JP4622140B2 - 画像処理装置および画像処理方法、記録媒体、並びにプログラム - Google Patents
画像処理装置および画像処理方法、記録媒体、並びにプログラム Download PDFInfo
- Publication number
- JP4622140B2 JP4622140B2 JP2001115635A JP2001115635A JP4622140B2 JP 4622140 B2 JP4622140 B2 JP 4622140B2 JP 2001115635 A JP2001115635 A JP 2001115635A JP 2001115635 A JP2001115635 A JP 2001115635A JP 4622140 B2 JP4622140 B2 JP 4622140B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- probability
- subject
- input
- background
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Image Processing (AREA)
- Image Analysis (AREA)
Description
【発明の属する技術分野】
本発明は、画像処理装置および画像処理方法、記録媒体、並びにプログラムに関し、特に、背景領域と被写体領域とからなる画像から被写体領域のみを抽出する場合に用いて好適な、画像処理装置および画像処理方法、記録媒体、並びにプログラムに関する。
【0002】
【従来の技術】
例えば、背景と被写体からなる画像データから被写体を抽出する場合など、画像の領域を分割する領域分割法として、従来、主に3つの方法が提案されている。
【0003】
第1の方法は、画像データの画素値のみを利用するものであり、代表的なものとして、例えば、画素値の類似度を定義して、領域統合を繰り返す方法や、特徴空間におけるクラスタリングなどがある。
【0004】
第2の方法は、画素値と他の付加情報を併用することによって、被写体領域を背景領域から分離して抽出するものであり、例えば、抽出すべき被写体領域の大まかな境界線を予め与え、その境界線近傍のみを画像処理することにより、正確に被写体領域を抽出するような方法である。この方法を動画像に適用する場合には、第1フレームにおいて抽出した領域に対して、動き検出やフレーム間差分、あるいは、Snakes(動的輪郭モデル)を用いることにより領域の変化を追跡したり、第1フレームと最終フレームにおいて、被写体領域を予め抽出しておき、その間の画像に対しては、これら2つのフレームにおいて抽出された被写体領域を基に補間を行う方法などが提案されている。
【0005】
第2の方法において、抽出すべき被写体領域の大まかな境界線の入力などの手動操作の介入を避ける方法としては、例えば、被写体を含まない背景のみの画像を予め撮像しておき、被写体を含む画像を、背景のみの画像と比較して、その差分を演算することにより被写体を抽出する背景差分法がある。
【0006】
また、撮像時に被写体以外の背景領域を一定の色のスクリーンで覆い、この色情報を用いて対象物を抽出するクロマキーという手法は、例えば、映像制作などに現在最も頻繁に用いられている手法である。
【0007】
第3の方法は、特殊な撮像装置を用いて距離情報などを算出し、それに基づいて被写体を抽出する方法であり、例えば、視点の異なる複数のカメラによって得られた画像間の視差情報を用いる方法が多く提案されている。また、複数のカメラを用いずに、一台のカメラの撮像面位置を変化させ、そのときに画像上に生じるぼけの変化を利用して距離を算出する方法も提案されている。
【0008】
【発明が解決しようとする課題】
被写体を背景から切り取り抽出するために、以上説明したような、様々な方法が用いられている。
【0009】
しかしながら、第1の方法は、物理的に一様な局所領域(例えば、ある一定の色情報を有する領域や、境界線など)を抽出するための手段としては優れているが、意味のある被写体を1つの領域として抽出するためには、充分な方法ではない。
【0010】
また、第3の方法として説明した視差情報を用いる方法では、複数のカメラが必要となる(もしくは、ひとつのカメラで複数の画像を撮像する必要があるため、撮像に時間がかかる)上に、画像間の対応を演算するための演算量が非常に多い。また、ぼけ情報を用いる場合、撮像装置における実現可能な被写界深度が問題となる。近年の撮像装置、特に民生用途の撮像装置は、小型化される傾向にある。そのため、被写界深度が深くなる場合が多く、撮像面位置の変化によるぼけの差が検出し難い場合が殆どである。
【0011】
第2の方法において、手動操作に依存する方法を取る場合、柔軟なインターフェースが求められるため、アプリケーションとして実現するのが非常に困難である。また、時間的に領域を追跡している方法を採用する場合、動き検出などのエラーが蓄積されていく可能性が大きく、長時間のシーケンスを処理するのには向かない。更に、動き検出やSnakesは、演算量が多いため、リアルタイムに画像を処理するアプリケーションが限定される。
【0012】
これらに対して、背景差分法は、演算が比較的簡単であるとともに、背景領域が変化しない限り、差分値が大きい画素は、非常に高い確率で被写体領域として抽出されることが期待できる上に、時間的なエラーの蓄積の恐れもない。
【0013】
しかしながら、背景差分法においても、差分値が小さい場合(例えば、被写体が背景に近い色の部分を有する場合など)は、必ずしも正しい領域分割ができていると保証することはできず、このような場合は、被写体領域が背景領域として誤判定されやすい。差分値を統計的に処理することにより、被写体の抽出精度を向上させるような試みもなされているが、従来の方法では、必ずしも満足できる領域分割が実現できているとはいえない。
【0014】
本発明はこのような状況に鑑みてなされたものであり、背景差分法の簡便さを利用しつつ、簡単な装置を用いて、簡単な演算によって、正確に被写体領域を抽出することができるようにするものである。
【0015】
【課題を解決するための手段】
本発明の画像処理装置は、撮像された画像データの入力を受ける入力手段と、入力手段により入力された背景領域のみからなる背景画像と、入力手段により入力された背景領域および被写体領域からなる第1の対象画像との差分を算出する画像差分算出手段と、画像差分算出手段により算出された背景画像と第1の対象画像との差分を基に、第1の対象画像から、被写体領域の候補領域を分割する分割手段と、第1の対象画像の各画素が、被写体領域に含まれている確率を算出する確率算出手段と、確率算出手段により算出された確率を基に、分割手段により分割された被写体領域の候補領域を補正する第1の補正手段と、確率算出手段により算出された確率、および入力手段により異なる時刻に入力された第2の対象画像との相関から、第1の補正手段により補正された被写体領域の候補領域を更に補正する第2の補正手段とを備える。
【0016】
確率算出手段には、ベイズ推定を用いて、第1の対象画像の各画素が、被写体領域に含まれている確率を算出させるようにすることができる。
【0017】
確率算出手段には、座標毎に設定された重み付け係数に基づいて、第1の対象画像の各画素が、被写体領域に含まれている確率を算出させるようにすることができる。
【0018】
第2の補正手段には、第1の補正手段により補正された結果、被写体領域の候補領域ではないと判定された領域についてのみ、確率算出手段により算出された確率、および第2の対象画像との相関を基に補正を行わせるようにすることができる。
【0019】
第2の補正手段には、確率算出手段により算出された確率、および第2の対象画像との相関を基に、第1の対象画像の各画素に対して、背景領域である確率を示す第1の確率と被写体領域である確率を示す第2の確率を算出させ、第1の確率が第2の確率より小さい場合、対応する画素を被写体領域に含まれる画素であると判断させるようにすることができる。
【0020】
第1の確率は、第1の対象画像の対応する座標の画素の画素値と背景画像の対応する座標の画素の画素値との差が小さいほど大きな値を取るものとすることができる。
【0021】
第2の確率は、第1の対象画像の対応する座標の画素の画素値と第2の対象画像の対応する座標の画素の画素値との差が小さく、かつ、第2の対象画像の対応する座標の画素が被写体領域である確率が高いほど大きな値を取るものとすることができる。
【0022】
第2の対象画像は、入力手段により第1の対象画像より1フレーム前に入力された画像であるものとすることができる。
【0023】
入力手段により入力される画像データが色情報を含む場合、画像差分算出手段には、背景画像と第1の対象画像との差分を色情報の成分毎に算出させるようにすることができる。
【0024】
入力手段により入力される画像データが色情報を含む場合、第2の補正手段には、第1の確率および第2の確率を、色情報の成分毎に算出させるようにすることができる。
【0025】
本発明の画像処理方法は、撮像された画像データを処理する画像処理装置の画像処理方法であって、画像処理装置による、撮像された画像データの入力を制御する入力制御ステップと、入力制御ステップの処理により入力が制御された背景領域のみからなる背景画像と、入力制御ステップの処理により入力が制御された背景領域および被写体領域からなる第1の対象画像との差分を算出する画像差分算出ステップと、画像差分算出ステップの処理により算出された背景画像と第1の対象画像との差分を基に、第1の対象画像から、被写体領域の候補領域を分割する分割ステップと、第1の対象画像の各画素が、被写体領域に含まれている確率を算出する確率算出ステップと、確率算出ステップの処理により算出された確率を基に、分割ステップの処理により分割された被写体領域の候補領域を補正する第1の補正ステップと、確率算出ステップの処理により算出された確率、および入力制御ステップの処理により異なる時刻に入力が制御された第2の対象画像との相関から、第1の補正ステップの処理により補正された被写体領域の候補領域を更に補正する第2の補正ステップとを含む。
【0026】
本発明の記録媒体に記録されているプログラムは、撮像された画像データの入力を制御する入力制御ステップと、入力制御ステップの処理により入力が制御された背景領域のみからなる背景画像と、入力制御ステップの処理により入力が制御された背景領域および被写体領域からなる第1の対象画像との差分を算出する画像差分算出ステップと、画像差分算出ステップの処理により算出された背景画像と第1の対象画像との差分を基に、第1の対象画像から、被写体領域の候補領域を分割する分割ステップと、第1の対象画像の各画素が、被写体領域に含まれている確率を算出する確率算出ステップと、確率算出ステップの処理により算出された確率を基に、分割ステップの処理により分割された被写体領域の候補領域を補正する第1の補正ステップと、確率算出ステップの処理により算出された確率、および入力制御ステップの処理により異なる時刻に入力が制御された第2の対象画像との相関から、第1の補正ステップの処理により補正された被写体領域の候補領域を更に補正する第2の補正ステップとを含む処理をコンピュータに実行させるためのプログラムである。
【0027】
本発明のプログラムは、撮像された画像データの入力を制御する入力制御ステップと、入力制御ステップの処理により入力が制御された背景領域のみからなる背景画像と、入力制御ステップの処理により入力が制御された背景領域および被写体領域からなる第1の対象画像との差分を算出する画像差分算出ステップと、画像差分算出ステップの処理により算出された背景画像と第1の対象画像との差分を基に、第1の対象画像から、被写体領域の候補領域を分割する分割ステップと、第1の対象画像の各画素が、被写体領域に含まれている確率を算出する確率算出ステップと、確率算出ステップの処理により算出された確率を基に、分割ステップの処理により分割された被写体領域の候補領域を補正する第1の補正ステップと、確率算出ステップの処理により算出された確率、および入力制御ステップの処理により異なる時刻に入力が制御された第2の対象画像との相関から、第1の補正ステップの処理により補正された被写体領域の候補領域を更に補正する第2の補正ステップとを含む処理をコンピュータに実行させる。
【0028】
本発明の画像処理装置および画像処理方法、並びにプログラムにおいては、撮像された画像データが入力され、入力された背景領域のみからなる背景画像と、入力された背景領域および被写体領域からなる第1の対象画像との差分が算出され、算出された背景画像と第1の対象画像との差分を基に、第1の対象画像から、被写体領域の候補領域が分割され、第1の対象画像の各画素が被写体領域に含まれている確率が算出され、算出された確率を基に、分割された被写体領域の候補領域が補正され、算出された確率、および異なる時刻に入力された第2の対象画像との相関から、補正された被写体領域の候補領域が更に補正される。
【0029】
【発明の実施の形態】
以下、図を参照して、本発明の実施の形態について説明する。
【0030】
まず、本発明の第1の実施の形態について説明する。図1は、本発明を適応した画像処理装置1の構成を示すブロック図である。
【0031】
画像処理装置1は、動作モードとして、背景情報抽出モードと被写体抽出モードとの、2つのモードを有しており、ユーザは、図示しない操作部を操作することによって、背景情報抽出モードと被写体抽出モードを切り替えることができる。背景情報抽出モードでは、背景のみからなる画像の入力を受けて背景領域に関する情報を抽出する処理が実行される。一方、被写体抽出モードでは、背景情報抽出モードにおいて抽出された背景情報を基に、被写体と背景から構成された画像から被写体領域のみを抽出する処理が実行される。
【0032】
撮像部11は、例えばCCD(Charge Coupled Devices)カメラなどから構成されている。撮像部11は、制御部13の制御に従って画像を撮像し、画素値I(i,j)からなる画像データを被写体領域検出部12に出力する。ここで、画素値I(i,j)は、撮像された画像データの二次元座標(i,j)上の画素値を表す。
【0033】
被写体領域検出部12は、スイッチ21、背景情報抽出部22、メモリ23、被写体候補検出部24、および被写体判定部25で構成され、制御部13の処理に従って、撮像部11から入力された画像データを処理し、被写体領域を検出する処理を実行する。
【0034】
スイッチ21は、制御部13から入力される信号を基に、背景情報抽出モードの場合、背景のみで構成される背景画像の画像データを背景情報抽出部22に供給し、被写体抽出モードの場合、被写体を含む画像データを被写体候補検出部24および被写体判定部25に供給する。
【0035】
制御部13は、画像処理装置1の動作を制御するものであり、例えば、図示しない操作部から入力された信号を基に背景情報抽出モードか被写体抽出モードかを判断し、撮像部11で撮像された画像データを被写体領域検出部12の適する部分に供給するようにスイッチ21を切り替えさせる。また、制御部13にはドライブ14も接続されている。ドライブ14には、必要に応じて磁気ディスク31、光ディスク32、光磁気ディスク33、および半導体メモリ34が装着され、データの授受を行うようになされている。
【0036】
背景情報抽出部22の更に詳細な構成を示すブロック図を図2に示す。
【0037】
背景抽出モードにおいて、スイッチ21を介して入力された背景画像データは、最大値画像生成部41、最小値画像生成部42、および平均値画像生成部43に供給される。最大値画像生成部41は、入力された複数の画像の座標(i,j)毎の画素の最大値を、式(1)により算出し、それぞれの座標における最大の画素値Max(i,j)からなる最大値画像を背景情報として生成し、メモリ23に出力して保存させる。
【数1】
・・・(1)
【0038】
ここで、Ik(i,j)は、k番目の画像の、座標(i,j)における画素値を示す。また、MAX(・)は、括弧内に示される複数の数値の最大値を算出する演算を示す。
【0039】
最小値画像生成部42は、入力された複数の画像の座標(i,j)毎の画素の最小値を、式(2)により算出し、それぞれの座標における最小の画素値Min(i,j)からなる最小値画像を背景情報として生成し、メモリ23に出力して保存させる。平均値画像生成部43は、入力された複数の画像の座標(i,j)毎の画素の平均値を、式(3)により算出し、それぞれの座標における平均の画素値Ave(i,j)からなる平均値画像を背景情報として生成し、メモリ23に出力して保存させる。
【数2】
・・・(2)
【数3】
・・・(3)
【0040】
ここで、MIN(・)は、括弧内に示される複数の数値の最小値を算出する演算を示す。また、Nは、背景情報抽出部22に供給された画像の枚数を示す。
【0041】
メモリ23は、背景情報抽出部22が抽出した背景情報の入力を受け、背景情報を保存するとともに、保存している背景情報を、被写体候補検出部24および被写体判定部25に供給する。
【0042】
被写体候補検出部24の更に詳細な構成を示すブロック図を図3に示す。
【0043】
被写体候補検出部24の2値化処理部52は、スイッチ21を介して入力画像データの画素値I(i,j)の供給を受ける。閾値算出部51は、メモリ23に記録されている背景情報から必要な情報(ここでは、最大値画像の画素値Max(i,j)および最小値画像の画素値Min(i,j))を読み込み、背景領域か被写体かを判断するための、画素値の上限の閾値Tmaxおよび画素値の下限の閾値Tminを算出する。
【0044】
背景領域か被写体かを判断するための、画素値の上限の閾値Tmaxおよび画素値の下限の閾値Tminの算出方法は、いかなる方法であってもかまわないが、この例においては、式(4)および式(5)を用いて画素値の上限の閾値Tmaxおよび画素値の下限の閾値Tminを算出し、算出結果を2値化処理部52に出力する。
【数4】
・・・(4)
【数5】
・・・(5)
【0045】
式(4)の係数aおよび式(5)の係数bは、それぞれ予め設定された係数であり、例えば、照明光の変動などによる画素値のゆらぎを吸収するために、通常、a>1.0、b<1.0で、実験などにより、もしくは、経験的に求められる。
【0046】
2値化処理部52は、閾値算出部51により算出された閾値の入力を受け、図示しない内部のメモリに保存する。2値化処理部52は、スイッチ21を介して画素値I(i,j)の入力を受け、内部のメモリに保存している閾値を用いて、次の式(6)に基づいて、2値化された画素値B(i,j)からなる2値画像を生成し、被写体判定部25に出力する。
【数6】
・・・(6)
【0047】
すなわち、2値化処理部52は、入力された画素値I(i,j)のうち、閾値の範囲内の画素値に対応する画素には背景候補であることを示す値として0、閾値の範囲外の画素値に対応する画素は被写体候補であることを示す値として1を設定した2値画像の画素値B(i,j)を生成する。
【0048】
図3においては、閾値算出部51において、式(4)および式(5)を用いて最大値画像の画素値Max(i,j)および最小値画像の画素値Min(i,j)に所定の係数を積算することにより、例えば、照明光の変動などによる画素値のゆらぎを吸収するようになされているが、閾値算出部51を省略し、最大値画像の画素値Max(i,j)および最小値画像の画素値Min(i,j)を直接2値化処理部52に入力することにより、ゆらぎは吸収することができないが、その代わりに演算量を削減するようにしても良い。
【0049】
被写体判定部25には、被写体抽出モードにおいて、スイッチ21から画素値I(i,j)が入力され、被写体候補検出部24から2値画像の画素値B(i,j)が入力されるとともに、メモリ23から最大値画像の画素値Max(i,j)、最小値画像の画素値Min(i,j)、および平均値画像の画素値Ave(i,j)が読み込まれる。被写体判定部25の更に詳細な構成を示すブロック図を図4に示す。
【0050】
背景条件確率検出部61は、メモリ23から背景情報(ここでは、最大値画像の画素値Max(i,j)、最小値画像の画素値Min(i,j)、および平均値画像の画素値Ave(i,j))を読み込み、式(7)を用いて、ガウス分布により、背景であるという条件の基で画素値I(i,j)が出現する確率P(I(i,j)|bg)を算出し、ベイズ推定演算部66に出力する。
【数7】
・・・(7)
【0051】
ここで、確率P(A|B)とは、事象Bであるという条件の基で、事象Aが発生する確率のことである。
【0052】
式(7)の係数sは、ガウス分布の標準偏差であり、この例においては、最大値画像の画素値Max(i,j)、最小値画像の画素値Min(i,j)、および平均値画像の画素値Ave(i,j)を用いて、次の式(8)によって算出される。
【数8】
・・・(8)
【0053】
すなわち、式(7)は、背景情報抽出モードにおいて、背景として出現した画素値に近い画素値であるほど、背景領域である確率が高いことを示している。
【0054】
ヒストグラム生成部62は、入力画像データの画素値I(i,j)および2値画像の画素値B(i,j)の入力を受け、2値画像の画素値B(i,j)が1である座標(すなわち、被写体候補検出部24において被写体候補とみなされた画素の座標)に対応する画素値I(i,j)に対応するヒストグラムH(I(i,j))を生成し、被写体条件確率検出部63に出力する。
【0055】
被写体条件確率検出部63は、入力画像データの画素値I(i,j)、およびヒストグラムH(I(i,j))の入力を受け、被写体であるという条件の基で画素値I(i,j)が出現する確率P(I(i,j)|obj)を式(9)によって算出する。
P(I(i,j)|obj)=H(I(i,j))/obj_count・・・(9)
【0056】
ここで、obj_countは、被写体候補の画素の総数(すなわち、2値画像の画素値B(i,j)のうち、画素値が1である画素の総数)である。
【0057】
被写体候補検出部24において、背景差分法により得られた被写体候補(すなわち、被写体候補と背景候補で異なる値を持つ画素値B(i,j)からなる2値画像)が得られる。この被写体候補は、背景情報抽出モードにおいて抽出された画素値の情報との差が小さい画素は必ずしも背景領域に属するとはいえないが、その差が大きい画素に関してはかなり高い確率で被写体領域に属するといえるという性質を利用して抽出される。式(9)における確率P(I(i,j)|obj)の定義は、この性質に基づいたものであり、被写体候補検出部24において検出された被写体候補に対応する画素のうち出現頻度が高い画素値(すなわち、ヒストグラムで高い数値を得ている画素値)ほど、被写体領域に出現する確率が高いことを示している。
【0058】
多値マスク生成部64は、入力された2値画像の画素値B(i,j)に対して、例えば、式(10)で示されるような平滑化処理を施し、平滑化された画素値M(i,j)からなる帯域の狭い多値画像を生成し、被写体/背景確率検出部65に出力する。
M(i,j)=LPF(B(i,j)×C)・・・(10)
【0059】
ここで、式(10)において、画素値B(i,j)に乗算されている係数Cは、予め設定された定数であり、後述する被写体/背景確率検出部65が実行する計算における、確率の値の精度を定めるものである。また、LPFとしては、例えば、平均値フィルタなどを用いることができる。
【0060】
被写体/背景確率検出部65は、多値マスク生成部64から入力された多値画像の画素値M(i,j)を基に、次の式(11)で示される被写体である確率P(obj)および式(12)で示される背景である確率P(bg)を算出し、ベイズ推定演算部66に出力する。
P(obj)=M(i,j)/C・・・(11)
P(bg)=1.0−P(obj)・・・(12)
【0061】
ここで、式(11)の係数Cは、式(10)の係数Cと同一の値である。多値マスク生成部64で生成された多値画像の画素値M(i,j)は、被写体候補検出部24において被写体候補とされた画素(画素値1に設定された画素)に空間的に近いほど大きな画素値(1に近い画素値)となる。すなわち、式(11)および式(12)は、背景差分法によって抽出された被写体候補の空間的な分布によって被写体である確率、および背景である確率を定義するものであり、被写体候補の画素に近いほど被写体である確率が高いといえる。
【0062】
ベイズ推定演算部66は、入力された情報を基に、ベイズの定理に従って、画素値I(i,j)が被写体領域に属する確率P(obj|I(i,j))を演算する。
【0063】
2つの事象AおよびBがあるとき、事象Aであるという条件の基で、事象Bが発生する確率は、次の式(13)で表わされる。これをベイズの定理という。
【数9】
・・・(13)
【0064】
すなわち、ベイズ推定演算部66は、背景条件確率検出部61から入力された、背景であるという条件の基で画素値I(i,j)が出現する確率P(I(i,j)|bg)、被写体条件確率検出部63から入力された被写体であるという条件の基で画素値I(i,j)が出現する確率P(I(i,j)|obj)、並びに、被写体/背景確率検出部65から入力された被写体である確率P(obj)および背景である確率P(bg)を用いて、次の式(14)により、画素値I(i,j)が被写体領域に属する確率P(obj|I(i,j))を演算する。
【数10】
・・・(14)
【0065】
そして、ベイズ推定演算部66は、式(14)によって求められた画素値I(i,j)が被写体領域に属する確率P(obj|I(i,j))が、予め設定された閾値Tより大きい場合には、対応する画素(i,j)は被写体領域であると判定し、閾値Tより小さい場合には、背景領域と判定し、次の式(15)に従って、2値化された画素値O´(i,j)からなる2値画像を生成し、論理和演算部67に出力する。
【数11】
・・・(15)
【0066】
論理和演算部67は、被写体候補検出部24において背景の候補とされた画素についてのみベイズ推定による補正を反映させるため、被写体候補検出部24から入力された2値画像の画素値B(i,j)と、ベイズ推定演算部66から入力された2値画像の画素値O´(i,j)の座標毎の論理和を演算し、その結果得られた画素値O(i,j)からなる2値画像を出力する。
【0067】
また、被写体候補検出部24から入力された2値画像の画素値B(i,j)と、ベイズ推定演算部66から入力された2値画像の画素値O´(i,j)の論理を逆(すなわち、背景であると判断された場合は1、被写体であると判断された場合は0)とし、論理和演算部67に代わって、入力された2値画像の座標毎の論理積を演算する論理積演算部を備えるようにしても良い。
【0068】
図1を用いて説明した画像処理装置1においては、メモリ23に最大値画像の画素値Max(i,j)、最小値画像の画素値Min(i,j)、および平均値画像の画素値Ave(i,j)を保存させ、被写体候補検出部24の閾値算出部51に最大値画像の画素値Max(i,j)および最小値画像の画素値Min(i,j)を読み込ませ、背景領域か被写体かを判断するための画素値の上限の閾値Tmaxおよび画素値の下限の閾値Tminを、式(4)および式(5)を用いて算出させるようにしているが、背景情報抽出モード時に、背景情報抽出部22に、式(4)および式(5)の演算を予め実行させ、メモリ23に、画素値の上限の閾値Tmaxおよび画素値の下限の閾値Tminを保存させるようにしても良い。その場合、閾値算出部51を省略することができ、被写体抽出モードにおける演算時間を削減することが可能となる。
【0069】
また、式(8)を用いて説明した標準偏差sも、背景情報抽出モード時に、背景情報抽出部22により予め演算させるようにし、メモリ23に保存させるようにしても良い。
【0070】
また、被写体判定部25において、背景であるという条件の基で画素値I(i,j)が出現する確率P(I(i,j)|bg)を、式(8)によって算出される標準偏差sのガウス分布で近似しているが、標準偏差の算出に他の式を用いたり、あるいは、背景画像の性質に応じた他の分布関数を用いても良いことは言うまでもない。
【0071】
また、被写体である確率P(obj)は、式(11)以外にも、例えば、次の式(16)に示されるような非線形関数を用いて求める(被写体領域、もしくは背景領域に重み付けを施す)ようにしても良い。
【数12】
・・・(16)
ここで、gは重み付けを行うのに適当な、予め定められた定数である。
【0072】
次に、本発明の第2の実施の形態について説明する。図5は、本発明を適応した画像処理装置71の構成を示すブロック図である。なお、図1における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
【0073】
すなわち、図5の画像処理装置71は、被写体領域検出部12に代わって、被写体領域検出部81が設けられている以外は、図1の画像処理装置1と基本的に同様の構成を有しており、被写体領域検出部81は、背景情報抽出部22に代わって、背景情報抽出部91が設けられている以外は、図1の被写体領域検出部12と基本的に同様の構成を有している。
【0074】
図6は、背景情報抽出部91の更に詳細な構成を示すブロック図である。
【0075】
平均値画像生成部43は、図2を用いて説明したので、ここではその説明を省略する。
【0076】
偏差画像生成部101は、入力された複数の画像データの画素値I(i,j)から、それぞれの座標毎に、次の式(17)を用いて標準偏差を算出し、その値を画素値Sdv1(i,j)とする偏差画像を背景情報として生成し、メモリ23に出力する。
【数13】
・・・(17)
【0077】
また、偏差画像生成部101における演算量の削減のために、式(17)の演算において、平方根を省略し、分散値をメモリ23に保存するようにしても良い。
【0078】
被写体候補検出部24は、メモリ23から、背景情報(ここでは、平均値画像の画素値Ave(i,j)および偏差画像の画素値Sdv1(i,j))を読み出す。閾値算出部51は、式(18)および式(19)を用いて、画素値の上限の閾値Tmaxおよび画素値の下限の閾値Tminを算出し、算出結果を2値化処理部52に出力する。2値化処理部52は、第1の実施の形態と同様にして、2値画像の画素値B(i,j)を算出して出力する。
【数14】
・・・(18)
【数15】
・・・(19)
ここで、係数cおよび係数c’は、予め設定された定数である。
【0079】
そして、被写体判定部25の背景条件確率検出部61において、上述した式(7)を用いて背景であるという条件の基で画素値I(i,j)が出現する確率P(I(i,j)|bg)が算出されるが、この場合、ガウス分布の標準偏差sには、式(8)を用いずに、メモリ23に保存されている偏差画像の画素値Sdv1(i,j)の各画素値を用いることができる。
【0080】
また、照明光や撮像部11の撮像パラメータの変動などを考慮して、例えば、偏差画像の画素値Sdv1(i,j)の各画素値に、予め設定された係数を積算しておき、積算結果をガウス分布の標準偏差として用いるようにしても良い。
【0081】
そして、第1の実施の形態と同様にして、被写体判定部25において背景であると判定された場合は0、被写体であると判定された場合は1の画素値を有する2値画像の画素値O(i,j)が生成され、出力される。
【0082】
第2の実施の形態によれば、メモリ23において保存される情報が、平均値画像の画素値Ave(i,j)および偏差画像の画素値Sdv1(i,j)の2種類であるので、メモリ23の容量を削減することが可能である。
【0083】
次に、本発明の第3の実施の形態について説明する。図7は、本発明を適応した画像処理装置111の構成を示すブロック図である。なお、図1における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
【0084】
すなわち、図7の画像処理装置111は、被写体領域検出部12に代わって、被写体領域検出部121が設けられている以外は、基本的に、図1を用いて説明した画像処理装置1と基本的に同様の構成を有し、被写体領域検出部121は、補正係数算出部131、メモリ132、および画素値補正部133が新たに設けられている以外は、図1を用いて説明した被写体領域検出部12と基本的に同様の構成を有している。
【0085】
被写体抽出モードにおいて、撮像部11において撮像された画像データは、被写体候補検出部24および被写体判定部25に入力される前に、補正係数算出部131、メモリ132、および画素値補正部133において、照明光や撮像部11の撮像パラメータの変動成分の補正が実行される。撮像部11において撮像された画像データの画素値I(i,j)は、スイッチ21を介して、補正係数算出部131およびメモリ132に出力される。
【0086】
補正係数算出部131は、入力された画素値I(i,j)とメモリ23から読み出した平均値画像の画素値Ave(i,j)から、式(20)を用いて補正係数pを算出し、画素値補正部133に出力する。
【数16】
・・・(20)
ここで、式(20)中のdifは、入力された画素値I(i,j)と、平均値画像の画素値Ave(i,j)との差の絶対値であり、次の式(21)で示される。
【数17】
・・・(21)
【0087】
また、式(20)のLは、被写体領域以外の部分を示すが、実際には、この領域を事前に知ることはできないため、例えば、図8に示される画像の4すみなどのように、被写体が入り込みにくいと思われる領域が予め設定される。
【0088】
式(20)のTは、閾値であり、式(21)で示される入力された画素値I(i,j)と、平均値画像の画素値Ave(i,j)との差の絶対値がこの閾値を越える場合には、領域Lに含まれる座標(i,j)には被写体が撮像されているものとみなされ、補正係数の算出から除外されるようになされている。
【0089】
また、VminおよびVmaxは予め設定された定数であり、入力された画素値I(i,j)と、平均値画像の画素値Ave(i,j)とが、いずれもVmin以上Vmax以下である場合にのみ、その値が補正係数の算出に用いられる。
これは、画素の値が非常に大きい場合は、飽和している可能性が高く、逆に非常に小さい場合は、ノイズの影響を強く受けてしまうため、いずれも補正係数の算出に用いるのが好ましくないからである。
【0090】
メモリ132は、スイッチ21を介して入力された画素値I(i,j)を、補正係数算出部131の補正係数算出処理の実行時間に合わせて一時保存する。
【0091】
画素値補正部133は、補正係数算出部131が算出した補正係数pの入力を受け、メモリ132から入力画像データの画素値I(i,j)を読み出し、次の式(22)により、各画素値の補正を実行する。
I’(i,j)=I(i,j)/p・・・(22)
【0092】
補正後の画素値I’(i,j)からなる補正画像は、被写体候補検出部24および被写体判定部25に供給され、図1を用いて説明した場合と同様にして、被写体領域が検出され、画素値O(i,j)からなる2値画像が出力される。
【0093】
図7を用いて説明した画像処理装置111においては、例えば、式(20)を用いて説明した補正係数pの算出式において、分母と分子を入れ替えた算出式を用いて補正係数pを算出し、画素値補正部133において、メモリ132から読み出した入力画像データの画素値I(i,j)に、補正係数を積算するようにしても良い。
【0094】
また、図7の画像処理装置111においては、第1の実施の形態と同様に、背景情報抽出部22を用いて背景情報を抽出し、その背景情報を用いて被写体領域を検出しているものとして説明しているが、背景情報抽出部22に代わって、背景情報抽出部91を設けるようにし、第2の実施の形態と同様に、背景情報91を用いて背景情報を抽出し、その背景情報を用いて被写体領域を検出するようにしても良い。
【0095】
次に、本発明の第4の実施の形態について説明する。図9は、本発明を適応した画像処理装置141の構成を示すブロック図である。画像処理装置141は、特に、動画像から被写体領域を抽出する場合に適している。なお、図1における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
【0096】
すなわち、図9の画像処理装置141は、被写体領域検出部12に代わって、被写体領域検出部151が設けられている以外は、基本的に、図1を用いて説明した画像処理装置1と基本的に同様の構成を有し、被写体領域検出部151は、被写体判定部25に代わって、被写体判定部161が設けられている以外は、図1を用いて説明した被写体領域検出部12と基本的に同様の構成を有している。
【0097】
図10は、被写体判定部161の更に詳細な構成を示すブロック図である。なお、図4における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
【0098】
まず、1枚目の画像データに対応する画素値I(i,j)および背景情報(ここでは、最大値画像の画素値Max(i,j)、最小値画像の画素値Min(i,j)、および平均値画像の画素値Ave(i,j))が被写体判定部161に入力される。
【0099】
1枚目の画像データに対してのみ、被写体候補検出部24から出力される2値画像の画素値B(i,j)は、論理和演算部67およびメモリ172を介して、ヒストグラム生成部62および多値マスク生成部64に直接供給される。また、メモリ171に供給される入力画像データの画素値I(i,j)は、すぐにヒストグラム生成部62に入力されるが、1枚目の入力画像データの画素値I(i,j)は、まだ、メモリ171に保存されたままであるものとする。
【0100】
ヒストグラム生成部62は、メモリ172を介して入力された画素値B(i,j)およびメモリ171を介して入力された画素値I(i,j)を用いて、図4を用いて説明した方法と同様にしてヒストグラムH(I(i,j))を生成し、メモリ173を介して、被写体条件確率検出部63に出力する。
【0101】
背景条件確率検出部61、被写体条件確率検出部63、多値マスク生成部64、被写体/背景確率検出部65、ベイズ推定演算部66、および論理和演算部67は、図4を用いて説明した処理と同様の処理を実行し、1枚目の画像データに対応する画素値O(i,j)からなる2値画像を生成する。生成された画素値O(i,j)からなる2値画像は、出力されるとともに、メモリ172に供給される。
【0102】
ヒストグラム生成部62は、メモリ171から、1枚目の画像データに対応する画素値I(i,j)を読み込むとともに、メモリ172から、1枚目の画像データに対応する2値画像の画素値O(i,j)を読み込み、2値画像の画素値O(i,j)が1となる座標、すなわち、1枚目の画像データにおいて被写体候補とみなされた座標の画素値に関するヒストグラムH(I(i,j))を生成し、メモリ173に出力する。
【0103】
次に、2枚目の画像データに対応する画素値I(i,j)が被写体判定部161に入力される。
【0104】
メモリ171には、2枚目の画像データに対応する画素値I(i,j)が入力され、保存(1枚目の画像データに対応する画素値I(i,j)に上書き)される。
【0105】
背景条件確率検出部61は、図4を用いて説明した処理と同様の処理を実行し、2枚目の画像データに対して、背景であるという条件の基で画素値I(i,j)が出現する確率P(I(i,j)|bg)を算出し、ベイズ推定演算部66に出力する。
【0106】
被写体条件確率検出部63は、2枚目の画像データに対応する画素値I(i,j)の入力を受けるとともに、メモリ173から、1枚目の画像データにおいて被写体候補とみなされた座標に対応するヒストグラムH(I(i,j))を読み込み、式(9)を用いて、被写体であるという条件の基で画素値I(i,j)が出現する確率P(I(i,j)|obj)を算出し、ベイズ推定演算部66に出力する。
【0107】
多値マスク生成部64は、メモリ172から、1枚目の画像データにおいて被写体候補とみなされた座標を示す2値画像の画素値O(i,j)を読み込み、例えば、式(10)で示されるような平滑化処理を施し、平滑化された画素値M(i,j)からなる帯域の狭い多値画像生成し、被写体/背景確率検出部65に出力する。
【0108】
被写体/背景確率検出部65は、図4を用いて説明した処理(式(11)および式(12)を用いて説明した演算処理)と同様の処理を実行し、対応する画素が被写体である確率P(obj)および背景である確率P(bg)を算出し、ベイズ推定演算部66に出力する。
【0109】
ベイズ推定演算部66、および論理和演算部67は、図4を用いて説明した処理と同様の処理を実行し、2枚目の画像データに対応する画素値O(i,j)からなる2値画像を生成する。生成された画素値O(i,j)からなる2値画像は、出力されるとともに、メモリ172に供給(上書き)される。
【0110】
ヒストグラム生成部62は、メモリ171から、2枚目の画像データに対応する画素値I(i,j)を読み込むとともに、メモリ172から、2枚目の画像データに対応する2値画像の画素値O(i,j)を読み込み、2値画像の画素値O(i,j)が1となる座標、すなわち、2枚目の画像データにおいて被写体候補とみなされた座標の画素値に関するヒストグラムH(I(i,j))を生成し、メモリ173に出力する。
【0111】
そして、3枚目以降の画像データに対応する画素値I(i,j)および背景情報が被写体判定部161に入力され、同様の処理が繰り返されることにより、複数の連続した画像データからなる動画像データにおける被写体領域を、一つ前の画像データにおいて被写体領域であると推定された領域の情報を基に、精度よく検出することができる。
【0112】
また、図10においては、1枚目の画像データに関して、被写体候補検出部24から供給される2値画像の画素値B(i,j)を直接メモリ172に入力させ、1枚目の画像データに対するベイズ推定に必要な情報を生成する場合について説明したが、例えば、1枚目の画像データを表示させないものとし、1枚目の画像データは、2枚目の画像データに対するベイズ推定に必要な情報を生成するためのみに利用するようにしても良い。
【0113】
なお、図10においては、1つ前の入力画像に対するヒストグラムおよび多値マスクを利用する場合について説明したが、ヒストグラム生成部62、もしくは多値マスク生成部64のうちのいずれか一方に、被写体候補検出部24から供給される2値画像の画素値B(i,j)を直接供給して、現在処理中の画像データに対するヒストグラム、もしくは多値マスクを生成させて、ベイズ推論に用いるようにしても良い。
【0114】
また、図9の画像処理装置141においては、第1の実施の形態と同様に、背景情報抽出部22を用いて背景情報を抽出し、その背景情報を用いて、補正係数の算出を行わずに、被写体領域を検出しているものとして説明しているが、背景情報抽出部22に代わって、背景情報抽出部91を設けるようにし、第2の実施の形態と同様に、背景情報91を用いて背景情報を抽出し、その背景情報を用いて被写体領域を検出するようにしても良いし、第3の実施の形態と同様に、図7を用いて説明した補正係数算出部131、メモリ132、および画素値補正部133を設け、補正係数を算出するようにしても良い。
【0115】
以上説明した実施の形態1乃至実施の形態4においては、画素値が単独の値である場合について説明したが、次に、第5の実施の形態として、図1の画像処理装置1でカラー画像を処理する場合について説明する。
【0116】
撮像部11から入力される画像データの画素I(i,j)には、例えば、輝度信号Y(i,j)、色差信号U(i,j)および色差信号V(i,j)などの、色を表す複数の成分が含まれている。
【0117】
輝度信号Y(i,j)、色差信号U(i,j)および色差信号V(i,j)は、背景情報抽出モードにおいては、スイッチ21を介して背景情報抽出部22に、被写体抽出モードにおいては、被写体候補検出部24および被写体判定部25に供給される。
【0118】
背景抽出モードにおいて、スイッチ21を介して、図2を用いて説明した背景情報抽出部22に入力された背景画像データは、最大値画像生成部41、最小値画像生成部42、および平均値画像生成部43に供給される。最大値画像生成部41、最小値画像生成部42、および平均値画像生成部43は、それぞれの画像データの輝度信号Y(i,j)、色差信号U(i,j)および色差信号V(i,j)の成分毎に、画素値の最大値からなる最大値画像、画素値の最小値からなる最小値画像、および画素値の平均値からなる平均値画像をそれぞれ生成し、メモリ23に出力する。
【0119】
最大値画像生成部41は、次の式(23)乃至式(25)を用いて、輝度信号Y(i,j)、色差信号U(i,j)および色差信号V(i,j)の成分毎に、画素値の最大値MaxY(i,j)、MaxU(i,j)、およびMaxV(i,j)、からなる最大値画像を生成する。
【数18】
・・・(23)
【数19】
・・・(24)
【数20】
・・・(25)
【0120】
ここで、Yk(i,j)は、k番目の画像の、座標(i,j)における輝度信号の値を、Uk(i,j)およびVk(i,j)は、k番目の画像の、座標(i,j)におけるそれぞれの要素の色差信号の値を示す。また、MAX(・)は、括弧内に示される複数の数値の最大値を算出する演算を示す。
【0121】
最小値画像生成部42は、次の式(26)乃至式(28)を用いて、輝度信号Y(i,j)、色差信号U(i,j)および色差信号V(i,j)の成分毎に、画素値の最小値MinY(i,j)、MinU(i,j)、およびMinV(i,j)、からなる最小値画像を生成する。
【数21】
・・・(26)
【数22】
・・・(27)
【数23】
・・・(28)
【0122】
ここで、MIN(・)は、括弧内に示される複数の数値の最小値を算出する演算を示す。
【0123】
平均値画像生成部43は、次の式(29)乃至式(31)を用いて、輝度信号Y(i,j)、色差信号U(i,j)および色差信号V(i,j)の成分毎に、画素値の平均値AveY(i,j)、AveU(i,j)、およびAveV(i,j)からなる平均値画像を生成する。
【数24】
・・・(29)
【数25】
・・・(30)
【数26】
・・・(31)
ここで、Nは、背景情報抽出部22に供給された画像の枚数を示す。
【0124】
図3を用いて説明した被写体候補検出部24は、被写体抽出モードにおいて、スイッチ21を介して入力画像データの画素値I(i,j)を供給されるとともに、メモリ23に記録されている背景情報から必要な情報(ここでは、最大値画像の画素値Max(i,j)および最小値画像の画素値Min(i,j))を読み込む。
【0125】
閾値算出部51は、背景領域か被写体かを判断するために用いられる閾値を算出する。閾値算出部51は、輝度信号Y(i,j)、色差信号U(i,j)および色差信号V(i,j)の成分毎に、式(32)乃至式(34)を用いて画素値の上限の閾値Tmaxを算出し、式(35)乃至式(37)を用いて、画素値の下限の閾値Tminを算出して、2値化処理部52に出力する。
【0126】
【数27】
・・・(32)
【数28】
・・・(33)
【数29】
・・・(34)
【数30】
・・・(35)
【数31】
・・・(36)
【数32】
・・・(37)
【0127】
ここで、ay,au,av,by,bu,およびbvは、それぞれ予め設定された係数であり、照明光などによる画素値のゆらぎなどを吸収するために、通常、それぞれay,au,av>1.0、by,bu,bv<1.0となる値が設定される。
【0128】
2値化処理部52は、スイッチ21を介して入力画像データの画素値I(i,j)の入力を受け、式(32)乃至式(37)によって表わされる閾値Tmaxおよび閾値Tminを用いて、次の式(38)により、画素値B(i,j)によって構成される2値画像を生成し、被写体判定部25に出力する。
【数33】
・・・(38)
【0129】
すなわち、2値化処理部52は、入力された画像データの画素値I(i,j)の輝度信号Y(i,j)、色差信号U(i,j)および色差信号V(i,j)の全ての成分が、閾値Tmaxと閾値Tminとの範囲内である場合、対応する画素は背景候補であることを示す値として0を設定し、輝度信号Y(i,j)、色差信号U(i,j)および色差信号V(i,j)のうちのいずれかの成分が閾値の範囲外である場合,対応する画素は被写体候補であることを示す値として1を設定した2値画像の画素値B(i,j)を生成する。
【0130】
図4を用いて説明した被写体判定部25の背景条件確率検出部61は、入力画像データの画素値I(i,j)の入力を受けるとともに、メモリ23から式(23)乃至式(31)で示される背景情報を読み出し、背景であるという条件のもとで、色成分の組み合わせであるI(i,j)=(Y(i,j),U(i,j),V(i,j))が出現する確率であるP(I,(i,j)|bg)を、次の式(39)を用いて算出し、ベイズ推定演算部66に出力する。
【数34】
・・・(39)
【0131】
ここで、P(Y(i,j)|bg)、P(U(i,j)|bg)、およびP(V(i,j)|bg)は、背景であるという条件のもとで、それぞれの成分が出現する確率であり、メモリ23から式(23)乃至式(31)で示される背景情報を読み出し、式(7)および式(8)の画素値I(i,j)に代わって代入することによって、それぞれ算出することができる。
【0132】
ヒストグラム生成部62は、入力画像データの画素値I(i,j)および2値画像の画素値B(i,j)の入力を受け、2値画像の画素値B(i,j)が1となる座標(i,j)、すなわち、被写体候補検出部24が被写体候補とみなした画素の色成分に関する3次元ヒストグラムH(Y(i,j),U(i,j),V(i,j))を生成し、被写体条件確率検出部63に出力する。
【0133】
被写体条件確率検出部63は、ヒストグラム生成部62より入力された3次元ヒストグラムH(Y(i,j),U(i,j),V(i,j))を用いて、被写体であるという条件のもとで、色成分の組み合わせであるI(i,j)=(Y(i,j),U(i,j),V(i,j))が出現する確率であるP(I(i,j)|obj)を、次の式(40)を用いて算出し、ベイズ推定演算部66に出力する。
【数35】
・・・(40)
ここで、obj_countは、式(9)の場合と同様に、被写体候補の画素の総数(すなわち、2値画像の画素値B(i,j)のうち、画素値が1である画素の総数)である。
【0134】
そして、多値マスク生成部64、被写体/背景確率検出部65、ベイズ推定演算部66、および論理和演算部67においては、第1の実施の形態において説明した処理と同様の処理が実行され、背景であると判断された座標には0、被写体であると判断された座標には1の値を有する2値画像O(i,j)が、入力されたカラー画像の色情報を効果的に利用して生成され、出力されるので、より正確な被写体領域の抽出が可能となる。
【0135】
ここでは、図1の画像処理装置1でカラー画像を処理する場合について説明したが、図5、図7、および図9を用いて説明した画像処理装置においても、同様にしてカラー画像を処理することができるのはもちろんである。
【0136】
例えば、図5を用いて説明した画像処理装置71においてカラー画像を処理する場合、背景情報抽出部91の偏差画像生成部101で、式(15)を用いて生成される偏差画像の画素値Sdv1(i,j)を、輝度信号Y(i,j)、色差信号U(i,j)および色差信号V(i,j)の全ての成分についてそれぞれ生成させ、閾値算出部51で、各色成分毎の画素値の上限の閾値Tmax、および画素値の下限の閾値Tminを算出させるようにすればよい。このとき、上限の閾値Tmax、および画素値の下限の閾値Tminを算出するために乗算される係数は、色成分毎に異なる定数を用いるようにしても良い。
【0137】
また、図7を用いて説明した画像処理装置71においてカラー画像を処理する場合、補正係数算出部131で、輝度信号Y(i,j)、色差信号U(i,j)および色差信号V(i,j)の全ての成分についてそれぞれの補正係数を算出させ、画素値補正部133で、それぞれの成分の補正係数を用いて、輝度信号Y(i,j)、色差信号U(i,j)および色差信号V(i,j)の全ての成分について補正を行うようにすればよい。
【0138】
これ以降の実施の形態においては、入力された画像データがカラー画像であるものとして説明するが、入力された画像に色情報が含まれていない場合についても、入力される情報が複数の色成分から成立していないだけで、基本的に同様の処理を実行するので、その説明については省略する。
【0139】
次に、本発明の第6の実施の形態について説明する。図11は、本発明を適応した画像処理装置181の構成を示すブロック図である。なお、図1における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
【0140】
すなわち、図11の画像処理装置181は、被写体領域検出部12に代わって、被写体領域検出部191が設けられている以外は、図1を用いて説明した場合と、基本的に同様の構成を有している。
【0141】
撮像部11から入力される画像データの画素I(i,j)には、例えば、輝度信号Y(i,j)、色差信号U(i,j)および色差信号V(i,j)などの、色を表す複数の成分が含まれている。輝度信号Y(i,j)、色差信号U(i,j)および色差信号V(i,j)は、背景情報抽出モードにおいては、スイッチ21を介して背景情報抽出部201に、被写体抽出モードにおいては、背景差分算出部202、背景補正部206、およびメモリ205に供給される。
【0142】
背景情報抽出部201は、図2を用いて説明した平均値画像生成部43から構成され、背景情報抽出モードにおいて、式(29)乃至式(31)を用いて、画素値の平均値AveY(i,j)、AveU(i,j)、およびAveV(i,j)からなる平均値画像を生成し、メモリ23に出力して保存させるとともに、照明光などの変動要素を考慮して、次の式(41)乃至式(43)を用いて、分散画像の画素値Sav2(i,j)=(Sav2Y(i,j),Sav2U(i,j),SavV(i,2j))を生成し、この分散画像の画素値Sav2(i,j)をメモリ23に出力して保存させる。
【数36】
・・・(41)
【数37】
・・・(42)
【数38】
・・・(43)
【0143】
背景差分算出部202は、被写体抽出モードにおいて、スイッチ21を介して、入力画像データの画素値I(i,j)の入力を受けるとともに、メモリ23から背景情報を読み出して、次の式(44)に従って、平均値画像と入力画像データの画素値を比較することにより、対応する座標の画素が被写体候補であるか背景候補であるかを判断し、対応する画素が被写体候補であれば1、背景候補であれば0である画素B(i,j)で構成される2値画像を生成して被写体確率算出部203に出力する。
【数39】
・・・(44)
【0144】
また、背景差分算出部202は、被写体確率算出部203が上述したベイズ推論を用いて被写体確率を算出する場合、画素B(i,j)で構成される2値画像とともに、スイッチ21を介して入力された入力画像データの画素値I(i,j)を被写体確率算出部203に出力する。
【0145】
ここで、式(44)に用いられている各成分の閾値Ty,TuおよびTvは、例えば、背景情報抽出部201において算出された分散画像の画素値Sav2(i,j)を用いて、次の式(45)乃至式(47)によって算出することができる。
【数40】
・・・(45)
【数41】
・・・(46)
【数42】
・・・(47)
ここで、ay,au,およびavは、予め設定された係数である。
【0146】
被写体確率算出部203は、各座標が被写体領域に含まれる確率Pobj(i,j)を算出する。各座標が被写体領域に含まれる確率Pobj(i,j)を求める方法は、第1の実施の形態において説明したようなベイズ推定理論を用いた方法でも良いし、他の方法であっても良い。例えば、背景差分法の性質上、背景差分算出部202において被写体候補とされた画素は、実際に被写体である確率が高いので、入力された2値画像の画素値B(i,j)が1である画素に対しては、被写体確率Pobj(i,j)を1.0とし、それ以外の画素については、経験的、もしくは実験的に領域毎の被写体確率を設定するようにしても良い。
【0147】
例えば、被写体領域が画像の中央に位置する確率が高い場合、画像上の座標による被写体確率を、図12に示されるように予め設定されるようにしてもよい。
このような場合、被写体確率算出部203に、座標によって被写体確率を参照するためのテーブルが予め用意され、画素の位置に応じてテーブルが参照されて、被写体確率Pobj(i,j)が算出される。被写体確率Pobj(i,j)は、メモリ204に出力されて保存される。
【0148】
また、被写体確率算出部203が、上述したベイズ推論を用いて被写体確率Pobj(i,j)を求めるようになされている場合、被写体確率算出部203は、実質的に、図4の被写体判定部25もしくは図10の被写体判定部161と同様の構成を有して、同様の処理を実行する。そして、被写体確率算出部203は、式(14)によるP(obj|I(i,j))を被写体確率Pobj(i,j)として出力する。
【0149】
また、被写体確率算出部203においては、必要に応じて、入力された2値画像の画素値B(i,j)を補正することもできる。例えば、被写体確率Pobj(i,j)の閾値を予め設定しておき、画素値B(i,j)=0である画素に対して、対応する被写体確率Pobj(i,j)が閾値よりも大きい場合は、対応する画素を被写体とみなして、画素値B’(i,j)=1とする。必要に応じて補正された画素値B’(i,j)は、被写体確率Pobj(i,j)とともに、背景補正部206に出力される。
【0150】
メモリ204は、被写体確率算出部203から現在処理中の画像の被写体確率Pobj(i,j)の入力を受け、保存するとともに、1つ前の画像の被写体確率をPprv(i,j)として、背景補正部206に出力する。
【0151】
メモリ205は、スイッチ21を介して現在処理中の画像の画素値I(i,j)の入力を受け、保存するとともに、1つ前の画像の画素値を画素値Iprv(i,j)として、背景補正部206に出力する。
【0152】
背景補正部206は、被写体確率算出部203から入力された2値画像の画素値B’(i,j)において、その値が0である画素、すなわち、背景候補とみなされている画素についてのみ補正を実行する。
【0153】
背景補正部206が、座標(i,j)で示される画素が背景であるか、被写体であるかを判断するためには、対応する座標の画素が、背景であると仮定した場合に適当であると考えられる画素値と、被写体であると仮定した場合に適当であると考えられる画素値とを算出し、実際に入力された画素値I(i,j)が、どちらに近いかを比較することによって行われる。
【0154】
背景候補とみなされている画素に対して、座標(i,j)の画素が背景であると仮定した場合に適当であると考えられる画素値I’bg=(Y’bg,U’bg,V’bg)、および被写体であると仮定した場合に適当であると考えられる画素値I’obj=(Y’obj,U’obj,V’obj)それぞれの値と、入力された画素値との三次元的な距離Dbgおよび距離Dobjは、次の式(48)および式(49)によって示される。
【数43】
・・・(48)
【数44】
・・・(49)
【0155】
そして、背景補正部206は、式(48)を用いて算出した距離Dbgおよび距離Dobjを比較し、Dobjの方が小さい場合には、座標(i,j)で示される画素を被写体であると判定し、Dbgの方が小さい場合には、座標(i,j)で示される画素を背景であると判定する。
【0156】
背景の推定画素値I’bg(i,j)は、メモリ23に保存されている背景画像データの平均値画像の画素値Ave(i,j)を読み出して利用することができるので、式(29)乃至式(31)で示される、画素値の平均値AveY(i,j)、AveU(i,j)、およびAveV(i,j)を、上述した式(48)に代入することにより、距離Dbgは算出可能である。
【0157】
しかしながら、被写体の推定画素値I’obj(i,j)は、対応する画素値が与えられていないため、背景補正部206は、メモリ204およびメモリ205に保存されている1つ前の入力画像の画素値Iprv(i,j)およびその画像の各座標の被写体確率Pprv(i,j)を利用して、被写体の推定画素値I’obj(i,j)を算出する。
【0158】
図13は、背景補正部206の更に詳細な構成を示すブロック図である。
【0159】
背景距離算出部211は、現在処理中の画像データの画素値I(i,j)および平均値画像の画素値Ave(i,j)の入力を受け、上述した式(48)に、画素値の平均値AveY(i,j)、AveU(i,j)、およびAveV(i,j)を代入した次の式(50)を用いて、距離Dbgを算出し、補正部215に出力する。
【数45】
・・・(50)
【0160】
前画像距離算出部212は、現在処理中の画像データの画素値I(i,j)およびメモリ205に保存されている1つ前の入力画像の画素値Iprv(i,j)の入力を受け、上述した式(49)に、1つ前の入力画像の画素値IprvY(i,j)、IprvU(i,j)、およびIprvV(i,j)を代入した次の式(51)を用いて、距離Dprvを求め、被写体距離算出部214に出力する。
【数46】
・・・(51)
【0161】
重み算出部213は、1つ前の画像の各座標の被写体確率Pprv(i,j)の入力を受け、被写体距離算出部214において、前画像距離算出部212で算出された距離Dprvを補正し、距離Dobjを算出するための補正値wを、次の式(52)を用いて算出し、被写体距離算出部214に出力する。
・・・(52)
【0162】
被写体距離算出部214は、前画像距離算出部212から式(51)に示される距離Dprvの入力を受けるとともに、重み算出部213から式(52)に示される補正値wの入力を受け、次の式(53)に示されるように、距離Dprvに補正値wを積算することにより補正を行い、距離Dobjを算出して補正部215に出力する。
Dobj=w×Dprv ・・・(53)
【0163】
すなわち、被写体距離算出部214においては、1つ前の画像の各座標の被写体確率Pprv(i,j)が1のとき、距離Dobj=距離Dprvとなり、被写体確率Pprv(i,j)が小さくなるほど、距離Dobjが大きな値となるように補正される。
【0164】
補正部215は、被写体確率算出部203から2値画像の画素値B’(i,j)の入力を受けるとともに、背景距離算出部211から式(50)に示される距離Dbgを、被写体距離算出部214から式(53)に示される距離Dobjの入力を受ける。補正部215は、まず、初めに2値画像の画素値B’(i,j)を参照し、画素値B’(i,j)=1である場合には、補正を行わず、対応する座標(i,j)の画素は被写体であると判定し、画素値O(i,j)=1を出力する。
【0165】
それに対して、画素値B’(i,j)=0である場合、補正部215は、距離Dbgと距離Dobjとを比較し、距離Dobjが距離Dbgよりも小さかった場合、対応する座標(i,j)の画素は被写体であると判定し、画素値O(i,j)=1を出力し、距離Dobjが距離Dbgよりも大きかった場合、対応する座標(i,j)の画素は背景であると判定し、画素値O(i,j)=0を出力する。
【0166】
なお、図11を用いて説明した画像処理装置181においては、背景情報抽出モードにおいて、背景情報抽出部201が式(41)乃至式(43)を用いて説明した背景情報を抽出し、メモリ23に出力して保存させるものとして説明したが、例えば、背景情報抽出部201に代わって、図2を用いて説明した背景情報抽出部22を用いて背景情報を抽出し、式(23)乃至式(31)に示される画素値を算出させるとともに、背景差分算出部202に代わって、図2を用いて説明した被写体候補検出部24を用いて、式(44)の演算に代わって式(32)乃至式(38)の演算を実行することにより、画素値B(i,j)からなる2値画像を得るようにしても良い。
【0167】
また、第6の実施の形態においては、被写体確率Pobj(i,j)を算出するための先見的知識として、図12を用いて説明した、画面上で被写体が存在する確率が高い位置の情報を用いたが、例えば、被写体領域に出現する可能正の高い色情報など、被写体領域に関する他の情報を反映して被写体確率Pobj(i,j)を算出するようにしても良い。
【0168】
次に、本発明の第7の実施の形態について説明する。第7の実施の形態は、上述した第6の実施の形態における画像処理に、図4および図10を用いて説明した多値マスク生成部64が実行したのと同様の平滑化処理を加えたものである。
【0169】
図14は、本発明を適応した画像処理装置221の構成を示すブロック図である。なお、図11における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
【0170】
すなわち、図14の画像処理装置221は、被写体領域検出部191に代わって、被写体領域検出部231が設けられている以外は、図11を用いて説明した場合と、基本的に同様の構成を有している。
【0171】
そして、被写体領域検出部231は、被写体確率算出部203に代わって被写体確率算出部241が設けられ、更に、メモリ242が新たに設けられている以外は、図11を用いて説明した被写体領域検出部191と、基本的に同様の構成を有している。
【0172】
ここで、背景情報抽出部201、メモリ23、および背景差分算出部202の処理は、第6の実施の形態における場合と同様であるので、その説明は省略する。
【0173】
被写体抽出モードの1枚目の画像データに対して、背景差分算出部202、被写体確率算出部241、背景補正部206、メモリ204、およびメモリ205は、第6の実施の形態における背景差分算出部202乃至背景補正部206と同様の処理を実行して、1枚目の画像データに対応する2値画像の画素値O(i,j)を生成して出力する。そして、メモリ242に、1枚目の画像データに対応する2値画像の画素値O(i,j)が入力されて、次の画像データの被写体領域を検出するために用いられる、一つ前の画像データに対応する2値画像の画素値Oprv(i,j)として保存される。
【0174】
2枚目の画像データに対応する2値画像の画素値B(i,j)の入力を受けた被写体確率算出部241は、メモリ242から一つ前の画像データに対応する2値画像の画素値Oprv(i,j)を読み込む。そして、被写体確率算出部241は、例えば、上述した式(10)を用いて、2値画像の画素値Oprv(i,j)を平滑化し、画素値M(i,j)からなる多値画像を生成する。例えば、2値画像の画素値Oprv(i,j)が、図15に示されるように平滑化された場合、画素値M(i,j)は、一つ前の画像データに対応する2値画像の画素値Oprv(i,j)において、被写体領域であると判断されていた部分の中心点に近い位置ほど、1に近い数値になる(すなわち、被写体である確率が高いと判断される)。
【0175】
そして、被写体確率算出部241は、上述した式(11)を用いて、画素値M(i,j)を正規化して被写体確率Pobj(i,j)を生成し、メモリ204に出力する。すなわち、被写体確率Pobj(i,j)は、一つ前の画像データに対応する2値画像の画素値Oprv(i,j)において、被写体領域であると判断されていた部分の中心点に近い位置ほど、高い確率であるとされる。
【0176】
なお、第7の実施の形態においても、背景情報の抽出方法、および被写体確率Pobj(i,j)の算出方法は、第6の実施の形態において説明したいずれの方法を用いても良いし、更に、被写体確率Pobj(i,j)の算出に、1つ前の画像データに対応する2値画像の画素値Oprv(i,j)において、被写体領域であると判断されていた画素に対応する入力画像の画素値のヒストグラムや背景画像のヒストグラムを生成して、これらのヒストグラムを比較することにより、ある色が被写体領域に現れる可能性を評価し、被写体確率を算出するようにしてもよい。
【0177】
次に、本発明の第8の実施の形態について説明する。
【0178】
図16は、本発明を適応した画像処理装置251の構成を示すブロック図である。なお、図11における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
【0179】
すなわち、図16の画像処理装置251は、被写体領域検出部191に代わって、被写体領域検出部261が設けられている以外は、図11を用いて説明した場合と、基本的に同様の構成を有している。
【0180】
そして、被写体領域検出部261は、背景補正部206に代わって背景補正部272が設けられ、更にメモリ271が新たに設けられている以外は、図11の被写体領域検出部191と基本的に同様の構成を有するので、その説明は省略する。
【0181】
また、背景情報抽出部201、メモリ23、背景差分算出部202、および被写体確率算出部203の処理は、第6の実施の形態における場合と同様であるので、その説明は省略する。
【0182】
被写体確率算出部203は、上述した処理により各座標が被写体領域に含まれる確率Pobj(i,j)を算出し、メモリ204に出力するとともに、必要に応じて、背景差分算出部202から入力された2値画像の画素値B(i,j)を補正し、補正後の2値画像の画素値B’(i,j)をメモリ271に出力する。
【0183】
背景補正部272は、後述する補正処理において、2値画像の画素値B’(i,j)のうち、補正対象の座標(i,j)の近傍の領域の画素値を必要とする。メモリ271は、全画面分の2値画像の画素値B’(i,j)を保存し、背景補正部272の処理のタイミングにあわせて、補正に必要となる2値画像の画素値R(i,j)を出力するか、もしくは、背景補正部272が、メモリ271から、画素値R(i,j)を読み出す。
【0184】
補正対象の座標に対する近傍領域は、例えば、補正対象の座標(i,j)から所定の距離内の画素(すなわち、補正対象の座標(i,j)を中心とした所定の半径の円内の画素)であっても良いし、次の式(54)に示されるように、予め設定された定数mで決められる正方形の形状の領域内の画素であっても良いし、ほかの方法で設定された領域内の画素であってもよい。
【数48】
・・・(54)
【0185】
以下、近傍領域内の座標を座標(i’,j’)とする。
【0186】
背景補正部272は、背景補正部206と同様に、メモリ271を介して被写体確率算出部203から入力された2値画像の画素値B’(i,j)において、その値が0である画素、すなわち、背景候補とみなされている画素についてのみ補正を実行する。
【0187】
また、背景補正部272が、座標(i,j)で示される画素が背景であるか、被写体であるかを判断する方法も、背景補正部206と同様であり、上述した式(48)および式(49)を用いて、対応する座標の画素が、背景であると仮定した場合に適当であると考えられる画素と、被写体であると仮定した場合に適当であると考えられる画素とを算出し、実際に入力された画素値I(i,j)が、どちらに近いかを比較することによって行われる。
【0188】
従って、この場合においても、第7の実施の形態と同様に、距離Dbgは算出可能であるが、被写体の推定画素値I’obj(i,j)に対応する画素値は与えられていない。従って、背景補正部272は、メモリ271、メモリ204およびメモリ205に保存されている対応する座標の近傍の情報を利用して、被写体の推定画素値I’obj(i,j)を算出する。
【0189】
図17は、背景補正部272の更に詳細な構成を示すブロック図である。なお、図13における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
【0190】
背景距離算出部211は、図13を用いて説明した場合と同様に、現在処理中の画像データの画素値I(i,j)および平均値画像の画素値Ave(i,j)の入力を受け、式(50)を用いて、距離Dbgを算出し、補正部215に出力する。
【0191】
被写体距離算出部281は、メモリ271から供給される画素値R(i,j)、メモリ204から供給される、上述した近傍領域(例えば、式(54)で示される領域)の被写体確率Pobj(i’,j’)、およびメモリ205から供給される、上述した近傍領域の画素値I(i’,j’)を用いて、次の式(55)乃至式(57)より、背景の推定画素値I’bg(i,j)を求める。
【数49】
・・・(55)
【数50】
・・・(56)
【数51】
・・・(57)
【0192】
ここで、被写体距離算出部281は、必要な領域の座標に対応する被写体確率Pobj(i’,j’)および画素値I(i’,j’)を、選択的にメモリ204およびメモリ205から読み出すようにしても良い。
【0193】
式(55)乃至式(57)は、座標(i,j)の画素の近傍領域内において、背景差分算出部202もしくは被写体確率算出部203において被写体であると判断された画素のみを選択して、選択された画素値を、対応する被写体確率で重み付けしたのち平均するものである。
【0194】
補正部215は、背景距離算出部211から供給された距離Dbgおよび被写体距離算出部281から供給された距離Dobjを用いて、図13を用いて説明した場合と同様の処理により補正を実行し、生成された2値画像の画素O(i,j)を出力する。
【0195】
なお、第8の実施の形態においても、背景情報の抽出方法、および被写体確率Pobj(i,j)の算出方法は、第6の実施の形態、もしくは第7の実施の形態において説明したいずれの方法を用いても良い。
【0196】
次に、本発明の第9の実施の形態について説明する。
【0197】
図18は、本発明を適応した画像処理装置291の構成を示すブロック図である。なお、図16における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
【0198】
すなわち、図18の画像処理装置291は、被写体領域検出部261に代わって、被写体領域検出部301が設けられている以外は、図16を用いて説明した場合と、基本的に同様の構成を有している。
【0199】
そして、被写体領域検出部301は、被写体確率算出部203に代わって、被写体確率算出部311が設けられ、新たにメモリ312が設けられている以外は、図16を用いて説明した場合と、基本的に同様の構成を有している。被写体確率算出部311およびメモリ312以外については、第8の実施の形態と同様の処理が実行されるので、その説明は省略する。
【0200】
メモリ312には、背景差分算出部202で算出された2値画像の画素値B(i,j)が供給され、保存される。メモリ312は、被写体確率算出部311が実行する処理に合わせたタイミングで、保存している2値画像の画素値B(i,j)を被写体確率算出部311に出力するか、もしくは、被写体確率算出部311によって2値画像の画素値B(i,j)を読み出される。
【0201】
被写体確率算出部311は、メモリ312から必要な情報の入力を受け、もしくは、必要な情報を読み出し、次の式(58)に示されるような非線形平滑化処理を施して、多値画像M(i,j)を生成する。
【数52】
・・・(58)
【0202】
ここで、C’は予め定められた定数であり、被写体である確率Pobj(i,j)の値の精度を定めるものである。また、dminは、図19に示されるように、対応する座標の近傍においてB(i’,j’)=1である最も近い画素(i’,j’)までの距離であり、次の式(59)および式(60)によって算出される。
【数53】
・・・(59)
【数54】
・・・(60)
ここで、係数Dは、dminが取り得る最大の値として予め設定された値である。
【0203】
式(58)によって生成された多値画像M(i,j)は、次の式(61)によって正規化され、被写体確率Pobj(i,j)としてメモリ204に出力される。
Pobj(i,j)=M(i,j)/C’・・・(61)
【0204】
その他の処理については、第8の実施の形態を用いて説明した場合と同じであるので、その説明は省略する。
【0205】
なお、第9の実施の形態においては、背景情報の抽出方法、および被写体確率Pobj(i,j)の算出方法は、第6の実施の形態乃至第8の実施の形態において説明したいずれの方法を用いても良い。
【0206】
以上説明した第1乃至第9の実施の形態において、背景情報抽出モードと被写体抽出モードとで実行されている処理は、それぞれ異なる組み合わせにより実行するようにしても良いことは言うまでもない。
【0207】
また、以上説明した全ての処理においては、背景情報抽出モードにおいて、背景画像を複数枚撮像して、背景情報を抽出するものとして説明したが、背景画像を1枚だけ撮像して、その背景画像の各座標の画素値を用いるようにすることにより、背景情報抽出モードの処理を簡略化するようにしても良い。
【0208】
上述した一連の処理は、ソフトウェアにより実行することもできる。そのソフトウェアは、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、記録媒体からインストールされる。
【0209】
この記録媒体は、図1などに示すように、コンピュータとは別に、ユーザにプログラムを提供するために配布される、プログラムが記録されている磁気ディスク31(フロッピーディスクを含む)、光ディスク32(CD-ROM(Compact Disk-Read Only Memory),DVD(Digital Versatile Disk)を含む)、光磁気ディスク33(MD(Mini-Disk)を含む)、もしくは半導体メモリ34などよりなるパッケージメディアなどにより構成される。
【0210】
また、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
【0211】
【発明の効果】
本発明の画像処理装置および画像処理方法、並びにプログラムによれば、撮像された画像データの入力を受け、入力された背景領域のみからなる背景画像と、入力された背景領域および被写体領域からなる第1の対象画像との差分を算出し、算出された背景画像と第1の対象画像との差分を基に、第1の対象画像から、被写体領域の候補領域を分割し、第1の対象画像の各画素が被写体領域に含まれている確率を算出し、算出された確率を基に、分割された被写体領域の候補領域を補正し、算出された確率、および異なる時刻に入力された第2の対象画像との相関から、補正された被写体領域の候補領域を更に補正するようにしたので、背景差分法の簡便さを利用しつつ、異なる時刻に入力された画像データを用いて補正を行うことにより、簡単な装置を用いて、簡単な演算によって、正確に被写体領域を抽出することができる。
【図面の簡単な説明】
【図1】本発明を適応した画像処理装置の構成を示すブロック図である。
【図2】図1の背景情報抽出部の更に詳細な構成を示すブロック図である。
【図3】図1の被写体候補検出部の更に詳細な構成を示すブロック図である。
【図4】図1の被写体判定部の更に詳細な構成を示すブロック図である。
【図5】本発明を適応した画像処理装置の構成を示すブロック図である。
【図6】図5の背景情報抽出部の更に詳細な構成を示すブロック図である。
【図7】本発明を適応した画像処理装置の構成を示すブロック図である。
【図8】被写体領域以外の部分として選択する領域の例について説明するための図である。
【図9】本発明を適応した画像処理装置の構成を示すブロック図である。
【図10】図9の被写体判定部の更に詳細な構成を示すブロック図である。
【図11】本発明を適応した画像処理装置の構成を示すブロック図である。
【図12】被写体確率の設定例について説明するためのブロック図である。
【図13】図11の背景補正部の更に詳細な構成を示すブロック図である。
【図14】本発明を適応した画像処理装置の構成を示すブロック図である。
【図15】平滑化の例について説明するための図である。
【図16】本発明を適応した画像処理装置の構成を示すブロック図である。
【図17】図16の背景補正部の更に詳細な構成を示すブロック図である。
【図18】本発明を適応した画像処理装置の構成を示すブロック図である。
【図19】非線形平滑化処理について説明するための図である。
【図20】2値画像と被写体確率の関係について説明するための図である。
【符号の説明】
1 画像処理装置, 11 撮像部, 12 被写体領域検出部, 13 制御部, 21 スイッチ, 22 背景情報抽出部, 23 メモリ, 24 被写体候補検出部, 25 被写体判定部, 41 最大値画像生成部, 42最小値画像生成部, 43 平均値画像生成部, 51 閾値算出部, 522値化処理部, 61 背景条件確率検出部, 62 ヒストグラム生成部,63 被写体条件確率検出部, 64 多値マスク生成部, 65 被写体/背景確率検出部, 66 ベイズ推定演算部, 67 論理和演算部, 71 画像処理装置, 81 被写体領域検出部, 91 背景情報抽出部, 101偏差画像生成部, 111 画像処理装置, 121 被写体領域検出部, 131 補正係数算出部, 132 メモリ, 133 画素値補正部, 141 画像処理装置, 151 被写体領域検出部, 161 被写体判定部, 171乃至173 メモリ, 181 画像処理装置, 191 被写体領域検出部, 201 背景情報抽出部, 202 背景差分算出部, 203 被写体確率算出部, 204,205 メモリ, 206 背景補正部, 211 背景距離算出部, 212 前画像距離算出部, 213 重み算出部, 214 被写体距離算出部, 215 補正部, 221 画像処理装置, 231被写体領域検出部, 241 被写体確率算出部, 242 メモリ, 251 画像処理装置, 261 被写体領域検出部, 271 メモリ, 272背景補正部, 281 被写体距離算出部, 291 画像処理装置, 301 被写体領域検出部, 311 被写体確率算出部, 312 メモリ
Claims (13)
- 撮像された画像データの入力を受ける入力手段と、
前記入力手段により入力された背景領域のみからなる背景画像と、前記入力手段により入力された前記背景領域および被写体領域からなる第1の対象画像との差分を算出する画像差分算出手段と、
前記画像差分算出手段により算出された前記背景画像と前記第1の対象画像との差分を基に、前記第1の対象画像から、前記被写体領域の候補領域を分割する分割手段と、
前記第1の対象画像の各画素が、前記被写体領域に含まれている確率を算出する確率算出手段と、
前記確率算出手段により算出された前記確率を基に、前記分割手段により分割された前記被写体領域の候補領域を補正する第1の補正手段と、
前記確率算出手段により算出された前記確率、および前記入力手段により異なる時刻に入力された第2の対象画像との相関から、前記第1の補正手段により補正された前記被写体領域の候補領域を更に補正する第2の補正手段と
を備える画像処理装置。 - 前記確率算出手段は、ベイズ推定を用いて、前記第1の対象画像の各画素が、前記被写体領域に含まれている確率を算出する
請求項1に記載の画像処理装置。 - 前記確率算出手段は、座標毎に設定された重み付け係数に基づいて、前記第1の対象画像の各画素が、前記被写体領域に含まれている確率を算出する
請求項1に記載の画像処理装置。 - 前記第2の補正手段は、前記第1の補正手段により補正された結果、前記被写体領域の候補領域ではないと判定された領域についてのみ、前記確率算出手段により算出された前記確率、および前記第2の対象画像との相関を基に補正を行う
請求項1に記載の画像処理装置。 - 前記第2の補正手段は、前記確率算出手段により算出された前記確率、および前記第2の対象画像との相関を基に、前記第1の対象画像の各画素に対して、前記背景領域である確率を示す第1の確率と前記被写体領域である確率を示す第2の確率を算出し、前記第1の確率が前記第2の確率より小さい場合、対応する前記画素を前記被写体領域に含まれる画素であると判断する
請求項1に記載の画像処理装置。 - 前記第1の確率は、前記第1の対象画像の対応する座標の前記画素の画素値と前記背景画像の対応する座標の前記画素の画素値との差が小さいほど大きな値を取る
請求項5に記載の画像処理装置。 - 前記第2の確率は、前記第1の対象画像の対応する座標の前記画素の画素値と前記第2の対象画像の対応する座標の前記画素の画素値との差が小さく、かつ、前記第2の対象画像の対応する座標の前記画素が前記被写体領域である確率が高いほど大きな値を取る
請求項5に記載の画像処理装置。 - 前記第2の対象画像は、前記入力手段により前記第1の対象画像より1フレーム前に入力された画像である
請求項1に記載の画像処理装置。 - 前記入力手段により入力される前記画像データが色情報を含む場合、前記画像差分算出手段は、前記背景画像と前記第1の対象画像との差分を前記色情報の成分毎に算出する
請求項1に記載の画像処理装置。 - 前記入力手段により入力される前記画像データが色情報を含む場合、前記第2の補正手段は、前記第1の確率および前記第2の確率を、前記色情報の成分毎に算出する
請求項5に記載の画像処理装置。 - 撮像された画像データを処理する画像処理装置の画像処理方法において、
前記画像処理装置による、
撮像された画像データの入力を制御する入力制御ステップと、
前記入力制御ステップの処理により入力が制御された背景領域のみからなる背景画像と、前記入力制御ステップの処理により入力が制御された前記背景領域および被写体領域からなる第1の対象画像との差分を算出する画像差分算出ステップと、
前記画像差分算出ステップの処理により算出された前記背景画像と前記第1の対象画像との差分を基に、前記第1の対象画像から、前記被写体領域の候補領域を分割する分割ステップと、
前記第1の対象画像の各画素が、前記被写体領域に含まれている確率を算出する確率算出ステップと、
前記確率算出ステップの処理により算出された前記確率を基に、前記分割ステップの処理により分割された前記被写体領域の候補領域を補正する第1の補正ステップと、
前記確率算出ステップの処理により算出された前記確率、および前記入力制御ステップの処理により異なる時刻に入力が制御された第2の対象画像との相関から、前記第1の補正ステップの処理により補正された前記被写体領域の候補領域を更に補正する第2の補正ステップと
を含む画像処理方法。 - 撮像された画像データの入力を制御する入力制御ステップと、
前記入力制御ステップの処理により入力が制御された背景領域のみからなる背景画像と、前記入力制御ステップの処理により入力が制御された前記背景領域および被写体領域からなる第1の対象画像との差分を算出する画像差分算出ステップと、
前記画像差分算出ステップの処理により算出された前記背景画像と前記第1の対象画像との差分を基に、前記第1の対象画像から、前記被写体領域の候補領域を分割する分割ステップと、
前記第1の対象画像の各画素が、前記被写体領域に含まれている確率を算出する確率算出ステップと、
前記確率算出ステップの処理により算出された前記確率を基に、前記分割ステップの処理により分割された前記被写体領域の候補領域を補正する第1の補正ステップと、
前記確率算出ステップの処理により算出された前記確率、および前記入力制御ステップの処理により異なる時刻に入力が制御された第2の対象画像との相関から、前記第1の補正ステップの処理により補正された前記被写体領域の候補領域を更に補正する第2の補正ステップと
を含む処理をコンピュータに実行させるためのプログラムを記録した記録媒体。 - 撮像された画像データの入力を制御する入力制御ステップと、
前記入力制御ステップの処理により入力が制御された背景領域のみからなる背景画像と、前記入力制御ステップの処理により入力が制御された前記背景領域および被写体領域からなる第1の対象画像との差分を算出する画像差分算出ステップと、
前記画像差分算出ステップの処理により算出された前記背景画像と前記第1の対象画像との差分を基に、前記第1の対象画像から、前記被写体領域の候補領域を分割する分割ステップと、
前記第1の対象画像の各画素が、前記被写体領域に含まれている確率を算出する確率算出ステップと、
前記確率算出ステップの処理により算出された前記確率を基に、前記分割ステップの処理により分割された前記被写体領域の候補領域を補正する第1の補正ステップと、
前記確率算出ステップの処理により算出された前記確率、および前記入力制御ステップの処理により異なる時刻に入力が制御された第2の対象画像との相関から、前記第1の補正ステップの処理により補正された前記被写体領域の候補領域を更に補正する第2の補正ステップと
を含む処理をコンピュータに実行させるためのプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001115635A JP4622140B2 (ja) | 2001-04-13 | 2001-04-13 | 画像処理装置および画像処理方法、記録媒体、並びにプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001115635A JP4622140B2 (ja) | 2001-04-13 | 2001-04-13 | 画像処理装置および画像処理方法、記録媒体、並びにプログラム |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2002312792A JP2002312792A (ja) | 2002-10-25 |
JP2002312792A5 JP2002312792A5 (ja) | 2008-04-10 |
JP4622140B2 true JP4622140B2 (ja) | 2011-02-02 |
Family
ID=18966502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001115635A Expired - Fee Related JP4622140B2 (ja) | 2001-04-13 | 2001-04-13 | 画像処理装置および画像処理方法、記録媒体、並びにプログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4622140B2 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4664047B2 (ja) * | 2004-11-10 | 2011-04-06 | 株式会社エヌ・ティ・ティ・ドコモ | 画像処理装置及び画像処理方法 |
JP4765523B2 (ja) * | 2005-09-30 | 2011-09-07 | セイコーエプソン株式会社 | 画像検出装置、画像検出方法および画像検出プログラム |
JP2007206843A (ja) * | 2006-01-31 | 2007-08-16 | Central Res Inst Of Electric Power Ind | 水中または水面における移動体の計数方法、移動体の計数装置及び移動体の計数プログラム |
JP4800367B2 (ja) * | 2008-10-17 | 2011-10-26 | 日本電信電話株式会社 | 移動対象抽出装置、移動対象抽出方法及び移動対象抽出プログラム |
JP6136537B2 (ja) * | 2013-04-26 | 2017-05-31 | オムロン株式会社 | 画像処理装置、画像処理方法、画像処理制御プログラム、および記録媒体 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0844844A (ja) * | 1994-07-26 | 1996-02-16 | Mitsubishi Electric Corp | 物体検出装置 |
JP3486229B2 (ja) * | 1994-07-27 | 2004-01-13 | 株式会社東芝 | 画像変化検出装置 |
JPH09128546A (ja) * | 1995-11-01 | 1997-05-16 | Matsushita Electric Ind Co Ltd | 画像処理装置 |
JPH1011584A (ja) * | 1996-06-19 | 1998-01-16 | Fujitsu Ltd | 画像処理方法 |
JPH10320566A (ja) * | 1997-05-19 | 1998-12-04 | Canon Inc | 画像処理装置、画像処理方法及びその方法を記憶した記憶媒体 |
-
2001
- 2001-04-13 JP JP2001115635A patent/JP4622140B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002312792A (ja) | 2002-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8508605B2 (en) | Method and apparatus for image stabilization | |
JP6501092B2 (ja) | オブジェクトセグメンテーションのための前景マスク補正のための画像処理装置及び方法 | |
US9952678B2 (en) | Information processing device and method, program and recording medium for identifying a gesture of a person from captured image data | |
Taspinar et al. | Source camera attribution using stabilized video | |
JP5087614B2 (ja) | デジタル画像における改良された前景/背景分離 | |
JP3862140B2 (ja) | ピクセル化されたイメージをセグメント化する方法および装置、並びに記録媒体、プログラム、イメージキャプチャデバイス | |
US9674441B2 (en) | Image processing apparatus, image processing method, and storage medium | |
US7734115B2 (en) | Method for filtering image noise using pattern information | |
JP4744276B2 (ja) | 2次元画像の表現方法、2次元画像の比較方法、画像シーケンスを処理する方法、動き表現を導出する方法、画像の位置を求める方法、制御デバイス、装置、及びコンピュータ読み取り可能な記憶媒体 | |
KR20150117646A (ko) | 적어도 하나의 추가적인 이미지를 사용한 이미지 향상과 에지 검증을 위한 방법 및 장치 | |
JP2008171392A (ja) | 映像の境界を検出する方法及びその装置とこれを具現するコンピューターで読み取れる記録媒体 | |
US20100208140A1 (en) | Image processing apparatus, image processing method and storage medium storing image processing program | |
JP2012048484A (ja) | 画像処理装置、画像処理方法及びプログラム | |
CN112883940A (zh) | 静默活体检测方法、装置、计算机设备及存储介质 | |
KR20220017697A (ko) | 복수의 센서간 캘리브레이션 방법 및 장치 | |
TW201432620A (zh) | 具有邊緣選擇功能性之影像處理器 | |
JP4631199B2 (ja) | 画像処理装置および画像処理方法、記録媒体、並びにプログラム | |
WO2023019793A1 (zh) | 一种确定方法、清洁机器人和计算机存储介质 | |
JP4622141B2 (ja) | 画像処理装置および画像処理方法、記録媒体、並びにプログラム | |
JP4622140B2 (ja) | 画像処理装置および画像処理方法、記録媒体、並びにプログラム | |
CN112288780A (zh) | 多特征动态加权的目标跟踪算法 | |
Lee et al. | Multisensor fusion-based object detection and tracking using active shape model | |
JP5470529B2 (ja) | 動き検出装置、動き検出方法及び動き検出プログラム | |
JP6378496B2 (ja) | 画像処理装置、制御方法及び記録媒体 | |
KR102453392B1 (ko) | 이동체를 고려한 영상 잡음 제거 방법 및 그를 위한 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080225 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100803 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100915 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101005 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101018 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |