JP4622067B2 - Ranging sensor failure detection apparatus and failure detection method - Google Patents

Ranging sensor failure detection apparatus and failure detection method Download PDF

Info

Publication number
JP4622067B2
JP4622067B2 JP2000261959A JP2000261959A JP4622067B2 JP 4622067 B2 JP4622067 B2 JP 4622067B2 JP 2000261959 A JP2000261959 A JP 2000261959A JP 2000261959 A JP2000261959 A JP 2000261959A JP 4622067 B2 JP4622067 B2 JP 4622067B2
Authority
JP
Japan
Prior art keywords
sensor
distance measuring
failure detection
distance
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000261959A
Other languages
Japanese (ja)
Other versions
JP2002071334A (en
Inventor
一路 加藤
哲行 木村
恭次 村岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2000261959A priority Critical patent/JP4622067B2/en
Publication of JP2002071334A publication Critical patent/JP2002071334A/en
Application granted granted Critical
Publication of JP4622067B2 publication Critical patent/JP4622067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、回転機の磁気軸受装置、鋼板の電磁制振装置に使用される測距センサの故障検出装置および故障検出方法に関する。
【0002】
【従来の技術】
回転機の磁気軸受装置や鋼板の電磁制振装置などにおいて、回転軸や鋼板等の制御対象物の位置検出のために制御対象物をはさんで2つの測距センサを対向配置し、これらのセンサ出力の差分信号から制御対象物の位置を測定して制御対象物が所定位置になるように制御している。
【0003】
図8は、従来の技術による鋼板の位置・振動制御装置の構成を示すブロック図である。この図において厚さtの鋼板10に対向して電磁石1および電磁石2が配置され、各電磁石にはこれらの電磁石と同位置に測距センサ1aおよび測距センサ2aが配設されている。
センサ1aおよびセンサ2aの測距出力y1およびy2は、減算器3に入力され、差分出力(y1−y2)が位置・振動制御コントローラ4に与えられる。
位置・振動制御コントローラ4は、減算器3の差分出力(y1−y2)の値がゼロになるように電磁石1および電磁石2の励磁電流を制御して鋼板10を所定位置に保持する。
測距センサの出力特性は、図9に示すようにセンサゲインをA、出力オフセットをBとすると、距離Xとセンサ出力yとの関係は、一般に、
y=AX+B
で表すことができる。
【0004】
また、特開2000−109211においては、鋼板の表裏両面側に配設した変位計(上述の測距センサに相当)により測定した、鋼板表裏両面側の変位の差分と該鋼板表裏両面側の変位計間距離に基づいて前記各々の電磁石の駆動電流を制御しながら鋼板の位置制御を行うことを特徴とする鋼板の形状制御装置が開示されている。
【0005】
さらに、特許2573995号においては、軸受等の回転軸が挿入される貫通穴の周縁を形成する壁部を有する搭載部を備え、貫通穴の軸に対称な位置に形成された複数の穴部に、周縁を基準にして変位センサ、発振回路、およびフィルタ回路を一体化して嵌着したことを特徴とする磁気軸受装置が開示されている。
【0006】
【発明が解決しようとする課題】
ところが、これら上述の装置では、センサが故障して、得られるセンサゲインが変化しても、センサの出力値の変化がセンサと鋼板間の距離の変動によるものなのか、センサ自体の故障によるものかを識別することができないという課題があった。
【0007】
本発明はこのような背景の下になされたもので、2つの測距センサの出力の加算値を監視することによって測距センサの故障を確実に検出することができる測距センサの故障検出装置および故障検出方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、制御対象物をはさんで同一特性の2つの測距センサを対向配置し、前記2つの測距センサによる前記制御対象物からの距離がそれぞれ所定値になるように前記制御対象物の位置を制御する位置制御装置において、
前記2つの測距センサの出力を加算する加算手段と、
前記加算結果によって前記測距センサの故障判定を行う故障判定手段と、
を具備することを特徴とする測距センサの故障検出装置を提供する。
【0009】
請求項2に記載の発明は、請求項1に記載の測距センサの故障検出装置において、
前記故障判定手段は、前記加算結果が所定範囲を逸脱したとき、前記測距センサ故障と判定することを特徴とする。
【0010】
請求項3に記載の発明は、制御対象物をはさんで同一特性の2つの測距センサを対向配置し、前記2つの測距センサによる前記制御対象物からの距離がそれぞれ所定値になるように前記制御対象物の位置を制御する位置制御装置において、
前記2つの測距センサの出力を加算する過程と、
前記加算結果が所定範囲を逸脱したことによって前記測距センサの故障判定を行う過程と、
を有することを特徴とする測距センサの故障検出方法を提供する。
【0011】
【発明の実施の形態】
以下、この発明の一実施形態について図を参照しながら説明する。図1はこの発明の一実施形態による測距センサの故障検出装置の原理的構成を示す図である。
この図において、板厚tの鋼板10をはさんで測距センサ1aおよび2aが距離X0だけ離れて対向して配置されている。センサ1aと鋼板10との距離をX1、センサ2aと鋼板10との距離をX2とすると、
X1+X2=X0−t
となる。
【0012】
センサ1aの出力y1およびセンサ2aの出力y2は、加算器5で加算され、加算結果が故障判定器6に入力される。
加算器5による加算値は、センサ1aおよび1bが正常であれば、鋼板10と各々のセンサ間の距離の平均値(X1+X2)/2に相当する各センサの出力値の2倍となる。
すなわち、センサゲインをA、出力オフセット値をBとすると、
{A(X0−t)/2+B}×2=y1+y2
となる。
なお、図4に示されているように、鋼板10を磁気軸受等の軸受11に置き換えても同様である。
【0013】
たとえば図1において、(X1+X2)=1mmとなるような場合について説明する。このとき、図2に示すような特性(Aが20V/mm、Bが−10V、すなわち、y=20X−10)のセンサを使用すると、センサ1a鋼板10との距離X1に対するセンサ出力y1およびy2は、図3に示すようになる。
このとき、2つのセンサ1aおよび1bが正常動作を行っていれば、2つのセンサの出力値の和(y1+y2)は、鋼板10の位置X1に無関係に0Vとなる。
もし、出力値の和(y1+y2)が0Vにならないときは、どちらか一方のセンサが故障していると判断できる。
【0014】
実際には、測距センサは飽和特性やヒステリシス特性により完全な線形特性となることは少なく、非線形特性を持っていると考えられ、この非線形特性による検出装置の誤動作を回避するために、出力特性の線形部分に対して(または、出力特性を線形特性に近似して)正常と判定する値に幅を持たせることによって、誤判定をなくす手法が使われる。
正常と判定する判定幅は、測距センサの非線形特性、ノイズレベルなどを考慮して決定される。たとえば、基準値の0.8倍から1.1倍までを正常と判定し、この範囲を逸脱するとセンサ故障を検出する。
【0015】
図5は、上述の測距センサの故障検出装置を適用した鋼板の位置・振動制御装置の構成を示すブロック図である。
この図が図8に示した従来の技術による鋼板の位置・振動制御装置と異なる箇所は、センサ1aの出力y1とセンサ2aの出力y2を加算する加算器5と、この加算出力によってセンサ故障を判定する故障判定器6を付加した点である。
その動作は図1から図3によって上述したとおりである。
【0016】
また、図6は、図1の加算器5の出力側にローパスフィルタ(LPF)7を介挿した構成であり、各センサの出力信号またはその加算値をローパスフィルタを通すことにより、センサノイズの影響を除去して安定した検出動作をさせることが可能となる。
なお、図7に示されているように、鋼板10を軸受11に置き換えても同様である。
【0017】
以上、本発明の一実施形態の動作を図面を参照して詳述してきたが、本発明はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
ただし、鋼板の位置・振動制御装置では一方向の制御のみで十分であるが、磁気軸受装置では上述した軸受とセンサ間の距離検出手段および加算手段の他、詳述はしないが回転軸を所定位置で維持して回転させるために、回転軸方向の直交する二方向について回転軸の両端を個別に制御することが必要になる。
【0018】
【発明の効果】
これまでに説明したように、この発明によれば、対向配置された2つの測距センサの出力信号の加算値を監視することによってセンサ故障を判定するようにしたので、測距センサの故障を確実に検出することができるという効果が得られる。
【図面の簡単な説明】
【図1】 この発明の一実施形態による測距センサを用いた鋼板の故障検出装置の原理的構成を示した図。
【図2】 測距センサの出力特性を示す図。
【図3】 対向配置された2つの測距センサの出力の加算値を示す図。
【図4】 この発明の一実施形態による測距センサを用いた磁気軸受の故障検出装置の原理的構成を示した図。
【図5】 この発明の一実施形態による測距センサの故障検出装置を適用した鋼板の位置・振動制御装置の構成を示すブロック図。
【図6】 図1の加算器5の出力側にローパスフィルタ(LPF)7を介挿した構成を示す図。
【図7】 図4の加算器5の出力側にローパスフィルタ(LPF)7を改装した構成を示す図。
【図8】 従来の技術による鋼板の位置・振動制御装置の構成を示すブロック図。
【図9】 測距センサの一般的な出力特性を示す図。
【符号の説明】
1、2…電磁石
1a、2a…測距センサ
3…減算器
4…位置・振動制御コントローラ
5…加算器
6…故障判定器
7…LPF
10…鋼板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a failure detection device and failure detection method for a distance measuring sensor used in a magnetic bearing device for a rotating machine and an electromagnetic vibration control device for a steel plate.
[0002]
[Prior art]
In a magnetic bearing device for a rotating machine or an electromagnetic vibration control device for a steel plate, two distance measuring sensors are arranged opposite to each other with the control object sandwiched between them in order to detect the position of the control object such as a rotating shaft or steel plate. The position of the control object is measured from the difference signal of the sensor output, and control is performed so that the control object becomes a predetermined position.
[0003]
FIG. 8 is a block diagram showing the configuration of a conventional steel plate position / vibration control device. In this figure, an electromagnet 1 and an electromagnet 2 are arranged opposite to a steel plate 10 having a thickness t, and a distance measuring sensor 1a and a distance measuring sensor 2a are arranged at the same position as these electromagnets.
The distance measurement outputs y1 and y2 of the sensors 1a and 2a are input to the subtractor 3, and the difference output (y1-y2) is given to the position / vibration controller 4.
The position / vibration controller 4 controls the exciting currents of the electromagnet 1 and the electromagnet 2 so that the value of the differential output (y1-y2) of the subtractor 3 becomes zero, and holds the steel plate 10 at a predetermined position.
As shown in FIG. 9, when the sensor gain is A and the output offset is B as shown in FIG. 9, the relationship between the distance X and the sensor output y is generally
y = AX + B
Can be expressed as
[0004]
Further, in Japanese Patent Laid-Open No. 2000-109211, the difference between the displacement of the steel sheet front and back surfaces and the displacement of the steel sheet front and back surfaces measured by a displacement meter (corresponding to the distance measuring sensor described above) disposed on both surfaces of the steel sheet. A steel plate shape control device is disclosed in which the position of the steel plate is controlled while controlling the drive current of each electromagnet based on the inter-meter distance.
[0005]
Furthermore, in Japanese Patent No. 2557395, a mounting portion having a wall portion that forms the periphery of a through hole into which a rotating shaft such as a bearing is inserted is provided, and a plurality of hole portions formed at positions symmetrical to the axis of the through hole are provided. In addition, a magnetic bearing device is disclosed in which a displacement sensor, an oscillation circuit, and a filter circuit are integrally fitted with a peripheral edge as a reference.
[0006]
[Problems to be solved by the invention]
However, in these devices described above, even if the sensor fails and the obtained sensor gain changes, whether the change in the output value of the sensor is due to the change in the distance between the sensor and the steel plate, or the failure of the sensor itself. There was a problem that it could not be identified.
[0007]
The present invention has been made under such a background, and a failure detection device for a distance measurement sensor capable of reliably detecting a failure of the distance measurement sensor by monitoring an added value of the outputs of the two distance measurement sensors. And it aims at providing a failure detection method.
[0008]
[Means for Solving the Problems]
According to the first aspect of the present invention, two distance measuring sensors having the same characteristics are disposed opposite to each other with the control object interposed therebetween, and the distances from the control object by the two distance measuring sensors are respectively predetermined values. In the position control device for controlling the position of the control object,
Adding means for adding the outputs of the two distance measuring sensors;
Failure determination means for determining failure of the distance measuring sensor according to the addition result;
A failure detection device for a distance measuring sensor is provided.
[0009]
According to a second aspect of the present invention, in the failure detection device for the distance measuring sensor according to the first aspect,
The failure determination means determines that the distance measuring sensor has failed when the addition result deviates from a predetermined range.
[0010]
According to a third aspect of the present invention, two distance measuring sensors having the same characteristics are arranged opposite to each other with the control object interposed therebetween, and the distances from the control object by the two distance measuring sensors are respectively predetermined values. In the position control device for controlling the position of the control object,
Adding the outputs of the two distance measuring sensors;
A process of performing a failure determination of the distance measuring sensor due to the addition result deviating from a predetermined range;
A failure detection method for a distance measuring sensor is provided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing the basic configuration of a failure detection device for a distance measuring sensor according to an embodiment of the present invention.
In this figure, the distance measuring sensors 1a and 2a are arranged facing each other with a distance X0 across a steel plate 10 having a thickness t. When the distance between the sensor 1a and the steel plate 10 is X1, and the distance between the sensor 2a and the steel plate 10 is X2,
X1 + X2 = X0-t
It becomes.
[0012]
The output y1 of the sensor 1a and the output y2 of the sensor 2a are added by the adder 5, and the addition result is input to the failure determiner 6.
If the sensors 1a and 1b are normal, the added value by the adder 5 is twice the output value of each sensor corresponding to the average value (X1 + X2) / 2 of the distance between the steel plate 10 and each sensor.
That is, if the sensor gain is A and the output offset value is B,
{A (X0−t) / 2 + B} × 2 = y1 + y2
It becomes.
In addition, as FIG. 4 shows, it is the same even if it replaces the steel plate 10 with bearings 11, such as a magnetic bearing.
[0013]
For example, a case where (X1 + X2) = 1 mm in FIG. 1 will be described. At this time, if a sensor having characteristics as shown in FIG. 2 (A is 20 V / mm, B is −10 V, ie, y = 20X−10) is used, sensor outputs y1 and y2 with respect to the distance X1 with respect to the sensor 1a steel plate 10 Is as shown in FIG.
At this time, if the two sensors 1a and 1b are operating normally, the sum (y1 + y2) of the output values of the two sensors becomes 0 V regardless of the position X1 of the steel plate 10.
If the sum of output values (y1 + y2) does not become 0V, it can be determined that one of the sensors is malfunctioning.
[0014]
In reality, ranging sensors are rarely completely linear due to saturation characteristics and hysteresis characteristics, and are considered to have nonlinear characteristics. In order to avoid malfunctions of the detector due to these nonlinear characteristics, the output characteristics For the linear part of (or by approximating the output characteristic to the linear characteristic), a method for eliminating the erroneous determination by giving a range to the value that is determined to be normal is used.
The determination range for determining normality is determined in consideration of the nonlinear characteristics of the distance measuring sensor, the noise level, and the like. For example, it is determined that 0.8 to 1.1 times the reference value is normal, and a sensor failure is detected if it is outside this range.
[0015]
FIG. 5 is a block diagram showing the configuration of a steel plate position / vibration control device to which the above-described distance detection sensor failure detection device is applied.
This figure is different from the conventional steel plate position / vibration control device shown in FIG. 8 in that an adder 5 adds the output y1 of the sensor 1a and the output y2 of the sensor 2a, and a sensor failure is caused by this added output. This is a point to which a failure determination device 6 for determination is added.
The operation is as described above with reference to FIGS.
[0016]
FIG. 6 shows a configuration in which a low-pass filter (LPF) 7 is inserted on the output side of the adder 5 in FIG. 1. By passing the output signal of each sensor or its added value through the low-pass filter, sensor noise is reduced. It is possible to remove the influence and perform a stable detection operation.
In addition, as shown in FIG. 7, the same applies even if the steel plate 10 is replaced with a bearing 11.
[0017]
The operation of one embodiment of the present invention has been described in detail with reference to the drawings. However, the present invention is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. Are also included in the present invention.
However, in the steel plate position / vibration control device, it is sufficient to control in one direction. However, in the magnetic bearing device, the rotation axis is predetermined although not described in detail in addition to the above-described distance detection means and addition means between the bearing and the sensor. In order to maintain and rotate at the position, it is necessary to individually control both ends of the rotating shaft in two directions orthogonal to the rotating shaft direction.
[0018]
【The invention's effect】
As described above, according to the present invention, the sensor failure is determined by monitoring the sum of the output signals of the two distance measuring sensors arranged opposite to each other. The effect that it can detect reliably is acquired.
[Brief description of the drawings]
FIG. 1 is a diagram showing a principle configuration of a steel sheet failure detection apparatus using a distance measuring sensor according to an embodiment of the present invention.
FIG. 2 is a diagram showing output characteristics of a distance measuring sensor.
FIG. 3 is a diagram showing an added value of outputs of two distance measuring sensors arranged opposite to each other.
FIG. 4 is a diagram showing the basic configuration of a magnetic bearing failure detection apparatus using a distance measuring sensor according to an embodiment of the present invention.
FIG. 5 is a block diagram showing the configuration of a steel plate position / vibration control device to which a distance detection sensor failure detection device according to an embodiment of the present invention is applied;
6 is a diagram showing a configuration in which a low-pass filter (LPF) 7 is inserted on the output side of the adder 5 of FIG. 1;
7 is a diagram showing a configuration in which a low-pass filter (LPF) 7 is modified on the output side of the adder 5 in FIG. 4;
FIG. 8 is a block diagram showing the configuration of a conventional steel plate position / vibration control device.
FIG. 9 is a diagram showing general output characteristics of a distance measuring sensor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 2 ... Electromagnet 1a, 2a ... Ranging sensor 3 ... Subtractor 4 ... Position / vibration controller 5 ... Adder 6 ... Failure determination device 7 ... LPF
10 ... steel plate

Claims (3)

センサゲインをA、出力オフセットをB、測距対象物との距離をXとしたとき、センサの出力yがy=AX+Bとなる同一特性の2つの測距センサを、制御対象物を挟むようにして対向配置し、前記2つの測距センサによる前記制御対象物からの距離がそれぞれ所定値になるように前記制御対象物の位置を制御する位置制御装置において、
前記2つの測距センサの出力を加算する加算手段と、
前記加算結果によって前記測距センサの故障判定を行う故障判定手段と、を具備することを特徴とする測距センサの故障検出装置。
When the sensor gain is A, the output offset is B, and the distance to the object to be measured is X, two distance measuring sensors with the same characteristics where the sensor output y is y = AX + B are opposed to each other with the control object sandwiched therebetween. In a position control device that arranges and controls the position of the control object such that the distance from the control object by the two distance measuring sensors becomes a predetermined value,
Adding means for adding the outputs of the two distance measuring sensors;
A failure detection unit for determining a failure of the distance measuring sensor based on the addition result;
前記故障判定手段は、
前記加算結果が所定範囲を逸脱したとき、前記測距センサ故障と判定することを特徴とする請求項1に記載の測距センサの故障検出装置。
The failure determination means includes
The ranging sensor failure detection device according to claim 1, wherein when the addition result deviates from a predetermined range, the ranging sensor failure is determined.
センサゲインをA、出力オフセットをB、測距対象物との距離をXとしたとき、センサの出力yがy=AX+Bとなる同一特性の2つの測距センサを、制御対象物を挟むようにして対向配置し、前記2つの測距センサによる前記制御対象物からの距離がそれぞれ所定値になるように前記制御対象物の位置を制御する位置制御装置において、
前記2つの測距センサの出力を加算する過程と、
前記加算結果が所定範囲を逸脱したことによって前記測距センサの故障判定を行う過程と、を有することを特徴とする測距センサの故障検出方法。
When the sensor gain is A, the output offset is B, and the distance to the object to be measured is X, two distance measuring sensors with the same characteristics where the sensor output y is y = AX + B are opposed to each other with the control object sandwiched therebetween. In a position control device that arranges and controls the position of the control object such that the distance from the control object by the two distance measuring sensors becomes a predetermined value,
Adding the outputs of the two distance measuring sensors;
A ranging sensor failure detection method comprising: a step of performing failure determination of the ranging sensor when the addition result deviates from a predetermined range.
JP2000261959A 2000-08-30 2000-08-30 Ranging sensor failure detection apparatus and failure detection method Expired - Fee Related JP4622067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000261959A JP4622067B2 (en) 2000-08-30 2000-08-30 Ranging sensor failure detection apparatus and failure detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000261959A JP4622067B2 (en) 2000-08-30 2000-08-30 Ranging sensor failure detection apparatus and failure detection method

Publications (2)

Publication Number Publication Date
JP2002071334A JP2002071334A (en) 2002-03-08
JP4622067B2 true JP4622067B2 (en) 2011-02-02

Family

ID=18749713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000261959A Expired - Fee Related JP4622067B2 (en) 2000-08-30 2000-08-30 Ranging sensor failure detection apparatus and failure detection method

Country Status (1)

Country Link
JP (1) JP4622067B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103376081A (en) * 2012-04-19 2013-10-30 天纳克-埃贝赫(大连)排气系统有限公司 Device for detecting sensor by use of sensor detection sample

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4764697B2 (en) * 2005-10-25 2011-09-07 株式会社日立製作所 Car position detection system
CN111163485B (en) * 2019-12-17 2022-11-01 佛山科学技术学院 Active sensing method and system for sensor network fault

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0185636U (en) * 1987-11-27 1989-06-07
JPH01263516A (en) * 1988-04-06 1989-10-20 Focke & Co Gmbh & Co Method and device for inspecting tobacco

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559311U (en) * 1978-10-16 1980-04-22
JPH08178618A (en) * 1994-12-21 1996-07-12 Fujitsu Ten Ltd Optical sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0185636U (en) * 1987-11-27 1989-06-07
JPH01263516A (en) * 1988-04-06 1989-10-20 Focke & Co Gmbh & Co Method and device for inspecting tobacco

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103376081A (en) * 2012-04-19 2013-10-30 天纳克-埃贝赫(大连)排气系统有限公司 Device for detecting sensor by use of sensor detection sample

Also Published As

Publication number Publication date
JP2002071334A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
EP1188943B1 (en) Magnetic levitation rotating machine
JP6359079B2 (en) Hall sensor insensitive to external magnetic field
JP4622067B2 (en) Ranging sensor failure detection apparatus and failure detection method
EP2781775A1 (en) Method for detecting changes of position of shaftless spinning rotor of open-end spinning machine in cavity of active magnetic bearing and spinning unit of open-end spinning machine with active magnetic bearing for bearing shaftless spinning rotor
EP2108924B1 (en) Position detecting device and method
JP4309838B2 (en) Method and apparatus for capturing member motion
JP5145830B2 (en) Dynamometer control device
JP4232573B2 (en) Magnetic bearing control device and magnetic levitation device
JP4037392B2 (en) Anomaly detection device
JP2572878B2 (en) Sensor abnormality detection device
JP3771030B2 (en) Acceleration detector
EP1176325A2 (en) Magnetic bearing apparatus
JP3174864B2 (en) Magnetic bearing control device
JP2977370B2 (en) Signal input device
JP2006042537A (en) Brushless dc motor added with magnetic encoder and signal processing circuit
JP4058724B2 (en) Magnetic bearing device
JP7406362B2 (en) Position sensor and position detection method
JPH048911A (en) Magnetic bearing device
JP7057252B2 (en) Abnormal state judgment system
JP4499120B2 (en) Resolver fault diagnosis circuit
JPH087050B2 (en) Rotating body position detector
JP3248108B2 (en) Control device for magnetic bearing
US20190086208A1 (en) Rotational speed sensor and operation of a rotational speed sensor at various frequencies and in various directions
KR20020076823A (en) Apparatus for controlling a balance in a rotating machine and method therefor
JP2003207365A (en) Rotation angle sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4622067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees