoor unit is calculated and any one of the normal air conditioning operations in which the operation is performed can be selected by operation of the operation unit, the energy saving operation and the normal operation are arbitrarily selected. be able to. Further, by using the alternative refrigerant R410A having a large volume capacity per unit volume and low pressure loss, and by allowing the energy saving operation to be performed within a predetermined capacity range based on the air conditioning load, The effect of this energy saving operation can be further promoted without giving discomfort.

以下、図面に基づき本発明の実施形態を詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の省エネルギー運転手段を適用したエンジン駆動式空気調和装置100の一実施形態を示す構成図である。   FIG. 1 is a block diagram showing an embodiment of an engine-driven air conditioner 100 to which an energy saving operation means of the present invention is applied.

このエンジン駆動式空気調和装置100は、例えば、1台の室外ユニット1と複数台の室内ユニット2a、2bをガス管3aと液管3bとからなるユニット間配管3で接続して構成され、単位体積当りの冷媒能力が高く圧力損失の少ない代替冷媒R410aを循環させている。   The engine-driven air conditioner 100 is configured, for example, by connecting one outdoor unit 1 and a plurality of indoor units 2a and 2b with an inter-unit pipe 3 including a gas pipe 3a and a liquid pipe 3b. An alternative refrigerant R410a having a high refrigerant capacity per volume and low pressure loss is circulated.

室外ユニット1には、ガスなどの燃料を燃焼させて駆動力を発生するエンジン10と、このエンジン10へ図示しない駆動力伝達手段を介して接続され、前記代替冷媒R410aを圧縮吐出する圧縮機11と、前記冷媒の循環方向を反転させる四方弁12と、前記冷媒と外気との熱交換を行わせる室外熱交換器13と、前記冷媒の減圧を行う室外膨張弁14と、前記圧縮機11へと吸込まれる冷媒の気液分離を行うアキュームレータ15とが冷媒配管で接続されて収納されている。   The outdoor unit 1 is connected to an engine 10 that generates a driving force by burning fuel such as gas, and a compressor 11 that compresses and discharges the alternative refrigerant R410a to the engine 10 via a driving force transmission unit (not shown). A four-way valve 12 that reverses the circulation direction of the refrigerant, an outdoor heat exchanger 13 that performs heat exchange between the refrigerant and outside air, an outdoor expansion valve 14 that depressurizes the refrigerant, and the compressor 11. And an accumulator 15 that performs gas-liquid separation of the refrigerant that is sucked in is connected by a refrigerant pipe and stored.

また、室内ユニット2a、2bには、これら室内ユニット2a、2bが据え付けられた室内の室内空気と冷媒との熱交換を行う室内熱交換器20a、20bと、各室内ユニット2a、2bへ流入する冷媒の冷媒量を制御する室内膨張弁21a、21bとが、各々冷媒配管で接続されて収納されている。   The indoor units 2a and 2b flow into the indoor heat exchangers 20a and 20b that exchange heat between the indoor air and the indoor air in which the indoor units 2a and 2b are installed, and the indoor units 2a and 2b. Indoor expansion valves 21a and 21b for controlling the refrigerant amount of the refrigerant are respectively connected and accommodated by refrigerant pipes.

さらに、エンジン駆動式空気調和装置100には、このエンジン駆動式空気調和装置100の運転制御を行う制御装置30と、前記制御装置30の運転指示等の操作を行う操作部40とが備えられている。なお、この操作部40は、室内ユニット2a、2bの運転/停止等を行なう、いわゆるリモートコントローラであっても、或いは、これら室内ユニット2a、2bおよび室外ユニット1の各種設定や運転状態の確認が行える遠隔操作装置であっても良い。   Further, the engine-driven air conditioner 100 includes a control device 30 that performs operation control of the engine-driven air conditioner 100 and an operation unit 40 that performs operations such as operation instructions of the control device 30. Yes. The operation unit 40 may be a so-called remote controller for operating / stopping the indoor units 2a and 2b, or may check various settings and operation states of the indoor units 2a and 2b and the outdoor unit 1. A remote control device that can be used may be used.

そして、この操作部40から、このエンジン駆動式空気調和装置100の運転が開始されると、制御装置30からエンジン10の運転が指示されて駆動力を発生し、この駆動力により圧縮機11が運転して前記代替冷媒R410aを圧縮吐出して、例えば、冷房運転であれば、四方弁12が破線矢印方向に設定されて、前記圧縮機11から圧縮吐出された冷媒は、この四方弁12を経由して室外熱交換器13へと流入して、外気との熱交換を行って凝縮し、室外膨張弁14で減圧されて、液管3bを流通し、分流されて各室内ユニット2a、2bへと流入する。   When the operation of the engine-driven air conditioner 100 is started from the operation unit 40, the operation of the engine 10 is instructed from the control device 30 to generate a driving force, and the compressor 11 is driven by the driving force. For example, in the case of cooling operation, the four-way valve 12 is set in the direction of the broken arrow, and the refrigerant compressed and discharged from the compressor 11 causes the four-way valve 12 to be compressed. Then, the refrigerant flows into the outdoor heat exchanger 13 through heat exchange with the outside air, condenses, is decompressed by the outdoor expansion valve 14, flows through the liquid pipe 3b, is divided, and is divided into the indoor units 2a, 2b. Flows into.

これら室内ユニット2a、2bへと流入した前記冷媒は、夫々室内膨張弁21a、21bを経由して夫々室内熱交換器20a、20bへと流入し、室内空気との熱交換を行って蒸発してガス管3aへと流出し、このガス管3aで合流して、再度、室外ユニット1の四方弁12を経由してアキュームレータ15へと流入し、このアキュームレータ15で気液が分離されて、圧縮機11へと流入する順路で循環する。   The refrigerant flowing into the indoor units 2a and 2b flows into the indoor heat exchangers 20a and 20b via the indoor expansion valves 21a and 21b, and evaporates by exchanging heat with the indoor air. The gas flows out to the gas pipe 3a, merges in the gas pipe 3a, flows again into the accumulator 15 via the four-way valve 12 of the outdoor unit 1, and the gas-liquid is separated by the accumulator 15, and the compressor It circulates in the route which flows into No.11.

また、暖房運転であれば、四方弁12が実線矢印方向に設定されて、前記圧縮機11から圧縮吐出された冷媒は、この四方弁12を経由してガス管3aを流通して分流され、各室内ユニット2a、2bへと流入して夫々の室内熱交換器20a、20bで室内空気との熱交換を行って凝縮し、室内膨張弁21a、21bで各々減圧されて、液管3bへと流出する。   In the heating operation, the four-way valve 12 is set in the direction of the solid arrow, and the refrigerant compressed and discharged from the compressor 11 flows through the gas pipe 3a via the four-way valve 12 and is divided. It flows into each indoor unit 2a, 2b, performs heat exchange with indoor air in the respective indoor heat exchangers 20a, 20b, condenses, is decompressed by the indoor expansion valves 21a, 21b, respectively, and flows to the liquid pipe 3b. leak.

その後、室内熱交換器20a、20bで凝縮した冷媒は、この液管3bで合流して室外ユニット1へと戻り、室外膨張弁14を経由して室外熱交換器13へと流入し、この室外熱交換器13で外気との熱交換を行って蒸発し、再度、四方弁12を経由してアキュームレータ15へと流入し、このアキュームレータ15で気液が分離され、圧縮機11へと流入する順路で循環するものとなっている。   Thereafter, the refrigerant condensed in the indoor heat exchangers 20a and 20b merges in the liquid pipe 3b, returns to the outdoor unit 1, flows into the outdoor heat exchanger 13 via the outdoor expansion valve 14, and this outdoor The heat exchanger 13 evaporates by exchanging heat with the outside air, and flows again into the accumulator 15 via the four-way valve 12. The accumulator 15 separates the gas and liquid and flows into the compressor 11. It will be circulating in.

そして、このエンジン駆動式空気調和装置100では、例えば、図示しない室内ユニット2a、2bに設けられた温度センサ等に基づいて空調負荷を算出し、前記エンジン10および前記圧縮機11の運転制御を行う通常運転手段と、前記エンジン10および前記圧縮機11の双方の運転効率が最も良くなる回転数での空調運転を行わせる省エネルギー運転手段とを備えている。   In the engine-driven air conditioner 100, for example, an air conditioning load is calculated based on temperature sensors or the like provided in indoor units 2a and 2b (not shown), and operation control of the engine 10 and the compressor 11 is performed. Normal operation means and energy saving operation means for performing air-conditioning operation at a rotation speed at which the operation efficiency of both the engine 10 and the compressor 11 is the best are provided.

まず、制御装置30について説明すると、図2のブロック図に示すように、制御装置30には、このエンジン駆動式空気調和装置100の各種設定や、エンジン10および圧縮機11への運転指示等を行なう設定部31と、本発明の省エネルギー運転手段等のプログラムが収納されたROM32と、このエンジン駆動式空気調和装置100の制御や演算を行うCPU33と、室外ユニット1や各室内ユニット2a、2bの運転データ等を収納保管するRAM34と、後述する操作部40との通信を行う送受信部35とが収納されている。   First, the control device 30 will be described. As shown in the block diagram of FIG. 2, various settings of the engine-driven air conditioner 100 and operation instructions to the engine 10 and the compressor 11 are given to the control device 30. A setting unit 31 to perform, a ROM 32 in which a program such as an energy saving operation means of the present invention is stored, a CPU 33 for controlling and calculating the engine-driven air conditioner 100, and the outdoor unit 1 and the indoor units 2a and 2b. A RAM 34 that stores and stores operation data and a transmission / reception unit 35 that communicates with an operation unit 40 described later are stored.

さらに、前記RAM34には、本発明の省エネルギー運転手段を行う際に使用する図3に示すような、前記エンジン10の運転効率KEのデータや前記圧縮機11の運転効率KCのデータも収録されている。そして、これら運転効率KE、KCは、図3に示すように、例えば、各回転数に対するエンジン10、および、圧縮機11の運転効率の良し悪しを表すデータとなっている。なお、エンジン10の運転効率KEのデータ、および、圧縮機11の運転効率KCのデータは、それぞれの運転効率KE、KCを共に収録するので無く、双方の運転効率KE、KCに基づいて総合的に得られる総合効率KSのデータとしてRAM34へ収録するものとしても良い。   Further, the RAM 34 also stores the data of the operating efficiency KE of the engine 10 and the data of the operating efficiency KC of the compressor 11 as shown in FIG. 3 used when performing the energy saving operation means of the present invention. Yes. The operating efficiencies KE and KC are data representing whether the operating efficiency of the engine 10 and the compressor 11 with respect to each rotational speed is good or bad as shown in FIG. It should be noted that the data of the operating efficiency KE of the engine 10 and the data of the operating efficiency KC of the compressor 11 are not recorded together with the respective operating efficiencies KE and KC, but are comprehensive based on both operating efficiencies KE and KC. It is good also as what records in RAM34 as the data of the total efficiency KS obtained in this.

また、操作部40について説明すると、例えば、図4の正面図に示すように、操作部40には、このエンジン駆動式空気調和装置100の運転状態を表示する表示部41と、このエンジン駆動式空気調和装置100の運転/停止を指示する運転/停止スイッチ42と、冷房や暖房等の運転モードの切り替えを指示する運転切り替えスイッチ43と、各室内ユニット2a、2bの目標とする室内温度(以下、設定温度という。)を設定する温度設定スイッチ44と、本発明の省エネルギー運転手段を指示する省エネスイッチ45等が設けられている。なお、この省エネスイッチ45は、エンジン10および圧縮機11への設定を行うスイッチであるため、上述の制御装置30の設定部31へ設けることも可能である。   Further, the operation unit 40 will be described. For example, as shown in the front view of FIG. 4, the operation unit 40 includes a display unit 41 that displays the operation state of the engine-driven air conditioner 100 and the engine-driven type. An operation / stop switch 42 for instructing operation / stop of the air conditioner 100, an operation change-over switch 43 for instructing switching of an operation mode such as cooling or heating, and a target indoor temperature (hereinafter referred to as an indoor unit 2a, 2b). A temperature setting switch 44 for setting the temperature), an energy saving switch 45 for instructing the energy saving operation means of the present invention, and the like. Since the energy saving switch 45 is a switch for setting the engine 10 and the compressor 11, it can be provided in the setting unit 31 of the control device 30 described above.

そして、例えば、この省エネスイッチ45が1度目の操作を行われると、操作部40の表示部41に、例えば、図4に示す*マークなどの省エネルギーマーク46が点灯表示されて、本発明の省エネルギー運転手段が実行され、2度目の操作が行われると、前記省エネルギーマーク46等が消灯されて、上記通常運転手段が実行されるものとなっている。   For example, when the energy saving switch 45 is operated for the first time, an energy saving mark 46 such as an * mark shown in FIG. 4 is lit on the display unit 41 of the operation unit 40, for example. When the driving means is executed and the second operation is performed, the energy saving mark 46 and the like are turned off, and the normal driving means is executed.

この本発明の省エネルギー運転手段について以下に説明する。   The energy saving operation means of the present invention will be described below.

その前に、このエンジン駆動式空気調和装置100の通常運転手段について説明すると、この通常運転手段では、操作部40の運転/停止スイッチ41および温度設定スイッチ44が操作されて、操作部40から制御装置30へ運転が指示されると、例えば、各室内ユニット2a、2bの図示しない温度センサで検出された室内温度と、前記温度設定スイッチ44により指示された設定温度との温度差等に基づいて、夫々の室内ユニット2a、2bの個々の空調負荷Ha、Hbが算出されて合計され、総合的な空調負荷Hsが算出される。この総合的な空調負荷Hsを、図3を用いて示すと、図5に示すようになり、例えば、前記空調負荷Hsが、a点であったとすると、このa点となるようエンジン10および圧縮機11の目標とする回転数MK1が算出されることとなる。これにより、制御装置30からエンジン10および圧縮機11へ前記回転数MK1を目標回転数として運転が指示されて空調運転が行われるものとなっており、この運転は、これまでの空気調和装置で行われている通常運転手段と、何ら異なるものではない。   Before that, the normal operation means of the engine-driven air conditioner 100 will be described. In this normal operation means, the operation / stop switch 41 and the temperature setting switch 44 of the operation unit 40 are operated and controlled from the operation unit 40. When the operation is instructed to the device 30, for example, based on a temperature difference between an indoor temperature detected by a temperature sensor (not shown) of each indoor unit 2a, 2b and a set temperature instructed by the temperature setting switch 44, or the like. Then, the individual air conditioning loads Ha and Hb of the respective indoor units 2a and 2b are calculated and summed, and the total air conditioning load Hs is calculated. If this total air conditioning load Hs is shown using FIG. 3, it will become as shown in FIG. 5, for example, if the said air conditioning load Hs is a point, the engine 10 and compression so that it may become this a point. The target rotation speed MK1 of the machine 11 is calculated. As a result, the controller 30 instructs the engine 10 and the compressor 11 to operate with the rotational speed MK1 as the target rotational speed, and the air conditioning operation is performed. This operation is performed by the conventional air conditioner. It is not different from the normal driving means used.

これに対し、本発明では、前記操作部40の省エネスイッチ45が1度目の操作を行われると、前記制御装置30のRAM34に収録された図3の運転効率KE、KC、或いは、KSのデータから前記エンジン10および圧縮機11の双方の運転効率KE、KCが最も良くなるb点が求められ、前記a点をこのb点へと変更し、前記エンジン10および圧縮機11の目標とする目標回転数を、このb点となる回転数MK2として運転を行なわせるものである。なお、このb点は、エンジン10の運転効率KEと、圧縮機11の運転効率KCとの双方の運転効率、或いは、前記総合効率KSが最も良くなる回転数である。   On the other hand, in the present invention, when the energy saving switch 45 of the operation unit 40 is operated for the first time, the data of the operation efficiency KE, KC, or KS of FIG. From point b, the operating efficiency KE, KC of both the engine 10 and the compressor 11 becomes the best, the point a is changed to the point b, and the target of the engine 10 and the compressor 11 is the target. The operation is performed with the rotation speed set as the rotation speed MK2 at the point b. This point b is the rotational efficiency at which the operational efficiency KE of the engine 10 and the operational efficiency KC of the compressor 11 are both the best, or the overall efficiency KS.

また、この省エネルギー運転手段について、図6に示すフローチャートを用いて説明すると、まず、このエンジン駆動式空気調和装置100が運転中であるのか否かが判断され(ステップS1)、運転中でなければ、ステップS1へと戻って、この運転中であるか否かの判断が繰り返えされ、運転中であれば、上記図1で示した各室内ユニット2a、2bに設けられている図示しない温度センサで検出される室内温度と、操作部40に設定された設定温度との温度差等に基づいて、夫々の室内ユニット2a、2bの空調負荷Ha、Hbが算出されて総合的な空調負荷Hsが求められ、この空調負荷Hsに対応するエンジン10および圧縮機11の回転数MK1が求められる(ステップS2)。   The energy saving operation means will be described with reference to the flowchart shown in FIG. 6. First, it is determined whether or not the engine-driven air conditioner 100 is in operation (step S1). Returning to step S1, the determination of whether or not this operation is in progress is repeated, and if it is in operation, the temperature (not shown) provided in each of the indoor units 2a and 2b shown in FIG. Based on the temperature difference between the indoor temperature detected by the sensor and the set temperature set in the operation unit 40, the air conditioning loads Ha and Hb of the respective indoor units 2a and 2b are calculated and the total air conditioning load Hs. Is determined, and the rotational speed MK1 of the engine 10 and the compressor 11 corresponding to the air conditioning load Hs is determined (step S2).

その後、前記操作部40の省エネスイッチ45の操作が行われて、本発明の省エネルギー運転手段の実行が指示されたか否かが判断され(ステップS3)、前記省エネルギー運転手段の実行が指示されていなければ、上記通常運転手段であるとの判断が行われて、前記エンジン10および圧縮機11の目標とする回転数MKを前記空調負荷Hsから求められた回転数MK1(図5のa点)とする指示が行われて(ステップS4)、エンジン10および圧縮機11をこの回転数MK(つまり、前記a点)で運転を行い、前記空調負荷Hsに応じた運転を行う(ステップS5)。   Thereafter, an operation of the energy saving switch 45 of the operation unit 40 is performed to determine whether or not execution of the energy saving operation means of the present invention is instructed (step S3), and execution of the energy saving operation means is instructed. For example, it is determined that the engine is the normal operation means, and the target rotational speed MK of the engine 10 and the compressor 11 is determined as the rotational speed MK1 (point a in FIG. 5) obtained from the air conditioning load Hs. (Step S4), the engine 10 and the compressor 11 are operated at the rotational speed MK (that is, the point a), and the operation according to the air conditioning load Hs is performed (step S5).

これに対し、ステップS3で前記省エネルギー運転手段の実行が指示されていれば、制御装置30のRAM34内に収録された、上記図3に示すエンジン10および圧縮機11の夫々の運転効率KE、KCのデータから、双方の運転効率KE、KCが共に最も良くなる回転数MK2(図5のb点)が求められ、前記回転数MKを回転数MK2とする指示が行われて(ステップS6)、前記エンジン10および圧縮機11をこの回転数MK(つまり、この前記b点)で運転を行なう(ステップS7)。   On the other hand, if execution of the energy saving operation means is instructed in step S3, the operation efficiency KE, KC of the engine 10 and the compressor 11 shown in FIG. The rotation speed MK2 (point b in FIG. 5) in which both the operating efficiencies KE and KC are the best is obtained from the data, and an instruction is given to set the rotation speed MK as the rotation speed MK2 (step S6). The engine 10 and the compressor 11 are operated at the rotational speed MK (that is, the point b) (step S7).

これにより、このエンジン駆動式空気調和装置100は、自動的に最も運転効率KSが良いb点での空調運転が行えるとともに、単位体積当りの冷媒能力が高く圧力損失の少ない前記代替冷媒R410aを使用しているため、さらに、省エネルギーを推進した空調運転を行うことができる。   As a result, the engine-driven air conditioner 100 can automatically perform the air-conditioning operation at the point b with the best operating efficiency KS, and uses the alternative refrigerant R410a having a high refrigerant capacity per unit volume and low pressure loss. Therefore, it is possible to perform air conditioning operation that promotes energy saving.

さらに、この省エネルギー運転手段で、上述のように操作部40の省エネスイッチ45が操作されて前記省エネルギー運転手段の実行が指示された場合、前記運転効率KE、KC、或いは、総合効率KSが最も良くなる回転数KM2とせず、前記空調負荷Hsに対する所定範囲内で最も前記運転効率KE、KC、或いは、前記総合効率KSとなる回転数MK3を求めて運転させても良い。   Further, in this energy saving operation means, when the energy saving switch 45 of the operation unit 40 is operated and the execution of the energy saving operation means is instructed as described above, the operation efficiency KE, KC or the overall efficiency KS is the best. Instead of the rotational speed KM2, the rotational speed MK3 that achieves the operating efficiency KE, KC or the overall efficiency KS within the predetermined range with respect to the air conditioning load Hs may be obtained and operated.

例えば、前記所定能力範囲を前記空調負荷Hsの80%〜120%とすると、図7に示すように、前記空調負荷Hsに基づいて求められたエンジン10および圧縮機11の回転数MK1がa点であっても、操作部40の省エネスイッチ45が操作されて前記省エネルギー運転の実行が指示されることにより、前記回転数MK1が前記所定能力範囲の最下限値の80%となる回転数MK3へと変更されて、エンジン10および圧縮機11は、この回転数MK3(c点)で運転を行うものとしても良い。   For example, if the predetermined capacity range is 80% to 120% of the air conditioning load Hs, as shown in FIG. 7, the rotational speed MK1 of the engine 10 and the compressor 11 obtained based on the air conditioning load Hs is point a. Even so, when the energy saving switch 45 of the operation unit 40 is operated to instruct the execution of the energy saving operation, the rotation speed MK1 becomes the rotation speed MK3 that becomes 80% of the lowest limit value of the predetermined capacity range. The engine 10 and the compressor 11 may be operated at this rotational speed MK3 (point c).

これを、前記空調負荷Hsに基づいて求められた回転数MK1で運転した時に得られる冷凍能力Rn1を100%とし、これから得られる総冷凍能力Rsum1、および、このために消費される総燃料消費量Fsum1と、本発明の前記省エネルギー運転手段により、前記回転数MK1を、80%となる回転数MK3として運転した場合の前記総冷凍能力Rsum1に相当する総冷凍能力Rsum2を得るために必要となる燃料消費量Fsum2とについて、図8の燃料消費効率グラフを参照して説明すると、前記空調負荷Hsに基づいて求められた回転数MK1で空調運転を行って総冷凍能力Rsum1を得る場合には、運転効率も最高効率となるb点から離れて約1.6と低下するとともに、前記回転数MK3よりも高回転の回転数MK1で運転されるため、当然ながら、燃料消費率は高くなり、エンジン10の最高回転時の燃料消費量Fmaxの62.5%となる。これに対し、本発明の前記省エネルギー運転手段を行った場合には、上述のように、前記回転数MK1の80%となる回転数MK3での運転となるため、運転効率も最高効率b点に近いd点となって約1.8へと向上するとともに、エンジン10の回転数も低下することから、このときの燃料消費率は、前記燃料消費量Fmaxの44.4%まで低下する。このため、前記総冷凍能力Rsum1に相当する総冷凍能力Rsum2を得るには、前記空調負荷Hsに基づいて運転させた場合に比べ、運転時間は25%増となるが、このときの総燃料消費量Fsum2は、前記Fsum1に対して11.1%減少させることができる。   The refrigeration capacity Rn1 obtained when operating at the rotational speed MK1 determined based on the air conditioning load Hs is defined as 100%, the total refrigeration capacity Rsum1 obtained from this, and the total fuel consumption consumed for this purpose. Fuel required for obtaining the total refrigeration capacity Rsum2 corresponding to the total refrigeration capacity Rsum1 when the rotation speed MK1 is operated at the rotation speed MK3 of 80% by Fsum1 and the energy saving operation means of the present invention. The consumption amount Fsum2 will be described with reference to the fuel consumption efficiency graph of FIG. 8. When the air conditioning operation is performed at the rotational speed MK1 obtained based on the air conditioning load Hs and the total refrigeration capacity Rsum1 is obtained, the operation is performed. The efficiency decreases to about 1.6 away from the point b where the maximum efficiency is achieved, and the rotational speed MK is higher than the rotational speed MK3. Since in the operation, of course, the fuel consumption rate is high, a 62.5% of fuel consumption Fmax at the maximum rotation of the engine 10. On the other hand, when the energy saving operation means of the present invention is performed, as described above, since the operation is performed at the rotational speed MK3 that is 80% of the rotational speed MK1, the operating efficiency is also set to the maximum efficiency b point. Since it becomes near d point and it improves to about 1.8 and the rotation speed of the engine 10 also falls, the fuel consumption rate at this time falls to 44.4% of the said fuel consumption amount Fmax. For this reason, in order to obtain the total refrigeration capacity Rsum2 corresponding to the total refrigeration capacity Rsum1, the operation time is increased by 25% compared to the case where the operation is performed based on the air conditioning load Hs. The amount Fsum2 can be reduced by 11.1% with respect to the Fsum1.

さらに、この省エネルギー運転手段を実行させることにより、得られる冷凍能力を低下させても、上述のように、室内ユニット2a、2bから要求された空調負荷Hsの80%と下限値が設けられているため、必要以上に前記冷凍能力が低下してしまうことがなく、使用者に不快感を与えずに省エネルギー運転を推進させることができる。   Furthermore, even if the obtained refrigeration capacity is reduced by executing this energy saving operation means, as described above, 80% of the air conditioning load Hs requested from the indoor units 2a and 2b and the lower limit value are provided. For this reason, the refrigeration capacity does not decrease more than necessary, and energy-saving operation can be promoted without causing discomfort to the user.

また、このようなエンジン10および圧縮機11の双方の運転効率が最も良くなる省エネルギー運転手段を行わせるには、上述のように、前記運転効率KEのデータ、および、前記運転効率KCのデータ、或いは、前記総合効率KSのデータをRAM34へ収録するものでなく、例えば、前記総合効率KSを求める演算式等をROM33等へ収録し、図9に示すフローチャートのように制御するものとしても良い。   Moreover, in order to perform the energy saving operation means in which the operation efficiency of both the engine 10 and the compressor 11 is the best, as described above, the data of the operation efficiency KE, the data of the operation efficiency KC, Alternatively, the total efficiency KS data is not recorded in the RAM 34. For example, an arithmetic expression for obtaining the total efficiency KS may be recorded in the ROM 33 or the like and controlled as shown in the flowchart of FIG.

この場合には、まず、このエンジン駆動式空気調和装置100が運転中であるか否かが判断され(ステップS10)、運転中でなければ、ステップS10へと戻って、この運転中であるか否かの判断が繰り返えされ、運転中であれば、上記図1で示した各室内ユニット2a、2bの空調負荷Ha、Hbから総合的な空調負荷Hsが求められ、この空調負荷Hsに対応するエンジン10および圧縮機11の回転数MK1を求める(ステップS11)。   In this case, first, it is determined whether or not the engine-driven air conditioner 100 is in operation (step S10). If it is not in operation, the process returns to step S10 to determine whether or not this operation is in progress. If the determination whether or not is repeated and the vehicle is in operation, the total air conditioning load Hs is obtained from the air conditioning loads Ha and Hb of the indoor units 2a and 2b shown in FIG. The rotation speed MK1 of the corresponding engine 10 and compressor 11 is obtained (step S11).

その後、省エネルギー運転手段が実行されているか否かが判断され(ステップS12)、省エネルギー運転手段の実行が指示されていなければ、通常運転手段であるとの判断が行われて、前記エンジン10および圧縮機11の目標とする回転数MKを前記空調負荷Hsから求められた回転数MK1とする指示が行われて(ステップS13)、エンジン10および圧縮機11は、前記a点での運転を行い、前記空調負荷Hsに応じた運転を行う(ステップS14)。   Thereafter, it is determined whether or not the energy saving operation means is being executed (step S12). If execution of the energy saving operation means is not instructed, it is determined that the energy saving operation means is normal operation means, and the engine 10 and the compression An instruction to set the target rotational speed MK of the machine 11 as the rotational speed MK1 obtained from the air conditioning load Hs is performed (step S13), and the engine 10 and the compressor 11 perform the operation at the point a. An operation according to the air conditioning load Hs is performed (step S14).

これに対し、ステップS12で前記省エネルギー運転手段の実行が指示されていれば、前記空調負荷Hsの80%となる空調負荷Hs1、および、前期空調負荷Hsの120%となる空調負荷Hs2が上記ROM35等に収録された演算式により求められ(ステップS15)、この求められた空調負荷Hs1、Hs2に相当するエンジン10および圧縮機11の夫々の回転数MKa、MKbが求められる(ステップS16)。そして、回転数MKaが総合効率KSの最も良くなる前記回転数MK2より大きいか否かが判断され(ステップS17)、回転数MK2が回転数MKaより小さければ、前記回転数MKを回転数MKaとして(ステップS18)、ステップS22へと進み、回転数MK2が回転数MKaより大きければ、この回転数MK2が回転数MKbより大きいか否かの判断を行ない(ステップS19)、回転数MK2が回転数MKbより大きければ、前記回転数MKを回転数MKbとして(ステップS20)、ステップS22へと進み、回転数MK2が回転数MKbより小さければ、前記回転数MKを回転数MK2とし(ステップS21)、エンジン10および圧縮機11を回転数MKで運転させる(ステップS22)。   On the other hand, if execution of the energy saving operation means is instructed in step S12, the air conditioning load Hs1 that is 80% of the air conditioning load Hs and the air conditioning load Hs2 that is 120% of the previous air conditioning load Hs are the ROM 35. (Step S15), and the engine speeds MKa and MKb of the engine 11 and the compressor 11 corresponding to the calculated air conditioning loads Hs1 and Hs2 are obtained (step S16). Then, it is determined whether or not the rotational speed MKa is larger than the rotational speed MK2 that gives the best overall efficiency KS (step S17). If the rotational speed MK2 is smaller than the rotational speed MKa, the rotational speed MK is set as the rotational speed MKa. (Step S18), the process proceeds to Step S22, and if the rotational speed MK2 is larger than the rotational speed MKa, it is determined whether or not the rotational speed MK2 is larger than the rotational speed MKb (Step S19), and the rotational speed MK2 is the rotational speed. If larger than MKb, the rotational speed MK is set as the rotational speed MKb (step S20), and the process proceeds to step S22. If the rotational speed MK2 is smaller than the rotational speed MKb, the rotational speed MK is set as the rotational speed MK2 (step S21). The engine 10 and the compressor 11 are operated at the rotational speed MK (step S22).

これにより、このエンジン駆動式空気調和装置100は、自動的に最も運転効率KSが良く、使用者に不快感を与えることのないc点での空調運転が行えるとともに、単位体積当りの冷媒能力が高く圧力損失の少ない前記代替冷媒R410aを使用しているため、さらに、省エネルギーを推進した空調運転を行うことができる。   As a result, the engine-driven air conditioner 100 automatically has the highest operating efficiency KS, can perform air-conditioning operation at point c without causing discomfort to the user, and has a refrigerant capacity per unit volume. Since the alternative refrigerant R410a having a high pressure loss and a low pressure loss is used, it is possible to perform an air conditioning operation that further promotes energy saving.

尚、本実施の形態では、エンジン10の駆動力により運転される圧縮機11を備えたエンジン駆動式空気調和装置100として説明したが、本発明は、電力で能力可変に駆動される圧縮機を備えた電気駆動式空気調和装置でも、この電力で能力可変に駆動される圧縮機の運転効率のデータをRAM34等に収録して備えて、省エネスイッチ45の操作が行われると、当該電力で能力可変に駆動される圧縮機の最も運転効率の良い回転数として応用することもできる。また、本発明は、上記実施例で示した各設定値や配管構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で適宜変更可能である。   In the present embodiment, the engine-driven air conditioner 100 including the compressor 11 that is driven by the driving force of the engine 10 has been described. Even in the electric drive type air conditioner that is provided, the operation efficiency data of the compressor that is variably driven by this electric power is recorded in the RAM 34 and the like, and when the energy saving switch 45 is operated, the electric power It can also be applied as the rotational speed with the highest operating efficiency of a variably driven compressor. Further, the present invention is not limited to the set values and the pipe configurations shown in the above embodiments, and can be appropriately changed without departing from the spirit of the present invention.

運転状態により、その運転効率が変化する装置の省エネルギー運転の推進に好適である。   It is suitable for promoting energy-saving operation of a device whose operation efficiency varies depending on the operation state.

本発明の省エネルギー運転手段を適用したエンジン駆動式空気調和装置100の一実施形態を示す構成図である。It is a block diagram which shows one Embodiment of the engine drive type air conditioning apparatus 100 to which the energy saving operation means of this invention is applied. 制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of a control apparatus. 制御装置内のRAMへ収録されるエンジンおよび圧縮機の運転効率のデータである。It is data on the operating efficiency of the engine and the compressor recorded in the RAM in the control device. 操作部の正面図である。It is a front view of an operation part. 通常運転手段および本発明の省エネルギー運転手段を図3に示した図である。It is the figure which showed the normal driving | operation means and the energy saving operation means of this invention in FIG. 本発明の省エネルギー運転手段のフローチャートである。It is a flowchart of the energy saving operation means of this invention. 本発明の省エネルギー運転手段の別実施例を図3に示した図である。FIG. 4 is a diagram showing another embodiment of the energy saving operation means of the present invention in FIG. 3. 本発明の省エネルギー運転手段の省エネルギー性を示す図である。It is a figure which shows the energy saving property of the energy saving operation means of this invention. 本発明の省エネルギー運転手段の別実施例のフローチャートである。It is a flowchart of another Example of the energy saving operation means of this invention.

符号の説明Explanation of symbols

1 室外ユニット
2a、2b 室内ユニット
3 ユニット間配管
10 エンジン
11 圧縮機
12 四方弁
13 室外熱交換器
14 室外膨張弁
15 アキュームレータ
20a、20b 室内熱交換器
21a、21b 室内膨張弁
30 制御装置
31 設定部
32 ROM
33 CPU
34 RAM
35 送受信部
40 操作部
41 表示部
42 運転/停止スイッチ
43 運転切り替えスイッチ
44 温度設定スイッチ
45 省エネスイッチ
100 エンジン駆動式空気調和装置

DESCRIPTION OF SYMBOLS 1 Outdoor unit 2a, 2b Indoor unit 3 Inter-unit piping 10 Engine 11 Compressor 12 Four-way valve 13 Outdoor heat exchanger 14 Outdoor expansion valve 15 Accumulator 20a, 20b Indoor heat exchanger 21a, 21b Indoor expansion valve 30 Control apparatus 31 Setting part 32 ROM
33 CPU
34 RAM
35 Transmission / Reception Unit 40 Operation Unit 41 Display Unit 42 Operation / Stop Switch 43 Operation Switching Switch 44 Temperature Setting Switch 45 Energy Saving Switch 100 Engine Driven Air Conditioner

Claims (4)

エンジンの駆動力で駆動される圧縮機と室外熱交換器とを備える室外ユニットと、室内熱交換器を備える1台または複数台の室内ユニットとを冷媒配管で接続して構成し、前記室内ユニットで検出される空調負荷に応じて能力可変に空調運転を行うエンジン駆動式空気調和装置において、前記室内ユニットに備えられた温度センサ等に基づいて空調負荷を算出し、この空調負荷に基づいて、前記エンジンおよび前記圧縮機の双方の運転効率が最も良くなる回転数で且つ前記空調負荷の所定能力範囲内で運転を行わせることを特徴とするエンジン駆動式空気調和装置。 An indoor unit comprising a compressor driven by the driving force of the engine and an outdoor heat exchanger and one or a plurality of indoor units comprising an indoor heat exchanger are connected by a refrigerant pipe, and the indoor unit In the engine-driven air conditioner that performs the air conditioning operation with variable capacity according to the air conditioning load detected in step 1, the air conditioning load is calculated based on a temperature sensor or the like provided in the indoor unit, and based on the air conditioning load, An engine-driven air conditioner that causes the engine and the compressor to operate at a rotational speed that provides the best operating efficiency and within a predetermined capacity range of the air conditioning load . エンジンの駆動力で駆動される圧縮機と室外熱交換器とを備える室外ユニットと、室内熱交換器を備える1台または複数台の室内ユニットとを冷媒配管で接続して構成し、前記室内ユニットで検出される空調負荷に応じて能力可変に空調運転を行うエンジン駆動式空気調和装置において、前記室内ユニットに備えられた温度センサ等に基づいて空調負荷を算出し、この空調負荷に基づいて求められた回転数で前記エンジンおよび前記圧縮機の運転制御を行う通常運転手段と、前記エンジンおよび前記圧縮機の双方の運転効率が最も良くなる回転数で且つ前記空調負荷の所定能力範囲内で前記エンジンおよび前記圧縮機の運転を行わせる省エネルギー運転手段とを備えることを特徴とするエンジン駆動式空気調和装置。 An indoor unit comprising a compressor driven by the driving force of the engine and an outdoor heat exchanger and one or a plurality of indoor units comprising an indoor heat exchanger are connected by a refrigerant pipe, and the indoor unit In the engine-driven air conditioner that performs the air-conditioning operation with variable capacity according to the air-conditioning load detected in step 1, the air-conditioning load is calculated based on a temperature sensor or the like provided in the indoor unit, and obtained based on the air-conditioning load. Normal operating means for controlling the operation of the engine and the compressor at a determined rotational speed, and the rotational speed at which the operating efficiency of both the engine and the compressor is the best and within the predetermined capacity range of the air conditioning load. An engine-driven air conditioner comprising: an engine and energy-saving operation means for operating the compressor. 前記通常運転手段と、前記省エネルギー運転手段とは、前記エンジン駆動式空気調和装置の運転を指示する操作部の操作により選択される運転手段であることを特徴とする請求項2に記載のエンジン駆動式空気調和装置。   3. The engine drive according to claim 2, wherein the normal operation means and the energy saving operation means are operation means selected by operation of an operation unit that instructs operation of the engine-driven air conditioner. Air conditioner. 請求項1ないし2記載の空調負荷の所定能力範囲内とは、前記空調負荷の80%〜120%であることを特徴とした請求項1ないし2記載のエンジン駆動式空気調和装置。 3. The engine-driven air conditioner according to claim 1, wherein the range of the air conditioning load within the predetermined capacity range is 80% to 120% of the air conditioning load.
JP2004157219A 2004-02-24 2004-05-27 Engine-driven air conditioner Expired - Fee Related JP4624002B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004157219A JP4624002B2 (en) 2004-02-24 2004-05-27 Engine-driven air conditioner
CNB2004100926270A CN100339654C (en) 2004-05-27 2004-11-16 Engine driving type air-conditioning device
KR1020040109102A KR100658557B1 (en) 2004-05-27 2004-12-21 Air conditioner driven by an engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004047883 2004-02-24
JP2004157219A JP4624002B2 (en) 2004-02-24 2004-05-27 Engine-driven air conditioner

Publications (2)

Publication Number Publication Date
JP2005274116A JP2005274116A (en) 2005-10-06
JP4624002B2 true JP4624002B2 (en) 2011-02-02

Family

ID=35173978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157219A Expired - Fee Related JP4624002B2 (en) 2004-02-24 2004-05-27 Engine-driven air conditioner

Country Status (1)

Country Link
JP (1) JP4624002B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5195378B2 (en) * 2008-12-10 2013-05-08 トヨタ自動車株式会社 Air conditioning control device for vehicles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770363A (en) * 1980-10-19 1982-04-30 Ebara Mfg Heat pump apparatus
JPS58129439U (en) * 1982-02-25 1983-09-01 小型ガス冷房技術研究組合 heat pump water heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770363A (en) * 1980-10-19 1982-04-30 Ebara Mfg Heat pump apparatus
JPS58129439U (en) * 1982-02-25 1983-09-01 小型ガス冷房技術研究組合 heat pump water heater

Also Published As

Publication number Publication date
JP2005274116A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP4379537B2 (en) Compressor operation control device and air conditioner equipped with the same
JP3356551B2 (en) Air conditioner
JP6493432B2 (en) Air conditioner
JP5511717B2 (en) Air conditioner
JP5278575B1 (en) Floor heating system and temperature control system
JP2006343052A (en) Simultaneous cooling and heating multi-air conditioner
JP2009041845A (en) Operation control method of multi-room type air conditioner
JP6676418B2 (en) air conditioner
JP6019773B2 (en) Air conditioner control device
JP2007010291A (en) Air conditioner
EP1677058A2 (en) Method of controlling over-load cooling operation of air conditioner
JP2011202891A (en) Air conditioner
JP5910610B2 (en) Air conditioning system
JP2006234295A (en) Multiple air conditioner
JP4624002B2 (en) Engine-driven air conditioner
JP2009041829A (en) Air conditioner
JP4460913B2 (en) Air conditioner
JP3489932B2 (en) Air conditioner
KR100658557B1 (en) Air conditioner driven by an engine
JPH07103584A (en) Air-conditioning equipment
JP5633337B2 (en) Air conditioning system
JP2006046782A (en) Air conditioner and operation method of air conditioner
JPH07305915A (en) Air conditioner
WO2022210128A1 (en) Air-conditioning device
JP4006390B2 (en) Air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees