JP4614885B2 - Water-soluble tetrazolium compound - Google Patents

Water-soluble tetrazolium compound Download PDF

Info

Publication number
JP4614885B2
JP4614885B2 JP2005513603A JP2005513603A JP4614885B2 JP 4614885 B2 JP4614885 B2 JP 4614885B2 JP 2005513603 A JP2005513603 A JP 2005513603A JP 2005513603 A JP2005513603 A JP 2005513603A JP 4614885 B2 JP4614885 B2 JP 4614885B2
Authority
JP
Japan
Prior art keywords
compound
aromatic
water
group
formazan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005513603A
Other languages
Japanese (ja)
Other versions
JPWO2005023786A1 (en
Inventor
由里子 福岡
亮 坂本
宗孝 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dojindo Laboratory and Co Ltd
Original Assignee
Dojindo Laboratory and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dojindo Laboratory and Co Ltd filed Critical Dojindo Laboratory and Co Ltd
Publication of JPWO2005023786A1 publication Critical patent/JPWO2005023786A1/en
Application granted granted Critical
Publication of JP4614885B2 publication Critical patent/JP4614885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D257/04Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase

Description

本発明は、テトラゾリウム化合物に関し、特に脱水素酵素または酵素基質を定量分析するのに好適な新規の水溶性テトラゾリウム化合物に関する。  The present invention relates to a tetrazolium compound, and more particularly to a novel water-soluble tetrazolium compound suitable for quantitative analysis of a dehydrogenase or an enzyme substrate.

乳酸脱水素酵素(以下LDHと略称する)、アルコール脱水素酵素、グルタミン酸脱水素酵素などの各種脱水素酵素の定量分析には、従来よりテトラゾリウム化合物(テトラゾリウム塩)が用いられてきた。これは、テトラゾリウム化合物は、これら各種の脱水素酵素の作用により遊離した水素を中間電子運搬体を介して受容してホルマザンとなるので、そのホルマザンの吸光度を測定することにより脱水素酵素またはそれらの酵素基質を定量することができるからである。  Tetrazolium compounds (tetrazolium salts) have been conventionally used for quantitative analysis of various dehydrogenases such as lactate dehydrogenase (hereinafter abbreviated as LDH), alcohol dehydrogenase, and glutamate dehydrogenase. This is because tetrazolium compounds receive hydrogen released by the action of these various dehydrogenases through an intermediate electron carrier to form formazan. This is because the enzyme substrate can be quantified.

特に、これらの脱水素酵素の内、LDHは全ての体細胞に分布し、特に心筋、肝臓、骨格筋、肝臓に多く、心筋梗塞、悪性腫瘍、肝疾患、進行性筋萎縮、血管内溶血、巨赤芽球性貧血などの疾患の場合には、血清LDH活性が著しく上昇することが知られている。従って血中のLDH活性を測定することにより、臨床上、診断に対する極めて有意義な知見を得ることができる。血中の尿酸や胆汁酸の測定においても、より生体成分の妨害を受けにくい脱水素酵素を用いる方法が望まれている。  In particular, among these dehydrogenases, LDH is distributed in all somatic cells, especially in the myocardium, liver, skeletal muscle, liver, myocardial infarction, malignant tumor, liver disease, progressive muscle atrophy, intravascular hemolysis, In the case of diseases such as megaloblastic anemia, it is known that serum LDH activity is significantly increased. Therefore, by measuring the LDH activity in blood, it is possible to obtain clinically very useful knowledge for diagnosis. In the measurement of uric acid and bile acid in blood, a method using a dehydrogenase that is less susceptible to interference with biological components is desired.

また、近年、培養細胞内および細胞から漏出した脱水素酵素活性を指標とすることで、細胞増殖能および細胞毒性度合いを測定することが可能となり、化学物質の毒性や新規治療薬の効果等を簡便に知る目的に汎用されている。  In recent years, by using the dehydrogenase activity leaked from cultured cells and cells as an index, it has become possible to measure cell proliferation ability and the degree of cytotoxicity. It is widely used for the purpose of knowing easily.

このような目的の水素受容体としては、従来より、3,3’−[3,3’−ジメトキシ−(1,1’−ビフェニル)−4,4’−ジイル]−ビス[2−(4−ニトロフェニル)−5−2Hテトラゾリウム塩化物](以下ニトロTBと略称する)、[3−(4,5−ジメチルチアゾール−2−イル)−2,5−ジフェニルテトラゾリウムブロマイド](以下MTTと略称する)などが一般的に用いられている。  As a hydrogen acceptor for such purpose, conventionally, 3,3 ′-[3,3′-dimethoxy- (1,1′-biphenyl) -4,4′-diyl] -bis [2- (4 -Nitrophenyl) -5-2H tetrazolium chloride] (hereinafter abbreviated as nitro TB), [3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide] (hereinafter abbreviated as MTT) Etc.) is generally used.

しかしながら、ニトロTBおよびMTTが水素を受容して生じるホルマザンは水に溶解せず、使用上不便であった。特に自動分析およびマイクロプレート分析においては、生成したホルマザンがセル、チューブおよびマイクロプレートなどの計測系に付着する難点があり、これらの欠点を除去するために、水溶性のホルマザンを生成するテトラゾリウム塩を使用することが必要となっていた。特に生体試料を測定する場合、試料中に含有される生体成分の色による干渉を回避するため、長波長の吸収を持つ紫から青色のホルマザンが所望されている。  However, formazan produced by nitro TB and MTT accepting hydrogen did not dissolve in water and was inconvenient to use. Especially in automatic analysis and microplate analysis, the produced formazan has a difficulty in adhering to measurement systems such as cells, tubes and microplates. To eliminate these disadvantages, a tetrazolium salt that produces water-soluble formazan is used. It was necessary to use it. In particular, when measuring a biological sample, purple to blue formazan having long wavelength absorption is desired in order to avoid interference due to the color of the biological component contained in the sample.

本出願人の研究グループは、先に、これらの要求を満たす幾つかのテトラゾリウム化合物を案出している〔特許第2592436号公報(特許文献1)、特許第2819258号公報(特許文献2)、および特許第2995880号公報(特許文献3)〕。これらの特許に開示されているテトラゾリウム化合物は、脱水素酵素やその酵素基質を自動分析またはマイクロプレート分析により分析にするに際して実用に供することのできる試薬を構成するものであるが、更なる品質向上も求められている。特に、これまで提案された長波長のホルマザンを生成する水溶性テトラゾリウム化合物は、水溶液中で不安定であるため試薬として長期保存するのに難点を有していた。
特許第2592436号公報 特許第2819258号公報 特許第2995880号公報
The applicant's research group has previously devised several tetrazolium compounds that satisfy these requirements [Patent No. 2592436 (Patent Document 1), Patent No. 2819258 (Patent Document 2), and Japanese Patent No. 2994880 (Patent Document 3)]. The tetrazolium compound disclosed in these patents constitutes a reagent that can be put to practical use when analyzing dehydrogenase and its enzyme substrate by automatic analysis or microplate analysis. Is also sought. In particular, the water-soluble tetrazolium compounds that generate long-wave formazan that have been proposed so far have difficulties in long-term storage as reagents because they are unstable in aqueous solutions.
Japanese Patent No. 2592436 Japanese Patent No. 2819258 Japanese Patent No. 2,995,880

本発明の目的は、水溶性で長波長の光吸収を呈するホルマザンを生成するとともに、水溶液中で長期間安定であり脱水素酵素または酵素基質の定量に好適な水溶性テトラゾリウム化合物を提供することにある。  An object of the present invention is to provide a water-soluble tetrazolium compound that produces water-soluble formazan exhibiting long-wavelength light absorption and is stable in an aqueous solution for a long period of time and is suitable for quantification of dehydrogenase or enzyme substrate. is there.

本発明者らは、溶解性の良好なホルマザンを生じさせ、かつ安定性の高い化合物についてさらに研究を重ねた結果、新規の水溶性テトラゾリウム化合物の合成に成功し、この化合物が優れた水素受容体で、且つこのものから生じるホルマザンが水溶性で、安定であり、分析装置への付着や沈殿を起こさず脱水素酵素やその酵素基質の測定が可能であることを見出した。  As a result of further research on a compound having high solubility and high stability, the present inventors have succeeded in synthesizing a novel water-soluble tetrazolium compound, and this compound has an excellent hydrogen acceptor. In addition, it has been found that formazan produced from this product is water-soluble and stable, and it is possible to measure dehydrogenase and its enzyme substrate without causing attachment or precipitation to the analyzer.

かくして、本発明は下記の一般式(1)で表されるテトラゾリウム化合物を提供するものである。  Thus, the present invention provides a tetrazolium compound represented by the following general formula (1).

Figure 0004614885
Figure 0004614885

式中、R〜R19は、それぞれ独立に、水素原子、ニトロ基、スルホン酸基、または炭素数1から4のアルキル基、アルコキシ基、スルホアルキル基もしくはスルホアルキルオキシ基であり、但し、R〜R19のうち少なくとも2つは、それぞれ独立に、スルホン酸基または炭素数1〜4のスルホアルキル基もしくはスルホアルキルオキシ基であり、Mはアルカリ金属またはアンモニウムである。
さらに、本発明に従えば、上記のテトラゾリウム化合物を用いることを特徴とする脱水素酵素または酵素基質の定量方法が提供され、本発明の脱水素酵素または酵素基質の定量方法には、培養細胞内または培養細胞から漏出した脱水素酵素活性を測定することも含まれる。
In the formula, R 1 to R 19 are each independently a hydrogen atom, a nitro group, a sulfonic acid group, or an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a sulfoalkyl group, or a sulfoalkyloxy group, provided that At least two of R 1 to R 19 are each independently a sulfonic acid group, a sulfoalkyl group having 1 to 4 carbon atoms or a sulfoalkyloxy group, and M is an alkali metal or ammonium.
Furthermore, according to the present invention, there is provided a dehydrogenase or enzyme substrate quantification method characterized by using the above-mentioned tetrazolium compound, and the dehydrogenase or enzyme substrate quantification method of the present invention includes cultured intracellular cells. It also includes measuring the dehydrogenase activity leaked from the cultured cells.

本発明の水溶性テトラゾリウム化合物を用いることにより、得られるホルマザンの水溶性がさらに向上し、測定機器への付着が無く、自動分析やマイクロプレート分析装置による脱水素酵素または酵素基質の高感度の定量測定が可能である。さらに、本発明のテトラゾリウムは水溶液中で長期間安定であり、試薬としての保存性においても優れている。  By using the water-soluble tetrazolium compound of the present invention, the water solubility of the obtained formazan is further improved, there is no adhesion to the measuring instrument, and high-sensitivity quantification of dehydrogenase or enzyme substrate by automatic analysis or microplate analyzer Measurement is possible. Furthermore, the tetrazolium of the present invention is stable in an aqueous solution for a long period of time and is excellent in storability as a reagent.

本発明のテトラゾリウム化合物の化学構造式を例示する。The chemical structural formula of the tetrazolium compound of this invention is illustrated. 本発明のテトラゾリウム化合物dの緩衝溶液中(5℃)の安定性を示すグラフである。It is a graph which shows stability in the buffer solution (5 degreeC) of the tetrazolium compound d of this invention. 本発明のテトラゾリウム化合物dの緩衝溶液中(25℃)の安定性を示すグラフである。It is a graph which shows stability in the buffer solution (25 degreeC) of the tetrazolium compound d of this invention. 比較のために、水溶液中で不安定な既存の水溶性テトラゾリウム化合物の緩衝溶液中の安定性を示すグラフである。It is a graph which shows the stability in the buffer solution of the existing water-soluble tetrazolium compound unstable in aqueous solution for the comparison. 本発明のテトラゾリウム化合物aによる生成ホルマザンの吸光スペクトルを示す。The absorption spectrum of the formazan produced | generated by the tetrazolium compound a of this invention is shown. 本発明のテトラゾリウム化合物bによる生成ホルマザンの吸光スペクトルを示す。The absorption spectrum of the formazan produced | generated by the tetrazolium compound b of this invention is shown. 本発明のテトラゾリウム化合物cによる生成ホルマザンの吸光スペクトルを示す。The absorption spectrum of the formazan produced | generated by the tetrazolium compound c of this invention is shown. 本発明のテトラゾリウム化合物dによる生成ホルマザンの吸光スペクトルを示す。The absorption spectrum of the formazan produced | generated by the tetrazolium compound d of this invention is shown. 本発明のテトラゾリウム化合物eによる生成ホルマザンの吸光スペクトルを示す。The absorption spectrum of the formazan produced | generated by the tetrazolium compound e of this invention is shown. 本発明のテトラゾリウム化合物fによる生成ホルマザンの吸光スペクトルを示す。The absorption spectrum of the formazan produced | generated by the tetrazolium compound f of this invention is shown. 本発明のテトラゾリウム化合物gによる生成ホルマザンの吸光スペクトルを示す。The absorption spectrum of the formazan produced | generated by the tetrazolium compound g of this invention is shown. 吸光スペクトル測定により得られた還元型ニコチン酸アミドアデニンジヌクレオチドの検量線を示す。The calibration curve of reduced nicotinamide adenine dinucleotide obtained by absorption spectrum measurement is shown. 細胞数と吸光度の関係を示す。The relationship between cell number and absorbance is shown.

本発明の前記一般式(1)の化合物は、各種の反応を工夫し常法によって製造することができる。例えば、次の一般式(2)  The compound of the general formula (1) of the present invention can be produced by a conventional method by devising various reactions. For example, the following general formula (2)

Figure 0004614885
Figure 0004614885

で示されるフェニルヒドラジン類にアルデヒド化合物をアルコール溶媒中で反応させて、一般式(3)Is reacted with an aldehyde compound in an alcohol solvent to give a general formula (3)

Figure 0004614885
Figure 0004614885

で示されるヒドラゾンを得、次いで対応するジアゾニウム塩を水溶媒中塩基性条件下で反応させて一般式(4)And then reacting the corresponding diazonium salt in an aqueous solvent under basic conditions to give a general formula (4)

Figure 0004614885
Figure 0004614885

で示されるホルマザンを得る。ここで塩基性化剤としては水酸化ナトリウム、水酸化カリウムなどが用いられる。
次いで得られた一般式(4)のホルマザンを亜硝酸ブチル又は次亜塩素酸ナトリウム等の酸化剤を用いアルコール溶媒中で酸化し、前記一般式(1)のテトラゾリウム化合物を得ることができる。
The formazan indicated by is obtained. Here, sodium hydroxide, potassium hydroxide, or the like is used as the basifying agent.
Subsequently, the obtained formazan of the general formula (4) is oxidized in an alcohol solvent using an oxidizing agent such as butyl nitrite or sodium hypochlorite to obtain the tetrazolium compound of the general formula (1).

図1には、以上のようにして合成される本発明のテトラゾリウム化合物の具体例として後記の実施例において用いられているものの化学構造式を示しているが、本発明のテトラゾリウム化合物はこれらに限定されるものではない。図1から明らかなようにそれらの化合物は、一般式(1)においてR、R、R、R、R、R、R10、R12、R13、R14、R16、R17、R19が水素原子、Rがニトロ基、R、Rがスルホン酸基、R11、R18がメトキシ基(化合物a);R、R、R、R、R、R、R、R、R10、R12、R13、R14、R16、R17、R18、R19が水素原子、Rがニトロ基、R11、R15がスルホン酸基(化合物b);R、R、R、R、R、R、R10、R12、R13、R14、R16、R17、R18、R19が水素原子、Rがニトロ基、R、R、R15がスルホン酸基(化合物c);R、R、R、R、R、R、R、R10、R12、R13、R14、R16、R17、R18、R19が水素原子、R、Rがニトロ基、R11、R15がスルホン酸基(化合物d);R、R、R、R、R、R、R、R10、R12、R13、R14、R16、R17、R18、R19が水素原子、Rがニトロ基、R、R11、R15がスルホン酸基(化合物e);R、R、R、R、R、R、R10、R12、R13、R14、R16、R17、R19が水素原子、Rがニトロ基、R、Rがスルホアルキルオキシ基、R11、R18がメトキシ基(化合物f);R、R、R、R、R、R、R10、R12、R13、R14、R16、R17、R19が水素原子、Rがニトロ基、R、R、R11、R15がスルホン酸基(化合物g)に相当するものである。FIG. 1 shows chemical structural formulas of those used in the examples described later as specific examples of the tetrazolium compound of the present invention synthesized as described above, but the tetrazolium compound of the present invention is not limited to these. Is not to be done. As apparent from FIG. 1, these compounds are represented by the following formula (1): R 1 , R 2 , R 4 , R 5 , R 7 , R 9 , R 10 , R 12 , R 13 , R 14 , R 16. , R 17 and R 19 are hydrogen atoms, R 3 is a nitro group, R 6 and R 8 are sulfonic acid groups, R 11 and R 18 are methoxy groups (compound a); R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 12 , R 13 , R 14 , R 16 , R 17 , R 18 , R 19 are hydrogen atoms, R 3 is a nitro group, R 11 , R 15 is a sulfonic acid group (compound b); R 1 , R 2 , R 4 , R 5 , R 7 , R 9 , R 10 , R 12 , R 13 , R 14 , R 16 , R 17 , R 18 , R 19 is a hydrogen atom, R 3 is a nitro group, R 6, R 8, R 15 is a sulfonic acid group (compound c); R , R 2, R 4, R 5, R 6, R 7, R 9, R 10, R 12, R 13, R 14, R 16, R 17, R 18, R 19 is a hydrogen atom, R 3, R 8 is a nitro group, R 11 and R 15 are sulfonic acid groups (compound d); R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 9 , R 10 , R 12 , R 13 , R 14 , R 16 , R 17 , R 18 , R 19 are hydrogen atoms, R 3 is a nitro group, R 6 , R 11 , R 15 are sulfonic acid groups (compound e); R 1 , R 2 , R 4 , R 5 , R 7 , R 9 , R 10 , R 12 , R 13 , R 14 , R 16 , R 17 , R 19 are hydrogen atoms, R 3 is a nitro group, R 6 , R 8 are sulfoalkyloxy groups, R 11 and R 18 are methoxy groups (compound f); R 1 , R 2 , R 4 , R 5 , R 7 , R 9 , R 1 0 , R 12 , R 13 , R 14 , R 16 , R 17 , R 19 are hydrogen atoms, R 3 is a nitro group, R 6 , R 8 , R 11 , R 15 are sulfonic acid groups (compound g) To do.

本発明の水溶性テトラゾリウム化合物から生じるホルマザンは、長波長領域において光吸収し且つそれぞれのテトラゾリウム化合物に特有の極大吸収波長を有している。例えば、既述の化合物a〜gから生じるホルマザンは、それぞれ、表1に示す極大吸収波長を有する。そして、本発明の水溶性テトラゾリウム化合物は水溶液中できわめて安定であり、経時的に分解することはない。  Formazan produced from the water-soluble tetrazolium compound of the present invention absorbs light in the long wavelength region and has a maximum absorption wavelength specific to each tetrazolium compound. For example, formazan produced from the above-mentioned compounds a to g each have a maximum absorption wavelength shown in Table 1. The water-soluble tetrazolium compound of the present invention is extremely stable in an aqueous solution and does not decompose over time.

Figure 0004614885
Figure 0004614885

以下に本発明の特徴をさらに明らかにするため実施例を示すが、本発明はこれらの実施例によって制限されるものではない。
実施例1は、本発明の水溶性テトラゾリウム化合物の合成例を示すものである。実施例2は、本発明の水溶性テトラゾリウム化合物が安定であり経時的な分解を生じないことを示すものである。実施例3は、脱水素酵素反応のモデルとして1−メトキシPMS/NADH系において、本発明の水溶性テトラゾリウムから生成するホルマザンの吸光度がNADNの濃度に相関し、本発明の水溶性テトラゾリウム化合物が脱水素酵素またはその酵素基質の定量分析に利用できることを示すものである。実施例4は、本発明のテトラゾリウム化合物に由来するホルマザンの吸光度が1−メトキシPMS/培養細胞系における細胞数に相関しており、本発明の水溶性テトラゾリウム化合物が実際の培養細胞中での脱水素酵素や酵素基質の定量に用いることができることを示すものである。
Examples are given below to further clarify the features of the present invention, but the present invention is not limited to these examples.
Example 1 shows a synthesis example of the water-soluble tetrazolium compound of the present invention. Example 2 shows that the water-soluble tetrazolium compound of the present invention is stable and does not decompose over time. In Example 3, in the 1-methoxy PMS / NADH system as a model for the dehydrogenase reaction, the absorbance of formazan produced from the water-soluble tetrazolium of the present invention is correlated with the concentration of NADN, and the water-soluble tetrazolium compound of the present invention is dehydrated. It shows that it can be used for quantitative analysis of elementary enzyme or its enzyme substrate. In Example 4, the absorbance of formazan derived from the tetrazolium compound of the present invention correlates with the number of cells in the 1-methoxy PMS / cultured cell line, and the water-soluble tetrazolium compound of the present invention was dehydrated in actual cultured cells. It shows that it can be used for quantification of elementary enzymes and enzyme substrates.

(化合物aの合成)
p−ニトロフェニルヒドラジン10g(65.3mmol)及び4−フォルミル−1,3−ベンゼン−ジスルホン酸2ナトリウム塩一水和物20.26g(65.3mmol)をメタノール300mlに懸濁させ、2時間加熱還流した。次いで反応懸濁液を冷却後、反応懸濁液の沈殿物を濾取してヒドラゾン化合物25.3gを収率86.9%で得た。
得られたヒドラゾン化合物7.61g(17.1mmol)をテトラヒドロフラン200mlと水200mlの混合溶媒に溶解し、3℃に冷却した。そのヒドラゾン水溶液に2,5−ジメトキシ−4−(4−ニトロフェニルアゾ)ベンゼンジアゾニウム塩1/2塩化亜鉛を加えた。この反応溶液を0〜3℃に保持しながら、水酸化ナトリウム2.08gを水40mlに溶解した水溶液を滴下し、滴下終了後6時間撹拌した。反応混合液に塩酸を加え、弱酸性にした。次いで溶媒のテトラヒドロフランと水を減圧留去した。得られた粗成生物は水/アルコールによる再沈殿法により精製し、ホルマザン1.5gを収率11%で得た。
次いで得られたホルマザン0.46g(0.61mmol)をメタノール20mlに溶解した。そのホルマザン溶液に塩酸0.5ml(4.9mmol)を加えた後、亜硝酸ブチル1g(9.1mmol)を添加し、室温で1時間撹拌した。次いで溶媒のメタノールを減圧留去した後、粗成生物は水/アルコールによる再沈殿法により精製し、前記一般式(1)のテトラゾリウム化合物である化合物aを30mg、収率6.7%で得た。
プロトン核磁気共鳴分光法(以下H−NMRと略称する)(重水、300MHz)δ3.64(3H,s,−OCH)、4.18(3H,s,−OCH)、7.89−8.05(4H,m,aromatic CH)、8.17−8.27(4H,m,aromatic CH)、8.27−8.37(2H,m,aromatic CH)、8.58−8.68(3H,m,aromatic CH)。
赤外分光法(以下IRと略称する)(臭化カリウム錠剤法、以下KBrと略称する)3460、3100、1610、1525、1500、1345、1230、1118cm−1
質量分析法(質量スペクトル、以下MSと略称する)m/e=735(M+1)。
(Synthesis of Compound a)
10 g (65.3 mmol) of p-nitrophenylhydrazine and 20.26 g (65.3 mmol) of 4-formyl-1,3-benzene-disulfonic acid disodium salt monohydrate are suspended in 300 ml of methanol and heated for 2 hours. Refluxed. Next, the reaction suspension was cooled, and the precipitate of the reaction suspension was collected by filtration to obtain 25.3 g of a hydrazone compound in a yield of 86.9%.
The obtained hydrazone compound (7.61 g, 17.1 mmol) was dissolved in a mixed solvent of 200 ml of tetrahydrofuran and 200 ml of water and cooled to 3 ° C. 2,5-Dimethoxy-4- (4-nitrophenylazo) benzenediazonium salt 1/2 zinc chloride was added to the hydrazone aqueous solution. While maintaining this reaction solution at 0 to 3 ° C., an aqueous solution in which 2.08 g of sodium hydroxide was dissolved in 40 ml of water was dropped, and the mixture was stirred for 6 hours after the completion of the dropping. Hydrochloric acid was added to the reaction mixture to make it weakly acidic. Next, the solvent tetrahydrofuran and water were distilled off under reduced pressure. The obtained crude product was purified by a reprecipitation method with water / alcohol to obtain 1.5 g of formazan with a yield of 11%.
Next, 0.46 g (0.61 mmol) of the obtained formazan was dissolved in 20 ml of methanol. After adding 0.5 ml (4.9 mmol) of hydrochloric acid to the formazan solution, 1 g (9.1 mmol) of butyl nitrite was added and stirred at room temperature for 1 hour. Subsequently, after methanol of the solvent was distilled off under reduced pressure, the crude product was purified by a reprecipitation method with water / alcohol to obtain 30 mg of compound a which is the tetrazolium compound of the general formula (1) in a yield of 6.7%. It was.
Proton nuclear magnetic resonance spectroscopy (hereinafter abbreviated as 1 H-NMR) (heavy water, 300 MHz) δ 3.64 (3H, s, —OCH 3 ), 4.18 (3H, s, —OCH 3 ), 7.89 -8.05 (4H, m, aromatic CH), 8.17-8.27 (4H, m, aromatic CH), 8.27-8.37 (2H, m, aromatic CH), 8.58-8 .68 (3H, m, aromatic CH).
Infrared spectroscopy (hereinafter abbreviated as IR) (potassium bromide tablet method, hereinafter abbreviated as KBr) 3460, 3100, 1610, 1525, 1500, 1345, 1230, 1118 cm −1 .
Mass spectrometry (mass spectrum, hereinafter abbreviated as MS) m / e = 735 (M + 1).

(化合物bの合成)
上記化合物aと同様な方法で合成し、同定した。
H−NMR(重メタノール、300MHz)δ7.63−7.78(3H,m,aromatic CH)、8.01−8.08(4H,s,aromatic CH)、8.18−8.28(4H,m,aromatic CH)、8.32−8.38(2H,d,aromatic CH)、8.44−8.54(3H,m,aromatic CH)。
IR(KBr)3450、3100、1620、1520、1455、1350、1220、1030、850cm−1
MS m/e=630(M+1)。
(Synthesis of Compound b)
The compound was synthesized and identified in the same manner as the compound a.
1 H-NMR (deuterated methanol, 300 MHz) δ 7.63-7.78 (3H, m, aromatic CH), 8.01-8.08 (4H, s, aromatic CH), 8.18-8.28 ( 4H, m, aromatic CH), 8.32-8.38 (2H, d, aromatic CH), 8.44-8.54 (3H, m, aromatic CH).
IR (KBr) 3450, 3100, 1620, 1520, 1455, 1350, 1220, 1030, 850 cm −1 .
MS m / e = 630 (M + l).

(化合物cの合成)
上記化合物aと同様な方法で合成した。
H−NMR(重メタノール、300MHz)δ7.98−8.12(5H,m,aromatic CH)、8.14−8.21(1H,m,aromatic CH)、8.23−8.37(3H,m,aromatic CH)、8.41−8.57(4H,m,aromatic CH)、8.71−8.75(1H,d,aromatic CH)。
IR(KBr)3480、3100、1638、1540、1355、1230、1140、855、610cm−1
MS m/e=834(M+1)。
(Synthesis of Compound c)
The compound was synthesized in the same manner as the compound a.
1 H-NMR (deuterated methanol, 300 MHz) δ 7.98-8.12 (5H, m, aromatic CH), 8.14-8.21 (1H, m, aromatic CH), 8.23-8.37 ( 3H, m, aromatic CH), 8.41-8.57 (4H, m, aromatic CH), 8.71-8.75 (1H, d, aromatic CH).
IR (KBr) 3480, 3100, 1638, 1540, 1355, 1230, 1140, 855, 610 cm −1 .
MS m / e = 834 (M + l).

(化合物dの合成)
p−ニトロフェニルヒドラジン14g(91.4mmol)及びp−ニトロベンズアルデヒド13.8g(91.4mmol)をメタノール400mlに懸濁させ、2時間加熱還流した。次いで反応懸濁液を冷却後、反応懸濁液の沈殿物を濾取してヒドラゾン化合物23.6gを収率90.1%で得た。
4−アミノ−1,1’−アゾベンゼン−3,4−ジスルフォン酸ナトリウム塩31.2gを水200mlに懸濁し、5℃以下に冷却した。その懸濁液に濃塩酸25.7mlを、次いで水50mlに溶解した亜硝酸ナトリウム5.67gを加えた後、0〜5℃で1時間撹拌し、ジアゾニウム化合物水溶液を得た。
ヒドラゾン化合物7.61g(17.1mmol)をテトラヒドロフラン300mlと水50mlの混合溶媒に溶解し、3℃に冷却した。そのヒドラゾン水溶液に合成したジアゾニウム化合物水溶液を加えた。この反応溶液を0〜3℃に保持しながら、水160mlに溶解した水酸化ナトリウム13.2gを滴下し、滴下終了後3時間撹拌した。反応混合液に塩酸を加え、弱酸性にした。次いで溶媒のテトラヒドロフランと水を減圧留去した。濃縮物をジメチルフォルムアミドとエーテルで再沈殿精製し、ジアゾニウム塩52gを収率90.6%で得た。
次いで得られたホルマザン3g(4.3mmol)をメタノール200mlとジメチルフォルムアミド50mlの混合溶液に溶解した。そのホルマザン溶液に塩酸9ml(0.11mol)を加えた後、次亜塩素酸ナトリウム水溶液20mlを添加し室温で1時間撹拌した。反応後、その反応溶液の溶媒であるメタノールとジメチルフォルムアミドを減圧留去した後、粗成生物は水/アルコールによる再沈殿法により精製し、前記一般式(1)のテトラゾリウム化合物である化合物dを0.8g、収率27.6%で得た。
H−NMR(重水、300MHz)δ8.12−8.19(3H,m,aromatic CH)、8.20−8.23(1H,d,aromatic CH)、8.23−8.26(1H,d,aromatic CH)、8.27(1H,s,aromatic CH)、8.35−8.40(2H,m,aromatic CH)、8.60−8.68(5H,m,aromatic CH)、8.71(1H,d,aromatic CH)、8.74(1H,s,aromatic CH)。
IR(KBr)3500、3110、1630、1550、1475、1365、1240、1050、870cm−1
MS m/e=675(M+1)。
(Synthesis of Compound d)
14 g (91.4 mmol) of p-nitrophenylhydrazine and 13.8 g (91.4 mmol) of p-nitrobenzaldehyde were suspended in 400 ml of methanol and heated to reflux for 2 hours. Next, after cooling the reaction suspension, the precipitate of the reaction suspension was collected by filtration to obtain 23.6 g of a hydrazone compound in a yield of 90.1%.
31.2 g of 4-amino-1,1′-azobenzene-3,4-disulfonic acid sodium salt was suspended in 200 ml of water and cooled to 5 ° C. or lower. To the suspension, 25.7 ml of concentrated hydrochloric acid and 5.67 g of sodium nitrite dissolved in 50 ml of water were added, followed by stirring at 0 to 5 ° C. for 1 hour to obtain a diazonium compound aqueous solution.
7.61 g (17.1 mmol) of the hydrazone compound was dissolved in a mixed solvent of 300 ml of tetrahydrofuran and 50 ml of water and cooled to 3 ° C. The synthesized diazonium compound aqueous solution was added to the hydrazone aqueous solution. While maintaining this reaction solution at 0 to 3 ° C., 13.2 g of sodium hydroxide dissolved in 160 ml of water was added dropwise, and the mixture was stirred for 3 hours after completion of the dropwise addition. Hydrochloric acid was added to the reaction mixture to make it weakly acidic. Next, the solvent tetrahydrofuran and water were distilled off under reduced pressure. The concentrate was purified by reprecipitation with dimethylformamide and ether to obtain 52 g of diazonium salt in a yield of 90.6%.
Next, 3 g (4.3 mmol) of the obtained formazan was dissolved in a mixed solution of 200 ml of methanol and 50 ml of dimethylformamide. After adding 9 ml (0.11 mol) of hydrochloric acid to the formazan solution, 20 ml of aqueous sodium hypochlorite solution was added and stirred at room temperature for 1 hour. After the reaction, methanol and dimethylformamide as solvents of the reaction solution are distilled off under reduced pressure, and then the crude product is purified by a reprecipitation method with water / alcohol to obtain a compound d which is a tetrazolium compound of the general formula (1). Was obtained in a yield of 27.6%.
1 H-NMR (heavy water, 300 MHz) δ 8.12-8.19 (3H, m, aromatic CH), 8.20-8.23 (1H, d, aromatic CH), 8.23-8.26 (1H , D, aromatic CH), 8.27 (1H, s, aromatic CH), 8.35-8.40 (2H, m, aromatic CH), 8.60-8.68 (5H, m, aromatic CH) , 8.71 (1H, d, aromatic CH), 8.74 (1H, s, aromatic CH).
IR (KBr) 3500, 3110, 1630, 1550, 1475, 1365, 1240, 1050, 870 cm −1 .
MS m / e = 675 (M + l).

(化合物eの合成)
上記化合物a、dと同様な方法で合成した。
H−NMR(重水、300MHz)δ7.83−7.97(2H,m,aromatic CH)、7.97−8.09(5H,m,aromatic CH)、8.09−8.18(1H,m,aromatic CH)、8.20−8.26(1H,m,aromatic CH)、8.27−8.33(1H,m,aromatic CH)、8.33−8.41(1H,m,aromatic CH)、8.43−8.53(1H,m,aromatic CH)。
IR(KBr)3450、3080、1630、1530、1410、1340、1220、1030、850、745、610、560cm−1
MS m/e=731(M+1)。
(Synthesis of Compound e)
The compound was synthesized in the same manner as the above compounds a and d.
1 H-NMR (heavy water, 300 MHz) δ 7.83-7.97 (2H, m, aromatic CH), 7.97-8.09 (5H, m, aromatic CH), 8.09-8.18 (1H , M, aromatic CH), 8.20-8.26 (1H, m, aromatic CH), 8.27-8.33 (1H, m, aromatic CH), 8.33-8.41 (1H, m , Aromatic CH), 8.43-8.53 (1H, m, aromatic CH).
IR (KBr) 3450, 3080, 1630, 1530, 1410, 1340, 1220, 1030, 850, 745, 610, 560 cm −1 .
MS m / e = 731 (M + 1).

(化合物fの合成)
上記化合物a、dと同様な方法で合成した。
H−NMR(重水、300MHz)δ2.22−2.48(4H,m,−CH−)、3.10−3.28(2H,m,−CH−)、3.66(3H,s,−OCH)、4.13(3H,s,−OCH)、4.21−4.30(2H,m,−CH−)、6.66−6.68(1H,m,aromatic CH)、6.89−6.93(1H,m,aromatic CH)、7.41(1H,s,aromatic CH)、7.70−7.75(1H,m,aromatic CH)、7.91(1H,s,aromatic CH)、8.12−8.22(4H,m,aromatic CH)、8.42−8.48(2H,m,aromatic CH)、8.52−8.58(2H,m,aromatic CH)。
IR(KBr)3475、2950、1620、1510、1350、1210、1050、860、610cm−1
MS m/e=851(M+1)。
(Synthesis of Compound f)
The compound was synthesized in the same manner as the above compounds a and d.
1 H-NMR (heavy water, 300 MHz) δ 2.22-2.48 (4H, m, —CH 2 —), 3.10-3.28 (2H, m, —CH 2 —), 3.66 (3H , S, —OCH 3 ), 4.13 (3H, s, —OCH 3 ), 4.21-4.30 (2H, m, —CH 2 —), 6.66-6.68 (1H, m , Aromatic CH), 6.89-6.93 (1H, m, aromatic CH), 7.41 (1H, s, aromatic CH), 7.70-7.75 (1H, m, aromatic CH), 7 .91 (1H, s, aromatic CH), 8.12-8.22 (4H, m, aromatic CH), 8.42-8.48 (2H, m, aromatic CH), 8.52-8.58 (2H, m, aromatic CH).
IR (KBr) 3475, 2950, 1620, 1510, 1350, 1210, 1050, 860, 610 cm −1 .
MS m / e = 851 (M + 1).

(化合物gの合成)
上記化合物a、dと同様な方法で合成した。
H−NMR(重水、300MHz)δ7.53−7.63(1H,m,aromatic CH)、7.96−8.01(1H,m,aromatic CH)、8.09−8.26(6H,m,aromatic CH)、8.28−8.42(3H,m,aromatic CH)、8.52−8.64(3H,m,aromatic CH)。
IR(KBr)3450、3100、1600、1530、1350、1230、1200、1040、850、610、550cm−1
MS m/e=705(M+1)。
(Synthesis of Compound g)
The compound was synthesized in the same manner as the above compounds a and d.
1 H-NMR (heavy water, 300 MHz) δ 7.53-7.63 (1H, m, aromatic CH), 7.96-8.01 (1 H, m, aromatic CH), 8.09-8.26 (6H) , M, aromatic CH), 8.28-8.42 (3H, m, aromatic CH), 8.52-8.64 (3H, m, aromatic CH).
IR (KBr) 3450, 3100, 1600, 1530, 1350, 1230, 1200, 1040, 850, 610, 550 cm −1 .
MS m / e = 705 (M + l).

化合物a,b,c,d,e,f,gを1mM濃度になるよう、50mMトリス塩酸緩衝液(pH7.4、pH8.0、pH9.0)で調製した。溶液は4℃または25℃で保存し、各化合物について、既述の表1に示すホルマザンの極大吸収波長における吸光度を測定した。図2および図3に化合物dの測定結果を示す。他の化合物についても同様の結果が得られ、全ての化合物において30日間吸光度の変化は見られず、本発明の化合物は水溶液中でホルマザンに分解することがなく安定であることが確認された。
なお、図4には比較のために特許第2995880号公報(特許文献3)に開示している水溶性テトラゾリウム化合物の緩衝液中の吸光度変化を示しており、経時的な安定性において幾分難点があることが理解される。
Compounds a, b, c, d, e, f, and g were prepared with 50 mM Tris-HCl buffer (pH 7.4, pH 8.0, pH 9.0) so as to have a concentration of 1 mM. The solution was stored at 4 ° C. or 25 ° C., and the absorbance at the maximum absorption wavelength of formazan shown in Table 1 was measured for each compound. 2 and 3 show the measurement results of Compound d. Similar results were obtained for other compounds, and no change in absorbance was observed for 30 days for all compounds, confirming that the compound of the present invention was stable without being decomposed into formazan in an aqueous solution.
For comparison, FIG. 4 shows the change in absorbance in the buffer solution of the water-soluble tetrazolium compound disclosed in Japanese Patent No. 2994880 (Patent Document 3), which is somewhat difficult in terms of stability over time. It is understood that there is.

1mMの化合物a、b、c、d、eまたはfと、5μMの1−メトキシ−5−メチルフェナジウムメチルスルフェート(以下1−メトキシPMSと略称する)を含有する50mMトリス塩酸緩衝液(pH8.0)5mlに、5mMの還元型ニコチン酸アミドアデニンジヌクレオチド(以下NADHと略称する)をそれぞれ0、10、20、30、40及び50μl加え(それぞれのNADH最終濃度は、0、10、20、30、40及び50μmol/lである。)、5分間室温で反応させた後、吸光度を測定した。得られた吸収スペクトルを化合物ごとに図5(化合物a)、図6(化合物b)、図7(化合物c)、図8(化合物d)、図9(化合物e)、図10(化合物f)、図11(化合物g)に示す。NADH濃度変化に伴い、化合物aでは527nm、化合物bでは493nm、化合物cでは472nm、化合物dでは530nm、化合物eでは474nm、化合物fでは530nm、化合物gでは473nmの吸光度が上昇し、ホルマザンの生成が確認された。またホルマザンの測定セルへの吸着も認められなかった。
また、図12に示されるようにNADHと吸光度との間には良好な直線性の検量線が得られ、本発明の化合物が脱水素酵素反応の定量分析に使用できることが確認された。
50 mM Tris-HCl buffer (pH 8) containing 1 mM of compound a, b, c, d, e or f and 5 μM of 1-methoxy-5-methylphenadium methyl sulfate (hereinafter abbreviated as 1-methoxy PMS) 0.0) 0, 10, 20, 30, 40 and 50 μl of 5 mM reduced nicotinamide adenine dinucleotide (hereinafter abbreviated as NADH) are added to 5 ml (each NADH final concentration is 0, 10, 20). , 30, 40 and 50 μmol / l.) After reacting at room temperature for 5 minutes, the absorbance was measured. The obtained absorption spectra for each compound are shown in FIG. 5 (Compound a), FIG. 6 (Compound b), FIG. 7 (Compound c), FIG. 8 (Compound d), FIG. 9 (Compound e), and FIG. This is shown in FIG. 11 (Compound g). With the change in NADH concentration, the absorbance at 527 nm for compound a, 493 nm for compound b, 472 nm for compound c, 530 nm for compound d, 474 nm for compound e, 530 nm for compound f, and 473 nm for compound g increases the formation of formazan. confirmed. Also, no adsorption of formazan to the measuring cell was observed.
Further, as shown in FIG. 12, a calibration curve with good linearity was obtained between NADH and absorbance, and it was confirmed that the compound of the present invention can be used for quantitative analysis of dehydrogenase reaction.

化合物dおよび1−メトキシPMSを150mM食塩水に各々5mMおよび0.2mM溶解し、試薬溶液を調製した。ヒト子宮頚癌細胞を96穴マイクロプレートに25000細胞/ウェルから倍希釈法により100ulずつ播種し、細胞培養用インキュベーター中、37℃、3時間インキュベーションした。試薬溶液10ulずつ各ウエルに添加し、インキュベーター中、37℃、1.5時間インキュベーション後、マイクロプレートリーダーで530nmの吸光度を測定した。マイクロプレートへのホルマザンの吸着は観測されず、細胞数(酵素または基質の濃度に対応する)と吸光度との間には良好な検量線が得られた(図13)。  Compound d and 1-methoxy PMS were dissolved in 150 mM saline at 5 mM and 0.2 mM, respectively, to prepare a reagent solution. Human cervical cancer cells were seeded in a 96-well microplate from 25000 cells / well by a 100-fold dilution method and incubated at 37 ° C. for 3 hours in a cell culture incubator. 10 ul of the reagent solution was added to each well, incubated at 37 ° C. for 1.5 hours in an incubator, and the absorbance at 530 nm was measured with a microplate reader. Adsorption of formazan to the microplate was not observed, and a good calibration curve was obtained between the number of cells (corresponding to the concentration of enzyme or substrate) and absorbance (FIG. 13).

本発明は、長期間使用できる安定な試薬を用いる高感度の臨床検査法として、LDHをはじめとする生体中の各種の脱水素酵素を定量分析することにより疾病の診断や治療にきわめて有意義な知見を得るのに利用され、さらに、培養細胞内または培養細胞から漏出する脱水素酵素を測定することにより、新しい化学物質や薬剤の開発に際してそれらの毒性や効能等を知る手段としても有用である。  The present invention is a highly sensitive clinical test method that uses a stable reagent that can be used for a long period of time, and is a highly significant finding for diagnosis and treatment of diseases by quantitatively analyzing various dehydrogenases in living bodies including LDH. Furthermore, it is useful as a means of knowing their toxicity and efficacy in the development of new chemical substances and drugs by measuring dehydrogenase leaking in or from cultured cells.

Claims (4)

下記の一般式(1)で表されることを特徴とする水溶性テトラゾリウム化合物。
Figure 0004614885
(式中、R〜R19は、それぞれ独立に、水素原子、ニトロ基、スルホン酸基、または炭素数1から4のアルキル基、アルコキシ基、スルホアルキル基もしくはスルホアルキルオキシ基であり、但し、R〜R19のうち少なくとも2つは、それぞれ独立に、スルホン酸基または炭素数1〜4のスルホアルキル基もしくはスルホアルキルオキシ基であり、Mはアルカリ金属またはアンモニウムである。)
A water-soluble tetrazolium compound represented by the following general formula (1):
Figure 0004614885
(Wherein R 1 to R 19 are each independently a hydrogen atom, a nitro group, a sulfonic acid group, or an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a sulfoalkyl group, or a sulfoalkyloxy group, provided that , R 1 to R 19 are each independently a sulfonic acid group or a sulfoalkyl group having 1 to 4 carbon atoms or a sulfoalkyloxy group, and M is an alkali metal or ammonium.)
請求項1のテトラゾリウム化合物を用いることを特徴とする脱水素酵素または酵素基質の定量方法。A method for quantifying a dehydrogenase or an enzyme substrate, wherein the tetrazolium compound according to claim 1 is used. 培養細胞内の脱水素酵素活性を測定することを特徴とする請求項2の方法。The method according to claim 2, wherein the dehydrogenase activity in the cultured cells is measured. 培養細胞から漏出した脱水酵素活性を測定することを特徴とする請求項2の方法。The method according to claim 2, wherein the activity of the dehydrating enzyme leaked from the cultured cells is measured.
JP2005513603A 2003-07-14 2004-07-13 Water-soluble tetrazolium compound Active JP4614885B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003273982 2003-07-14
JP2003273982 2003-07-14
PCT/JP2004/009953 WO2005023786A1 (en) 2003-07-14 2004-07-13 Water-soluble tetrazolium compounds

Publications (2)

Publication Number Publication Date
JPWO2005023786A1 JPWO2005023786A1 (en) 2007-04-19
JP4614885B2 true JP4614885B2 (en) 2011-01-19

Family

ID=34263987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005513603A Active JP4614885B2 (en) 2003-07-14 2004-07-13 Water-soluble tetrazolium compound

Country Status (6)

Country Link
US (1) US7485705B2 (en)
EP (1) EP1650197A4 (en)
JP (1) JP4614885B2 (en)
CN (1) CN100396671C (en)
CA (1) CA2532211A1 (en)
WO (1) WO2005023786A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019502655A (en) * 2015-11-09 2019-01-31 ハンジョウ ジェニファー バイオーテック カンパニー リミテッドHangzhou Jennifer Biotech Co.,Ltd. Monosulfonic acid phenyltetrazole compounds and applications

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008272818A1 (en) 2007-07-02 2009-01-08 Yu, Ming Dr Methods, composition, targets for combinational cancer treatments
WO2013051590A1 (en) * 2011-10-03 2013-04-11 国立大学法人鹿児島大学 Quantitative soft agar colony formation assay using tetrazolium that generates water-soluble formazan
WO2017090631A1 (en) * 2015-11-24 2017-06-01 国立大学法人 東京大学 Fluorescent probe for detecting extracellular metabolite and screening method employing said fluorescent probe
EP3239709B1 (en) * 2016-04-25 2019-06-05 ARKRAY, Inc. Method of analyzing glycated protein; use of analysis reagent, analysis kit, and test piece for analysis
WO2018051822A1 (en) * 2016-09-14 2018-03-22 テルモ株式会社 2-substituted benzothiazolyl-3-substituted phenyl-5-substituted sulfonated phenyl-2h-tetrazolium salt, biological component concentration measurement reagent containing said salt, and biological component concentration measurement method using said salt

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB738585A (en) * 1952-07-17 1955-10-19 May & Baker Ltd Improvements in or relating to tetrazolium compounds
JPH09286784A (en) * 1996-04-18 1997-11-04 Doujin Kagaku Kenkyusho:Kk Novel water-soluble tetrazolium salt
JP2995380B2 (en) * 1994-08-11 1999-12-27 株式会社同仁化学研究所 New water-soluble tetrazolium salt compound

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578410A (en) * 1991-09-19 1993-03-30 Okamoto Kagaku Kogyo Kk Photopolymerizable composition
JP2592436B2 (en) * 1993-09-01 1997-03-19 株式会社同仁化学研究所 New water-soluble tetrazolium compounds
US6913878B2 (en) * 2003-01-06 2005-07-05 The University Of North Carolina At Chapel Hill Method of detecting DNA single strand breaks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB738585A (en) * 1952-07-17 1955-10-19 May & Baker Ltd Improvements in or relating to tetrazolium compounds
JP2995380B2 (en) * 1994-08-11 1999-12-27 株式会社同仁化学研究所 New water-soluble tetrazolium salt compound
JPH09286784A (en) * 1996-04-18 1997-11-04 Doujin Kagaku Kenkyusho:Kk Novel water-soluble tetrazolium salt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019502655A (en) * 2015-11-09 2019-01-31 ハンジョウ ジェニファー バイオーテック カンパニー リミテッドHangzhou Jennifer Biotech Co.,Ltd. Monosulfonic acid phenyltetrazole compounds and applications

Also Published As

Publication number Publication date
CA2532211A1 (en) 2005-03-17
CN1823049A (en) 2006-08-23
CN100396671C (en) 2008-06-25
JPWO2005023786A1 (en) 2007-04-19
US7485705B2 (en) 2009-02-03
US20070111274A1 (en) 2007-05-17
EP1650197A4 (en) 2008-11-05
WO2005023786A1 (en) 2005-03-17
EP1650197A1 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
JP2757348B2 (en) New water-soluble tetrazolium salt compound
US8178669B2 (en) Fluorescent probe for peroxynitrite
CN109232626B (en) SO based on difluoro boro coumarin2Ratiometric fluorescent probes
JP4373608B2 (en) Reagent for singlet oxygen measurement
CN111303102A (en) Nitroreductase responsive hypoxic probe compound and preparation and application thereof
CN109836394B (en) Near-infrared fluorescent probe for identifying hydrogen sulfide and preparation method and application thereof
US8394850B2 (en) Fluorescent probe specific to hydrogen peroxide
JPH10332591A (en) Method for quantitative determination of alkali ion and diaza-cryptand
JP4614885B2 (en) Water-soluble tetrazolium compound
CN111019644B (en) Rapid quantitative detection of tumor hypoxia related enzyme by using cofactor-substrate probe platform
JPH0859686A (en) Cypridinacea luciferin derivative and determination of saccharide hydrolase
CN112079823A (en) Near-infrared frequency up-conversion fluorescence molecular probe, preparation method and application
EP0498196B1 (en) A colorimetric method and reagent for the assay of lithium in a test sample
JPS60180600A (en) Determination of reduced-type nicotinamide adenine dinucleotide
JP2592436B2 (en) New water-soluble tetrazolium compounds
CN113637048A (en) Two-photon fluorescent probe of gamma-glutamyl transpeptidase, and preparation method and application thereof
JP2995380B2 (en) New water-soluble tetrazolium salt compound
JP2819258B2 (en) New water-soluble tetrazolium salt compound
US6046312A (en) Water soluble azo dyes and their synthesis and use
JPS58124771A (en) 4-amino-2,3-disubstituted-1-(mono or trichlorophenyl)-3- pyrazolin-5-one
CA2251850C (en) Water-soluble tetrazolium salt compounds
JP2889476B2 (en) Stilbene diboronic acid compound
CN116751209A (en) Near infrared ratio type fluorescent probe and preparation method and application thereof
JPH04221393A (en) N-acetyl-beta-d-glucosamine derivative, reagent for determination of n-acetyl-beta-d-glucosaminidase activity containing the derivative as active component and determination of n-acetyl-beta-d-glucosaminidase activity using the same
JP2003321486A (en) Method for assaying alkaline phosphatase

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101019

R150 Certificate of patent or registration of utility model

Ref document number: 4614885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250