JP3232993B2 - Radioactive waste treatment method - Google Patents

Radioactive waste treatment method

Info

Publication number
JP3232993B2
JP3232993B2 JP33149895A JP33149895A JP3232993B2 JP 3232993 B2 JP3232993 B2 JP 3232993B2 JP 33149895 A JP33149895 A JP 33149895A JP 33149895 A JP33149895 A JP 33149895A JP 3232993 B2 JP3232993 B2 JP 3232993B2
Authority
JP
Japan
Prior art keywords
silver
iodine
radioactive
waste
vitrified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33149895A
Other languages
Japanese (ja)
Other versions
JPH09171096A (en
Inventor
高志 西
健司 野下
将省 松田
哲生 深澤
龍男 泉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33149895A priority Critical patent/JP3232993B2/en
Publication of JPH09171096A publication Critical patent/JPH09171096A/en
Application granted granted Critical
Publication of JP3232993B2 publication Critical patent/JP3232993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子力施設(例え
ば、原子力発電所,核燃料再処理工場)から発生する放
射性廃棄物の処理方法に係り、特に放射性ヨウ素を含有
する放射性廃棄物の処理方法に関する。
BACKGROUND OF THE INVENTION The present invention provides a nuclear facility (e.g., nuclear power plants, nuclear fuel reprocessing plant) relates to how to process radioactive waste from, in particular the processing side of the radioactive waste containing radioactive iodine about the law.

【0002】[0002]

【従来の技術】原子力発電所から発生する化学廃液等の
放射能レベルの低い廃棄物の固型化については、一般的
にセメント系の固化材が用いられている。一方、再処理
工場から発生する放射能レベルの高い廃棄物について
は、放射性核種の封じ込め性能向上の観点から、ガラス
等のセメントより緻密な固化材が研究されている。
2. Description of the Related Art For solidification of waste having a low radioactivity level such as chemical waste liquid generated from a nuclear power plant, a cement-based solidification material is generally used. On the other hand, as for wastes with a high radioactivity level generated from reprocessing plants, denser solidification materials than cement such as glass have been studied from the viewpoint of improving the containment performance of radionuclides.

【0003】ガラス固化では、New Glass Vol.9 No.
2 pp26−31 に記載のように耐久性の高いホウケイ
酸ガラス等を千数百℃で溶融し、廃棄物と混合して固化
体とする。対象とする廃棄物は液体廃棄物(高レベル濃
縮廃液)のみであり、ガラス原料を繊維状にし、そこに
廃液を含浸させて溶融炉に供給する方法が開発されてい
る。
In vitrification, New Glass Vol. 9 No.
As described in 2 pp. 26-31, highly durable borosilicate glass or the like is melted at a temperature of several hundreds of degrees centigrade and mixed with waste to form a solid. The target waste is only liquid waste (high-level concentrated waste liquid), and a method has been developed in which a glass raw material is made into a fibrous form, impregnated with the waste liquid, and supplied to a melting furnace.

【0004】ヨウ素−129に代表される放射性ヨウ素
を含有する放射性廃棄物を安定に固化する方法に関して
は、特開昭62−124500号公報に記載のように低温溶融ガ
ラスを用いて、ヨウ素が揮発しない温度でガラス固化す
る方法がある。この方法は、ヨウ素を、ヨウ化銅,ヨウ
化鉛またはヨウ化銀の粉末を低温溶融ガラスにより固化
するものであり、ヨウ素を、ヨウ化銅,ヨウ化鉛または
ヨウ化銀の粉末が低温溶融ガラスで取り囲まれる。
As for a method for stably solidifying radioactive waste containing radioactive iodine typified by iodine-129, as described in JP-A-62-124500, iodine is volatilized using a low-temperature molten glass. There is a method to vitrify at a temperature that does not. In this method, copper iodide, lead iodide or silver iodide powder is solidified by low-temperature melting glass, and iodine is melted at low temperature by copper iodide, lead iodide or silver iodide powder. Surrounded by glass.

【0005】[0005]

【発明が解決しようとする課題】ヨウ素−129は半減
期が約1600万年と長いため、放射性ヨウ素を高濃度
に含有する廃棄物は高レベル濃縮廃液と同様、ガラス固
化体のような形態で安定化し、長期にわたって生活圏か
ら隔離することが望ましい。
Since iodine-129 has a long half-life of about 16 million years, waste containing a high concentration of radioactive iodine is in the form of a vitrified solid like a high-level concentrated waste liquid. It is desirable to stabilize and isolate from the living area for a long time.

【0006】上記従来技術のうち、ホウケイ酸ガラスに
よる安定固化は固化温度が高いため、放射性ヨウ素を高
濃度に含有する廃棄物に適用する場合には、固化時にヨ
ウ素が揮発し、固定化率が低いとの問題がある。
[0006] Among the above-mentioned prior arts, the stable solidification using borosilicate glass has a high solidification temperature. Therefore, when the solidification is applied to waste containing radioactive iodine in a high concentration, iodine volatilizes during solidification, and the immobilization rate is reduced. There is a problem with low.

【0007】また、上記従来技術のうち特開昭62−1245
00号公報に記載された低温溶融ガラスを用いた固化では
ヨウ素揮発の問題はないが、放射性廃棄物自身、すなわ
ちヨウ化銅,ヨウ化鉛またはヨウ化銀の粉末は変化しな
いため減容性に限界があった。また放射性廃棄物とガラ
スは均一に溶け合わないため固化体は非均質体となり、
放射性廃棄物とガラスの熱膨張係数の違いにより固化体
の冷却時にクラックが発生しやすい問題があった。
Further, among the above prior arts, Japanese Patent Application Laid-Open No. Sho 62-1245
In the solidification using low-temperature molten glass described in Japanese Patent Publication No. 00, there is no problem of iodine volatilization, but the radioactive waste itself, that is, the powder of copper iodide, lead iodide or silver iodide does not change, so that the volume is reduced. There was a limit. In addition, since radioactive waste and glass do not melt uniformly, the solidified material becomes non-homogeneous,
Due to the difference in the thermal expansion coefficient between the radioactive waste and the glass, there is a problem that cracks are likely to occur when the solidified body is cooled.

【0008】本発明の第1の目的は、放射性ヨウ素を含
有する放射性廃棄物のガラスによる安定固化処理におい
て、固化時の放射性ヨウ素の揮発を防止し、かつ減容性
を向上し、かつ廃棄物とガラスが均一に溶け合った均質
な固化体を作成し、ヨウ素封じ込め性,耐クラック性を
向上させる方法を提供することにある。
[0008] A first object of the present invention is to stabilize radioactive waste containing radioactive iodine in a glass using a glass to prevent volatilization of the radioactive iodine at the time of solidification, improve the volume reduction property, and improve the waste volume. It is an object of the present invention to provide a method for producing a homogeneous solidified body in which the glass and the glass are uniformly melted and improving the iodine containment property and the crack resistance.

【0009】本発明の第2の目的は、第1の目的を達成
するためのガラス素材の供給を安定に、かつ効率的に行
う方法を提供することにある。
A second object of the present invention is to provide a method for stably and efficiently supplying a glass material to achieve the first object.

【0010】本発明の第3の目的は、第1,2の目的を
達成し、さらにガラス固化体からの放射性ヨウ素の漏洩
率を低減し、放射性ヨウ素の封じ込め性能を高める方法
を提供することにある。
A third object of the present invention is to provide a method which achieves the first and second objects, further reduces the leakage rate of radioactive iodine from a vitrified body, and increases the performance of containing radioactive iodine. is there.

【0011】本発明の第4の目的は、放射性ヨウ素を含
有する固体廃棄物の処理に関して、水や添加剤を用いな
い乾式処理により、二次廃棄物を発生させないで安定な
ガラス固化体に変換する方法を提供することにある。
[0011] A fourth object of the present invention is to treat solid waste containing radioactive iodine by dry treatment without using water or additives to convert it into a stable vitrified solid without generating secondary waste. It is to provide a way to do it.

【0012】本発明の第5の目的は、放射性ヨウ素を含
有する液体廃棄物の処理に関して、ヨウ素含有廃棄物の
量を低減し、かつこれを安定なガラス固化体に変換する
方法を提供することにある。
A fifth object of the present invention is to provide a method for treating liquid waste containing radioactive iodine, which reduces the amount of iodine-containing waste and converts it into a stable vitrified product. It is in.

【0013】本発明の第6の目的は、放射性ヨウ素を含
有する廃ガスの処理に関して、ガスから放射性ヨウ素の
みを吸収,除去し、かつ吸収材を直接、安定なガラス固
化体に変換する方法を提供することにある。
A sixth object of the present invention is to treat a waste gas containing radioactive iodine by a method for absorbing and removing only radioactive iodine from a gas and converting the absorbing material directly into a stable vitrified material. To provide.

【0014】[0014]

【0015】[0015]

【0016】[0016]

【課題を解決するための手段】上記第1の目的を達成す
る請求項1の発明の特徴は、放射性ヨウ素を含有する放
射性廃棄物から放射性ヨウ素をヨウ化銀の形態で分離
し、しかる後に分離したヨウ化銀と少なくともリン,
銀,酸素の三成分、あるいは少なくともリン,銀,酸
素,ヨウ素の四成分からなるガラス化材を混合して加熱
溶融し、この溶融物を冷却凝固させることにより均質な
ガラス固化体とすることにある。
The first object of the present invention to achieve the first object is that radioactive iodine is separated from radioactive waste containing radioactive iodine in the form of silver iodide, and then separated. Silver iodide and at least phosphorus,
A vitrified material consisting of three components of silver and oxygen, or at least four components of phosphorus, silver, oxygen and iodine is mixed and melted by heating, and the molten product is cooled and solidified to form a homogeneous vitrified body. is there.

【0017】本発明において、放射性ヨウ素を安定化す
る手段は次の2段階のプロセスで達成される。
In the present invention, the means for stabilizing radioactive iodine is achieved by the following two-stage process.

【0018】(1)ヨウ素の化学形態のうちでは、最も
安定な(水に対する溶解度が低い)化合物であるヨウ化
銀の形態で廃棄物から分離する。廃棄物中の存在形態が
ヨウ化銀の場合はそのままの形態で、ヨウ化銀以外の形
態の場合にはヨウ化銀に変換して分離回収する。
(1) Among the chemical forms of iodine, it is separated from waste in the form of silver iodide, which is the most stable (low water solubility) compound. When the form present in the waste is silver iodide, the form is used as it is, and when the form is other than silver iodide, the form is converted to silver iodide and separated and recovered.

【0019】(2)分離回収したヨウ化銀を構成成分の
一部とするガラスに変換し、冷却凝固させて均質なガラ
ス固化体を得る。
(2) The silver iodide separated and recovered is converted into a glass which is a part of a constituent component, and cooled and solidified to obtain a homogeneous vitrified product.

【0020】ヨウ素を含有する廃棄物からヨウ素を分離
回収することにより、分離後の廃棄物の管理負担を軽減
すると共に、放射性ヨウ素を含有する廃棄物を減容する
ことができる。また回収ヨウ素が安定なヨウ化銀である
ので、最終的な固化体の安全性向上に寄与する。
By separating and recovering iodine from waste containing iodine, it is possible to reduce the management burden of the separated waste and to reduce the volume of waste containing radioactive iodine. Further, since the recovered iodine is stable silver iodide, it contributes to improving the safety of the final solid.

【0021】次に、回収したヨウ素をガラス化するプロ
セスではガラス化材が必要であるが、安定なガラス固化
体を得るためのガラス化材には次の要件が必要である。
Next, in the process of vitrifying the recovered iodine, a vitrification material is required. The vitrification material for obtaining a stable vitrified body requires the following requirements.

【0022】(1)ガラス形成酸化物(SiO2,Ge
2,B23,P25,As23等)を含むこと。ある
いは、他の成分と反応してガラスになる酸化物(Mo
3,WO3 ,TeO2,SeO2等)を含むこと。
(1) Glass-forming oxide (SiOTwo, Ge
OTwo, BTwoOThree, PTwoOFive, AsTwoOThreeEtc.). is there
Alternatively, an oxide (Mo) that reacts with other components to form a glass
OThree, WOThree , TeOTwo, SeOTwoEtc.).

【0023】(2)ガラスの安定性確保のため、ガラス
化材自身が低溶解度であること。
(2) In order to ensure the stability of the glass, the vitrification material itself has a low solubility.

【0024】(3)回収ヨウ化銀と混合溶融する際に、
ヨウ素の再揮発を防止するため、ガラス化材の融点が低
いこと。混合溶融する際の温度は、600℃以下が望ま
しい。
(3) At the time of mixing and melting with the recovered silver iodide,
The vitrification material must have a low melting point to prevent iodine from re-evaporating. The temperature at the time of mixing and melting is desirably 600 ° C. or lower.

【0025】基礎実験によりガラス化材を選定した結
果、上記要件を満たすガラス化材としては少なくともリ
ン,銀,酸素の三成分、あるいは少なくともリン,銀,
酸素,ヨウ素の四成分を含む無機物が最適であることを
見いだした。具体的には、銀リン酸塩や酸化銀(Ag
2O)と酸化リン(P25)の混合物がガラス化材とし
て当てはまる。
As a result of selecting a vitrified material by a basic experiment, the vitrified material satisfying the above requirements is at least three components of phosphorus, silver and oxygen, or at least phosphorus, silver and
We found that an inorganic substance containing four components, oxygen and iodine, was optimal. Specifically, silver phosphate or silver oxide (Ag
A mixture of 2 O) and phosphorus oxide (P 2 O 5 ) applies as vitrifying material.

【0026】このガラス化材には、ヨウ化銀が最大70
モル%溶け込むことができるため、減容性の高い処理が
可能となる。また溶融温度は300〜400℃付近であ
り、溶融時のヨウ素揮発がなく、放射性ヨウ素の固定化
率をほぼ100%に高めることができる。また最終的に
はリン,銀,酸素,ヨウ素の四成分を主成分とする均質
なガラス体となるが、低溶解度の物質で構成されている
ためガラス自身の溶解度も低く、従って放射性ヨウ素の
浸出率も小さい。また、ガラス化材に予め安定同位体の
ヨウ素を添加しておくことにより、任意に同位体希釈で
き放射性ヨウ素の浸出率を下げることができる。
The vitrified material contains up to 70 silver iodide.
Since mol% can be dissolved, treatment with high volume reduction is possible. Further, the melting temperature is around 300 to 400 ° C., there is no iodine volatilization at the time of melting, and the immobilization rate of radioactive iodine can be increased to almost 100%. In the end, a homogeneous glass body mainly composed of four components of phosphorus, silver, oxygen, and iodine is obtained. However, since the glass is composed of a substance having a low solubility, the solubility of the glass itself is low, and thus the leaching of radioactive iodine is caused. The rate is also small. Further, by adding a stable isotope of iodine to the vitrification material in advance, the isotope can be diluted arbitrarily and the leaching rate of radioactive iodine can be reduced.

【0027】上記ガラス化材において、銀の代替材とし
てAu,Cu,Pb,リンの代替材としてMo,W,
B,Si,Alが使用可能であるが、溶融温度やヨウ素
浸出率は銀とリンの組み合わせの場合に比べて高くな
り、固化体性能は低下する。
In the above vitrified material, Au, Cu, Pb as a substitute for silver, and Mo, W, or P as a substitute for phosphorus.
B, Si, and Al can be used, but the melting temperature and the iodine leaching rate are higher than in the case of the combination of silver and phosphorus, and the solidified body performance is reduced.

【0028】本発明によれば均質なガラス固化体が得ら
れるため、固化体からのヨウ素浸出率をほぼ一定に制御
でき、さらに冷却時の熱ひずみによるクラックの発生を
抑制することができる。
According to the present invention, a homogeneous vitrified body can be obtained, so that the iodine leaching rate from the solidified body can be controlled to be substantially constant, and furthermore, the occurrence of cracks due to thermal strain during cooling can be suppressed.

【0029】上記第2の目的を達成する請求項2の発明
の特徴は、請求項1の発明の特徴に加えて、メタリン酸
銀,ピロリン酸銀,オルトリン酸銀,重合リン酸の銀塩
の中から選ばれた一つをガラス化材として用いることに
ある。
The feature of the second aspect of the present invention that achieves the second object is that, in addition to the features of the first aspect, silver metaphosphate, silver pyrophosphate, silver orthophosphate, and silver salt of polymerized phosphoric acid are used. One of them is to use as a vitrifying material.

【0030】本発明により、ガラス化材を一成分にでき
るため、ガラス化材の貯蔵タンクや供給ラインを一本化
でき、処理装置を簡素化できる。また、ガラスの構成元
素である銀とリンのモル比を一定にできるため、作成さ
れたガラス固化体の品質が安定する。また、一構成元素
であるリンを酸化物で供給する場合、吸湿性があり円滑
な供給が困難であるが、本発明の様に銀との化合物で供
給すれば、吸湿性の問題が解決できる。
According to the present invention, since the vitrified material can be made into one component, the storage tank and the supply line for the vitrified material can be unified, and the processing apparatus can be simplified. Further, since the molar ratio of silver and phosphorus, which are constituent elements of glass, can be kept constant, the quality of the produced vitrified product is stabilized. In addition, when phosphorus, which is one of the constituent elements, is supplied as an oxide, it is difficult to supply smoothly because of its hygroscopicity. However, if it is supplied as a compound with silver as in the present invention, the problem of hygroscopicity can be solved. .

【0031】上記第3の目的を達成する請求項3の発明
の特徴は、請求項1の発明の特徴に加えて、メタリン酸
銀,ピロリン酸銀,オルトリン酸銀,重合リン酸の銀塩
の中から選ばれた一つとヨウ化銀の混合物をガラス化材
としてを用いることにある。請求項2の発明に加えて、
ヨウ化銀を添加することで放射性ヨウ素を同位体希釈で
きる。これによって、作成されたガラス固化体からの放
射性ヨウ素の漏洩率を希釈倍率に応じて、低減すること
ができ、固化体処分後の安全性の向上が図れる。
The feature of the third aspect of the present invention that achieves the third object is that, in addition to the features of the first aspect, silver metaphosphate, silver pyrophosphate, silver orthophosphate, and silver salt of polymerized phosphoric acid are used. It is to use a mixture of one selected from the above and silver iodide as a vitrifying material. In addition to the second aspect,
By adding silver iodide, radioactive iodine can be isotope diluted. This makes it possible to reduce the leakage rate of radioactive iodine from the produced vitrified product in accordance with the dilution ratio, and to improve the safety after disposal of the vitrified product.

【0032】上記第4の目的を達成する請求項4の発明
の特徴は、請求項1,請求項2,請求項3の発明の特徴
に加えて、放射性ヨウ素を含有する放射性廃棄物が銀を
含有する使用済みのヨウ素吸着材であり、これを加熱し
放射性ヨウ素をヨウ化銀の形態で気化,分離することに
ある。
The feature of the fourth aspect of the present invention that achieves the fourth object is that, in addition to the features of the first, second, and third aspects, the radioactive waste containing radioactive iodine contains silver. A used iodine adsorbent contained therein, which is to be heated to vaporize and separate radioactive iodine in the form of silver iodide.

【0033】ヨウ素を含有する廃棄物から放射性ヨウ素
を分離回収する際に、加熱を用いることで、水や添加剤
を不要とし、処理に伴う二次廃棄物が発生しない効果が
得られる。
When radioactive iodine is separated and recovered from waste containing iodine, the use of heating makes it possible to eliminate the need for water and additives, and to obtain an effect of preventing the generation of secondary waste associated with the treatment.

【0034】上記第5の目的を達成する請求項5の発明
の特徴は、請求項1,請求項2,請求項3の発明の特徴
に加えて、放射性ヨウ素を含有する放射性廃棄物が液体
廃棄物であり、これに可溶性の銀化合物を添加して放射
性ヨウ素をヨウ化銀の形態で沈殿,分離することにあ
る。
According to a fifth aspect of the present invention which achieves the fifth object, in addition to the features of the first, second and third aspects of the present invention, the radioactive waste containing radioactive iodine is a liquid waste. A radioactive iodine is precipitated and separated in the form of silver iodide by adding a soluble silver compound thereto.

【0035】ヨウ素を含む液体廃棄物に銀を添加するこ
とにより、100以上の高い除染係数で液中から放射性
ヨウ素を除去することができ、液体廃棄物の管理負担を
軽減することができる。また除去されたヨウ素は、その
まま安定なガラス固化体に変換できるためその後の処分
の安全性が向上する。
By adding silver to liquid waste containing iodine, radioactive iodine can be removed from the liquid with a high decontamination coefficient of 100 or more, and the management burden on liquid waste can be reduced. Further, the removed iodine can be converted into a stable vitrified material as it is, thereby improving the safety of subsequent disposal.

【0036】上記第6の目的を達成する請求項6の発明
の特徴は、放射性ヨウ素を含有する廃ガスを少なくとも
リン,銀,酸素の三成分、あるいは少なくともリン,
銀,酸素,ヨウ素の四成分を含むガラス化材融液中に吹
き込んで放射性ヨウ素を吸収させた後、その融液を冷却
凝固させることにより均質なガラス固化体とすることに
ある。
A feature of the sixth aspect of the present invention that achieves the sixth object is that the waste gas containing radioactive iodine is converted into at least three components of phosphorus, silver and oxygen, or at least phosphorus, silver and oxygen.
Silver, oxygen, after absorbing the blowing by radioiodine vitrified material in melt containing quaternary iodine is to a homogeneous vitrified by cooling and solidifying the melt.

【0037】本発明では、廃ガスの浄化と除去された放
射性ヨウ素の安定固化を一段で処理するため、廃ガス処
理のシステムを大幅に簡素化することができる。
In the present invention, the purification of the waste gas and the stable solidification of the removed radioactive iodine are performed in one step, so that the waste gas treatment system can be greatly simplified.

【0038】[0038]

【0039】[0039]

【0040】[0040]

【0041】[0041]

【0042】[0042]

【発明の実施の形態】以下、図面を用いて本発明の実施
例を詳細に述べる。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0043】(実施例1)本発明の一実施例を以下に説
明する。本実施例は廃棄物から分離回収した放射性ヨウ
素の模擬体として、試薬のヨウ化銀を用いてガラス固化
体を作成した結果である。まずガラス化材であるリン酸
銀をリン対銀のモル比をパラメータとして、以下の方法
で合成した。リン対銀のモル比が1:1のリン酸銀
(A)は、ヘキサメタリン酸ナトリウム1モル、硝酸銀
6モルを各々水に完全に溶解した後、両者を混合し、沈
殿物を濾過し、濾紙上の固形物を回収して作成した。リ
ン対銀のモル比が1:2のリン酸銀(B)は、ピロリン
酸ナトリウム1モル、硝酸銀4モルを各々水に完全に溶
解した後、両者を混合し、沈殿物を濾過し、濾紙上の固
形物を回収して作成した。リン対銀のモル比が1:3の
リン酸銀(C)は、(オルト)リン酸ナトリウム1モ
ル、硝酸銀3モルを各々水に完全に溶解した後、両者を
混合し、沈殿物を濾過し、濾紙上の固形物を回収して作
成した。
(Embodiment 1) An embodiment of the present invention will be described below. This example is a result of preparing a vitrified body using silver iodide as a reagent as a radioactive iodine simulated body separated and recovered from waste. First, silver phosphate as a vitrification material was synthesized by the following method using the molar ratio of phosphorus to silver as a parameter. Silver phosphate (A) having a molar ratio of phosphorus to silver of 1: 1 is obtained by completely dissolving 1 mole of sodium hexametaphosphate and 6 moles of silver nitrate in water, mixing the two, filtering the precipitate, and filtering paper. The upper solid was collected and made. Silver phosphate (B) having a molar ratio of phosphorus to silver of 1: 2 is obtained by completely dissolving 1 mol of sodium pyrophosphate and 4 mol of silver nitrate in water, mixing the two, filtering the precipitate, and filtering the precipitate. The upper solid was collected and made. Silver phosphate (C) having a molar ratio of phosphorus to silver of 1: 3 is obtained by completely dissolving 1 mol of sodium (ortho) phosphate and 3 mol of silver nitrate in water, mixing the two, and filtering the precipitate. Then, the solid matter on the filter paper was collected and prepared.

【0044】次に、上記3種類のリン酸銀に対して、各
々50モル%のヨウ化銀を添加し乳鉢で十分に混合した
後、るつぼに入れ電気炉で加熱溶融した。溶融温度は、
リン酸銀(A)の場合最も低くて約300℃、リン酸銀
(B−50)の場合約350℃,リン酸銀(C)の場合
約400℃であった。融液はアルミナ棒で十分に攪拌し
た後、ステンレス製の容器に注入し冷却凝固させた。
Next, 50 mol% of silver iodide was added to each of the above three types of silver phosphate, mixed well in a mortar, and then placed in a crucible and melted by heating in an electric furnace. The melting temperature is
The lowest was about 300 ° C. for silver phosphate (A), about 350 ° C. for silver phosphate (B-50), and about 400 ° C. for silver phosphate (C). After the melt was sufficiently stirred with an alumina rod, it was poured into a stainless steel container and solidified by cooling.

【0045】同様の操作で、リン酸銀(B)についてヨ
ウ化銀を60モル%(B−60),70モル%(B−7
0)加えたガラスも作成した。本実施例で作成したガラ
スの組成を図1の三角座標に示す。図1には均質なガラ
ス体(一部結晶化したものも含む)が得られる範囲を網
かけで示した。
In the same manner, silver iodide contained 60 mol% (B-60) and 70 mol% (B-7) of silver phosphate (B).
0) Added glass was also made. The composition of the glass produced in this example is shown by the triangular coordinates in FIG. In FIG. 1, the range in which a homogeneous glass body (including partially crystallized one) can be obtained is shaded.

【0046】作成したガラス体は、表面積10cm2 の試
験体に加工し、70℃の温水中でヨウ素浸出率を測定し
た。ガラス体の温水浸漬期間は1週間で、浸漬後水中の
ヨウ素濃度をICP−MSで分析して評価した。上記5
種類のガラス体のヨウ素浸出率の測定結果を図2に示
す。ヨウ素浸出率はリン対銀のモル比が1:2のリン酸
銀(B)で作成したガラスが最も低く、次にリン対銀の
モル比が1:1のリン酸銀(A),リン対銀のモル比が
1:3のリン酸銀(C)の順であった。即ちガラス化材
のリン対銀のモル比が1:2付近の組成が最もヨウ素を
安定化できることがわかった。またヨウ化銀の添加量を
70モル%まで増加させてもヨウ素浸出率には変化が見
られないことから、ヨウ化銀を70モル%まで充填可能
であることがわかった。
The prepared glass body was processed into a test body having a surface area of 10 cm 2 , and the iodine leaching rate was measured in hot water at 70 ° C. The glass body was immersed in warm water for one week, and after immersion, the iodine concentration in the water was analyzed and evaluated by ICP-MS. 5 above
FIG. 2 shows the measurement results of the iodine leaching rates of the various types of glass bodies. The iodine leaching rate was lowest for glass made of silver phosphate (B) with a phosphorus to silver molar ratio of 1: 2, followed by silver phosphate (A) and phosphorus with a phosphorus to silver molar ratio of 1: 1. The molar ratio of silver to silver was in the order of silver phosphate (C) of 1: 3. That is, it was found that iodine was most stabilized when the composition of the vitrified material had a molar ratio of phosphorus to silver of about 1: 2. Even when the amount of silver iodide added was increased to 70 mol%, no change was observed in the iodine leaching rate, indicating that silver iodide could be filled up to 70 mol%.

【0047】本実施例において、ガラス化材のリンのモ
ル比を高くするほどガラス体の比重が小さくなり、固化
体重量を小さくできる。また銀含有量を小さくできるた
め、ガラス化材の材料費を安くできる。またヨウ化銀の
添加量を大きくすればするほど、処理廃棄物あたりに発
生するガラス固化体の本数を低減でき、減容比を向上さ
せることができる。また、ガラス化材をリン酸銀のリン
対銀のモル比に見合った酸化銀と酸化リンの混合物とし
て利用できるが、リン酸銀を用いた場合よりガラス化反
応に時間がかかる欠点がある。
In this embodiment, as the phosphorus molar ratio of the vitrified material is increased, the specific gravity of the glass body is reduced, and the weight of the solidified body can be reduced. Further, since the silver content can be reduced, the material cost of the vitrified material can be reduced. Also, as the amount of silver iodide added increases, the number of vitrified materials generated per treated waste can be reduced, and the volume reduction ratio can be improved. Further, the vitrification material can be used as a mixture of silver oxide and phosphorus oxide corresponding to the molar ratio of phosphorus to silver of silver phosphate, but there is a disadvantage that the vitrification reaction takes longer than the case where silver phosphate is used.

【0048】(実施例2)本発明の別の実施例を図3を
用いて説明する。本実施例は、放射性ヨウ素を含有する
固体廃棄物をガラス固化方法に好適な方法について示
す。該当する廃棄物としては、アルミナ,ゼオライト,
シリカゲル等の担体に銀を添着したヨウ素吸着材の使用
済みの廃棄物がある。これらの廃棄物には、放射性ヨウ
素は主としてヨウ化銀やヨウ素酸銀の形態で含まれてい
る。
(Embodiment 2) Another embodiment of the present invention will be described with reference to FIG. Example 1 This example shows a method suitable for vitrifying a solid waste containing radioactive iodine. Applicable wastes include alumina, zeolite,
There is used waste of an iodine adsorbent in which silver is impregnated on a carrier such as silica gel. These wastes contain radioactive iodine mainly in the form of silver iodide and silver iodate.

【0049】次に廃棄物の処理方法を説明する。まずヨ
ウ素を含有する固体廃棄物を加熱炉1に装填し、空気を
流しながら所定の温度に加熱する。ここで、廃棄物中の
ヨウ素はヨウ化銀として気化する。ヨウ素酸銀も熱分解
でヨウ化銀に変化し、ヨウ化銀として気化する。この温
度はヨウ化銀の融点550℃以上であり、高ければ高い
ほど処理時間を短縮できる。次に、加熱炉を出たガスを
冷却塔2に導入し気化したヨウ化銀を冷却し、壁面に析
出させる。冷却塔2の壁面の析出物厚みがある程度厚く
なった時、回転翼3を作動し析出物を削りおとし粉体化
する。ヨウ化銀の粉体は冷却塔下部のロードセル付きホ
ッパー4で重量を計量し、所定量のヨウ化銀を計量した
後、溶融炉へ投入する。同時に、貯槽6よりガラス化材
をロードセル付きホッパー7へ供給し、所定量のガラス
化材を計量した後、溶融炉へ投入する。溶融炉は300
〜400℃の温度に保持され、内部は攪拌翼により攪拌
されている。1〜2時間の攪拌の後、溶融炉下部のシャ
ッター8を開き、融液を鋼製の固化容器9に注入する。
固化容器9は自然空冷し、ガラス固化体を得る。
Next, a method for treating waste will be described. First, solid waste containing iodine is charged into the heating furnace 1 and heated to a predetermined temperature while flowing air. Here, iodine in the waste is vaporized as silver iodide. Silver iodate also changes to silver iodide by thermal decomposition and evaporates as silver iodide. This temperature is at least 550 ° C., the melting point of silver iodide, and the higher the temperature, the shorter the processing time. Next, the gas exiting the heating furnace is introduced into the cooling tower 2 to cool the vaporized silver iodide and deposit it on the wall surface. When the thickness of the precipitate on the wall surface of the cooling tower 2 is increased to some extent, the rotating blade 3 is operated to scrape the precipitate and turn it into powder. The silver iodide powder is weighed by a hopper 4 with a load cell at the bottom of the cooling tower, and a predetermined amount of silver iodide is weighed and then put into a melting furnace. At the same time, the vitrified material is supplied from the storage tank 6 to the hopper 7 with a load cell, and a predetermined amount of the vitrified material is measured and then charged into the melting furnace. Melting furnace is 300
The temperature is maintained at about 400 ° C., and the inside is stirred by a stirring blade. After stirring for 1 to 2 hours, the shutter 8 at the lower part of the melting furnace is opened, and the melt is poured into a solidification container 9 made of steel.
The solidification container 9 is cooled by natural air to obtain a vitrified body.

【0050】本実施例において、加熱炉1における処理
は900℃,30分の処理で95%以上、1200℃,
30分の処理で99%以上のヨウ素の気化率が得られ
た。気化したヨウ素の形態は、ほぼヨウ化銀の形態であ
った。
In this embodiment, the treatment in the heating furnace 1 is performed at 900.degree.
A vaporization rate of iodine of 99% or more was obtained by the treatment for 30 minutes. The form of the vaporized iodine was almost the form of silver iodide.

【0051】本実施例において、ガラス化材としてはリ
ン酸銀粉末が最適であるが、酸化銀と酸化リンの混合物
でも可能である。リン酸銀粉末を用いた場合は、ガラス
材貯槽が1基ですむ利点があり、混合酸化物の場合、リ
ン対銀のモル比を任意に設定しガラスの性質を制御でき
る利点がある。しかし、酸化リンを単独で用いる場合に
は、潮解性であるため貯槽の除湿が必要になる。また同
位体希釈をする場合には、相当量のヨウ化銀を試薬でガ
ラス化材に予め添加しておく。
In the present embodiment, silver phosphate powder is optimal as the vitrifying material, but a mixture of silver oxide and phosphorus oxide is also possible. The use of silver phosphate powder has the advantage of requiring only one glass material storage tank, and the use of mixed oxides has the advantage that the molar ratio of phosphorus to silver can be set arbitrarily to control the properties of the glass. However, when phosphorus oxide is used alone, it is necessary to dehumidify the storage tank because it is deliquescent. In the case of isotope dilution, a considerable amount of silver iodide is added in advance to the vitrifying material with a reagent.

【0052】本実施例によれば、最初の固体廃棄物中の
ヨウ素濃度を2桁以上低減でき、ガラス固化体へ濃縮す
ることができる。従って、ヨウ素汚染廃棄物の容積を大
幅に低減することができる。また、ヨウ化銀とガラス化
材をバッチごとに計量管理するため、安定した性能のガ
ラス固化体を製造することができる。
According to this embodiment, the concentration of iodine in the first solid waste can be reduced by more than two orders of magnitude, and the solid waste can be concentrated to a vitrified body. Therefore, the volume of the iodine-contaminated waste can be significantly reduced. Further, since the silver iodide and the vitrifying material are measured and controlled for each batch, a vitrified product having stable performance can be manufactured.

【0053】(実施例3)本発明の別の実施例を図4を
用いて説明する。本実施例は、放射性ヨウ素を含有する
液体廃棄物から放射性ヨウ素を分離回収し、その後ガラ
ス固化するのに好適な方法について示す。
(Embodiment 3) Another embodiment of the present invention will be described with reference to FIG. Example 1 This example shows a method suitable for separating and recovering radioactive iodine from liquid waste containing radioactive iodine, followed by vitrification.

【0054】まず、廃液受槽10に廃液を受け、硝酸銀
等の銀塩を所定量添加し、攪拌する。ここで廃液中の放
射性ヨウ素はヨウ化銀として沈殿する。次に、濾過装置
11で廃液よりヨウ化銀沈殿を分離する。分離されたヨ
ウ化銀はロードセル付きホッパー12で計量した後、溶
融炉13へ投入する。溶融炉ではガラス化材とヨウ化銀
を300〜400℃で混合溶融した後、冷却凝固させて
ガラス固化体を得る。本実施例では、液体中に分散した
放射性ヨウ素を沈殿物に濃縮するだけでなく、安定なガ
ラス固化体に変換することができる。従って、廃棄物の
管理負担を低減することができる。本実施例では、ヨウ
素で汚染された固体廃棄物の洗浄(除染)廃液の処理に
好適である。また放射性ヨウ素を含有する放射性廃ガス
の洗浄液(スクラバー廃液)の処理にも適用可能であ
る。
First, the waste liquid is received in the waste liquid receiving tank 10, a predetermined amount of silver salt such as silver nitrate is added, and the mixture is stirred. Here, radioactive iodine in the waste liquid precipitates as silver iodide. Next, the silver iodide precipitate is separated from the waste liquid by the filtration device 11. The separated silver iodide is weighed by a hopper 12 with a load cell, and then put into a melting furnace 13. In a melting furnace, a vitrified material and silver iodide are mixed and melted at 300 to 400 ° C., and then cooled and solidified to obtain a vitrified body. In this embodiment, radioactive iodine dispersed in a liquid can be converted not only into a precipitate but also into a stable vitrified body. Therefore, the burden of waste management can be reduced. The present embodiment is suitable for the treatment of cleaning (decontamination) waste liquid of solid waste contaminated with iodine. Further, the present invention is also applicable to the treatment of a cleaning liquid (scrubber waste liquid) for a radioactive waste gas containing radioactive iodine.

【0055】(実施例4)本発明の別の実施例を図5を
用いて説明する。本実施例は、放射性ヨウ素を含有する
気体廃棄物から放射性ヨウ素を分離回収し、その後ガラ
ス固化するのに好適な方法について示す。
(Embodiment 4) Another embodiment of the present invention will be described with reference to FIG. Example 1 This example shows a method suitable for separating and recovering radioactive iodine from gaseous waste containing radioactive iodine, followed by vitrification.

【0056】廃ガスを溶融炉14に導入し、予め溶融し
たガラス化材中にバブリングする。これによってガラス
化材中にヨウ素を吸収させる。廃ガス中のヨウ素は分子
状ヨウ素(I2)や有機ヨウ素(CH3I)の形態である
が、これらをガラス化材に効率よく吸収させるために
は、リン対銀のモル比を銀過剰な組成にしておき、ガラ
ス化材中でヨウ化銀に変換して吸収させる。ヨウ素の吸
収に伴ってガラス化材の色が黄変するので、その変化を
検知して固化容器へ排出する。
The waste gas is introduced into the melting furnace 14 and is bubbled into the vitrified material that has been melted in advance. This causes iodine to be absorbed in the vitrified material. The iodine in the waste gas is in the form of molecular iodine (I 2 ) and organic iodine (CH 3 I). In order to efficiently absorb these in the vitrification material, the molar ratio of phosphorus to silver must be increased by excess silver. It is converted to silver iodide in the vitrification material and absorbed. Since the color of the vitrified material turns yellow with the absorption of iodine, the change is detected and discharged to the solidification container.

【0057】本実施例では、ヨウ素フィルターやアルカ
リスクラバー等の廃ガス処理装置を設けずに直接ガラス
固化体を得ることができ、廃ガス処理系を大幅に簡素化
することができる。
In this embodiment, a vitrified product can be directly obtained without providing a waste gas treatment device such as an iodine filter or an alkaline scrubber, and the waste gas treatment system can be greatly simplified.

【0058】(実施例5)本発明の別の実施例を図6を
用いて説明する。本実施例は、実施例2,4の変形例で
あり、放射性ヨウ素を含有する固体廃棄物から放射性ヨ
ウ素を分離回収し、その後ガラス固化するのに好適な方
法について示す。
(Embodiment 5) Another embodiment of the present invention will be described with reference to FIG. This embodiment is a modified example of Embodiments 2 and 4, and shows a method suitable for separating and recovering radioactive iodine from solid waste containing radioactive iodine, followed by vitrification.

【0059】まずヨウ素を含有する固体廃棄物を加熱炉
15に装填し、空気を流しながら所定の温度に加熱す
る。ここで、廃棄物中のヨウ素はヨウ化銀あるいは分子
状ヨウ素として気化する。ヨウ素酸銀も熱分解でヨウ化
銀に変化し、ヨウ化銀として気化する。次に、加熱炉を
出たガスを予めガラス化材を溶融し、300〜400℃
の温度に保持した溶融炉16へ吹き込む。ヨウ素の吸収
に伴ってガラス化材の色が黄変するので、その変化を検
知して融液を固化容器へ排出する。
First, solid waste containing iodine is charged into the heating furnace 15 and heated to a predetermined temperature while flowing air. Here, iodine in the waste is vaporized as silver iodide or molecular iodine. Silver iodate also changes to silver iodide by thermal decomposition and evaporates as silver iodide. Next, the gas that exited the heating furnace was previously melted with a vitrified material,
Into the melting furnace 16 maintained at the above temperature. Since the color of the vitrified material turns yellow with the absorption of iodine, the change is detected and the melt is discharged to the solidification container.

【0060】本実施例によれば、実施例2にある冷却塔
を不要にできるため、処理装置をコンパクトにできる。
According to the present embodiment, since the cooling tower of the second embodiment can be dispensed with, the processing apparatus can be made compact.

【0061】[0061]

【発明の効果】請求項1の発明によれば、放射性ヨウ素
で汚染された廃棄物から放射性ヨウ素のみを分離濃縮で
きるので、ヨウ素含有廃棄物として管理する固化体の発
生量を大幅に低減することができる。また、得られるガ
ラス固化体は均質で熱歪によるクラックが発生しにく
く、しかも低溶解度であるため、放射性ヨウ素の閉じ込
め性能を高める効果が得られる。
According to the first aspect of the present invention, since only radioactive iodine can be separated and concentrated from waste contaminated with radioactive iodine, the amount of solidified substances managed as iodine-containing waste can be significantly reduced. Can be. Further, the obtained vitrified body is homogeneous, hardly generates cracks due to thermal strain, and has low solubility, so that an effect of enhancing the performance of confining radioactive iodine can be obtained.

【0062】請求項2の発明によれば、請求項1の発明
で得られる効果に加えて、ガラス化材の貯蔵タンクや供
給ラインを一本化でき、処理装置を簡素化できる。ま
た、作成されたガラス固化体の品質が安定する効果が得
られる。
According to the second aspect of the invention, in addition to the effects obtained by the first aspect of the invention, the storage tank and the supply line for the vitrified material can be unified, and the processing apparatus can be simplified. Further, the effect of stabilizing the quality of the formed vitrified body can be obtained.

【0063】請求項3の発明によれば、請求項1の発明
で得られる効果に加えて、作成されたガラス固化体から
の放射性ヨウ素の漏洩率を低減することができ、固化体
処分後の安全性の向上が図れる。
According to the third aspect of the present invention, in addition to the effects obtained by the first aspect of the present invention, it is possible to reduce the leakage rate of radioactive iodine from the produced vitrified product, and to reduce the radioactive iodine after disposal of the vitrified product. Safety can be improved.

【0064】請求項4の発明によれば、請求項1,2又
は3の発明で得られる効果に加えて、ヨウ素を含有する
廃棄物から放射性ヨウ素を分離回収する際に水や添加剤
を不要とし、処理に伴う二次廃棄物が発生しない効果が
得られる。
According to the fourth aspect of the present invention, in addition to the effects obtained by the first, second or third aspect, water and additives are not required when radioactive iodine is separated and recovered from waste containing iodine. Thus, an effect that secondary waste accompanying the treatment is not generated can be obtained.

【0065】請求項5の発明によれば、請求項1,2又
は3の発明で得られる効果に加えて、液体廃棄物の管理
負担を軽減することができる。
According to the fifth aspect of the present invention, in addition to the effects obtained by the first, second or third aspect of the present invention, the burden of managing liquid waste can be reduced.

【0066】請求項6の発明によれば、廃ガスの浄化と
除去された放射性ヨウ素の安定固化を一段で処理できる
ため、廃ガス処理のシステムを大幅に簡素化することが
できる。
According to the sixth aspect of the present invention, the purification of the waste gas and the stable solidification of the removed radioactive iodine can be performed in one step, so that the waste gas treatment system can be greatly simplified.

【0067】[0067]

【0068】[0068]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いられるガラス化材の組成例を示す
説明図である。
FIG. 1 is an explanatory diagram showing a composition example of a vitrified material used in the present invention.

【図2】本発明のガラス固化体のヨウ素閉じ込め性能を
示す説明図である。
FIG. 2 is an explanatory diagram showing iodine confinement performance of a vitrified product of the present invention.

【図3】本発明の一実施例である固体廃棄物の処理装置
の構成図である。
FIG. 3 is a configuration diagram of a solid waste processing apparatus according to an embodiment of the present invention.

【図4】本発明の他の実施例である固体廃棄物の処理装
置の構成図である。
FIG. 4 is a configuration diagram of a solid waste processing apparatus according to another embodiment of the present invention.

【図5】本発明の他の実施例である固体廃棄物の処理装
置の構成図である。
FIG. 5 is a configuration diagram of a solid waste processing apparatus according to another embodiment of the present invention.

【図6】本発明の他の実施例である固体廃棄物の処理装
置の構成図である。
FIG. 6 is a configuration diagram of a solid waste processing apparatus according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,15…加熱炉、2…冷却塔、9…固化容器、5,1
3,14,16…溶融炉。
1, 15: heating furnace, 2: cooling tower, 9: solidification container, 5, 1
3, 14, 16 ... melting furnace.

フロントページの続き (72)発明者 松田 将省 茨城県日立市大みか町七丁目2番1号 株式会社 日立製作所 電力・電機開発 本部内 (72)発明者 深澤 哲生 茨城県日立市大みか町七丁目2番1号 株式会社 日立製作所 電力・電機開発 本部内 (72)発明者 泉田 龍男 茨城県日立市幸町三丁目1番1号 株式 会社 日立製作所 日立工場内 (56)参考文献 特開 昭63−15200(JP,A) (58)調査した分野(Int.Cl.7,DB名) G21F 9/16 G21F 9/02 G21F 9/08 G21F 9/10 G21F 9/30 Continuing on the front page (72) Inventor Shodo Matsuda 7-2-1, Omika-cho, Hitachi City, Ibaraki Pref. Hitachi, Ltd. Power & Electricity Development Division (72) Inventor Tetsuo Fukasawa 7-2 Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Hitachi, Ltd. Power and Electricity Development Division (72) Inventor Tatsuo Izumida 3-1-1, Sakaimachi, Hitachi, Ibaraki Pref.Hitachi, Ltd.Hitachi Plant (56) References JP-A-63-15200 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G21F 9/16 G21F 9/02 G21F 9/08 G21F 9/10 G21F 9/30

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】放射性ヨウ素を含有する放射性廃棄物から
放射性ヨウ素をヨウ化銀の形態で分離し、しかる後に分
離したヨウ化銀と少なくともリン,銀,酸素の三成分、
あるいは少なくともリン,銀,酸素,ヨウ素の四成分か
らなるガラス化材を混合して加熱溶融し、この溶融物を
冷却凝固させることにより均質なガラス固化体とするこ
とを特徴とする放射性廃棄物の処理方法。
(1) radioactive iodine is separated from radioactive waste containing radioactive iodine in the form of silver iodide, and then the separated silver iodide and at least three components of phosphorus, silver and oxygen;
Alternatively, a vitrified material composed of at least four components of phosphorus, silver, oxygen, and iodine is mixed and heated and melted, and the molten material is cooled and solidified to form a homogeneous vitrified product, which is a radioactive waste product. Processing method.
【請求項2】前記ガラス化材が、メタリン酸銀,ピロリ
ン酸銀,オルトリン酸銀,重合リン酸の銀塩の中から選
ばれた物質である請求項1の放射性廃棄物の処理方法。
2. The method for treating radioactive waste according to claim 1, wherein said vitrification material is a substance selected from silver metaphosphate, silver pyrophosphate, silver orthophosphate, and silver salts of polymerized phosphoric acid.
【請求項3】前記ガラス化材が、メタリン酸銀,ピロリ
ン酸銀,オルトリン酸銀,重合リン酸の銀塩の中から選
ばれた物質とヨウ化銀の混合物である請求項1の放射性
廃棄物の処理方法。
3. The radioactive waste according to claim 1, wherein said vitrifying material is a mixture of silver iodide and a substance selected from silver metaphosphate, silver pyrophosphate, silver orthophosphate, and silver salt of polymerized phosphoric acid. How to handle things.
【請求項4】前記放射性ヨウ素を含有する放射性廃棄物
が銀を含有する使用済みのヨウ素吸着材であり、これを
加熱し放射性ヨウ素をヨウ化銀の形態で気化,分離する
請求項1,2又は3の放射性廃棄物の処理方法。
4. The radioactive waste containing radioactive iodine is a used iodine adsorbent containing silver, which is heated to vaporize and separate radioactive iodine in the form of silver iodide. Or the radioactive waste treatment method of 3.
【請求項5】前記放射性ヨウ素を含有する放射性廃棄物
が液体廃棄物であり、これに可溶性の銀化合物を添加し
て放射性ヨウ素をヨウ化銀の形態で沈殿,分離する請求
項1,2又は3の放射性廃棄物の処理方法。
5. The radioactive waste containing radioactive iodine is a liquid waste, to which a soluble silver compound is added to precipitate and separate radioactive iodine in the form of silver iodide. 3. A method for treating radioactive waste.
【請求項6】放射性ヨウ素を含有する廃ガスを少なくと
もリン,銀,酸素の三成分、あるいは少なくともリン,
銀,酸素,ヨウ素の四成分を含むガラス化材融液中に吹
き込んで放射性ヨウ素を吸収させた後、前記融液を冷却
凝固させることにより均質なガラス固化体とすることを
特徴とする放射性廃棄物の処理方法。
6. The waste gas containing radioactive iodine is at least three components of phosphorus, silver and oxygen, or at least phosphorus,
Silver, oxygen, after absorbing the blowing by radioiodine vitrified material in melt containing quaternary iodine, radioactive waste, characterized in that a homogeneous vitrified by cooling and solidifying the melt How to handle things.
JP33149895A 1995-12-20 1995-12-20 Radioactive waste treatment method Expired - Lifetime JP3232993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33149895A JP3232993B2 (en) 1995-12-20 1995-12-20 Radioactive waste treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33149895A JP3232993B2 (en) 1995-12-20 1995-12-20 Radioactive waste treatment method

Publications (2)

Publication Number Publication Date
JPH09171096A JPH09171096A (en) 1997-06-30
JP3232993B2 true JP3232993B2 (en) 2001-11-26

Family

ID=18244315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33149895A Expired - Lifetime JP3232993B2 (en) 1995-12-20 1995-12-20 Radioactive waste treatment method

Country Status (1)

Country Link
JP (1) JP3232993B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101514570B1 (en) * 2013-11-25 2015-04-23 한국원자력연구원 Separation method of hazardous component and non-hazardous component from highly concentrated metal salts in radioactive waste

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432450B1 (en) * 2000-12-21 2004-05-20 한국수력원자력 주식회사 Low and intermediate-level waste treatment system
KR100524825B1 (en) * 2002-08-27 2005-10-28 한국수력원자력 주식회사 Vitrification Equipment and Processes for Low- and Intermediate-Level Radioactive from Nuclear Power Plants
EP1785186B1 (en) 2004-06-07 2014-09-03 National Institute for Materials Science Adsorbent for radioelement-containing waste and method for fixing radioelement
KR100697535B1 (en) * 2005-12-15 2007-03-20 라춘기 Vitrification method of radioactive wastes by using organic sludges as energy source and glass matrix
JP6210218B2 (en) * 2013-12-27 2017-10-11 株式会社Ihi High-level radioactive liquid waste vitrification facility
CN107622806B (en) * 2017-09-22 2019-05-24 绵阳科大久创科技有限公司 A kind of high activity liquid waste glass solidification system and its curing method
FR3086189B1 (en) * 2018-09-26 2022-07-08 Commissariat Energie Atomique INORGANIC, PARTICULAR AND POROUS MATERIAL, BASED ON SILVER PHOSPHATE, FOR THE ADSORPTION AND CAPTURE OF GASEOUS IODINE, METHOD FOR PREPARING IT AND ITS USES
KR102250443B1 (en) * 2019-09-03 2021-05-10 포항공과대학교 산학협력단 Silver tellurite glasses for immobilization of radioactive Halogen
CN111986828B (en) * 2020-08-20 2022-12-13 中国原子能科学研究院 Sodalite-based ceramic-glass dual curing method for radioactive iodine waste
CN111863304B (en) * 2020-08-20 2022-12-13 中国原子能科学研究院 Sodalite-based ceramic curing method for radioactive iodine waste
KR102527089B1 (en) * 2021-05-21 2023-05-03 한국원자력연구원 Glass composition for capture and immobilization of radioactive iodide and method for capture and immobilization of radioactive iodide using the same
KR102539686B1 (en) * 2021-05-26 2023-06-07 한국원자력연구원 Apparatus for capture and immobilization of radioactive iodide and method for capture and immobilization of radioactive iodide using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101514570B1 (en) * 2013-11-25 2015-04-23 한국원자력연구원 Separation method of hazardous component and non-hazardous component from highly concentrated metal salts in radioactive waste

Also Published As

Publication number Publication date
JPH09171096A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
JP3232993B2 (en) Radioactive waste treatment method
US4514329A (en) Process for vitrifying liquid radioactive waste
US5434333A (en) Method for treating materials for solidification
US4097401A (en) Thermodynamically stable product for permanent storage and disposal of highly radioactive liquid wastes
US5662579A (en) Vitrification of organics-containing wastes
SU1087091A3 (en) Composition for solidifying radioactive wastes and method for solidifying radioactive wastes
Metcalfe et al. Candidate wasteforms for the immobilization of chloride-containing radioactive waste
JP4129237B2 (en) Glass for solidifying radioactive waste
CA1210217A (en) Recovery of boric acid from nuclear waste
JP3864203B2 (en) Solidification method for radioactive waste
KR20120071602A (en) Solidification method of radioactive waste accompanying chloride recycling or radioactive iodide removing and the device thereof
JP4089269B2 (en) Method and apparatus for solidifying radioactive liquid waste
Liu et al. Structure and corrosion mechanism of iron phosphate glass with strontium from electrochemical reprocessing
USH1013H (en) Process for the immobilization and volume reduction of low level radioactive wastes from thorium and uranium processing
JPS58131597A (en) Method of solidifying clad
JPH11295487A (en) Method for treating radioactive waste and vitrified solid thereof
JPS60119499A (en) Method of solidifying alkaline waste liquor containing iodine
JPS6412360B2 (en)
JP4623697B2 (en) Radioactive waste treatment method
Hamodi et al. Immobilization of spent ion exchange resin arising from nuclear power plants: an introduction
US20230139928A1 (en) Method for dehalogenation and vitrification of radioactive metal halide wastes
Qiao et al. Preliminary study on the vitrification of molten salt reactor radwastes containing fluorides by phosphate glass
RU2160937C1 (en) Monolithic block for immobilizing liquid radioactive wastes
JPH0875898A (en) Treating method for radioactive waste and solidified body of radioactive waste
JPS6315200A (en) Phosphate vitrifying processing method of radioactive boric acid waste liquor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11