JP4623697B2 - Radioactive waste treatment method - Google Patents

Radioactive waste treatment method Download PDF

Info

Publication number
JP4623697B2
JP4623697B2 JP2001237879A JP2001237879A JP4623697B2 JP 4623697 B2 JP4623697 B2 JP 4623697B2 JP 2001237879 A JP2001237879 A JP 2001237879A JP 2001237879 A JP2001237879 A JP 2001237879A JP 4623697 B2 JP4623697 B2 JP 4623697B2
Authority
JP
Japan
Prior art keywords
iodine
glass
pbo
radioactive waste
bipbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001237879A
Other languages
Japanese (ja)
Other versions
JP2003050297A (en
Inventor
隆之 雨夜
守 渋谷
博志 小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
National Institute for Materials Science
Original Assignee
JGC Corp
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, National Institute for Materials Science filed Critical JGC Corp
Priority to JP2001237879A priority Critical patent/JP4623697B2/en
Publication of JP2003050297A publication Critical patent/JP2003050297A/en
Application granted granted Critical
Publication of JP4623697B2 publication Critical patent/JP4623697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/142Silica-free oxide glass compositions containing boron containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/14Waste material, e.g. to be disposed of

Description

【0001】
【発明の属する技術分野】
本発明は、放射性廃棄物処理方法に関し、特に、放射性廃棄物を安定に固定する放射性廃棄物処理方法に関する。
【0002】
【従来の技術】
核燃料の燃焼によって発生する放射性ヨウ素129は、半減期1.57×10年のβ核種であり、その有害性は長期間に渡って持続する。また、地層処分環境下においてヨウ素は、岩石等に吸着され難く、移動しやすい性質を持っている。
【0003】
このため、放射性廃棄物処分場の安全評価では、ヨウ素129を含有している廃棄物の影響が極めて高く、当該廃棄物を高度に安定に処理処分することが必要である。
【0004】
現在、放射性ヨウ素129は、銀系の吸着材に吸着させて保管されており、処理方法については研究段階にある。
【0005】
研究中の処理方法としては、吸着材を直接セメント固化する方法、吸着したヨウ素を溶離させ安定なヨウ素酸化合物(例えば、Ca(IO)、Ba(IO)など)に調整後セメント固化する方法、ソーダライト等の鉱物に変換する方法があげられ、また、吸着材ごと高温高圧下で反応させてHIP(hot isostatic pressing)固化体を作成する方法が提案されている。
【0006】
【発明が解決しようとする課題】
しかし、ヨウ素酸化合物をセメント固化する方法では、ヨウ素の酸化処理工程が必要であり、ソーダライト結晶への固定やHIP固化では、圧力を加える工程が必要であるなど、これらの処理方法では処理工程が煩雑であった。
【0007】
また、吸着材を直接セメント固化する方法では、その後のヨウ素の移動が比較的早いことから、移動抑制を図るために処分場の規模を大型化するなどの必要があり、建設コストの増大をもたらしていた。
【0008】
そこで本発明では、簡単で廉価な方法により、放射性ヨウ素を安定に固定することが可能な放射性廃棄物処理方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
放射性ヨウ素129の廃棄物は、廃銀吸着材(使用済みの銀ゼオライトや銀シリカなど)やAgIの形態で発生するのが一般的である。また、廃銀吸着材に吸着したヨウ素は前処理を施すことにより、BiPbOI又はAgIの形態にすることができる。従って、殆どの放射性ヨウ素を、BiPbOIまたはAgIの形態に調整することができる。
【0010】
本発明の放射性廃棄物の処理方法では、比較的低温で溶融する低温溶融ガラスと共にBiPbOI又はAgIを混合して固化させ、放射性ヨウ素129を安定に固定する。
【0011】
【発明の実施の形態】
図1は、本発明における放射性廃棄物の処理方法の構成を示すブロック図である。
【0012】
図1に示すように、本発明における放射性廃棄物の処理方法では、放射性ヨウ素129をヨウ素化合物(BiPbOI又はAgI)12の形態でガラスフリット11と混合し、熱を加える。そして、ヨウ素化合物とガラスフリットとの混合物を溶融20させ、ヨウ素含有ガラス固化体30を形成する。
【0013】
なお、ヨウ素化合物と熱を加えて溶融したガラスフリットとを混合してヨウ素含有ガラス固化体30を形成することもできる。
【0014】
このように本発明では、放射性廃棄物であるヨウ素129をヨウ素化合物の形態でガラス固化処理を施し、安定なヨウ素含有ガラス固化体に固定することによって処理を行う。
【0015】
以下、実施例を用いて、本発明に係わる放射性廃棄物処理方法について詳細に説明する。
【0016】
【実施例1】
実施例1では、ガラスフリットを形成する低温溶融ガラスについて、PbO−B−ZnO系のガラスとPbO−B−SiO系のガラスを用いて説明する。
【0017】
ここで、PbO−B−ZnO系のガラスが550℃以下で溶融した際の組成比を図2(a)に、PbO−B−SiO系のガラスが550℃以下で溶融した際の組成比を図2(b)に示す。
【0018】
PbO−B−ZnO系のガラスでは、図2(a)に示すように、PbOが50〜70mol%、Bが25mol%以上の組成比のときに550℃以下で溶融する。
【0019】
また、PbO−B−SiO系のガラスでは、図2(b)に示すように、PbOが45〜65mol%の組成比のときに、550℃以下で溶融する。
【0020】
このように、PbO−B−ZnO系のガラス又はPbO−B−SiO系のガラスを上記組成比で用いることにより、低温で溶融できるガラスフリットを形成することが可能となる。
【0021】
なお、ガラスフリットを形成するPbOを45〜75mol%含有する低温溶融ガラスは、上記のガラスに限られるものではない。
【0022】
【実施例2】
次に実施例2では、AgI又はBiPbOIとガラスフリットとの混合物を加熱した際の加熱温度とヨウ素の揮発との関係について説明する。
【0023】
PbO、B、ZnOをそれぞれ64.7mol%、30.3mol%、5mol%含有するPbO−B−ZnO系のガラスとBiPbOIとを95.4重量%、4.6重量%の割合で混合し、この混合物に対して熱重量分析(TG)及び示差熱分析(DTA)を行った。このTG−DTA分析結果を図3に示す。
【0024】
TG曲線には、混合物の重量が560℃近傍から減少し始めることが示されており、この結果から、ヨウ素がこの付近の温度以上で揮発することが分かる。従って、溶融条件を560℃以下とすることにより、ヨウ素を揮発させずにBiPbOIをガラス固化することが可能となる。
【0025】
また、BiPbOIに代えてAgIを用いた点を除き、同様の条件で混合物を作成し、熱重量分析及び示差熱分析を行なった。図示はしていないが、BiPbOIを用いた場合と同様に560℃近傍で重量が減少し始めるといった分析結果を得た。
【0026】
従って、溶融条件を560℃以下とすることにより、BiPbOIと同様にヨウ素を揮発させずにAgIをガラス固化することが可能となる。
【0027】
【実施例3】
実施例3では、ガラス固化処理中のヨウ素の熱に対する安定性について説明する。
【0028】
表1に示す各組成のガラスフリット(G4Z00、G4Z05、G4Z10、S9)とBiPbOIとをそれぞれ95.4重量%、4.6重量%の割合(ヨウ素の重量割合=1重量%相当)で混合し、520℃に加熱、溶融させて、ヨウ素含有率が1重量%のヨウ素含有ガラス固化体のブロックを9mm×9mm×20mm程度の直方体の形状で作成した。そして、このヨウ素含有ガラス固化体(各々、G4Z00I01、G4Z05I01、G4Z10I01、S9I01と記載する)を一部採取し、900度に加熱した後、ガラスに含まれているヨウ素の含有率を測定した。この測定結果を表1に示す。
【0029】
【表1】

Figure 0004623697
このように、G4Z00I01、G4Z05I01、G4Z10I01、S9I01のいずれの種類のヨウ素含有ガラス固化体でもヨウ素含有率の減少は見らず、固化処理を行う際の熱によるヨウ素の揮発が殆どないことが示されている。従って、ヨウ素は固化処理時の熱によって揮発することなく安定に固定されている。
【0030】
【実施例4】
実施例4では、ガラス固化処理されたヨウ素の浸出に対する安定性について説明する。
【0031】
9mm×9mm×20mm程度の直方体のサイズにヨウ素含有ガラスを成形し、このガラス固化体を海水系地下水(組成:0.55M・NaCl+0.05M・NaHCO+0.003M・NaS)に浸し、常温で2ヶ月経過後、浸した地下水を測定した。この測定結果を表2に示す。
【0032】
【表2】
Figure 0004623697
このように、ヨウ素等の溶出は非常に少なく、ヨウ素含有ガラス固化体の化学的耐久性が高いことを示している。
【0033】
本発明にかかる放射性廃棄物処理方法では、溶融温度を550℃以下の低温とすることが可能なため、溶融炉材料選定に制約が少なく、ハンドリングも容易であり、オフガス系の処理が簡単である。
【0034】
また、固化処理を行う際のヨウ素の揮発率が低く、若干の揮発分もスクラバ液中で吸着材(BiPbONO)と反応させてBiPbOIに転換することにより、容易に固化処理を行う溶融炉に投入可能な形態で回収可能である。
【0035】
加えて、形成されたヨウ素含有ガラスの固化体からのヨウ素の浸出率が低く、TRU(トランスウラニュム元素)処分場など、放射性廃棄物処分場や貯蔵施設の建設コスト、管理コストなどを低減をすることができる。
【0036】
【発明の効果】
本発明では、放射性ヨウ素を簡便、廉価なプロセスで安全にガラス固化し、安定に固定することができる。
【図面の簡単な説明】
【図1】 本発明における放射性廃棄物の処理方法の構成を示すブロック図
【図2】 実施例1におけるガラスの組成比と融点との関係を示すグラフ
【図3】 実施例2におけるTG−DTA分析の結果を示すグラフ
【符号の説明】
11…ガラスフリット
12…ヨウ素化合物
20…溶融
30…ヨウ素含有ガラス固化体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radioactive waste processing method, and more particularly to a radioactive waste processing method for stably fixing a radioactive waste.
[0002]
[Prior art]
Radioactive iodine 129 generated by the burning of nuclear fuel is a β nuclide with a half-life of 1.57 × 10 7 years, and its harmfulness persists for a long period of time. In addition, iodine is not easily adsorbed by rocks or the like in a geological disposal environment and has a property of being easily moved.
[0003]
For this reason, in the safety evaluation of the radioactive waste disposal site, the influence of the waste containing iodine 129 is extremely high, and it is necessary to dispose of the waste highly stably.
[0004]
At present, radioactive iodine 129 is stored by being adsorbed on a silver-based adsorbent, and the processing method is in the research stage.
[0005]
Treatment methods under study include directly cementing the adsorbent material, and eluting adsorbed iodine into a stable iodate compound (for example, Ca (IO 3 ) 2 , Ba (IO 3 ) 2, etc.) and adjusting the cement. A method of solidifying and a method of converting into minerals such as sodalite are mentioned, and a method of producing a HIP (hot isostatic pressing) solidified body by reacting the adsorbent together under high temperature and high pressure has been proposed.
[0006]
[Problems to be solved by the invention]
However, in the method of solidifying the iodate compound in cement, an oxidation treatment step of iodine is necessary, and in the fixation to sodalite crystals and in the HIP solidification, a step of applying pressure is necessary. Was cumbersome.
[0007]
Moreover, in the method of directly cementing the adsorbent, since the subsequent movement of iodine is relatively fast, it is necessary to increase the size of the disposal site in order to suppress the movement, resulting in an increase in construction costs. It was.
[0008]
Therefore, an object of the present invention is to provide a radioactive waste treatment method capable of stably fixing radioactive iodine by a simple and inexpensive method.
[0009]
[Means for Solving the Problems]
In general, the radioactive iodine 129 waste is generated in the form of waste silver adsorbent (such as used silver zeolite or silver silica) or AgI. Further, iodine adsorbed on the waste silver adsorbent can be made into a BiPbO 2 I or AgI form by pretreatment. Therefore, most of the radioactive iodine can be adjusted to BiPbO 2 I or AgI form.
[0010]
In the radioactive waste processing method of the present invention, BiPbO 2 I or AgI is mixed and solidified together with a low-temperature molten glass that melts at a relatively low temperature, and radioactive iodine 129 is stably fixed.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing a configuration of a radioactive waste processing method according to the present invention.
[0012]
As shown in FIG. 1, in the method for treating radioactive waste in the present invention, radioactive iodine 129 is mixed with glass frit 11 in the form of iodine compound (BiPbO 2 I or AgI) 12 and heat is applied. Then, a mixture of iodine compound and glass frit is melted 20 to form an iodine-containing glass solidified body 30.
[0013]
The iodine compound and the glass frit melted by applying heat may be mixed to form the iodine-containing glass solidified body 30.
[0014]
Thus, in the present invention, iodine 129, which is a radioactive waste, is vitrified in the form of an iodine compound and treated by fixing it to a stable iodine-containing vitrified body.
[0015]
Hereinafter, the radioactive waste processing method concerning this invention is demonstrated in detail using an Example.
[0016]
[Example 1]
In Example 1, a low-temperature molten glass forming a glass frit will be described using a PbO—B 2 O 3 —ZnO-based glass and a PbO—B 2 O 3 —SiO 2 -based glass.
[0017]
Here, the composition ratio when the PbO—B 2 O 3 —ZnO-based glass is melted at 550 ° C. or lower is shown in FIG. 2A, and the PbO—B 2 O 3 —SiO 2 -based glass is 550 ° C. or lower. The composition ratio when melted is shown in FIG.
[0018]
In the PbO—B 2 O 3 —ZnO-based glass, as shown in FIG. 2A, the glass melts at 550 ° C. or less when the composition ratio is 50 to 70 mol% PbO and 25 mol% or more B 2 O 3. .
[0019]
Further, in the PbO—B 2 O 3 —SiO 2 based glass, as shown in FIG. 2B, when PbO has a composition ratio of 45 to 65 mol%, it melts at 550 ° C. or less.
[0020]
As described above, by using PbO—B 2 O 3 —ZnO-based glass or PbO—B 2 O 3 —SiO 2 -based glass at the above composition ratio, it is possible to form a glass frit that can be melted at a low temperature. Become.
[0021]
Note that the low-temperature molten glass containing 45 to 75 mol% of PbO forming the glass frit is not limited to the above glass.
[0022]
[Example 2]
Next, in Example 2, the relationship between the heating temperature and the volatilization of iodine when a mixture of AgI or BiPbO 2 I and glass frit is heated will be described.
[0023]
PbO—B 2 O 3 —ZnO-based glass containing 64.7 mol%, 30.3 mol%, and 5 mol% of PbO, B 2 O 3 , and ZnO, respectively, and 95.4 wt% of BiPbO 2 I, 4.6 The mixture was mixed at a weight percentage, and the mixture was subjected to thermogravimetric analysis (TG) and differential thermal analysis (DTA). The result of this TG-DTA analysis is shown in FIG.
[0024]
The TG curve shows that the weight of the mixture begins to decrease from around 560 ° C. From this result, it can be seen that iodine volatilizes above this temperature. Therefore, BiPbO 2 I can be vitrified without volatilizing iodine by setting the melting condition to 560 ° C. or less.
[0025]
A mixture was prepared under the same conditions except that AgI was used instead of BiPbO 2 I, and thermogravimetric analysis and differential thermal analysis were performed. Although not shown in the figure, an analysis result that the weight starts to decrease near 560 ° C. was obtained as in the case of using BiPbO 2 I.
[0026]
Therefore, by setting the melting condition to 560 ° C. or lower, it is possible to vitrify AgI without volatilizing iodine as with BiPbO 2 I.
[0027]
[Example 3]
In Example 3, the stability of iodine during heat treatment to vitrification will be described.
[0028]
The glass frit (G4Z00, G4Z05, G4Z10, S9) and BiPbO 2 I of each composition shown in Table 1 were each in a proportion of 95.4% by weight, 4.6% by weight (weight ratio of iodine = 1 equivalent to 1% by weight). The mixture was heated and melted at 520 ° C. to form a block of an iodine-containing vitrified body having an iodine content of 1% by weight in the shape of a rectangular parallelepiped of about 9 mm × 9 mm × 20 mm. Then, a part of this iodine-containing vitrified body (respectively described as G4Z00I01, G4Z05I01, G4Z10I01, and S9I01) was sampled and heated to 900 degrees, and then the content of iodine contained in the glass was measured. The measurement results are shown in Table 1.
[0029]
[Table 1]
Figure 0004623697
Thus, no decrease in iodine content was observed in any kind of iodine-containing vitrified materials such as G4Z00I01, G4Z05I01, G4Z10I01, and S9I01, indicating that there is almost no volatilization of iodine due to heat during the solidification treatment. ing. Therefore, iodine is stably fixed without volatilizing due to heat during the solidification treatment.
[0030]
[Example 4]
In Example 4, stability against leaching of vitrified iodine will be described.
[0031]
Iodine-containing glass is molded into a rectangular parallelepiped size of about 9 mm × 9 mm × 20 mm, and this glass solidified body is immersed in seawater-based groundwater (composition: 0.55 M NaCl + 0.05 M NaHCO 3 +0.003 M Na 2 S). After 2 months at room temperature, the soaked groundwater was measured. The measurement results are shown in Table 2.
[0032]
[Table 2]
Figure 0004623697
Thus, the elution of iodine and the like is very small, indicating that the chemical durability of the iodine-containing vitrified product is high.
[0033]
In the radioactive waste processing method according to the present invention, since the melting temperature can be lowered to 550 ° C. or less, there are few restrictions on selection of melting furnace materials, handling is easy, and off-gas processing is simple. .
[0034]
Moreover, the volatilization rate of iodine at the time of solidification treatment is low, and a slight amount of volatile matter is reacted with an adsorbent (BiPbO 2 NO 3 ) in the scrubber liquid to convert it into BiPbO 2 I for easy solidification treatment. It can be recovered in a form that can be put into a melting furnace.
[0035]
In addition, the leaching rate of iodine from the solidified body of iodine-containing glass formed is low, reducing the construction cost and management cost of radioactive waste disposal sites and storage facilities such as TRU (transuranium element) disposal sites. can do.
[0036]
【The invention's effect】
In the present invention, radioactive iodine can be vitrified safely and stably fixed by a simple and inexpensive process.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the configuration of a method for treating radioactive waste in the present invention. FIG. 2 is a graph showing the relationship between the glass composition ratio and melting point in Example 1. FIG. 3 is TG-DTA in Example 2. Graph showing the results of analysis 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 11 ... Glass frit 12 ... Iodine compound 20 ... Melting 30 ... Iodine containing glass solidified body

Claims (3)

PbO−B系、PbO−B−ZnO系又はPbO−B−SiO系のガラスと放射性ヨウ素をAgI又はBiPbO Iの形態にした放射性廃棄物とを混合し、前記ガラスを550℃以下で溶融させてガラス固化体を形成することを特徴とする放射性廃棄物処理方法。PbO—B 2 O 3 system, PbO—B 2 O 3 —ZnO system or PbO—B 2 O 3 —SiO 2 system glass and radioactive waste in the form of AgI or BiPbO 2 I are mixed with radioactive waste. The radioactive waste processing method characterized by melt | dissolving the said glass at 550 degrees C or less, and forming a glass solidified body. 前記PbO−B−ZnO系のガラスの組成は、45<PbO<75(mol%)、20<B(mol%)であることを特徴とする請求項1記載の放射性廃棄物の処理方法。 2. The radioactive waste according to claim 1, wherein the PbO—B 2 O 3 —ZnO-based glass has a composition of 45 <PbO <75 (mol%) and 20 <B 2 O 3 (mol%). How to handle things. 前記PbO−B−SiO系のガラスの組成は、40<PbO<70(mol%)であることを特徴とする請求項1記載の放射性廃棄物の処理方法。The radioactive waste processing method according to claim 1, wherein the composition of the PbO—B 2 O 3 —SiO 2 glass is 40 <PbO <70 (mol%).
JP2001237879A 2001-08-06 2001-08-06 Radioactive waste treatment method Expired - Fee Related JP4623697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237879A JP4623697B2 (en) 2001-08-06 2001-08-06 Radioactive waste treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237879A JP4623697B2 (en) 2001-08-06 2001-08-06 Radioactive waste treatment method

Publications (2)

Publication Number Publication Date
JP2003050297A JP2003050297A (en) 2003-02-21
JP4623697B2 true JP4623697B2 (en) 2011-02-02

Family

ID=19068888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237879A Expired - Fee Related JP4623697B2 (en) 2001-08-06 2001-08-06 Radioactive waste treatment method

Country Status (1)

Country Link
JP (1) JP4623697B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222000A1 (en) 2016-06-23 2017-12-28 日本化学工業株式会社 Method for manufacturing solidified body of radioactive waste

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124500A (en) * 1985-11-25 1987-06-05 株式会社日立製作所 Method of solidifying and processing solid waste containing radioactive iodine
JPH11295487A (en) * 1998-04-08 1999-10-29 Hitachi Ltd Method for treating radioactive waste and vitrified solid thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124500A (en) * 1985-11-25 1987-06-05 株式会社日立製作所 Method of solidifying and processing solid waste containing radioactive iodine
JPH11295487A (en) * 1998-04-08 1999-10-29 Hitachi Ltd Method for treating radioactive waste and vitrified solid thereof

Also Published As

Publication number Publication date
JP2003050297A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
CA1171266A (en) Nuclear waste encapsulation in borosilicate glass by chemical polymerization
US5662579A (en) Vitrification of organics-containing wastes
JP2009535606A (en) Process and composition for immobilizing highly alkaline radioactive waste and hazardous waste in silicate glass
Xu et al. Iron phosphate glass for immobilization of 99Tc
JP3232993B2 (en) Radioactive waste treatment method
Langowski et al. Volatility literature of chlorine, iodine, cesium, strontium, technetium, and rhenium; technetium and rhenium volatility testing
Asmussen et al. Review of recent developments in iodine wasteform production
JP4623697B2 (en) Radioactive waste treatment method
Niu et al. Immobilization of technetium-99 in a lead borosilicate glass
Bibler et al. Leaching Tc-99 from SRP glass in simulated tuff and salt groundwaters
JP3864203B2 (en) Solidification method for radioactive waste
JP3735218B2 (en) Method for treating waste containing radioactive iodine
KR101578623B1 (en) A method of making low-melting temperature glass to immobilize radioactive cesium spent filter
Spence et al. Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout
Banerjee et al. Physicochemical properties of Cs borosilicate glasses containing CaO
US8969646B2 (en) Ceramic ingot of spent filter having trapped radioactive cesium and method of preparing the same
Dong et al. Dechlorination and vitrification of electrochemical processing salt waste
JP2007040872A (en) Processing method of radioactive waste and its sintered body
Harker et al. Hot isostatic pressing of nuclear waste glasses
CN109721242B (en) Low-melting-point glass for curing volatile nuclide Tc/Re and preparation and use methods thereof
Cole et al. Properties of vitrified ICPP zirconia calcine
RU2701869C1 (en) Aluminum phosphate glass for immobilisation of radioactive wastes
Feng et al. Retention of sulfur, phosphorus, chlorine, and fluorine in Hanford Phase II vendor LLW glasses
Shi et al. Effect of PbO on the chemical durability of low-temperature PbO–B2O3–ZnO glass for cesium immobilization
Feng et al. Glassy slag: A complementary waste form to homogeneous glass for the implementation of MAWS in treating DOE low level/mixed wastes

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Ref document number: 4623697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees