JP4617065B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP4617065B2
JP4617065B2 JP2003149836A JP2003149836A JP4617065B2 JP 4617065 B2 JP4617065 B2 JP 4617065B2 JP 2003149836 A JP2003149836 A JP 2003149836A JP 2003149836 A JP2003149836 A JP 2003149836A JP 4617065 B2 JP4617065 B2 JP 4617065B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
negative electrode
electrode plate
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003149836A
Other languages
Japanese (ja)
Other versions
JP2004055537A (en
Inventor
豪 皆藤
太志 谷川
直人 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003149836A priority Critical patent/JP4617065B2/en
Publication of JP2004055537A publication Critical patent/JP2004055537A/en
Application granted granted Critical
Publication of JP4617065B2 publication Critical patent/JP4617065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、正極集電体のバリと負極活物質部との短絡の可能性を低減した安全性の高い捲回型のリチウムイオン二次電池に関する。
【0002】
【従来の技術】
近年、AV機器あるいはパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源となる二次電池の小型・軽量化および高エネルギー密度化への要求が高まっている。そのような二次電池のなかでも、リチウムを活物質とするリチウムイオン二次電池は、とりわけ高電圧・高エネルギー密度を有する。
【0003】
従来のリチウムイオン二次電池としては、捲回型電池が主流である。捲回型電池は、正極活物質部およびこれを担持する正極集電体からなる正極板と、負極活物質部およびこれを担持する負極集電体からなる負極板とを、セパレータを介して捲回してなる極板群を有する。正極活物質部には、リチウムイオンを充放電により吸蔵または放出可能な正極活物質が含まれており、負極活物質部には、リチウムイオンを充放電により吸蔵または放出可能な負極活物質が含まれている。極板群は電解液とともに電池容器内に収容されている。
【0004】
捲回型電池の場合、極板の捲回時に、折り曲げ部や湾曲部で極板やセパレータが変形を受けやすい。このような変形は、内部短絡を誘発する可能性がある。また、極板の捲回時に、セパレータの位置がずれることにより、内部短絡が発生する可能性もある。
【0005】
本発明者らは、上記を鑑み、捲回型のリチウムイオン二次電池において、内部短絡の主要原因を防ぐことに着眼した。
【0006】
内部短絡のタイプとしては、以下に述べる4つが考えられる。
(1)正極活物質部と負極活物質部との短絡
(2)正極活物質部と負極集電体との短絡
(3)正極集電体と負極活物質部との短絡
(4)正極集電体と負極集電体との短絡
【0007】
本発明者らは、過充電状態の電池を各部品ごとに分解し、各部品同士を直接接触させることにより、スパークおよび着火の有無を観察した。その結果、短絡モード(1)および(2)では、スパークも着火も発生しなかったが、短絡モード(3)では、スパークと着火が発生した。短絡モード(4)では、スパークは発生するものの、着火はしなかった。
【0008】
これらの結果から以下のことが考察される。
短絡モード(1)および(2)では、正極活物質自身の抵抗が大きいことから、正極活物質部と負極活物質部とを短絡させても大電流は流れない。
【0009】
短絡モード(4)では、導電性を有する集電体同士の短絡により、スパークは発生するが、集電体自体は可燃性ではないことから、着火には至らない。
短絡モード(3)では、正極集電体と負極活物質とが共に導電性を有することから、これらが短絡するとスパークが発生するとともに、可燃性である負極活物質が着火に至る。
【0010】
以上の考察から、短絡モード(3)が、内部短絡の主要原因であると考えられる。短絡モード(3)は、実際上は、正極集電体のスリット時に発生する導電性のバリが負極活物質部の表面と接触することにより発生する。
【0011】
近年、従来のセパレータを用いる代わりに、電解質層を介して、正極板と負極板とを積層してなる極板群を有する積層型のリチウムイオン二次電池が提案されている。このように電解質層が正極板や負極板と一体化されている電池においては、極板やセパレータの寸法を制御することにより、短絡を防止する提案がなされている(特許文献1参照)。しかしながら、積層一体型の極板群は、一般的に製造工程が複雑であり、高容量化も困難である。また、このような極板群においては、電池を軽量化する観点から、ポリエチレンテレフタレートフィルムなどの樹脂フィルムの表面に、金属蒸着膜を設けた集電体を用いることも提案されている(特許文献2参照)。
【0012】
【特許文献1】
特開2000−30742号公報
【特許文献2】
特開平9−213338号公報
【0013】
【発明が解決しようとする課題】
本発明は、上記知見を鑑みてなされたものであり、本発明の目的の一つは、正極集電体のバリと負極活物質部との短絡を防止し、安全性の高い捲回型のリチウムイオン二次電池を提供することにある。
【0014】
【課題を解決するための手段】
本発明のリチウムイオン二次電池は、(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、(c)前記正極板と負極板との間に介在するセパレータ、(d)電解液、ならびに(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器を具備する。
【0015】
前記正極板と負極板とは、前記セパレータを介して捲回されることにより、極板群を構成している。ここで、本発明のリチウムイオン二次電池は、前記極板群において以下の〔A〕〜〔E〕のいずれかの特徴を有する。
【0016】
〔A〕前記正極集電体の長手方向に沿う両端部が、前記負極活物質部の長手方向に沿う両端部よりも外側に位置しており、前記正極活物質部の長手方向に沿う両端部に、それぞれリチウムイオンを充放電により吸蔵または放出しない非活物質部が設けられている。
〔B〕前記正極活物質部の長手方向に沿う両端部が、前記正極集電体の長手方向に沿う両端部よりも外側に位置している。
【0017】
〔C〕前記負極活物質部の長手方向に沿う両端部が、前記正極集電体の長手方向に沿う両端部よりも外側に位置し、前記正極集電体の長手方向に沿う両端部が、前記正極活物質部の長手方向に沿う両端部よりも外側に位置し、さらに、前記正極集電体の前記正極活物質部で覆われていない露出部が、絶縁材料により被覆されている。
【0018】
〔D〕前記正極集電体が、絶縁シートおよびその両面にそれぞれ形成された導電層からなり、前記絶縁シートの長手方向に沿う両端部には、前記絶縁シートの露出部が設けられている。
〔E〕前記正極板の長手方向に沿う両端部が、それぞれ絶縁材料により被覆されている。
なお、セパレータには、例えば、ポリオレフィンなどからなる織布、不織布、微多孔膜などが用いられる。
【0019】
【発明の実施の形態】
実施形態1
本実施形態は、(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、(c)前記正極板と負極板との間に介在するセパレータ、(d)電解液、ならびに(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器を具備するリチウムイオン二次電池であって、前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記極板群において、前記正極集電体の長手方向に沿う両端部が、前記負極活物質部の長手方向に沿う両端部よりも外側に位置しているリチウムイオン二次電池に関する。
【0020】
正極集電体の長手方向に沿う両端部が、負極活物質部の長手方向に沿う両端部よりも外側に位置していることから、たとえスリット時に正極集電体の端部にバリが発生しても、そのバリと負極活物質部との短絡を防ぐことができる。
【0021】
正極活物質部の長手方向に沿う両端部には、それぞれリチウムイオンを充放電により吸蔵または放出しない非活物質部設けられている。非活物質部により、正極集電体の端部を安定化させることができる。さらに、正極集電体の長手方向に沿う両端部においては、非活物質部の厚さが正極活物質部の厚さと同一で、段差が無いことが、捲回時の巻ずれなどが起こりにくい点で好ましい。非活物質部として絶縁材料を用いる場合には、正極集電体のバリと負極活物質部との短絡以外の一般的な短絡までも抑制することができる。
【0022】
極板群において、負極活物質部の長手方向に沿う両端部は、正極活物質部の長手方向に沿う両端部よりも外側に位置していることが好ましい。このような配置により、充電時に正極活物質より放出されるLiイオンを、対向する負極活物質によって確実に受けとめることができ、それによって、負極活物質の負荷の偏り、金属リチウムの析出などの不具合を防止することができる。
【0023】
図1に、本実施形態の極板群における正極板110、負極板120およびセパレータ130の長手方向に対して垂直な断面の一例を概念的に示す。図1では、正極板110と負極板120とセパレータ130の配置関係を理解しやすいように、積層方向に間隔をあけて各要素を示す。
【0024】
正極板110は、正極集電体111および正極活物質部112からなり、負極板120は、負極集電体121および負極活物質部122からなる。正極板110と負極板120とは、セパレータ130を介して対向している。正極集電体の端部111aから正極活物質部の端部112aまでの間、ならびに正極集電体の端部111bから正極活物質部の端部112bまでの間は、正極活物質の未塗工部でもよいが、非活物質部113を設ける方が好ましい。
【0025】
正極集電体111の長手方向に沿う両端部111a、111bは、負極活物質部122の長手方向に沿う両端部122a、122bよりも外側に位置している。このような配置により、正極集電体の端部111aもしくは111bにバリが発生し、そのバリがセパレータ130を突き破ったとしても、負極活物質部122と短絡することは無い。
【0026】
図1のような構成を採用する場合、正極集電体の端部111aから負極活物質部の端部122aまでの間隔、ならびに正極集電体の端部111bから負極活物質部の端部122bまでの間隔は、それぞれ50〜300μmであることが好ましい。これらの間隔は、正極集電体の断面において想定されるバリの長さから、正極活物質部の片面あたりの厚さとセパレータの厚さとの合計を差し引いた長さよりも大きいことが好ましい。なお、正極集電体の断面において想定されるバリの長さは、一般に50〜100μmである。
【0027】
図2には、従来の極板群における正極板210、負極板220およびセパレータ230の長手方向に対して垂直な断面を図1と同様に概念的に示す。
正極板210は、正極集電体211および正極活物質部212からなり、負極板220は、負極集電体221および負極活物質部222からなる。
【0028】
正極集電体の長手方向に沿う両端部211a、211bは、負極活物質部222の長手方向に沿う両端部222a、222bよりも内側に位置している。こののような配置では、正極集電体の端部211aもしくは211bにバリが発生し、そのバリがセパレータ230を突き破ると、負極活物質部222と短絡することになる。
【0029】
実施形態2
本実施形態は、(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、(c)前記正極板と負極板との間に介在するセパレータ、(d)電解液、ならびに(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器を具備するリチウムイオン二次電池であって、前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記極板群において、正極活物質部の長手方向に沿う両端部が、正極集電体の長手方向に沿う両端部よりも外側に位置しているリチウムイオン二次電池に関する。
【0030】
正極活物質部の長手方向に沿う両端部が、正極集電体の長手方向に沿う両端部よりも外側に位置していることから、正極活物質部の端部付近をスリットする場合に、正極集電体と正極活物質部とが同時にスリットされることが無く、バリが発生しにくい。一方、図2のような従来の構成では、正極集電体211と正極活物質部212とが同時にスリットされるため、正極集電体の端部211aもしくは211bにバリが発生し易い。
【0031】
本実施形態においても、負極活物質部の長手方向に沿う両端部は、正極活物質部の長手方向に沿う両端部よりも外側に位置していることが好ましい。
正極集電体の長手方向に沿う両端部には、それぞれ正極集電体の面方向に延在する絶縁材料部が配置されていることが好ましい。このような絶縁材料部により、正極活物質部の端部を安定化させることができる。絶縁材料部は、正極集電体の長手方向に沿う端部の端面に接続されており、正極集電体と絶縁材料部とが一体化されていることが好ましい。正極集電体と絶縁材料部とが一体化されている場合には、これらを一つの芯材として取り扱うことができる。
【0032】
正極集電体の面方向に延在する絶縁材料部は、加工性に優れ、絶縁性を有し、低コストであることが好ましい。このような絶縁材料部としては、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデン、ポリエチレンテレフタレートなどを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0033】
正極集電体は、正極活物質部により完全に覆われていることが好ましい。
正極集電体の面方向に延在する絶縁材料部は、必須の構成要素ではない。正極集電体の端部から正極活物質部の端部までの間には、正極活物質を充填することもできる。このような場合にも、正極集電体は、正極活物質部により完全に覆われる。
【0034】
正極集電体の面方向に延在する絶縁材料部を設けない場合、正極集電体の長手方向に沿う両端部を、それぞれ絶縁材料で被覆することが好ましい。正極集電体の端部を被覆する絶縁材料としても、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデン、ポリエチレンテレフタレートなどを用いることができる。また、アルミナなどのセラミックスを溶射することにより、正極集電体の端部をセラミックスで被覆することもできる。
【0035】
図3に、本実施形態の極板群における正極板310、負極板320およびセパレータ330の長手方向に対して垂直な断面の一例を概念的に示す。図3では、正極板310と負極板320とセパレータ330の配置関係を理解しやすいように、積層方向に間隔をあけて各要素を示す。
【0036】
正極板310は、正極集電体311および正極活物質部312からなり、負極板320は、負極集電体321および負極活物質部322からなる。正極板310と負極板320とは、セパレータ330を介して対向している。正極集電体の端部311aから正極活物質部の端部312aまでの間、ならびに正極集電体の端部311bから正極活物質部の端部312bまでの間には、絶縁材料部313が延在している。
【0037】
正極活物質部の長手方向に沿う両端部312a、312bは、正極集電体の長手方向に沿う両端部311a、311bよりも外側に位置している。このような配置において、正極活物質部312と絶縁材料部313との積層部をスリットする場合には、正極集電体311はスリットされないことから、導電性のバリは発生しない。
【0038】
図3のような構成を採用する場合、正極集電体の端部311aから正極活物質部の端部312aまでの間隔、ならびに正極集電体の端部311bから正極活物質部の端部312bまでの間隔は、特に限定されないが、それぞれ2mm以下であることが好ましい。
【0039】
実施形態3
本実施形態は、(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、(c)前記正極板と負極板との間に介在するセパレータ、(d)電解液、ならびに(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器を具備するリチウムイオン二次電池であって、前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記極板群において、前記負極活物質部の長手方向に沿う両端部が、前記正極集電体の長手方向に沿う両端部よりも外側に位置し、前記正極集電体の長手方向に沿う両端部が、前記正極活物質部の長手方向に沿う両端部よりも外側に位置し、さらに、前記正極集電体の前記正極活物質部で覆われていない露出部が、絶縁材料により被覆されているリチウムイオン二次電池に関する。
【0040】
このような配置によれば、負極活物質部の長手方向に沿う両端部が、正極集電体の長手方向に沿う両端部よりも外側に位置し、正極集電体の長手方向に沿う両端部が、正極活物質部の長手方向に沿う両端部よりも外側に位置していることから、正極集電体の端部が負極活物質部の表面と対面することになる。しかしながら、正極集電体の正極活物質部で覆われていない露出部が、絶縁材料により被覆されていることから、正極集電体にバリが発生しても、バリが負極活物質部の表面と短絡することは無い。
【0041】
正極集電体の露出部を覆う絶縁材料には、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデン、ポリエチレンテレフタレートなどを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、アルミナなどのセラミックスを溶射することにより、正極集電体の露出部をセラミックスで被覆することもできる。正極集電体の露出部に絶縁テープを貼りつけることもできる。絶縁テープには、ポリプロピレンなどからなる基材およびその片面に担持させたアクリル樹脂系の粘着材からなるテープを用いることが好ましい。
正極集電体の露出部を絶縁材料で覆う工程は、正極板のスリットの前後のどちらで行うこともできる。
【0042】
図4に、本実施形態の極板群における正極板410、負極板420およびセパレータ430の長手方向に対して垂直な断面の一例を概念的に示す。図4では、正極板410と負極板420とセパレータ430の配置関係を理解しやすいように、積層方向に間隔をあけて各要素を示す。
【0043】
正極板410は、正極集電体411および正極活物質部412からなり、負極板420は、負極集電体421および負極活物質部422からなる。正極板410と負極板420とは、セパレータ430を介して対向している。正極集電体の端部411aから正極活物質部の端部412aまでの間、ならびに正極集電体の端部411bから正極活物質部の端部412bまでの間は、絶縁材料413により被覆されている。
【0044】
負極活物質部の長手方向に沿う両端部422a、422bは、正極集電体の長手方向に沿う両端部411a、411bよりも外側に位置している。また、正極集電体の長手方向に沿う両端部411a、411bは、正極活物質部の長手方向に沿う両端部412a、412bよりも外側に位置している。また、正極集電体の正極活物質部で覆われていない露出部は、絶縁材料413により被覆されている。このような正極板においては、正極集電体のバリが発生しても、そのバリが負極活物質部の表面と短絡することは無い。
【0045】
図4のような構成を採用する場合、負極活物質部の端部422aから正極集電体の端部411aまでの間隔、ならびに負極活物質部の端部422bから正極集電体の端部411bまでの間隔は、特に限定されないが、それぞれ2mm以下であることが好ましい。また、正極集電体の端部411aから正極活物質部の端部412aまでの間隔、ならびに正極集電体の端部411bから正極活物質部の端部412bまでの間隔は、特に限定されないが、それぞれ2mm以下であることが好ましい。
【0046】
実施形態4
本実施形態は、(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、(c)前記正極板と負極板との間に介在するセパレータ、(d)電解液、ならびに(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器を具備するリチウムイオン二次電池であって、前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記正極集電体は、絶縁シートおよびその両面にそれぞれ形成された導電層からなり、前記絶縁シートの長手方向に沿う両端部には、前記絶縁シートの露出部が設けられているリチウムイオン二次電池に関する。
【0047】
本実施形態に係る正極集電体は、大部分が絶縁シートからなることから、軽量である。また、このような集電体においては、スリットにより形成される断面が絶縁性を有することから、導電性のバリが発生することが無い。
【0048】
絶縁シートの構成材料には、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレートなどを用いることができる。これらの材料は、柔軟性を有する点でも都合がよい。導電層としては、アルミニウム、アルミニウム合金などの蒸着膜が好ましい。蒸着膜の形成工程には、電子線蒸着などの従来公知の蒸着法を適宜用いれば良い。
絶縁シートの厚さは10〜30μmとすることが好ましく、導電層の厚さは1〜20μmとすることが好ましい。
【0049】
本実施形態においても、負極活物質部の長手方向に沿う両端部は、正極活物質部の長手方向に沿う両端部よりも外側に位置していることが好ましい。
図5に、本実施形態の極板群における正極板510、負極板520およびセパレータ530の長手方向に対して垂直な断面の一例を概念的に示す。図5では、正極板510と負極板520とセパレータ530の配置関係を理解しやすいように、積層方向に間隔をあけて各要素を示す。
【0050】
正極板510は、正極集電体511および正極活物質部512からなり、負極板520は、負極集電体521および負極活物質部522からなる。正極板510と負極板520とは、セパレータ530を介して対向している。正極集電体511は、絶縁シート511xおよびその両面にそれぞれ形成された導電層511yからなり、絶縁シート511xの長手方向に沿う両端部には、絶縁シートの露出部511x’が設けられている。図5のような構成を採用する場合、絶縁シートの露出部511x’の幅は、特に限定されないが、2mm以下であることが好ましい。
【0051】
正極集電体511の長手方向に沿う両端部511a、511bは、絶縁シートの切断面を有することから、導電性を有するバリは発生し得ない。そのため、正極集電体511の長手方向に沿う両端部511a、511bが、負極活物質部512の表面と対向しているにもかかわらず、正極集電体と負極活物質部との短絡は防止される。
【0052】
実施形態5
本実施形態は、(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、(c)前記正極板と負極板との間に介在するセパレータ、(d)電解液、ならびに(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器を具備するリチウムイオン二次電池であって、前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記正極板の長手方向に沿う両端部は、それぞれ絶縁材料により被覆されているリチウムイオン二次電池に関する。
【0053】
正極板の長手方向に沿う両端部が、それぞれ絶縁材料により被覆されていることから、正極活物質部の端部付近をスリットする場合に、正極集電体にバリが発生したとしても、絶縁材料により、バリと負極活物質部との短絡は防止される。例えば、図2のような従来の構成の正極板の長手方向に沿う両端部を、それぞれ絶縁材料により被覆することにより、本実施形態を実現することができる。
【0054】
正極板の長手方向に沿う両端部を被覆する絶縁材料には、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデン、ポリエチレンテレフタレートなどを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0055】
正極板の長手方向に沿う両端部を絶縁材料で被覆する工程は、正極板のスリットの前後のどちらで行うこともできるが、正極板をスリットした後では、スリットにより形成された断面全体を絶縁材料で被覆することができる。
本実施形態においても、負極活物質部の長手方向に沿う両端部は、正極活物質部の長手方向に沿う両端部よりも外側に位置していることが好ましい。
【0056】
図6に、本実施形態の極板群における正極板610、負極板620およびセパレータ630の長手方向に対して垂直な断面の一例を概念的に示す。図6では、正極板610と負極板620とセパレータ630の配置関係を理解しやすいように、積層方向に間隔をあけて各要素を示す。
【0057】
正極板610は、正極集電体611および正極活物質部612からなり、負極板620は、負極集電体621および負極活物質部622からなる。正極板610と負極板620とは、セパレータ630を介して対向している。正極板610の長手方向に沿う両端部は、絶縁材料613で被覆されていることから、正極集電体がバリを有する場合にも、バリと負極活物質部との短絡は防止される。
【0058】
なお、実施形態1〜5においては、正極板の4辺のうち、長手方向に沿う両端部の配置や構成について説明したが、短手方向に沿う両端部の少なくとも一方においても、同様の配置や構成を採用することができる。その場合、短絡を防止する効果は、さらに大きくなる。また、実施形態1〜5において説明した正極板の配置や構成は、それぞれを単独で採用することも、複数を組み合わせて採用することもできる。
【0059】
【実施例】
次に、実施例に基づいて、本発明をさらに具体例に説明する。ただし、以下の実施例は、本発明を限定するものではない。
【0060】
《実施例1》
実施形態1の実施例の一つについて、図7〜10を参照しながら説明する。
(i)正極板の作製
正極板708は、正極集電体708aの両面に、正極活物質部708bを担持させることで作製した。
正極活物質部708bは、正極材料ペーストを、正極集電体708aの両面に塗工し、乾燥し、圧延することにより形成した。
【0061】
正極材料ペーストは、正極活物質のLiCoO2と、導電剤のアセチレンブラックと、結着剤のポリフッ化ビニリデンとを、それぞれ重量比92:3:5の割合で混合することにより調製した。結着剤のポリフッ化ビニリデンは、N−メチル−2−ピロリドン(以下、NMPという)に溶解させて、NMP溶液として用いた。なお、ポリフッ化ビニリデンのNMP溶液は、正極板作製時において、非活物質ペーストとしても用いた。
【0062】
正極材料ペーストおよび非活物質ペーストは、厚さ20μmのアルミニウム箔からなる正極集電体708aの両面に、ストライプ状に間欠塗工した。
図8に、正極材料ペースト801と非活物質ペースト802が塗工された正極集電体708aの上面図を示す。正極材料ペーストおよび非活物質ペーストの未塗工部では、正極集電体708aが露出しており、その露出部の間隔は40mmである。正極材料ペースト801および非活物質ペースト802の長さは、両方とも419mmである。正極材料ペースト801の幅は50mmであり、非活物質ペースト802の幅は、中央が8mm、両端が6mmである。正極集電体708aの長手方向に沿う両端部における未塗工部の幅は10mmである。
【0063】
次いで、図9に示すように、ペーストの間欠部分にも、非活物質ペースト802’を塗工した。非活物質ペースト802、802’の塗膜の厚さと、正極材料ペースト801の塗膜の厚さは同じとし、乾燥後の両面の塗膜の厚さの合計は280μmとした。正極集電体708aの厚さを含めた全体の厚さは300μmとした。
【0064】
その後、全体の厚さが180μmになるまで、直径300mmのローラで圧延し、ストライプ状の正極活物質部と非活物質部とを有する正極板フープを得た。正極板フープを非活物質部でスリットし、正極板とした。得られた正極板の正極材料密度は3.1g/ccであった。
【0065】
正極板の上面図を図10に示す。図10において、正極板の長手方向の長さは428mm、幅は54mmである。正極活物質部1002は、正極材料ペーストの塗膜と同じく、長さ419mm、幅50mmである。正極活物質部1002の周囲には、幅2mmの非活物質部1003が配置されている。
【0066】
非活物質部1003の一部を5mm幅で剥離して形成した正極集電体708aの露出部には、長さ75mm、幅3mmの正極リード716を溶接した。正極リード716の溶接部は絶縁テープで被覆した。
【0067】
(ii)負極板の作製
負極板709は、従来公知の方法で、負極集電体709aの両面に、負極活物質部709bを担持させることで作製した。
負極活物質部709bは、負極材料ペーストを、負極集電体709aの両面に塗工し、乾燥し、圧延することにより形成した。
【0068】
負極材料ペーストは、人造黒鉛と、結着剤のスチレンブタジエンゴム(SBR)とを、重量比97:3の割合で混合して調製した。結着剤のスチレンブタジエンゴムは、水に分散させて、水性分散液として用いた。
【0069】
負極材料ペーストは、厚さ14μmの銅箔からなる負極集電体709aの両面に塗工した。次いで、負極材料ペーストの塗膜と負極集電体とを含めた全体の厚さが196μmになるまで、直径300mmのローラで圧延し、負極活物質部を有する負極板フープを得た。
【0070】
得られた負極板フープを、正極活物質部より大きく、かつ、非活物質部を含む正極板全体より小さい寸法にスリットし、負極板とした。得られた負極板の負極材料密度は1.4g/ccであった。負極板の長手方向の長さは513mm、幅は52mmであった。
【0071】
負極活物質部の一部を5mm幅で剥離して形成した負極集電体709aの露出部には、長さ75mm、幅3mmの負極リード717を溶接した。負極リード717の溶接部は絶縁テープで被覆した。
【0072】
(iii)電解液の調製
電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比1:1で混合した混合溶媒に、溶質として6フッ化リン酸リチウム(LiPF6)を1mol/dm3の濃度に溶解したものを用いた。
(iv)円筒形電池の組み立て工程
【0073】
図7に示すような、直径18mm、高さ65mmの円筒形のリチウムイオン二次電池を組み立てた。電池の設計容量は1400mAhとした。
正極板708と負極板709とを、ポリエチレン製微多孔膜からなるセパレータ710を介して、図1に示した配置で対向させ、渦巻き状に捲回することにより、極板群711を構成した。極板群711は、その上下に上部絶縁板718および下部絶縁板719を配置して、電解液(図示せず)とともに電池容器712内に収容した。電池容器712には、負極端子を兼ねる円筒状の電池缶713と正極端子を兼ねる封口板714とを組み合わせて用いた。極板群711と電池缶713の内周との間にもセパレータ710を介装した。
【0074】
正極板708の正極リード716は、上部絶縁板718の中央の穴を通して、封口板714の裏面に接続した。負極板709の負極リード717は、下部絶縁板719の外周を迂回させて、下部絶縁板719と電池缶713の底部との間に介在させた。負極リード717と電池缶713の底部は、下部絶縁板719の中央の穴の内側で溶接した。電池缶713の開口端部と封口板714の周縁部との間に絶縁パッキン715を介装して、封口板714で電池缶713の開口を封口し、電池容器712を密閉した。
【0075】
実施例1の電池の極板群においては、正極集電体の長手方向に沿う両端部が、負極活物質部の長手方向に沿う両端部よりも外側に位置しているため、正極集電体の端部に発生したバリがセパレータを突き破る事態になっても、そのバリが負極活物質部と短絡することは無いと考えられる。また、正極板の端部付近には、絶縁材料からなる非活物質部が設けられていることから、正極集電体が安定化するとともに、一般的な短絡も起こりにくくなっている。さらに、非活物質部の厚さと正極活物質部の厚さとが同一で段差が無いことから、捲回時の巻ずれなどは起こりにくかった。
【0076】
《実施例2》
実施形態2の実施例の一つについて、図11〜13を参照しながら説明する。
(i)正極板の作製
図11に示すように、正極集電体となる厚さ20μmのアルミニウム箔1101と、絶縁材料部となる2本の厚さ20μmのポリプロピレンフィルム1102とを、3列に配置し、正極芯材を構成した。アルミニウム箔1101の幅は48mm、その長手方向に沿う両端部に配置したポリプロピレンフィルム1102の幅は両方とも5mmとした。3つの構成部材からなる正極芯材は、正極材料ペーストの塗工機に設置した。
【0077】
図12に示すように、ポリプロピレンフィルム1102からなる絶縁材料部上にかかるように、正極芯材の両面に、実施例1で調製したのと同じ正極材料ペースト1201を幅52mmで塗工した。図12中、破線はアルミニウム箔とポリプロピレンフィルムとの境界を示す。
なお、アルミニウム箔とポリプロピレンフィルムとを、5列、7列、・・・に配置して、より多くの正極板を効率的に作製することも可能である。
【0078】
実施例1と同様に、乾燥後の両面の塗膜と正極集電体を含めた全体の厚さは300μmとし、全体の厚さが180μmになるまで圧延して、正極活物質部を有する正極板フープを得た。正極板フープを絶縁材料部となるポリプロピレンフィルム1102と正極活物質部との積層部でスリットし、正極板とした。
正極板の上面図を図13に示す。図13において、正極板の長手方向の長さは428mm、幅は50mmである。
【0079】
正極活物質部1302の一部を5mm幅で剥離して形成したアルミニウム箔1101の露出部には、実施例1と同様の正極リード1316を設けた。正極板の長手方向に沿う両端部には、それぞれ幅1mmのポリプロピレンフィルムと正極活物質部との積層部を残した。
【0080】
(ii)負極板の作製
負極板は、実施例1と同様に作製した負極板フープを、正極板より大きい寸法にスリットして作製した。負極板の構造および寸法は、実施例1と同様である。
【0081】
(iii)円筒形電池の組み立て工程
実施例1と同様に、直径18mm、高さ65mm、設計容量1400mAhの円筒形のリチウムイオン二次電池を組み立てた。
すなわち、上記で作製した正極板と負極板とを、ポリエチレン製微多孔膜からなるセパレータを介して、図3に示した配置で対向させ、渦巻き状に捲回することにより、極板群を構成した。そして、この極板群を用いたこと以外、実施例1と同様の実施例2の電池を組み立てた。
【0082】
実施例2の電池の極板群においては、正極板フープを絶縁材料部となるポリプロピレンフィルムと正極活物質部との積層部でスリットしたことから、正極板の長手方向に沿う端部には導電性のバリが発生していないと考えられる。
【0083】
《実施例3》
実施形態3の実施例の一つについて、図14〜15を参照しながら説明する。
(i)正極板の作製
実施例1で用いたのと同じ正極集電体1401の両面に、図14に示すように、実施例1で調製したのと同じ正極材料ペースト1402をストライプ状に塗工した。図14において、正極材料ペーストの幅は2列とも50mmであり、集電体露出部の幅は中央が8mm、両端が4mmである。
【0084】
実施例1と同様に、乾燥後の両面の塗膜と正極集電体を含めた全体の厚さは300μmとし、全体の厚さが180μmになるまで圧延して、正極活物質部1501を有する正極板フープを得た。正極板フープを、集電体露出部でスリットし、図15に示すように、残された集電体露出部を幅1mmの絶縁テープ1509で被覆して正極板とした。
【0085】
図15において、正極板の長手方向の長さは428mm、幅は52mmである。正極活物質部1501の一部を5mm幅で剥離して形成した正極集電体1401の露出部には、実施例1と同様の正極リード1516を設けた。
【0086】
(ii)負極板の作製
負極板は、実施例1と同様に作製した負極板フープを、正極板より大きい寸法にスリットして作製した。負極板の構造および寸法は、実施例1と同様である。
【0087】
(iii)円筒形電池の組み立て工程
実施例1と同様に、直径18mm、高さ65mm、設計容量は1400mAhの円筒形のリチウムイオン二次電池を組み立てた。
すなわち、上記で作製した正極板と負極板とを、ポリエチレン製微多孔膜からなるセパレータを介して、図4に示したような配置で対向させ、渦巻き状に捲回することにより、極板群を構成した。そして、この極板群を用いたこと以外、実施例1と同様の実施例3の電池を組み立てた。
【0088】
実施例3の電池の極板群においては、正極集電体の端部が絶縁テープにより被覆されていることから、正極集電体の端部にバリが発生しても、そのバリと負極活物質部とが短絡することは無いと考えられる。
【0089】
《実施例4》
実施形態4の実施例の一つについて、図16〜18を参照しながら説明する。
(i)正極板の作製
厚さ20μmのフープ状のポリプロピレンシート1601の両面の同じ位置に、図16に示すように、前後左右に10mm以上のポリプロピレンシートの露出部を残して、厚さ5μmのAl蒸着膜1602を形成した。Al蒸着膜1602は、長さ426mm、幅48mmとした。
【0090】
次に、図17に示すように、実施例1と同様に調製した正極材料ペースト1701を、ポリプロピレンシート1601の両面の同じ位置に、片面ずつ塗工した。この時、Al蒸着膜1602の一方の幅5mmの端部には、正極材料ペーストが塗工されないAl蒸着膜の露出部1702を残した。Al蒸着膜の露出部1702は、ポリプロピレンシートの両面の同じ位置に設けた。
【0091】
実施例1と同様に、乾燥後の両面の塗膜と正極集電体を含めた全体の厚さは300μmとし、全体の厚さが180μmになるまで圧延して、正極活物質部を有する正極板フープを得た。正極板フープを、Al蒸着膜の無い箇所でスリットし、図18に示すような正極板とした。正極板の長さは428mm、幅は50mmである。正極集電体の両面に設けた幅5mmのAl蒸着膜の露出部1702には、それぞれ長さ75mm、幅3mmの正極リード1816を導電性接着剤で固定し、それらの自由端は互いに溶接した。正極リード1816の接着固定部は絶縁テープで被覆した。正極板の長手方向に沿う幅1mmの端部には、Al蒸着膜が無く、ポリプロピレンシート上に直接正極活物質部が担持されている。
【0092】
(ii)負極板の作製
負極板は、実施例1と同様に作製した負極板フープを、正極板より大きい寸法にスリットして作製した。負極板の構造および寸法は、実施例1と同様である。
【0093】
(iii)円筒形電池の組み立て工程
実施例1と同様に、直径18mm、高さ65mm、設計容量1400mAhの円筒形のリチウムイオン二次電池を組み立てた。
すなわち、上記で作製した正極板と負極板とを、ポリエチレン製微多孔膜からなるセパレータを介して、図5に示したような配置で対向させ、渦巻き状に捲回することにより、極板群を構成した。そして、この極板群を用いたこと以外、実施例1と同様の実施例4の電池を組み立てた。
【0094】
実施例4の電池においては、正極集電体のスリット部分が絶縁材料であることから、導電性のバリが発生することがなく、バリによる短絡は起こらないと考えられる。
【0095】
《実施例5》
実施形態5の実施例の一つについて説明する。
(i)正極板の作製
実施例1で用いたのと同じ正極集電体の両面の全面に、実施例1で調製したのと同じ正極材料ペーストを塗工した。
【0096】
実施例1と同様に、乾燥後の両面の塗膜と正極集電体を含めた全体の厚さは300μmとし、全体の厚さが180μmになるまで圧延して、正極活物質部を有する正極板フープを得た。正極板フープを、幅50mm、長さ428mmにスリットし、その長手方向に沿う幅2mmの両端部を、ポリエチレン粉末(融点約100℃)の分散液中に浸漬し、乾燥後、両端部に付着したポリエチレン粉末を溶融させてポリエチレンの被膜を形成した。
正極活物質部の一部を5mm幅で剥離して形成した正極集電体の露出部には、実施例1と同様の正極リードを設けた。
【0097】
(ii)負極板の作製
負極板は、実施例1と同様に作製した負極板フープを、正極板より大きい寸法にスリットして作製した。負極板の構造および寸法は、実施例1と同様である。
【0098】
(iii)円筒形電池の組み立て工程
実施例1と同様に、直径18mm、高さ65mm、設計容量1400mAhの円筒形のリチウムイオン二次電池を組み立てた。
すなわち、上記で作製した正極板と負極板とを、ポリエチレン製微多孔膜からなるセパレータを介して、図6に示したような配置で対向させ、渦巻き状に捲回することにより、極板群を構成した。そして、この極板群を用いたこと以外、実施例1と同様の実施例5の電池を組み立てた。
【0099】
実施例5の電池においては、正極板のスリット時にバリが発生しても、正極板の端部に設けられたポリエチレンの被膜により、バリと負極活物質部との短絡は防止される。
【0100】
《比較例1》
実施例5と同様の正極板フープを作製し、これを幅50mm、長さ428mmにスリットした。こうして得られた正極板を、その長手方向に沿う両端部にポリエチレンの被膜を形成することなく、そのまま用いて、実施例5と同様の直径18mm、高さ65mm、設計容量1400mAhの円筒形のリチウムイオン二次電池を組み立てた。
【0101】
[評価]
実施例1〜5および比較例1の電池を以下の手順で評価した。
(i)各電池を、それぞれ100個用意し、これらを500mAで、電池電圧が4.4Vの過充電状態になるまで充電した。
(ii)過充電状態の電池を、その電圧が低下し始めるまで、平板で抑えて圧壊させた。
(iii)圧壊後に温度が上昇し、ガス発生により安全弁が作動した電池の個数を調べた。
【0102】
結果を以下に示す。
実施例1:安全弁が作動した電池の個数は、100個中0個であった。
実施例2:安全弁が作動した電池の個数は、100個中0個であった。
実施例3:安全弁が作動した電池の個数は、100個中0個であった。
実施例4:安全弁が作動した電池の個数は、100個中0個であった。
実施例5:安全弁が作動した電池の個数は、100個中0個であった。
比較例1:安全弁が作動した電池の個数は、100個中26個であった。
【0103】
【発明の効果】
以上のように、本発明のリチウムイオン二次電池によれば、正極集電体のスリット時にバリが発生するのを防止したり、バリが発生しても、バリと負極活物質部との短絡は防止される。
【図面の簡単な説明】
【図1】本発明の実施形態1の極板群における正極板、負極板およびセパレータの長手方向に対して垂直な断面の一例を概念的に示す図である。
【図2】従来の極板群における正極板、負極板およびセパレータの長手方向に対して垂直な断面の一例を概念的に示す図である。
【図3】本発明の実施形態2の極板群における正極板、負極板およびセパレータの長手方向に対して垂直な断面の一例を概念的に示す図である。
【図4】本発明の実施形態3の極板群における正極板、負極板およびセパレータの長手方向に対して垂直な断面の一例を概念的に示す図である。
【図5】本発明の実施形態4の極板群における正極板、負極板およびセパレータの長手方向に対して垂直な断面の一例を概念的に示す図である。
【図6】本発明の実施形態5の極板群における正極板、負極板およびセパレータの長手方向に対して垂直な断面の一例を概念的に示す図である。
【図7】本発明の実施例1のリチウムイオン二次電池の縦断面図である。
【図8】本発明の実施例1に係る正極板の製造工程を説明するための正極集電体の上面図である。
【図9】本発明の実施例1に係る正極板の製造工程を説明するための正極集電体の別の上面図である。
【図10】本発明の実施例1に係る正極板の正面図である。
【図11】本発明の実施例2に係る正極板の製造工程を説明するための正極集電体の上面図である。
【図12】本発明の実施例2に係る正極板の製造工程を説明するための正極集電体の別の上面図である。
【図13】本発明の実施例2に係る正極板の正面図である。
【図14】本発明の実施例3に係る正極板の製造工程を説明するための正極集電体の上面図である。
【図15】本発明の実施例3に係る正極板の正面図である。
【図16】本発明の実施例4に係る正極板の製造工程を説明するための正極集電体の上面図である。
【図17】本発明の実施例4に係る正極板の製造工程を説明するための正極集電体の別の上面図である。
【図18】本発明の実施例4に係る正極板の正面図である。
【符号の説明】
110 正極板
111 正極集電体
111a、b 正極集電体の端部
112 正極活物質部
112a、b 正極活物質部の端部
113 非活物質部
120 負極板
121 負極集電体
122 負極活物質部
122a、b 負極活物質部の端部
130 セパレータ
210 正極板
211 正極集電体
212 正極活物質部
220 負極板
221 負極集電体
222 負極活物質部
230 セパレータ
211a、b 正極集電体の端部
222a、b 負極活物質部の端部
310 正極板
311 正極集電体
311a、b 正極集電体の端部
312 正極活物質部
312a、b 正極活物質部の端部
313 絶縁材料部
320 負極板
321 負極集電体
322 負極活物質部
330 セパレータ
410 正極板
411 正極集電体
411a、b 正極集電体の端部
412 正極活物質部
412a、b 正極活物質部の端部
413 絶縁材料
420 負極板
421 負極集電体
422 負極活物質部
422a、b 負極活物質部の端部
430 セパレータ
510 正極板
511 正極集電体
511a、b 正極集電体の端部
511x 絶縁シート
511x’ 絶縁シートの露出部
511y 導電層
512 正極活物質部
520 負極板
521 負極集電体
522 負極活物質部
530 セパレータ
610 正極板
611 正極集電体
612 正極活物質部
613 絶縁材料
620 負極板
621 負極集電体
622 負極活物質部
630 セパレータ
708 正極板
708a 正極集電体
708b 正極活物質部
709 負極板
709a 負極集電体
709b 負極活物質部
710 セパレータ
711 極板群
712 電池容器
713 電池缶
714 封口板
715 絶縁パッキン
716 正極リード
717 負極リード
718 上部絶縁板
719 下部絶縁板
801 正極材料ペースト
802、802’ 非活物質ペースト
1002 正極活物質部
1003 非活物質部
1101 アルミニウム箔
1102 ポリプロピレンフィルム
1201 正極材料ペースト
1302 正極活物質部
1316 正極リード
1401 正極集電体
1402 正極材料ペースト
1501 正極活物質部
1509 絶縁テープ
1516 正極リード
1601 ポリプロピレンシート
1602 Al蒸着膜
1701 正極材料ペースト
1702 Al蒸着膜の露出部
1816 正極リード
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a highly safe wound lithium ion secondary battery in which the possibility of a short circuit between a burr of a positive electrode current collector and a negative electrode active material portion is reduced.
[0002]
[Prior art]
In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for smaller, lighter and higher energy density secondary batteries serving as driving power sources. . Among such secondary batteries, a lithium ion secondary battery using lithium as an active material has particularly high voltage and high energy density.
[0003]
As a conventional lithium ion secondary battery, a wound battery is the mainstream. A wound battery includes a positive electrode plate made of a positive electrode active material portion and a positive electrode current collector carrying the positive electrode active material portion, and a negative electrode plate made of a negative electrode active material portion and a negative electrode current collector carrying the positive electrode active material portion. It has a rotating electrode plate group. The positive electrode active material part includes a positive electrode active material capable of inserting or extracting lithium ions by charging and discharging, and the negative electrode active material part includes a negative electrode active material capable of inserting or extracting lithium ions by charging and discharging. It is. The electrode plate group is accommodated in the battery container together with the electrolytic solution.
[0004]
In the case of a wound battery, the electrode plate and the separator are easily deformed at the bent portion or the curved portion when the electrode plate is wound. Such deformation can induce an internal short circuit. Further, when the electrode plate is wound, an internal short circuit may occur due to the shift of the separator position.
[0005]
In view of the above, the present inventors have focused on preventing the main cause of internal short-circuiting in a wound lithium ion secondary battery.
[0006]
The following four types of internal short circuits are conceivable.
(1) Short circuit between the positive electrode active material part and the negative electrode active material part
(2) Short circuit between the positive electrode active material portion and the negative electrode current collector
(3) Short circuit between the positive electrode current collector and the negative electrode active material part
(4) Short circuit between the positive electrode current collector and the negative electrode current collector
[0007]
The present inventors have observed the presence or absence of sparks and ignition by disassembling the overcharged battery for each part and bringing the parts into direct contact with each other. As a result, in the short circuit modes (1) and (2), neither spark nor ignition occurred, but in the short circuit mode (3), spark and ignition occurred. In the short-circuit mode (4), sparking occurred, but no ignition occurred.
[0008]
The following is considered from these results.
In the short-circuit modes (1) and (2), since the resistance of the positive electrode active material itself is large, no large current flows even if the positive electrode active material portion and the negative electrode active material portion are short-circuited.
[0009]
In the short-circuit mode (4), a spark is generated due to a short circuit between the current collectors having conductivity, but the current collector itself is not flammable and therefore does not ignite.
In the short circuit mode (3), since the positive electrode current collector and the negative electrode active material are both conductive, when they are short-circuited, sparks are generated and the flammable negative electrode active material is ignited.
[0010]
From the above consideration, it is considered that the short circuit mode (3) is the main cause of the internal short circuit. The short-circuit mode (3) is actually generated when a conductive burr generated when the positive electrode current collector is slit contacts the surface of the negative electrode active material portion.
[0011]
In recent years, instead of using a conventional separator, a stacked lithium ion secondary battery having an electrode plate group in which a positive electrode plate and a negative electrode plate are stacked via an electrolyte layer has been proposed. Thus, in the battery in which the electrolyte layer is integrated with the positive electrode plate and the negative electrode plate, a proposal has been made to prevent a short circuit by controlling the dimensions of the electrode plate and the separator (see Patent Document 1). However, the laminated integrated electrode plate group generally has a complicated manufacturing process, and it is difficult to increase the capacity. Further, in such an electrode plate group, it has been proposed to use a current collector provided with a metal vapor deposition film on the surface of a resin film such as a polyethylene terephthalate film from the viewpoint of reducing the weight of the battery (Patent Literature). 2).
[0012]
[Patent Document 1]
JP 2000-30742 A
[Patent Document 2]
JP-A-9-213338
[0013]
[Problems to be solved by the invention]
The present invention has been made in view of the above knowledge, and one of the objects of the present invention is to prevent a short circuit between the burr of the positive electrode current collector and the negative electrode active material part, and to achieve a highly safe wound type. The object is to provide a lithium ion secondary battery.
[0014]
[Means for Solving the Problems]
The lithium ion secondary battery of the present invention comprises (a) a positive electrode active material part and a positive electrode current collector carrying the positive electrode active material part, and the positive electrode active material part can occlude or release lithium ions by charging and discharging. A positive electrode plate containing a positive electrode active material, (b) a negative electrode active material part, and a negative electrode current collector carrying the negative electrode active material part, wherein the negative electrode active material part can occlude or release lithium ions by charge and discharge A negative electrode plate containing a negative electrode active material, (c) a separator interposed between the positive electrode plate and the negative electrode plate, (d) an electrolyte solution, and (e) a battery containing the positive electrode plate, the negative electrode plate, the separator and the electrolyte solution A container is provided.
[0015]
The positive electrode plate and the negative electrode plate constitute an electrode plate group by being wound through the separator. Here, the lithium ion secondary battery of the present invention has any one of the following features [A] to [E] in the electrode plate group.
[0016]
[A] Both end portions along the longitudinal direction of the positive electrode current collector are located outside both end portions along the longitudinal direction of the negative electrode active material portion. In addition, at both end portions along the longitudinal direction of the positive electrode active material portion, inactive material portions that do not occlude or release lithium ions by charging and discharging are provided, respectively. Yes.
[B] Both end portions along the longitudinal direction of the positive electrode active material portion are positioned outside both end portions along the longitudinal direction of the positive electrode current collector.
[0017]
[C] Both end portions along the longitudinal direction of the negative electrode active material portion are located outside both end portions along the longitudinal direction of the positive electrode current collector, and both end portions along the longitudinal direction of the positive electrode current collector are An exposed portion which is located outside both end portions along the longitudinal direction of the positive electrode active material portion and is not covered with the positive electrode active material portion of the positive electrode current collector is covered with an insulating material.
[0018]
[D] The positive electrode current collector includes an insulating sheet and conductive layers respectively formed on both surfaces thereof, and exposed portions of the insulating sheet are provided at both ends along the longitudinal direction of the insulating sheet.
[E] Both end portions along the longitudinal direction of the positive electrode plate are respectively covered with an insulating material.
For the separator, for example, a woven fabric, a nonwoven fabric, a microporous film, or the like made of polyolefin is used.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
This embodiment includes (a) a positive electrode active material part and a positive electrode current collector carrying the positive electrode active material part, and the positive electrode active material part contains a positive electrode active material that can occlude or release lithium ions by charging and discharging. And (b) a negative electrode active material part and a negative electrode current collector carrying the negative electrode active material part, wherein the negative electrode active material part contains a negative electrode active material capable of inserting or extracting lithium ions by charging and discharging. Lithium comprising a negative electrode plate, (c) a separator interposed between the positive electrode plate and the negative electrode plate, (d) electrolyte, and (e) a battery container containing the positive electrode plate, negative electrode plate, separator and electrolyte In the ion secondary battery, the positive electrode plate and the negative electrode plate are wound through the separator between them to constitute an electrode plate group. In the electrode plate group, the positive electrode plate Longitudinal direction of current collector Both end portions along is a lithium ion secondary battery than both end portions along the longitudinal direction is located outside of the negative electrode active material portion.
[0020]
Since both end portions along the longitudinal direction of the positive electrode current collector are positioned outside both end portions along the longitudinal direction of the negative electrode active material portion, burrs are generated at the end portions of the positive electrode current collector even when slitting. However, the short circuit between the burr and the negative electrode active material portion can be prevented.
[0021]
Inactive material portions that do not occlude or release lithium ions by charging and discharging at both ends along the longitudinal direction of the positive electrode active material portion But Establishment Being The The end portion of the positive electrode current collector can be stabilized by the inactive material portion. Furthermore, at both ends along the longitudinal direction of the positive electrode current collector, the thickness of the non-active material portion is the same as the thickness of the positive electrode active material portion, and there is no step, so that winding misalignment or the like during winding is unlikely to occur. This is preferable. In the case where an insulating material is used as the non-active material part, even a general short circuit other than a short circuit between the burr of the positive electrode current collector and the negative electrode active material part can be suppressed.
[0022]
In the electrode plate group, it is preferable that both end portions along the longitudinal direction of the negative electrode active material portion are positioned outside both end portions along the longitudinal direction of the positive electrode active material portion. With this arrangement, Li ions released from the positive electrode active material during charging can be reliably received by the opposing negative electrode active material, thereby causing problems such as uneven load on the negative electrode active material and precipitation of metallic lithium. Can be prevented.
[0023]
In FIG. 1, an example of a cross section perpendicular | vertical with respect to the longitudinal direction of the positive electrode plate 110 in the electrode group of this embodiment, the negative electrode plate 120, and the separator 130 is shown notionally. In FIG. 1, each element is shown at intervals in the stacking direction so that the positional relationship among the positive electrode plate 110, the negative electrode plate 120, and the separator 130 can be easily understood.
[0024]
The positive electrode plate 110 includes a positive electrode current collector 111 and a positive electrode active material portion 112, and the negative electrode plate 120 includes a negative electrode current collector 121 and a negative electrode active material portion 122. The positive electrode plate 110 and the negative electrode plate 120 face each other with the separator 130 interposed therebetween. Between the end portion 111a of the positive electrode current collector and the end portion 112a of the positive electrode active material portion, and between the end portion 111b of the positive electrode current collector and the end portion 112b of the positive electrode active material portion, uncoated positive electrode active material. Although an engineering part may be used, it is preferable to provide the inactive material part 113.
[0025]
Both end portions 111 a and 111 b along the longitudinal direction of the positive electrode current collector 111 are positioned outside both end portions 122 a and 122 b along the longitudinal direction of the negative electrode active material portion 122. With such an arrangement, burrs are generated at the end 111a or 111b of the positive electrode current collector, and even if the burrs break through the separator 130, there is no short circuit with the negative electrode active material portion 122.
[0026]
When the configuration shown in FIG. 1 is adopted, the distance from the end 111a of the positive electrode current collector to the end 122a of the negative electrode active material part, and the end 122b of the negative electrode active material part from the end 111b of the positive electrode current collector. It is preferable that the space | interval is 50-300 micrometers respectively. These intervals are preferably larger than the length of burrs assumed in the cross section of the positive electrode current collector, minus the sum of the thickness per one side of the positive electrode active material portion and the thickness of the separator. In addition, generally the length of the burr | flash assumed in the cross section of a positive electrode electrical power collector is 50-100 micrometers.
[0027]
FIG. 2 conceptually shows a cross section perpendicular to the longitudinal direction of the positive electrode plate 210, the negative electrode plate 220, and the separator 230 in the conventional electrode plate group, as in FIG.
The positive electrode plate 210 includes a positive electrode current collector 211 and a positive electrode active material portion 212, and the negative electrode plate 220 includes a negative electrode current collector 221 and a negative electrode active material portion 222.
[0028]
Both end portions 211 a and 211 b along the longitudinal direction of the positive electrode current collector are located inside the both end portions 222 a and 222 b along the longitudinal direction of the negative electrode active material portion 222. In such an arrangement, a burr is generated at the end 211a or 211b of the positive electrode current collector, and when the burr penetrates the separator 230, a short circuit with the negative electrode active material unit 222 occurs.
[0029]
Embodiment 2
This embodiment includes (a) a positive electrode active material part and a positive electrode current collector carrying the positive electrode active material part, and the positive electrode active material part contains a positive electrode active material that can occlude or release lithium ions by charging and discharging. And (b) a negative electrode active material part and a negative electrode current collector carrying the negative electrode active material part, wherein the negative electrode active material part contains a negative electrode active material capable of inserting or extracting lithium ions by charging and discharging. Lithium comprising a negative electrode plate, (c) a separator interposed between the positive electrode plate and the negative electrode plate, (d) electrolyte, and (e) a battery container containing the positive electrode plate, negative electrode plate, separator and electrolyte In the ion secondary battery, the positive electrode plate and the negative electrode plate are wound through the separator between them to constitute an electrode plate group. In the longitudinal direction of the material part Cormorants both ends, a lithium ion secondary battery is positioned outward from both ends in the longitudinal direction of the positive electrode current collector.
[0030]
Since both end portions along the longitudinal direction of the positive electrode active material portion are positioned outside both end portions along the longitudinal direction of the positive electrode current collector, when the vicinity of the end portion of the positive electrode active material portion is slit, The current collector and the positive electrode active material portion are not slit at the same time, and burrs are less likely to occur. On the other hand, in the conventional configuration as shown in FIG. 2, since the positive electrode current collector 211 and the positive electrode active material part 212 are slit simultaneously, burrs are likely to occur at the end part 211a or 211b of the positive electrode current collector.
[0031]
Also in this embodiment, it is preferable that the both ends along the longitudinal direction of the negative electrode active material portion are located outside the both ends along the longitudinal direction of the positive electrode active material portion.
It is preferable that an insulating material portion extending in the surface direction of the positive electrode current collector is disposed at both ends along the longitudinal direction of the positive electrode current collector. Such an insulating material portion can stabilize the end portion of the positive electrode active material portion. The insulating material part is connected to the end face of the end part along the longitudinal direction of the positive electrode current collector, and the positive electrode current collector and the insulating material part are preferably integrated. When the positive electrode current collector and the insulating material portion are integrated, they can be handled as one core material.
[0032]
It is preferable that the insulating material portion extending in the surface direction of the positive electrode current collector is excellent in workability, has an insulating property, and is low in cost. As such an insulating material portion, polypropylene, polyethylene, polyvinylidene fluoride, polyethylene terephthalate, or the like can be used. These may be used alone or in combination of two or more.
[0033]
The positive electrode current collector is preferably completely covered with the positive electrode active material portion.
The insulating material portion extending in the surface direction of the positive electrode current collector is not an essential component. A space between the end portion of the positive electrode current collector and the end portion of the positive electrode active material portion can be filled with the positive electrode active material. Even in such a case, the positive electrode current collector is completely covered with the positive electrode active material portion.
[0034]
In the case where an insulating material portion extending in the surface direction of the positive electrode current collector is not provided, it is preferable that both end portions along the longitudinal direction of the positive electrode current collector are respectively covered with an insulating material. Polypropylene, polyethylene, polyvinylidene fluoride, polyethylene terephthalate, or the like can also be used as an insulating material that covers the end of the positive electrode current collector. Moreover, the edge part of a positive electrode electrical power collector can also be coat | covered with ceramics by spraying ceramics, such as an alumina.
[0035]
In FIG. 3, an example of a cross section perpendicular | vertical with respect to the longitudinal direction of the positive electrode plate 310 in the electrode group of this embodiment, the negative electrode plate 320, and the separator 330 is shown notionally. In FIG. 3, each element is shown at intervals in the stacking direction so that the positional relationship among the positive electrode plate 310, the negative electrode plate 320, and the separator 330 can be easily understood.
[0036]
The positive electrode plate 310 includes a positive electrode current collector 311 and a positive electrode active material portion 312, and the negative electrode plate 320 includes a negative electrode current collector 321 and a negative electrode active material portion 322. The positive electrode plate 310 and the negative electrode plate 320 face each other with the separator 330 interposed therebetween. Between the end 311a of the positive electrode current collector and the end 312a of the positive electrode active material part, and between the end 311b of the positive electrode current collector and the end 312b of the positive electrode active material part, an insulating material part 313 is formed. It is extended.
[0037]
Both end portions 312a and 312b along the longitudinal direction of the positive electrode active material portion are positioned outside both end portions 311a and 311b along the longitudinal direction of the positive electrode current collector. In such an arrangement, when the stacked portion of the positive electrode active material portion 312 and the insulating material portion 313 is slit, the positive electrode current collector 311 is not slit, so that no conductive burrs are generated.
[0038]
When the configuration shown in FIG. 3 is adopted, the distance from the end 311a of the positive electrode current collector to the end 312a of the positive electrode active material part, and the end 312b of the positive electrode current collector to the end 312b of the positive electrode active material part. Although the space | interval to is not specifically limited, It is preferable that it is each 2 mm or less.
[0039]
Embodiment 3
This embodiment includes (a) a positive electrode active material part and a positive electrode current collector carrying the positive electrode active material part, and the positive electrode active material part contains a positive electrode active material that can occlude or release lithium ions by charging and discharging. And (b) a negative electrode active material part and a negative electrode current collector carrying the negative electrode active material part, wherein the negative electrode active material part contains a negative electrode active material capable of inserting or extracting lithium ions by charging and discharging. Lithium comprising a negative electrode plate, (c) a separator interposed between the positive electrode plate and the negative electrode plate, (d) electrolyte, and (e) a battery container containing the positive electrode plate, negative electrode plate, separator and electrolyte In the ion secondary battery, the positive electrode plate and the negative electrode plate are wound through the separator between them to constitute an electrode plate group, and the negative electrode plate includes the negative electrode Longitudinal direction of the active material part Both end portions along the longitudinal direction of the positive electrode current collector are positioned outside the both end portions along the longitudinal direction of the positive electrode current collector, and both end portions along the longitudinal direction of the positive electrode current collector are both ends along the longitudinal direction of the positive electrode active material portion The present invention also relates to a lithium ion secondary battery in which an exposed portion that is located outside the portion and is not covered with the positive electrode active material portion of the positive electrode current collector is covered with an insulating material.
[0040]
According to such an arrangement, both end portions along the longitudinal direction of the negative electrode active material portion are located outside both end portions along the longitudinal direction of the positive electrode current collector, and both end portions along the longitudinal direction of the positive electrode current collector However, since it is located outside the both ends along the longitudinal direction of the positive electrode active material part, the end part of the positive electrode current collector faces the surface of the negative electrode active material part. However, since the exposed portion of the positive electrode current collector that is not covered with the positive electrode active material portion is covered with an insulating material, even if burrs are generated on the positive electrode current collector, the burrs are on the surface of the negative electrode active material portion. There is no short circuit.
[0041]
Polypropylene, polyethylene, polyvinylidene fluoride, polyethylene terephthalate, or the like can be used for the insulating material that covers the exposed portion of the positive electrode current collector. These may be used alone or in combination of two or more. Moreover, the exposed part of a positive electrode electrical power collector can also be coat | covered with ceramics by spraying ceramics, such as an alumina. An insulating tape can be attached to the exposed portion of the positive electrode current collector. As the insulating tape, it is preferable to use a base material made of polypropylene or the like and a tape made of an acrylic resin-based adhesive material carried on one side thereof.
The step of covering the exposed portion of the positive electrode current collector with an insulating material can be performed either before or after the slit of the positive electrode plate.
[0042]
FIG. 4 conceptually shows an example of a cross section perpendicular to the longitudinal direction of the positive electrode plate 410, the negative electrode plate 420, and the separator 430 in the electrode plate group of the present embodiment. In FIG. 4, each element is shown at intervals in the stacking direction so that the positional relationship among the positive electrode plate 410, the negative electrode plate 420, and the separator 430 can be easily understood.
[0043]
The positive electrode plate 410 includes a positive electrode current collector 411 and a positive electrode active material portion 412, and the negative electrode plate 420 includes a negative electrode current collector 421 and a negative electrode active material portion 422. The positive electrode plate 410 and the negative electrode plate 420 are opposed to each other with the separator 430 interposed therebetween. Between the end 411a of the positive electrode current collector and the end 412a of the positive electrode active material part and between the end 411b of the positive electrode current collector and the end part 412b of the positive electrode active material part are covered with an insulating material 413. ing.
[0044]
Both end portions 422a and 422b along the longitudinal direction of the negative electrode active material portion are positioned outside both end portions 411a and 411b along the longitudinal direction of the positive electrode current collector. Moreover, the both ends 411a and 411b along the longitudinal direction of the positive electrode current collector are located outside the both ends 412a and 412b along the longitudinal direction of the positive electrode active material portion. The exposed portion of the positive electrode current collector that is not covered with the positive electrode active material portion is covered with an insulating material 413. In such a positive electrode plate, even if burrs of the positive electrode current collector occur, the burrs do not short-circuit with the surface of the negative electrode active material portion.
[0045]
When the configuration as shown in FIG. 4 is adopted, the distance from the end 422a of the negative electrode active material portion to the end 411a of the positive electrode current collector, and the end portion 422b of the negative electrode active material portion to the end 411b of the positive electrode current collector. Although the space | interval to is not specifically limited, It is preferable that it is each 2 mm or less. Further, the distance from the end 411a of the positive electrode current collector to the end 412a of the positive electrode active material part and the distance from the end part 411b of the positive electrode current collector to the end part 412b of the positive electrode active material part are not particularly limited. , Each is preferably 2 mm or less.
[0046]
Embodiment 4
This embodiment includes (a) a positive electrode active material part and a positive electrode current collector carrying the positive electrode active material part, and the positive electrode active material part contains a positive electrode active material that can occlude or release lithium ions by charging and discharging. And (b) a negative electrode active material part and a negative electrode current collector carrying the negative electrode active material part, wherein the negative electrode active material part contains a negative electrode active material capable of inserting or extracting lithium ions by charging and discharging. Lithium comprising a negative electrode plate, (c) a separator interposed between the positive electrode plate and the negative electrode plate, (d) electrolyte, and (e) a battery container containing the positive electrode plate, negative electrode plate, separator and electrolyte In the ion secondary battery, the positive electrode plate and the negative electrode plate are wound through the separator between them to constitute an electrode plate group, and the positive electrode current collector is insulated On the sheet and both sides Consist respectively formed conductive layer, wherein the both end portions along the longitudinal direction of the insulating sheet, a lithium ion secondary battery exposed portion is provided in the insulating sheet.
[0047]
The positive electrode current collector according to this embodiment is light because most of the positive electrode current collector is made of an insulating sheet. Further, in such a current collector, since the cross section formed by the slits is insulative, no conductive burrs are generated.
[0048]
Polypropylene, polyethylene, polyethylene terephthalate, or the like can be used as the constituent material of the insulating sheet. These materials are also advantageous in that they have flexibility. As the conductive layer, a deposited film such as aluminum or aluminum alloy is preferable. A conventionally known vapor deposition method such as electron beam vapor deposition may be appropriately used for the process of forming the vapor deposition film.
The thickness of the insulating sheet is preferably 10 to 30 μm, and the thickness of the conductive layer is preferably 1 to 20 μm.
[0049]
Also in this embodiment, it is preferable that the both ends along the longitudinal direction of the negative electrode active material portion are located outside the both ends along the longitudinal direction of the positive electrode active material portion.
In FIG. 5, an example of a cross section perpendicular | vertical with respect to the longitudinal direction of the positive electrode plate 510 in the electrode group of this embodiment, the negative electrode plate 520, and the separator 530 is shown notionally. In FIG. 5, each element is shown at intervals in the stacking direction so that the positional relationship among the positive electrode plate 510, the negative electrode plate 520, and the separator 530 can be easily understood.
[0050]
The positive electrode plate 510 includes a positive electrode current collector 511 and a positive electrode active material portion 512, and the negative electrode plate 520 includes a negative electrode current collector 521 and a negative electrode active material portion 522. The positive electrode plate 510 and the negative electrode plate 520 are opposed to each other with the separator 530 interposed therebetween. The positive electrode current collector 511 includes an insulating sheet 511x and conductive layers 511y respectively formed on both surfaces thereof, and exposed portions 511x ′ of the insulating sheet are provided at both ends along the longitudinal direction of the insulating sheet 511x. When the configuration as shown in FIG. 5 is adopted, the width of the exposed portion 511x ′ of the insulating sheet is not particularly limited, but is preferably 2 mm or less.
[0051]
Since both end portions 511a and 511b along the longitudinal direction of the positive electrode current collector 511 have a cut surface of the insulating sheet, a conductive burr cannot be generated. Therefore, although both ends 511a and 511b along the longitudinal direction of the positive electrode current collector 511 are opposed to the surface of the negative electrode active material part 512, a short circuit between the positive electrode current collector and the negative electrode active material part is prevented. Is done.
[0052]
Embodiment 5
This embodiment includes (a) a positive electrode active material part and a positive electrode current collector carrying the positive electrode active material part, and the positive electrode active material part contains a positive electrode active material that can occlude or release lithium ions by charging and discharging. And (b) a negative electrode active material part and a negative electrode current collector carrying the negative electrode active material part, wherein the negative electrode active material part contains a negative electrode active material capable of inserting or extracting lithium ions by charging and discharging. Lithium comprising a negative electrode plate, (c) a separator interposed between the positive electrode plate and the negative electrode plate, (d) electrolyte, and (e) a battery container containing the positive electrode plate, negative electrode plate, separator and electrolyte In the ion secondary battery, the positive electrode plate and the negative electrode plate are wound through the separator between them to form an electrode plate group, and are along the longitudinal direction of the positive electrode plate Both ends are A lithium ion secondary battery is covered by the edge material.
[0053]
Since both end portions along the longitudinal direction of the positive electrode plate are respectively coated with an insulating material, even if burrs occur in the positive electrode current collector when slitting the vicinity of the end portion of the positive electrode active material portion, the insulating material This prevents a short circuit between the burr and the negative electrode active material portion. For example, this embodiment can be realized by covering both end portions along the longitudinal direction of a positive electrode plate having a conventional configuration as shown in FIG. 2 with an insulating material.
[0054]
Polypropylene, polyethylene, polyvinylidene fluoride, polyethylene terephthalate, or the like can be used as an insulating material that covers both ends along the longitudinal direction of the positive electrode plate. These may be used alone or in combination of two or more.
[0055]
The process of covering both ends along the longitudinal direction of the positive electrode plate with an insulating material can be performed either before or after the slit of the positive electrode plate, but after slitting the positive electrode plate, the entire cross section formed by the slit is insulated. Can be coated with material.
Also in this embodiment, it is preferable that the both ends along the longitudinal direction of the negative electrode active material portion are located outside the both ends along the longitudinal direction of the positive electrode active material portion.
[0056]
In FIG. 6, an example of a cross section perpendicular | vertical with respect to the longitudinal direction of the positive electrode plate 610, the negative electrode plate 620, and the separator 630 in the electrode group of this embodiment is shown notionally. In FIG. 6, each element is shown at intervals in the stacking direction so that the arrangement relationship among the positive electrode plate 610, the negative electrode plate 620, and the separator 630 can be easily understood.
[0057]
The positive electrode plate 610 includes a positive electrode current collector 611 and a positive electrode active material portion 612, and the negative electrode plate 620 includes a negative electrode current collector 621 and a negative electrode active material portion 622. The positive electrode plate 610 and the negative electrode plate 620 are opposed to each other with the separator 630 interposed therebetween. Since both end portions along the longitudinal direction of the positive electrode plate 610 are covered with the insulating material 613, even when the positive electrode current collector has burrs, a short circuit between the burrs and the negative electrode active material portion is prevented.
[0058]
In the first to fifth embodiments, among the four sides of the positive electrode plate, the arrangement and configuration of both end portions along the longitudinal direction have been described. A configuration can be employed. In that case, the effect of preventing a short circuit is further increased. Moreover, the arrangement | positioning and structure of the positive electrode plate which were demonstrated in Embodiment 1-5 can also employ | adopt each independently, and can also employ | adopt combining several.
[0059]
【Example】
Next, based on an Example, this invention is further demonstrated to a specific example. However, the following examples do not limit the present invention.
[0060]
Example 1
One example of the first embodiment will be described with reference to FIGS.
(I) Preparation of positive electrode plate
The positive electrode plate 708 was produced by supporting the positive electrode active material portion 708b on both surfaces of the positive electrode current collector 708a.
The positive electrode active material portion 708b was formed by applying a positive electrode material paste to both surfaces of the positive electrode current collector 708a, drying, and rolling.
[0061]
The positive electrode material paste is LiCoO as a positive electrode active material. 2 The conductive agent acetylene black and the binder polyvinylidene fluoride were mixed at a weight ratio of 92: 3: 5, respectively. The binder, polyvinylidene fluoride, was dissolved in N-methyl-2-pyrrolidone (hereinafter referred to as NMP) and used as an NMP solution. The NMP solution of polyvinylidene fluoride was also used as an inactive material paste during the production of the positive electrode plate.
[0062]
The positive electrode material paste and the inactive material paste were intermittently applied in stripes on both surfaces of a positive electrode current collector 708a made of an aluminum foil having a thickness of 20 μm.
FIG. 8 shows a top view of a positive electrode current collector 708a on which a positive electrode material paste 801 and an inactive material paste 802 are applied. In the uncoated portion of the positive electrode material paste and the inactive material paste, the positive electrode current collector 708a is exposed, and the interval between the exposed portions is 40 mm. The lengths of the positive electrode material paste 801 and the inactive material paste 802 are both 419 mm. The width of the positive electrode material paste 801 is 50 mm, and the width of the inactive material paste 802 is 8 mm at the center and 6 mm at both ends. The width of the uncoated portion at both end portions along the longitudinal direction of the positive electrode current collector 708a is 10 mm.
[0063]
Next, as shown in FIG. 9, the inactive material paste 802 ′ was also applied to the intermittent portion of the paste. The coating thicknesses of the non-active material pastes 802 and 802 ′ and the coating thickness of the positive electrode material paste 801 were the same, and the total thickness of the coating films on both sides after drying was 280 μm. The total thickness including the thickness of the positive electrode current collector 708a was 300 μm.
[0064]
Then, it rolled with the roller of diameter 300mm until the whole thickness became 180 micrometers, and obtained the positive electrode plate hoop which has a striped positive electrode active material part and a non-active material part. A positive electrode plate hoop was slit at the inactive material portion to obtain a positive electrode plate. The positive electrode material density of the obtained positive electrode plate was 3.1 g / cc.
[0065]
A top view of the positive electrode plate is shown in FIG. In FIG. 10, the length of the positive electrode plate in the longitudinal direction is 428 mm, and the width is 54 mm. The positive electrode active material portion 1002 has a length of 419 mm and a width of 50 mm, similar to the coating film of the positive electrode material paste. A non-active material portion 1003 having a width of 2 mm is disposed around the positive electrode active material portion 1002.
[0066]
A positive electrode lead 716 having a length of 75 mm and a width of 3 mm was welded to an exposed portion of the positive electrode current collector 708a formed by peeling off a part of the inactive material portion 1003 with a width of 5 mm. The welded portion of the positive electrode lead 716 was covered with an insulating tape.
[0067]
(Ii) Production of negative electrode plate
The negative electrode plate 709 was produced by supporting the negative electrode active material portion 709b on both surfaces of the negative electrode current collector 709a by a conventionally known method.
The negative electrode active material portion 709b was formed by applying a negative electrode material paste to both surfaces of the negative electrode current collector 709a, drying, and rolling.
[0068]
The negative electrode material paste was prepared by mixing artificial graphite and binder styrene butadiene rubber (SBR) in a weight ratio of 97: 3. The styrene butadiene rubber as a binder was dispersed in water and used as an aqueous dispersion.
[0069]
The negative electrode material paste was applied to both surfaces of a negative electrode current collector 709a made of a copper foil having a thickness of 14 μm. Subsequently, it rolled with the roller of diameter 300mm until the whole thickness including the coating film of a negative electrode material paste and a negative electrode collector became 196 micrometers, and the negative electrode plate hoop which has a negative electrode active material part was obtained.
[0070]
The obtained negative electrode plate hoop was slit to a size larger than the positive electrode active material part and smaller than the whole positive electrode plate including the non-active material part to obtain a negative electrode plate. The negative electrode material density of the obtained negative electrode plate was 1.4 g / cc. The length of the negative electrode plate in the longitudinal direction was 513 mm, and the width was 52 mm.
[0071]
A negative electrode lead 717 having a length of 75 mm and a width of 3 mm was welded to the exposed portion of the negative electrode current collector 709a formed by peeling a part of the negative electrode active material portion with a width of 5 mm. The welded portion of the negative electrode lead 717 was covered with an insulating tape.
[0072]
(Iii) Preparation of electrolyte
As the electrolyte, lithium hexafluorophosphate (LiPF) was used as a solute in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 1. 6 ) 1 mol / dm Three What was dissolved in the concentration of was used.
(Iv) Cylindrical battery assembly process
[0073]
A cylindrical lithium ion secondary battery having a diameter of 18 mm and a height of 65 mm as shown in FIG. 7 was assembled. The design capacity of the battery was 1400 mAh.
The positive electrode plate 708 and the negative electrode plate 709 are opposed to each other in the arrangement shown in FIG. 1 through a separator 710 made of a polyethylene microporous film, and are wound in a spiral shape to constitute an electrode plate group 711. In the electrode plate group 711, an upper insulating plate 718 and a lower insulating plate 719 are disposed above and below the electrode plate group 711 and are housed in a battery container 712 together with an electrolytic solution (not shown). A cylindrical battery can 713 that also serves as a negative electrode terminal and a sealing plate 714 that also serves as a positive electrode terminal were used in combination for the battery container 712. A separator 710 was also interposed between the electrode plate group 711 and the inner periphery of the battery can 713.
[0074]
The positive electrode lead 716 of the positive electrode plate 708 was connected to the back surface of the sealing plate 714 through the central hole of the upper insulating plate 718. The negative electrode lead 717 of the negative electrode plate 709 bypasses the outer periphery of the lower insulating plate 719 and is interposed between the lower insulating plate 719 and the bottom of the battery can 713. The bottoms of the negative electrode lead 717 and the battery can 713 were welded inside the central hole of the lower insulating plate 719. An insulating packing 715 was interposed between the opening end of the battery can 713 and the peripheral edge of the sealing plate 714, the opening of the battery can 713 was sealed with the sealing plate 714, and the battery container 712 was sealed.
[0075]
In the electrode plate group of the battery of Example 1, both end portions along the longitudinal direction of the positive electrode current collector are positioned outside the both end portions along the longitudinal direction of the negative electrode active material portion. Even if the burr generated at the end of the metal breaks through the separator, it is considered that the burr does not short-circuit with the negative electrode active material part. In addition, since an inactive material portion made of an insulating material is provided in the vicinity of the end portion of the positive electrode plate, the positive electrode current collector is stabilized and a general short circuit is less likely to occur. Further, since the thickness of the non-active material portion and the thickness of the positive electrode active material portion are the same and there are no steps, winding deviation during winding is unlikely to occur.
[0076]
Example 2
One example of the second embodiment will be described with reference to FIGS.
(I) Preparation of positive electrode plate
As shown in FIG. 11, an aluminum foil 1101 having a thickness of 20 μm serving as a positive electrode current collector and two polypropylene films 1102 having a thickness of 20 μm serving as an insulating material portion are arranged in three rows, and a positive electrode core material is formed. Configured. The width of the aluminum foil 1101 was 48 mm, and the widths of the polypropylene films 1102 disposed at both ends along the longitudinal direction were 5 mm. A positive electrode core material composed of three components was placed in a positive electrode material paste coating machine.
[0077]
As shown in FIG. 12, the same positive electrode material paste 1201 as prepared in Example 1 was applied on both surfaces of the positive electrode core material with a width of 52 mm so as to be on the insulating material portion made of the polypropylene film 1102. In FIG. 12, the broken line indicates the boundary between the aluminum foil and the polypropylene film.
In addition, it is also possible to arrange more aluminum foils and polypropylene films in 5 rows, 7 rows,.
[0078]
Similarly to Example 1, the total thickness including the coating film on both sides after drying and the positive electrode current collector was 300 μm, and rolled until the total thickness became 180 μm, and the positive electrode having the positive electrode active material part A board hoop was obtained. The positive electrode plate hoop was slit at the laminated portion of the polypropylene film 1102 serving as the insulating material portion and the positive electrode active material portion to obtain a positive electrode plate.
A top view of the positive electrode plate is shown in FIG. In FIG. 13, the length of the positive electrode plate in the longitudinal direction is 428 mm, and the width is 50 mm.
[0079]
A positive electrode lead 1316 similar to that in Example 1 was provided on the exposed portion of the aluminum foil 1101 formed by peeling a part of the positive electrode active material portion 1302 with a width of 5 mm. A laminated portion of a polypropylene film having a width of 1 mm and a positive electrode active material portion was left at both end portions along the longitudinal direction of the positive electrode plate.
[0080]
(Ii) Production of negative electrode plate
The negative electrode plate was produced by slitting a negative electrode plate hoop produced in the same manner as in Example 1 to a size larger than that of the positive electrode plate. The structure and dimensions of the negative electrode plate are the same as in Example 1.
[0081]
(Iii) Cylindrical battery assembly process
As in Example 1, a cylindrical lithium ion secondary battery having a diameter of 18 mm, a height of 65 mm, and a design capacity of 1400 mAh was assembled.
That is, the positive electrode plate and the negative electrode plate produced as described above are opposed to each other in the arrangement shown in FIG. 3 through a separator made of a polyethylene microporous film, and the electrode plate group is formed by winding in a spiral shape. did. And the battery of Example 2 similar to Example 1 was assembled except having used this electrode group.
[0082]
In the electrode plate group of the battery of Example 2, since the positive electrode plate hoop was slit at the laminated portion of the polypropylene film serving as the insulating material portion and the positive electrode active material portion, the end portion along the longitudinal direction of the positive electrode plate was electrically conductive. It is considered that no sex burr has occurred.
[0083]
Example 3
One example of the third embodiment will be described with reference to FIGS.
(I) Preparation of positive electrode plate
As shown in FIG. 14, the same positive electrode material paste 1402 prepared in Example 1 was applied in a stripe pattern on both surfaces of the same positive electrode current collector 1401 used in Example 1. In FIG. 14, the width of the positive electrode material paste is 50 mm in both rows, and the width of the current collector exposed portion is 8 mm at the center and 4 mm at both ends.
[0084]
As in Example 1, the entire thickness including the coating films on both sides after drying and the positive electrode current collector is 300 μm, and rolled to a total thickness of 180 μm to have a positive electrode active material portion 1501. A positive electrode plate hoop was obtained. The positive electrode plate hoop was slit at the current collector exposed portion, and as shown in FIG. 15, the remaining current collector exposed portion was covered with an insulating tape 1509 having a width of 1 mm to obtain a positive electrode plate.
[0085]
In FIG. 15, the positive electrode plate has a length in the longitudinal direction of 428 mm and a width of 52 mm. A positive electrode lead 1516 similar to that of Example 1 was provided on an exposed portion of the positive electrode current collector 1401 formed by peeling a part of the positive electrode active material portion 1501 with a width of 5 mm.
[0086]
(Ii) Production of negative electrode plate
The negative electrode plate was produced by slitting a negative electrode plate hoop produced in the same manner as in Example 1 to a size larger than that of the positive electrode plate. The structure and dimensions of the negative electrode plate are the same as in Example 1.
[0087]
(Iii) Cylindrical battery assembly process
As in Example 1, a cylindrical lithium ion secondary battery having a diameter of 18 mm, a height of 65 mm, and a design capacity of 1400 mAh was assembled.
That is, the positive electrode plate and the negative electrode plate produced as described above are opposed to each other in the arrangement as shown in FIG. 4 through a separator made of a polyethylene microporous film, and are wound in a spiral shape, whereby the electrode plate group Configured. And the battery of Example 3 similar to Example 1 was assembled except having used this electrode group.
[0088]
In the electrode plate group of the battery of Example 3, since the end of the positive electrode current collector was covered with the insulating tape, even if burrs occurred at the end of the positive electrode current collector, the burr and the negative electrode active It is considered that there is no short circuit with the material part.
[0089]
Example 4
One example of the fourth embodiment will be described with reference to FIGS.
(I) Preparation of positive electrode plate
As shown in FIG. 16, an Al deposited film 1602 having a thickness of 5 μm was formed at the same position on both sides of a 20 μm-thick hoop-shaped polypropylene sheet 1601, leaving exposed portions of the polypropylene sheet of 10 mm or more on the front, rear, left and right. . The Al vapor deposition film 1602 had a length of 426 mm and a width of 48 mm.
[0090]
Next, as shown in FIG. 17, the positive electrode material paste 1701 prepared in the same manner as in Example 1 was applied to the same position on both sides of the polypropylene sheet 1601 one by one. At this time, an exposed portion 1702 of the Al vapor deposition film on which the positive electrode material paste was not applied was left at one end of the Al vapor deposition film 1602 having a width of 5 mm. The exposed portion 1702 of the Al vapor deposition film was provided at the same position on both sides of the polypropylene sheet.
[0091]
Similarly to Example 1, the total thickness including the coating film on both sides after drying and the positive electrode current collector was 300 μm, and rolled until the total thickness became 180 μm, and the positive electrode having the positive electrode active material part A board hoop was obtained. The positive electrode plate hoop was slit at a place where there was no Al vapor deposition film to obtain a positive electrode plate as shown in FIG. The positive electrode plate has a length of 428 mm and a width of 50 mm. A positive electrode lead 1816 having a length of 75 mm and a width of 3 mm is fixed to each exposed portion 1702 of the Al deposited film having a width of 5 mm provided on both surfaces of the positive electrode current collector with a conductive adhesive, and their free ends are welded to each other. . The adhesive fixing portion of the positive electrode lead 1816 was covered with an insulating tape. There is no Al vapor deposition film at the end of 1 mm width along the longitudinal direction of the positive electrode plate, and the positive electrode active material part is supported directly on the polypropylene sheet.
[0092]
(Ii) Production of negative electrode plate
The negative electrode plate was produced by slitting a negative electrode plate hoop produced in the same manner as in Example 1 to a size larger than that of the positive electrode plate. The structure and dimensions of the negative electrode plate are the same as in Example 1.
[0093]
(Iii) Cylindrical battery assembly process
As in Example 1, a cylindrical lithium ion secondary battery having a diameter of 18 mm, a height of 65 mm, and a design capacity of 1400 mAh was assembled.
That is, the positive electrode plate and the negative electrode plate produced as described above are opposed to each other in the arrangement as shown in FIG. 5 through a separator made of a polyethylene microporous film, and are wound in a spiral shape, whereby the electrode plate group Configured. And the battery of Example 4 similar to Example 1 was assembled except having used this electrode group.
[0094]
In the battery of Example 4, since the slit portion of the positive electrode current collector is made of an insulating material, it is considered that conductive burrs do not occur and no short circuit due to burrs occurs.
[0095]
Example 5
One example of the fifth embodiment will be described.
(I) Preparation of positive electrode plate
The same positive electrode material paste as that prepared in Example 1 was applied to the entire surface of both surfaces of the same positive electrode current collector used in Example 1.
[0096]
Similarly to Example 1, the total thickness including the coating film on both sides after drying and the positive electrode current collector was 300 μm, and rolled until the total thickness became 180 μm, and the positive electrode having the positive electrode active material part A board hoop was obtained. The positive electrode plate hoop is slit to a width of 50 mm and a length of 428 mm, and both end portions with a width of 2 mm along the longitudinal direction are immersed in a dispersion of polyethylene powder (melting point: about 100 ° C.), dried, and then attached to both end portions. The polyethylene powder was melted to form a polyethylene film.
A positive electrode lead similar to that of Example 1 was provided on the exposed portion of the positive electrode current collector formed by peeling a part of the positive electrode active material portion with a width of 5 mm.
[0097]
(Ii) Production of negative electrode plate
The negative electrode plate was produced by slitting a negative electrode plate hoop produced in the same manner as in Example 1 to a size larger than that of the positive electrode plate. The structure and dimensions of the negative electrode plate are the same as in Example 1.
[0098]
(Iii) Cylindrical battery assembly process
As in Example 1, a cylindrical lithium ion secondary battery having a diameter of 18 mm, a height of 65 mm, and a design capacity of 1400 mAh was assembled.
That is, the positive electrode plate and the negative electrode plate produced as described above are opposed to each other in the arrangement as shown in FIG. 6 through a separator made of a polyethylene microporous film, and are wound in a spiral shape, whereby the electrode plate group Configured. And the battery of Example 5 similar to Example 1 was assembled except having used this electrode group.
[0099]
In the battery of Example 5, even if burrs are generated when the positive electrode plate is slit, a short circuit between the burrs and the negative electrode active material portion is prevented by the polyethylene coating provided at the end of the positive electrode plate.
[0100]
<< Comparative Example 1 >>
A positive electrode plate hoop similar to that of Example 5 was prepared, and slit to a width of 50 mm and a length of 428 mm. The positive electrode plate thus obtained was used as it was without forming a polyethylene film on both end portions along the longitudinal direction, and the cylindrical lithium having a diameter of 18 mm, a height of 65 mm, and a design capacity of 1400 mAh as in Example 5 was used. An ion secondary battery was assembled.
[0101]
[Evaluation]
The batteries of Examples 1 to 5 and Comparative Example 1 were evaluated by the following procedure.
(I) 100 batteries were prepared and charged at 500 mA until the battery voltage reached an overcharged state of 4.4V.
(Ii) The overcharged battery was crushed by being restrained by a flat plate until the voltage began to drop.
(Iii) The number of batteries whose temperature rose after crushing and whose safety valve was activated by gas generation was examined.
[0102]
The results are shown below.
Example 1: The number of batteries in which the safety valve was activated was 0 out of 100.
Example 2: The number of batteries in which the safety valve was activated was 0 out of 100.
Example 3: The number of batteries in which the safety valve was activated was 0 out of 100.
Example 4: The number of batteries in which the safety valve was activated was 0 out of 100.
Example 5: The number of batteries in which the safety valve was activated was 0 out of 100.
Comparative Example 1: The number of batteries in which the safety valve was operated was 26 out of 100.
[0103]
【The invention's effect】
As described above, according to the lithium ion secondary battery of the present invention, burrs are prevented from being generated when the positive electrode current collector is slit, or even if burrs are generated, a short circuit between the burrs and the negative electrode active material portion. Is prevented.
[Brief description of the drawings]
FIG. 1 is a diagram conceptually illustrating an example of a cross section perpendicular to a longitudinal direction of a positive electrode plate, a negative electrode plate, and a separator in an electrode plate group according to Embodiment 1 of the present invention.
FIG. 2 is a diagram conceptually illustrating an example of a cross section perpendicular to a longitudinal direction of a positive electrode plate, a negative electrode plate, and a separator in a conventional electrode plate group.
FIG. 3 is a diagram conceptually illustrating an example of a cross section perpendicular to a longitudinal direction of a positive electrode plate, a negative electrode plate, and a separator in an electrode plate group according to a second embodiment of the present invention.
FIG. 4 is a diagram conceptually illustrating an example of a cross section perpendicular to a longitudinal direction of a positive electrode plate, a negative electrode plate, and a separator in an electrode plate group according to a third embodiment of the present invention.
FIG. 5 is a diagram conceptually illustrating an example of a cross section perpendicular to a longitudinal direction of a positive electrode plate, a negative electrode plate, and a separator in an electrode plate group according to a fourth embodiment of the present invention.
FIG. 6 is a diagram conceptually illustrating an example of a cross section perpendicular to the longitudinal direction of a positive electrode plate, a negative electrode plate, and a separator in an electrode plate group according to a fifth embodiment of the present invention.
7 is a longitudinal sectional view of a lithium ion secondary battery according to Example 1 of the present invention. FIG.
FIG. 8 is a top view of a positive electrode current collector for illustrating a manufacturing process of a positive electrode plate according to Example 1 of the invention.
FIG. 9 is another top view of the positive electrode current collector for explaining the manufacturing process of the positive electrode plate according to the first embodiment of the invention.
FIG. 10 is a front view of a positive electrode plate according to Example 1 of the present invention.
FIG. 11 is a top view of a positive electrode current collector for illustrating a manufacturing process of a positive electrode plate according to Example 2 of the invention.
FIG. 12 is another top view of the positive electrode current collector for explaining the production process of the positive electrode plate according to Example 2 of the invention.
FIG. 13 is a front view of a positive electrode plate according to Example 2 of the present invention.
FIG. 14 is a top view of a positive electrode current collector for illustrating a manufacturing process of a positive electrode plate according to Example 3 of the invention.
FIG. 15 is a front view of a positive electrode plate according to Example 3 of the invention.
FIG. 16 is a top view of a positive electrode current collector for illustrating a manufacturing process of a positive electrode plate according to Example 4 of the invention.
FIG. 17 is another top view of the positive electrode current collector for illustrating a manufacturing process of the positive electrode plate according to Example 4 of the invention.
FIG. 18 is a front view of a positive electrode plate according to Example 4 of the present invention.
[Explanation of symbols]
110 Positive electrode plate
111 Positive Current Collector
111a, b End of positive electrode current collector
112 Positive electrode active material part
112a, b End of positive electrode active material part
113 Inactive material part
120 Negative electrode plate
121 Negative electrode current collector
122 Negative electrode active material part
122a, b End of negative electrode active material portion
130 Separator
210 Positive electrode plate
211 Positive Current Collector
212 Cathode active material part
220 Negative electrode plate
221 Negative electrode current collector
222 Negative electrode active material part
230 Separator
211a, b End of positive electrode current collector
222a, b End of negative electrode active material portion
310 Positive electrode plate
311 Positive Current Collector
311a, b End of positive electrode current collector
312 Positive electrode active material part
312a, b End of positive electrode active material
313 Insulation material part
320 Negative electrode plate
321 Negative electrode current collector
322 Negative electrode active material part
330 Separator
410 Positive electrode plate
411 positive electrode current collector
411a, b End of positive electrode current collector
412 Positive electrode active material part
412a, b End of positive electrode active material portion
413 Insulation material
420 Negative electrode plate
421 Negative electrode current collector
422 Negative electrode active material part
422a, b End of negative electrode active material portion
430 Separator
510 positive electrode plate
511 positive electrode current collector
511a, b End of positive electrode current collector
511x insulation sheet
511x 'exposed part of insulating sheet
511y conductive layer
512 Positive electrode active material part
520 negative electrode plate
521 Negative electrode current collector
522 Negative electrode active material part
530 separator
610 positive electrode plate
611 positive electrode current collector
612 Cathode active material part
613 Insulation material
620 Negative electrode plate
621 Negative electrode current collector
622 Negative electrode active material part
630 separator
708 positive electrode plate
708a Positive electrode current collector
708b Cathode active material part
709 Negative electrode plate
709a Negative electrode current collector
709b Negative electrode active material part
710 Separator
711 plate group
712 Battery container
713 Battery can
714 Sealing plate
715 Insulation packing
716 Positive lead
717 Negative electrode lead
718 Upper insulation plate
719 Lower insulation plate
801 Positive electrode material paste
802, 802 'Inactive material paste
1002 Cathode active material part
1003 Inactive material part
1101 Aluminum foil
1102 Polypropylene film
1201 Positive electrode material paste
1302 Cathode active material part
1316 Positive electrode lead
1401 Positive electrode current collector
1402 Positive electrode material paste
1501 Cathode active material part
1509 Insulation tape
1516 positive lead
1601 Polypropylene sheet
1602 Al deposition film
1701 Positive electrode material paste
1702 Exposed portion of Al deposited film
1816 positive lead

Claims (14)

(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、
(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、
(c)前記正極板と負極板との間に介在するセパレータ、
(d)電解液、ならびに
(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器
を具備するリチウムイオン二次電池であって、
前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記極板群において、前記正極集電体の長手方向に沿う両端部が、前記負極活物質部の長手方向に沿う両端部よりも外側に位置しており、前記正極活物質部の長手方向に沿う両端部に、それぞれリチウムイオンを充放電により吸蔵または放出しない非活物質部が設けられているリチウムイオン二次電池。
(A) a positive electrode plate comprising a positive electrode active material part and a positive electrode current collector carrying the positive electrode active material part, wherein the positive electrode active material part comprises a positive electrode active material capable of inserting or extracting lithium ions by charging and discharging;
(B) a negative electrode plate comprising a negative electrode active material part and a negative electrode current collector carrying the negative electrode active material part, wherein the negative electrode active material part comprises a negative electrode active material capable of inserting or extracting lithium ions by charging and discharging;
(C) a separator interposed between the positive electrode plate and the negative electrode plate;
(D) an electrolyte solution, and (e) a lithium ion secondary battery comprising a battery container containing the positive electrode plate, the negative electrode plate, the separator and the electrolyte solution,
The positive electrode plate and the negative electrode plate constitute an electrode plate group by being wound through the separator between them, and the electrode plate group extends along the longitudinal direction of the positive electrode current collector. Both end portions are located outside both end portions along the longitudinal direction of the negative electrode active material portion, and lithium ions are not occluded or released by charging / discharging at both end portions along the longitudinal direction of the positive electrode active material portion. A lithium ion secondary battery provided with an inactive material part .
前記非活物質部は、絶縁材料からなる請求項記載のリチウムイオン二次電池。The inactive material unit, the lithium ion secondary battery according to claim 1, wherein an insulating material. 前記極板群において、前記負極活物質部の長手方向に沿う両端部が、正極活物質部の長手方向に沿う両端部よりも外側に位置している請求項1記載のリチウムイオン二次電池。  2. The lithium ion secondary battery according to claim 1, wherein in the electrode plate group, both end portions along the longitudinal direction of the negative electrode active material portion are positioned outside both end portions along the longitudinal direction of the positive electrode active material portion. (a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、
(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、
(c)前記正極板と負極板との間に介在するセパレータ、
(d)電解液、ならびに
(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器
を具備するリチウムイオン二次電池であって、
前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記極板群において、正極活物質部の長手方向に沿う両端部が、正極集電体の長手方向に沿う両端部よりも外側に位置しているリチウムイオン二次電池。
(A) a positive electrode plate comprising a positive electrode active material part and a positive electrode current collector carrying the positive electrode active material part, wherein the positive electrode active material part comprises a positive electrode active material capable of inserting or extracting lithium ions by charging and discharging;
(B) a negative electrode plate comprising a negative electrode active material part and a negative electrode current collector carrying the negative electrode active material part, wherein the negative electrode active material part comprises a negative electrode active material capable of inserting or extracting lithium ions by charging and discharging;
(C) a separator interposed between the positive electrode plate and the negative electrode plate;
(D) an electrolyte solution, and (e) a lithium ion secondary battery comprising a battery container containing the positive electrode plate, the negative electrode plate, the separator and the electrolyte solution,
The positive electrode plate and the negative electrode plate constitute an electrode plate group by being wound through the separator between them, and both ends along the longitudinal direction of the positive electrode active material portion in the electrode plate group The lithium ion secondary battery in which the part is located outside both ends along the longitudinal direction of the positive electrode current collector.
前記正極集電体の長手方向に沿う両端部には、それぞれ前記正極集電体の面方向に延在する絶縁材料部が配置されている請求項記載のリチウムイオン二次電池。5. The lithium ion secondary battery according to claim 4, wherein insulating material portions extending in a surface direction of the positive electrode current collector are disposed at both ends along the longitudinal direction of the positive electrode current collector. 前記絶縁材料部は、前記正極集電体の長手方向に沿う端部の端面に接続されている請求項記載のリチウムイオン二次電池。The lithium ion secondary battery according to claim 5 , wherein the insulating material portion is connected to an end face of an end portion along a longitudinal direction of the positive electrode current collector. 前記絶縁材料部は、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデンおよびポリエチレンテレフタレートよりなる群から選ばれる少なくとも1種からなる請求項記載のリチウムイオン二次電池。The lithium ion secondary battery according to claim 5 , wherein the insulating material portion is made of at least one selected from the group consisting of polypropylene, polyethylene, polyvinylidene fluoride, and polyethylene terephthalate. 前記正極集電体は、前記正極活物質部により完全に覆われている請求項記載のリチウムイオン二次電池。The lithium ion secondary battery according to claim 4 , wherein the positive electrode current collector is completely covered with the positive electrode active material part. 前記正極集電体の長手方向に沿う両端部は、それぞれ絶縁材料により被覆されている請求項記載のリチウムイオン二次電池。The lithium ion secondary battery according to claim 4 , wherein both end portions along the longitudinal direction of the positive electrode current collector are covered with an insulating material. 前記極板群において、前記負極活物質部の長手方向に沿う両端部が、正極活物質部の長手方向に沿う両端部よりも外側に位置している請求項記載のリチウムイオン二次電池。5. The lithium ion secondary battery according to claim 4 , wherein in the electrode plate group, both end portions along the longitudinal direction of the negative electrode active material portion are positioned outside both end portions along the longitudinal direction of the positive electrode active material portion. (a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、
(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、
(c)前記正極板と負極板との間に介在するセパレータ、
(d)電解液、ならびに
(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器
を具備するリチウムイオン二次電池であって、
前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記極板群において、前記負極活物質部の長手方向に沿う両端部が、前記正極集電体の長手方向に沿う両端部よりも外側に位置し、前記正極集電体の長手方向に沿う両端部が、前記正極活物質部の長手方向に沿う両端部よりも外側に位置し、さらに、前記正極集電体の前記正極活物質部で覆われていない露出部が、絶縁材料により被覆されているリチウムイオン二次電池。
(A) a positive electrode plate comprising a positive electrode active material part and a positive electrode current collector carrying the positive electrode active material part, wherein the positive electrode active material part comprises a positive electrode active material capable of inserting or extracting lithium ions by charging and discharging;
(B) a negative electrode plate comprising a negative electrode active material part and a negative electrode current collector carrying the negative electrode active material part, wherein the negative electrode active material part comprises a negative electrode active material capable of inserting or extracting lithium ions by charging and discharging;
(C) a separator interposed between the positive electrode plate and the negative electrode plate;
(D) an electrolyte solution, and (e) a lithium ion secondary battery comprising a battery container containing the positive electrode plate, the negative electrode plate, the separator and the electrolyte solution,
The positive electrode plate and the negative electrode plate constitute an electrode plate group by being wound through the separator between them, and in the electrode plate group, along the longitudinal direction of the negative electrode active material portion Both end portions are located outside both end portions along the longitudinal direction of the positive electrode current collector, and both end portions along the longitudinal direction of the positive electrode current collector are from both end portions along the longitudinal direction of the positive electrode active material portion. Is a lithium ion secondary battery in which an exposed portion that is not covered with the positive electrode active material portion of the positive electrode current collector is covered with an insulating material.
(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、
(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、
(c)前記正極板と負極板との間に介在するセパレータ、
(d)電解液、ならびに
(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器
を具備するリチウムイオン二次電池であって、
前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記正極集電体は、絶縁シートおよびその両面にそれぞれ形成された導電層からなり、前記絶縁シートの長手方向に沿う両端部には、前記絶縁シートの露出部が設けられているリチウムイオン二次電池。
(A) a positive electrode plate comprising a positive electrode active material part and a positive electrode current collector carrying the positive electrode active material part, wherein the positive electrode active material part comprises a positive electrode active material capable of inserting or extracting lithium ions by charging and discharging;
(B) a negative electrode plate comprising a negative electrode active material part and a negative electrode current collector carrying the negative electrode active material part, wherein the negative electrode active material part comprises a negative electrode active material capable of inserting or extracting lithium ions by charging and discharging;
(C) a separator interposed between the positive electrode plate and the negative electrode plate;
(D) an electrolyte solution, and (e) a lithium ion secondary battery comprising a battery container containing the positive electrode plate, the negative electrode plate, the separator and the electrolyte solution,
The positive electrode plate and the negative electrode plate are wound through the separator between them to constitute an electrode plate group, and the positive electrode current collector is formed on each of the insulating sheet and both surfaces thereof. The lithium ion secondary battery which consists of the electrically conductive layer, and the exposed part of the said insulating sheet is provided in the both ends along the longitudinal direction of the said insulating sheet.
(a)正極活物質部および前記正極活物質部を担持する正極集電体からなり、前記正極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な正極活物質を含む正極板、
(b)負極活物質部および前記負極活物質部を担持する負極集電体からなり、前記負極活物質部は、リチウムイオンを充放電により吸蔵または放出可能な負極活物質を含む負極板、
(c)前記正極板と負極板との間に介在するセパレータ、
(d)電解液、ならびに
(e)前記正極板、負極板、セパレータおよび電解液を収容する電池容器
を具備するリチウムイオン二次電池であって、
前記正極板と負極板とは、それらの間に前記セパレータを介して捲回されることにより、極板群を構成しており、前記正極板の長手方向に沿う両端部は、それぞれ絶縁材料により被覆されているリチウムイオン二次電池。
(A) a positive electrode plate comprising a positive electrode active material part and a positive electrode current collector carrying the positive electrode active material part, wherein the positive electrode active material part comprises a positive electrode active material capable of inserting or extracting lithium ions by charging and discharging;
(B) a negative electrode plate comprising a negative electrode active material part and a negative electrode current collector carrying the negative electrode active material part, wherein the negative electrode active material part comprises a negative electrode active material capable of inserting or extracting lithium ions by charging and discharging;
(C) a separator interposed between the positive electrode plate and the negative electrode plate;
(D) an electrolyte solution, and (e) a lithium ion secondary battery comprising a battery container containing the positive electrode plate, the negative electrode plate, the separator and the electrolyte solution,
The positive electrode plate and the negative electrode plate are wound through the separator between them to constitute an electrode plate group, and both end portions along the longitudinal direction of the positive electrode plate are made of an insulating material, respectively. Covered lithium ion secondary battery.
前記絶縁材料は、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデンおよびポリエチレンテレフタレートよりなる群から選ばれる少なくとも1種からなる請求項13記載のリチウムイオン二次電池。The lithium ion secondary battery according to claim 13 , wherein the insulating material is at least one selected from the group consisting of polypropylene, polyethylene, polyvinylidene fluoride, and polyethylene terephthalate.
JP2003149836A 2002-05-30 2003-05-27 Lithium ion secondary battery Expired - Fee Related JP4617065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003149836A JP4617065B2 (en) 2002-05-30 2003-05-27 Lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002156892 2002-05-30
JP2003149836A JP4617065B2 (en) 2002-05-30 2003-05-27 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2004055537A JP2004055537A (en) 2004-02-19
JP4617065B2 true JP4617065B2 (en) 2011-01-19

Family

ID=31949064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003149836A Expired - Fee Related JP4617065B2 (en) 2002-05-30 2003-05-27 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4617065B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7638230B2 (en) * 2004-09-03 2009-12-29 Panasonic Corporation Lithium ion secondary battery
JP4859399B2 (en) * 2004-09-03 2012-01-25 パナソニック株式会社 Lithium ion secondary battery
JP4972862B2 (en) * 2005-01-25 2012-07-11 日産自動車株式会社 Method for manufacturing battery electrode
JP4549992B2 (en) * 2005-03-23 2010-09-22 日立マクセル株式会社 Nonaqueous electrolyte battery and manufacturing method thereof
JP5034352B2 (en) * 2006-03-10 2012-09-26 ソニー株式会社 Secondary battery
JP5005935B2 (en) * 2006-03-20 2012-08-22 日立マクセルエナジー株式会社 Nonaqueous electrolyte secondary battery
KR101264422B1 (en) 2006-05-08 2013-05-14 삼성에스디아이 주식회사 Electrode assembly and Lithium rechargeable battery using the same
JP2008066020A (en) * 2006-09-05 2008-03-21 Sony Corp Nonaqueous electrolyte secondary battery
KR20090035041A (en) * 2006-09-19 2009-04-08 파나소닉 주식회사 Method of producing electrode for secondary battery, and secondary battery
JP5337418B2 (en) * 2008-07-04 2013-11-06 日立ビークルエナジー株式会社 Non-aqueous electrolyte secondary battery
JP2011096575A (en) * 2009-10-30 2011-05-12 Denso Corp Electrode for secondary battery, manufacturing method for the same and nonaqueous electrolyte secondary battery
EP2426773B1 (en) 2010-09-03 2017-11-29 GS Yuasa International Ltd. Battery
JP5858325B2 (en) 2010-09-03 2016-02-10 株式会社Gsユアサ battery
US9490464B2 (en) 2010-10-01 2016-11-08 Samsung Sdi Co., Ltd. Secondary battery
JP5818150B2 (en) 2010-11-05 2015-11-18 株式会社Gsユアサ Electrode for power storage element, power storage element using the same, and method for manufacturing electrode for power storage element
WO2012128160A1 (en) * 2011-03-23 2012-09-27 三洋電機株式会社 Positive electrode plate for anhydrous electrolyte secondary cell, method for manufacturing positive electrode plate, and anhydrous electrolyte secondary cell and method for manufacturing same
US8936863B2 (en) * 2011-07-12 2015-01-20 Samsung Sdi Co., Ltd. Secondary battery
JP2013157091A (en) * 2012-01-26 2013-08-15 Toray Eng Co Ltd Electrode sheet material manufacturing device
JP6070067B2 (en) * 2012-10-30 2017-02-01 ソニー株式会社 Batteries, electrodes, battery packs, electronic devices, electric vehicles, power storage devices, and power systems
CN105074998B (en) * 2013-03-29 2017-09-19 三洋电机株式会社 Lithium ion battery
JP6380083B2 (en) * 2014-12-19 2018-08-29 トヨタ自動車株式会社 Electrode body and method for producing positive electrode
JP6957837B2 (en) * 2016-04-08 2021-11-02 株式会社Gsユアサ Power storage element
JP6610692B2 (en) * 2018-03-13 2019-11-27 Tdk株式会社 Electrode and storage element
JP7211528B2 (en) * 2019-09-30 2023-01-24 株式会社村田製作所 secondary battery
CN114530646B (en) * 2022-01-21 2023-09-22 合肥钧联汽车电子有限公司 Temperature-consistent power module and radiator design method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130394A (en) * 1993-10-29 1995-05-19 Sony Corp Nonaqueous electrolyte secondary battery
JPH09213338A (en) * 1996-01-30 1997-08-15 Shin Kobe Electric Mach Co Ltd Battery and lithium ion secondary battery
JPH10241735A (en) * 1997-02-25 1998-09-11 Sanyo Electric Co Ltd Lithium ion battery
JP2001210304A (en) * 2000-01-27 2001-08-03 Nec Mobile Energy Kk Sealed type battery and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130394A (en) * 1993-10-29 1995-05-19 Sony Corp Nonaqueous electrolyte secondary battery
JPH09213338A (en) * 1996-01-30 1997-08-15 Shin Kobe Electric Mach Co Ltd Battery and lithium ion secondary battery
JPH10241735A (en) * 1997-02-25 1998-09-11 Sanyo Electric Co Ltd Lithium ion battery
JP2001210304A (en) * 2000-01-27 2001-08-03 Nec Mobile Energy Kk Sealed type battery and its manufacturing method

Also Published As

Publication number Publication date
JP2004055537A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
JP4617065B2 (en) Lithium ion secondary battery
US7335448B2 (en) Lithium ion secondary battery
JP5224020B2 (en) Lithium secondary battery
US6309777B1 (en) Explosion-resistant large capacitive lithium ion secondary battery
US20210210761A1 (en) Lithium ion secondary battery, electrode and method for producing same
KR100626510B1 (en) Lithium ion secondary battery and method for manufacturing the same
JP2007059170A (en) Battery pack
JP2007317638A (en) Electrode assembly excellent in structural stability and wettability of electrolyte solution and secondary battery containing above
KR20140069099A (en) Separator for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery
JP3821434B2 (en) Battery electrode group and non-aqueous electrolyte secondary battery using the same
KR100677028B1 (en) Electrochemical device
JP4043956B2 (en) Manufacturing method of battery electrode plate
JP4603108B2 (en) Secondary battery electrode roll
JPH09283149A (en) Collector for battery plate and battery using this collector
JP2001283927A (en) Nonaqueous secondary battery and its manufacturing method
JP2000277155A (en) Nonaqueous electrolyte secondary battery
JPH11135116A (en) Negative electrode for lithium secondary battery, lithium secondary battery using the negative electrode, and manufacture of the negative electrode for the lithium secondary battery
JPH10241699A (en) Battery
WO2019044110A1 (en) Sheet material, secondary battery and method for producing secondary battery
CN103392257B (en) Lithium ion battery
JPH10112323A (en) Battery
KR102028167B1 (en) Secondary battery and manufacturing method using the same
JP5128008B1 (en) Nonaqueous electrolyte secondary battery
KR102245118B1 (en) Secondary battery
JP2005123058A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees