JP4613122B2 - Removal method of moving blade of dry furnace top pressure recovery turbine - Google Patents

Removal method of moving blade of dry furnace top pressure recovery turbine Download PDF

Info

Publication number
JP4613122B2
JP4613122B2 JP2005335234A JP2005335234A JP4613122B2 JP 4613122 B2 JP4613122 B2 JP 4613122B2 JP 2005335234 A JP2005335234 A JP 2005335234A JP 2005335234 A JP2005335234 A JP 2005335234A JP 4613122 B2 JP4613122 B2 JP 4613122B2
Authority
JP
Japan
Prior art keywords
blade
rotor
varnish
top pressure
recovery turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005335234A
Other languages
Japanese (ja)
Other versions
JP2007138858A (en
Inventor
利勝 成田
正俊 進藤
育生 濱田
利男 安部
邦幸 目黒
功 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Nippon Steel Corp
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Nippon Steel Corp
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Nippon Steel Corp, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005335234A priority Critical patent/JP4613122B2/en
Publication of JP2007138858A publication Critical patent/JP2007138858A/en
Application granted granted Critical
Publication of JP4613122B2 publication Critical patent/JP4613122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、乾式炉頂圧回収タービンの動翼を定期点検等のための分解時に、ロータから抜き取るときの抜き取り方法に関する。   The present invention relates to a method for extracting a rotor blade of a dry furnace top pressure recovery turbine from a rotor at the time of disassembly for periodic inspection or the like.

高炉プラントの排ガス路にタービンを設置して発電等に利用する炉頂圧回収タービンは、製鉄所の高炉で発生する高炉ガスの持つ圧力エネルギを電力として回収すると共に、高炉の炉頂圧制御を行なうための設備である。この炉頂圧回収タービン設備には湿式と乾式があり、湿式の炉頂圧回収タービン設備は、高炉から出た高炉ガスを湿式除塵装置で水洗浄した後に、発電機駆動用のタービンに導くものである。   The top pressure recovery turbine, which is installed in the exhaust gas passage of the blast furnace plant and used for power generation, recovers the pressure energy of the blast furnace gas generated in the blast furnace at the steelworks as electric power and controls the top pressure control of the blast furnace. It is equipment for performing. There are two types of top pressure recovery turbine equipment, wet and dry. The wet top pressure recovery turbine equipment uses a blast furnace gas discharged from the blast furnace to be washed with a wet dust remover and then led to a turbine for driving the generator. It is.

この一方、乾式の炉頂圧回収タービン設備においては、高炉ガスが乾式除塵装置によって水洗浄されることなく除塵されるため、高炉ガスの温度が低下せず、回収電力が湿式に比べて25〜45%高くなり、電力の回収を効率的に行なうことができる。しかしながら、この乾式の炉頂圧回収タービン設備においては、湿式の場合に水洗浄によってその大部分が除去される高炉ガス中の塩素イオンや硫酸イオンが、除去されずに下流側へ送られる。したがって、下流側で結露等が発生すると、その結露部分等に塩素イオンや硫酸イオンが溶け込んで強酸性雰囲気を形成し、周囲の構造物等に激しい腐食を起こすことが知られている。   On the other hand, in the dry-type furnace top pressure recovery turbine equipment, since the blast furnace gas is removed without being washed with water by the dry dust remover, the temperature of the blast furnace gas does not decrease, and the recovered power is 25 to 25% that of the wet type. It is 45% higher, and power can be recovered efficiently. However, in this dry type furnace top pressure recovery turbine equipment, chlorine ions and sulfate ions in the blast furnace gas, which are mostly removed by water washing in the case of a wet type, are sent to the downstream side without being removed. Therefore, it is known that when dew condensation or the like occurs on the downstream side, chlorine ions or sulfate ions dissolve in the dew condensation part and the like to form a strongly acidic atmosphere and cause severe corrosion to surrounding structures and the like.

また、炉頂圧回収タービンの動翼は、一般的に翼植込み部が凸クリスマスツリー状に形成され、凹クリスマスツリー状に形成されたロータの翼取付部に挿入噛合されて、ロータに取り付けられる。このため、クリスマスツリー状の動翼の翼植込み部に極めて大きな応力が作用し、その応力集中部において亀裂が発生することがある。これに加えて、乾式の炉頂圧回収タービン設備においては、動翼の翼植込み部とロータの翼取付部との隙間に高炉ガスが進入して強酸性雰囲気を形成し、動翼とロータの双方に激しい腐食を起こして、動翼の翼植込み部における亀裂の発生をさらに促進させるという問題がある。   In addition, the rotor blades of the furnace top pressure recovery turbine are generally attached to the rotor by inserting and meshing with the rotor blade mounting portion formed in a concave Christmas tree shape, where the blade implantation portion is formed in a convex Christmas tree shape. . For this reason, extremely large stress acts on the blade implantation portion of the Christmas tree-like moving blade, and a crack may occur in the stress concentration portion. In addition to this, in dry-type furnace top pressure recovery turbine equipment, blast furnace gas enters the gap between the blade implantation part of the rotor blade and the blade attachment part of the rotor to form a strongly acidic atmosphere. There is a problem that both sides are severely corroded to further promote the generation of cracks in the blade implantation portion of the rotor blade.

このため、従来の乾式炉頂圧回収タービンにおいては、動翼に対して高炉ガス雰囲気中でも耐腐食疲労強度に優れたSUS630ステンレス鋼(析出硬化型ステンレス鋼)が使用されると共に、翼部にはアルミニウムを主成分とするコーティングが行われている。また、翼形についても翼弦長を大きく取るようにしてその耐腐食性を高めると共に、動翼の翼植込み部とロータの翼取付部との隙間へ高炉ガスが進入することを防止するため、動翼をロータへ組み込む時に、動翼の翼植込み部とロータの翼取付部との隙間に、エポキシ樹脂系のワニスを充填している(例えば、非特許文献1参照)。   For this reason, in the conventional dry furnace top pressure recovery turbine, SUS630 stainless steel (precipitation hardening type stainless steel) excellent in corrosion fatigue strength is used in the blast furnace gas atmosphere with respect to the moving blade, and the blade portion has A coating mainly composed of aluminum is performed. In addition, to increase the corrosion resistance by taking a large chord length for the airfoil, and to prevent the blast furnace gas from entering the gap between the blade implantation part of the rotor blade and the blade attachment part of the rotor, When the moving blade is incorporated into the rotor, an epoxy resin varnish is filled in the gap between the blade-implanted portion of the moving blade and the blade mounting portion of the rotor (see, for example, Non-Patent Document 1).

このエポキシ樹脂系のワニスは、単なる充填材として使用されるのではなく、ガス温度が約140°Cになる常用運転時にも剥離しない高い接着強度が求められる。万一、このワニスが運転中に剥離すると、動翼の翼植込み部に腐食が発生して、動翼の疲労強度を著しく低下させることがある。
伊藤健之著「炉頂圧発電タービン」、ターボ機械第15巻第4号第19頁〜第28頁、ターボ機械協会,1987年4月発行
This epoxy resin varnish is not used as a mere filler, but is required to have a high adhesive strength that does not peel even during normal operation when the gas temperature is about 140 ° C. If this varnish peels off during operation, corrosion may occur in the blade implantation portion of the blade, and the fatigue strength of the blade may be significantly reduced.
Ito Takeyuki "Top Furnace Pressure Turbine", Turbomachinery Vol.15, No.4, pages 19-28, Turbomachinery Association, published in April 1987

このように、従来の乾式炉頂圧回収タービンにおいては、動翼の翼植込み部とロータの翼取付部との隙間へ高炉ガスが進入することを防止するため、動翼をロータへ組み込む時
に、動翼の翼植込み部とロータの翼取付部との隙間にエポキシ樹脂系のワニスを充填しており、このエポキシ樹脂系のワニスは、ガス温度が約140°Cになる常用運転時にも剥離しない高い接着強度を有する。
Thus, in the conventional dry furnace top pressure recovery turbine, in order to prevent the blast furnace gas from entering the gap between the blade implantation portion of the rotor blade and the blade attachment portion of the rotor, when incorporating the rotor blade into the rotor, An epoxy resin varnish is filled in the gap between the blade implantation portion of the rotor blade and the blade mounting portion of the rotor, and this epoxy resin varnish does not peel even during normal operation when the gas temperature is about 140 ° C. Has high adhesive strength.

この一方、乾式炉頂圧回収タービンにおいては、上述のように動翼の翼植込み部に亀裂が発生するという問題があるため、定期的に非破壊検査等を行なう必要があり、この検査は動翼をロータから抜き取って動翼単体の状態で行なわれる。しかしながら、動翼の翼植込み部とロータの翼取付部との隙間に充填されているワニスの強い接着力により、動翼をロータから引き抜くことが容易ではなく、過大な力で無理やり引き抜くと、動翼の翼植込み部にかじり等の損傷を与え、その後の疲労強度を著しく低下させるという問題がある。   On the other hand, in the dry furnace top pressure recovery turbine, there is a problem that cracks occur in the blade implantation portion of the moving blade as described above. Therefore, it is necessary to perform a nondestructive inspection periodically. The blades are removed from the rotor and the blades are used alone. However, due to the strong adhesive force of the varnish that fills the gap between the blade installation part of the rotor blade and the blade attachment part of the rotor, it is not easy to pull out the rotor blade from the rotor. There is a problem that the wing implantation part of the wing is damaged by galling or the like, and the fatigue strength thereafter is remarkably reduced.

このような問題に対しては、動翼の翼植込み部とロータの翼取付部とをバーナで部分加熱し、動翼とロータとの熱膨張差を利用してワニスを剥離させて、動翼の引き抜きを容易にする試みもなされてきた。しかしながら、バーナによる部分加熱ではワニスを充分かつ一様に剥離させることができず、動翼の抜き取りを必ずしも容易にすることはできなかった。また、ワニスが適度に剥離した場合にも、新たにワニス残材によって却ってかじり等の損傷が発生するという問題が生じた。   To solve this problem, the blade implantation part of the rotor blade and the blade attachment part of the rotor are partially heated by a burner, and the varnish is peeled off using the thermal expansion difference between the rotor blade and the rotor. Attempts have also been made to make it easier to pull out. However, partial heating with a burner did not allow the varnish to be peeled sufficiently and uniformly, and removal of the rotor blades could not always be facilitated. Further, even when the varnish is appropriately peeled off, there is a problem that damage such as galling occurs due to the newly remaining varnish.

本発明はこのような問題を解決するためになされたもので、動翼の翼植込み部とロータの翼取付部との隙間にエポキシ樹脂系のワニスが充填されて組み立てられる乾式炉頂圧回収タービンにおいて、分解時にその動翼をロータから容易に抜き取ることができ、よって動翼の翼植込み部やロータの翼取付部に、疲労強度に影響を与えるようなかじり等の損傷を発生させることがない、乾式炉頂圧回収タービンの動翼抜き取り方法を提供することを課題とする。   The present invention has been made to solve such problems, and is a dry furnace top pressure recovery turbine that is assembled by filling an epoxy resin varnish into a gap between a blade implantation portion of a moving blade and a blade mounting portion of a rotor. Therefore, the rotor blade can be easily removed from the rotor at the time of disassembly, so that no damage such as galling that affects the fatigue strength is generated in the blade embedded part of the rotor blade or the blade mounting part of the rotor. Another object of the present invention is to provide a method for extracting a moving blade of a dry furnace top pressure recovery turbine.

上述の課題を解決するために、本発明が採用する手段は、高炉から供給される高炉ガスにより回転駆動されると共に動翼の翼植込み部とロータの翼取付部との隙間にエポキシ樹脂系のワニスが充填されて組み込まれる乾式炉頂圧回収タービンの動翼抜き取り方法において、その分解時に、動翼の翼植込み部とロータの翼取付部とを動翼がロータに組み込まれた状態で所定温度で所定時間だけ加熱してワニスの接着強度を低下させた後に動翼をロータから引き抜くことにある。   In order to solve the above-mentioned problems, the means employed by the present invention is driven by blast furnace gas supplied from a blast furnace and is made of an epoxy resin system in the gap between the blade implantation part of the moving blade and the blade attachment part of the rotor. In the method of extracting the moving blade of a dry furnace top pressure recovery turbine in which the varnish is filled and incorporated, at the time of disassembly, the blade embedded portion of the moving blade and the blade mounting portion of the rotor are set at a predetermined temperature with the moving blade being incorporated in the rotor. In this case, the blade is pulled out of the rotor after heating for a predetermined time to lower the adhesive strength of the varnish.

エポキシ樹脂系のワニスは所定温度で所定時間だけ加熱することにより炭化する性質を有し、この炭化が起こると、強い接着力を有していたエポキシ樹脂系のワニスもその接着強度が低下して、動翼の翼植込み部をロータの翼取付部から容易に引き抜くことができるようになる。   Epoxy resin varnish has the property of carbonizing by heating at a predetermined temperature for a predetermined time. When this carbonization occurs, the adhesive strength of epoxy resin varnish having strong adhesive strength also decreases. Thus, the blade implantation portion of the rotor blade can be easily pulled out from the blade attachment portion of the rotor.

上記所定温度は、200°C以上400°C以下であることが望ましい。エポキシ樹脂系のワニスは、加熱温度が200°C以上になると炭化して、その接着強度を低下させる傾向性が見受けられる。一方、加熱温度が400°Cを超えると、動翼材及びロータ材に材料劣化を起こす恐れがある。なお、この所定温度は250°C以上であることがさらに望ましく、350°C以上であることが最も望ましい。   The predetermined temperature is desirably 200 ° C. or higher and 400 ° C. or lower. Epoxy resin varnish tends to be carbonized when the heating temperature is 200 ° C. or higher, and has a tendency to lower its adhesive strength. On the other hand, when the heating temperature exceeds 400 ° C., there is a risk of material deterioration in the rotor blade material and the rotor material. The predetermined temperature is more preferably 250 ° C. or higher, and most preferably 350 ° C. or higher.

所定時間は、少なくとも10時間以上であることが望ましい。後述の試験結果及びエポキシ樹脂系ワニスの性状から、少なくとも10時間以上加熱すれば、その接着強度を一定程度低下させることができると推定される。なお、この所定時間には加熱開始後の昇温時間も含まれる。また、この所定時間は、17時間以上であることがさらに望ましい。   The predetermined time is desirably at least 10 hours. From the test results described below and the properties of the epoxy resin varnish, it is presumed that the adhesive strength can be reduced to a certain degree by heating for at least 10 hours. The predetermined time includes a temperature raising time after the start of heating. The predetermined time is more preferably 17 hours or more.

ワニスは、シリコーン変性エポキシ樹脂ワニスとシリコーン系エポキシ樹脂硬化剤とが
100:25〜100の質量比率で混合されたものであることが望ましい。このような成分を有するエポキシ樹脂系のワニスは、常用運転温度の140°Cで充分な接着強度を有して剥離の可能性がない一方、上記所定温度及び所定時間の加熱によって接着強度を急激に低下させる性質を有し、乾式炉頂圧回収タービンの動翼の翼植込み部とロータの翼取付部との隙間に充填するワニスとして最適である。
The varnish is preferably a mixture of a silicone-modified epoxy resin varnish and a silicone-based epoxy resin curing agent in a mass ratio of 100: 25-100. Epoxy resin varnishes having such components have sufficient adhesive strength at the normal operating temperature of 140 ° C. and have no possibility of peeling, while the adhesive strength is rapidly increased by heating at the predetermined temperature and for a predetermined time. Therefore, it is most suitable as a varnish for filling the gap between the blade-implanted portion of the rotor blade of the dry furnace top pressure recovery turbine and the blade attachment portion of the rotor.

本発明の乾式炉頂圧回収タービンの動翼抜き取り方法は、高炉から供給される高炉ガスにより回転駆動されると共に動翼の翼植込み部とロータの翼取付部との隙間にエポキシ樹脂系のワニスが充填されて組み込まれる乾式炉頂圧回収タービンの動翼抜き取り方法において、動翼の翼植込み部とロータの翼取付部とを動翼がロータに組み込まれた状態で所定温度で所定時間だけ加熱してワニスの接着強度を低下させた後に動翼をロータから引き抜くから、分解時に動翼をロータから容易に抜き取ることができ、よって動翼の翼植込み部やロータの翼取付部に、疲労強度に影響を与えるようなかじり等の損傷を発生させることがない、という優れた効果を奏する。   The method of extracting a moving blade of a dry furnace top pressure recovery turbine according to the present invention is rotationally driven by a blast furnace gas supplied from a blast furnace and has an epoxy resin varnish in a gap between a blade-implanted portion of the moving blade and a blade mounting portion of the rotor. In the method of extracting the moving blades of the dry furnace top pressure recovery turbine, which is filled and packed, the blade-implanted portion of the moving blade and the blade mounting portion of the rotor are heated at a predetermined temperature for a predetermined time with the moving blade being incorporated in the rotor. Since the rotor blades are pulled out from the rotor after reducing the adhesive strength of the varnish, the rotor blades can be easily pulled out of the rotor during disassembly, so that the fatigue strength can be applied to the blade blade mounting part and rotor blade mounting part. There is an excellent effect that no damage such as galling that affects the surface is generated.

本発明に係る乾式炉頂圧回収タービンの動翼抜き取り方法を実施するための最良の形態を、図1ないし図5を参照して詳細に説明する。
図1は、乾式炉頂圧回収タービンを示す断面正面図であり、図2は、図1の動翼及びロータを示す側面図であり、図3は、図1の動翼の翼取付部を示す斜視図であり、図4は、抜き取り治具を取り付けた状態のロータを示す平面図であり、図5は、抜き取り治具を取り付けた状態の動翼及びロータを示す側面図である。
BEST MODE FOR CARRYING OUT THE INVENTION A best mode for carrying out a moving blade extraction method for a dry furnace top pressure recovery turbine according to the present invention will be described in detail with reference to FIGS.
1 is a cross-sectional front view showing a dry furnace top pressure recovery turbine, FIG. 2 is a side view showing the moving blade and rotor of FIG. 1, and FIG. 3 shows a blade mounting portion of the moving blade of FIG. FIG. 4 is a plan view showing the rotor with the extraction jig attached, and FIG. 5 is a side view showing the rotor blade and the rotor with the extraction jig attached.

図1に示す乾式炉頂圧回収タービン1は、製鉄所の高炉で発生する高炉ガスの持つ圧力エネルギを電力として回収すると共に、高炉の炉頂圧制御を行なう。製鉄所の高炉から排出された高炉ガスは、ダストキャッチャ、乾式除塵装置等を通して大気へ排気されると共に、この排気路と並列に設置された炉頂圧回収タービンに導かれてこのタービンを回転させ、タービンが発電機を回転駆動させて発電を行うものである。湿式の炉頂圧回収タービンの場合のように、タービンに導かれる高炉ガスの温度が低下しないから、効率的に電力の回収を図ることができる。   A dry furnace top pressure recovery turbine 1 shown in FIG. 1 recovers pressure energy of blast furnace gas generated in a blast furnace at an ironworks as electric power and performs top pressure control of the blast furnace. The blast furnace gas discharged from the blast furnace at the steel works is exhausted to the atmosphere through a dust catcher, dry dust remover, etc., and is guided to a furnace top pressure recovery turbine installed in parallel with the exhaust passage to rotate the turbine. The turbine rotates the generator to generate electricity. As in the case of a wet furnace top pressure recovery turbine, the temperature of the blast furnace gas guided to the turbine does not decrease, so that power can be efficiently recovered.

図1に示すように、炉頂圧回収タービン1は2段タービンからなり、ロータ2の周囲に第1段動翼3及び第2段動翼4が取り付けられている。第1段動翼3及び第2段動翼4の前方には、それぞれ第1段静翼5と第2段静翼6が配設され、この第1段静翼5及び第2段静翼6は、いずれも図示しない角度可変機構を有している。角度可変機構は、インレットケース7からベルマウス8を通して取り入れられた高炉ガスを、各静翼5,6によって所定の流入角度で動翼3,4に吹きつけ、これによりタービンの回転数制御及び高炉の炉頂圧制御を行なう。   As shown in FIG. 1, the furnace top pressure recovery turbine 1 includes a two-stage turbine, and a first stage moving blade 3 and a second stage moving blade 4 are attached around the rotor 2. A first-stage stationary blade 5 and a second-stage stationary blade 6 are disposed in front of the first-stage stationary blade 3 and the second-stage stationary blade 4, respectively. The first-stage stationary blade 5 and the second-stage stationary blade 6 are not illustrated at angles. It has a variable mechanism. The variable angle mechanism blows the blast furnace gas taken from the inlet case 7 through the bell mouth 8 onto the rotor blades 3 and 4 at a predetermined inflow angle by the stationary blades 5 and 6, thereby controlling the rotational speed of the turbine and the blast furnace. The furnace top pressure is controlled.

ロータ2はその前後をジャーナル軸受9,10で支持されると共に、後部のスラスト軸受11によってロータ2で発生するスラストを受けている。ロータ2の前部は図示しない発電機に連結され、この発電機を回転駆動させて発電を行わせる。ロータ2の材料としては、SUS403ステンレス鋼(低Crマルテンサイト系耐熱ステンレス鋼)が使用され、また、動翼3,4の材料としては、高炉ガス雰囲気中でも耐腐食疲労強度の優れたSUS630ステンレス鋼(析出硬化型ステンレス鋼)が使用される。動翼3,4の翼部21には、アルミニウムを主成分とするコーティングが行われている。   The rotor 2 is supported by journal bearings 9 and 10 on the front and rear sides thereof and receives thrust generated in the rotor 2 by a thrust bearing 11 at the rear. The front part of the rotor 2 is connected to a generator (not shown), and the generator is rotated to generate power. The material of the rotor 2 is SUS403 stainless steel (low Cr martensitic heat resistant stainless steel), and the material of the rotor blades 3 and 4 is SUS630 stainless steel having excellent corrosion fatigue resistance even in a blast furnace gas atmosphere. (Precipitation hardening type stainless steel) is used. The blades 21 of the rotor blades 3 and 4 are coated with aluminum as a main component.

図2及び図3に示すように、動翼3,4は、その翼植込み部22が凸クリスマスツリー状に形成される一方、ロータ2の翼取付部24は、それに対応して凹クリスマスツリー状
に形成される。ロータ2と動翼3,4の組立時には、動翼の翼植込み部22がロータ3の翼取付部24に前後方向から挿入噛合されて、動翼3,4がロータ2に取り付けられる。動翼3,4のザブトン部23とロータ2との隙間27には、図示しないくさび形状の挿入ピースが挿入され、動翼3,4に対して周方向外側への突っ張り力を与えている。
As shown in FIGS. 2 and 3, the rotor blades 3 and 4 have the blade implantation portions 22 formed in a convex Christmas tree shape, while the blade mounting portions 24 of the rotor 2 have a concave Christmas tree shape corresponding thereto. Formed. When the rotor 2 and the moving blades 3 and 4 are assembled, the blade-implanted portion 22 of the moving blade is inserted and meshed with the blade mounting portion 24 of the rotor 3 from the front and rear directions, and the moving blades 3 and 4 are attached to the rotor 2. A wedge-shaped insertion piece (not shown) is inserted into the gap 27 between the Zabton portion 23 of the rotor blades 3 and 4 and the rotor 2 to give a thrust force to the outer periphery of the rotor blades 3 and 4 in the circumferential direction.

また、動翼3,4の翼植込み部22とロータ2の翼取付部24との隙間26への高炉ガスの進入を防止するため、動翼3,4をロータ2に組み込むときに、動翼3,4の翼植込み部22とロータ2の翼取付部24との隙間26に、エポキシ樹脂系のワニスが充填される。このワニス材としては、例えば、シリコーン変性エポキシ樹脂ワニスとシリコーン系エポキシ樹脂硬化剤とが、100:65の質量比率で混合されたものが使用される。   Further, when the rotor blades 3 and 4 are incorporated into the rotor 2 in order to prevent the blast furnace gas from entering the gap 26 between the blade implanting portion 22 of the rotor blades 3 and 4 and the blade mounting portion 24 of the rotor 2, An epoxy resin varnish is filled in a gap 26 between the wing implanting portions 3 and 4 and the wing mounting portion 24 of the rotor 2. As this varnish material, for example, a material in which a silicone-modified epoxy resin varnish and a silicone-based epoxy resin curing agent are mixed at a mass ratio of 100: 65 is used.

このワニス材は、単なる充填材として使用されるのではなく、ガス温度が約140°Cになる常用運転時にも剥離しない高い接着力が求められる。万一、運転中にこのワニスが剥離すると、動翼の翼植込み部に腐食が発生して、動翼の疲労強度を著しく低下させるからである。このような観点から代表的なものとして、例えば、信越シリコーン社製のエポキシ当量が555〜680のシリコーン変性エポキシ樹脂ワニス:ES1002Tと、シリコーン系エポキシ樹脂硬化材:KC224とが使用される。なお、ワニス材は必ずしもこれに限定されるものではなく、他の同等品を用いることもできる。   This varnish material is not used as a mere filler, but is required to have a high adhesive strength that does not peel even during normal operation when the gas temperature is about 140 ° C. If this varnish is peeled off during operation, corrosion will occur in the blade implantation part of the rotor blade, and the fatigue strength of the rotor blade will be significantly reduced. As typical examples from such a viewpoint, for example, silicone-modified epoxy resin varnish: ES1002T having an epoxy equivalent of 555 to 680 manufactured by Shin-Etsu Silicone Co., Ltd. and a silicone-based epoxy resin curing material: KC224 are used. The varnish material is not necessarily limited to this, and other equivalent products can also be used.

乾式炉頂圧回収タービン設備においては、湿式の場合に水洗浄によってその大部分が除去される高炉ガス中の塩素イオンや硫酸イオンが、除去されずに下流側へ送られる。したがって、下流側で結露等が発生すると、その結露部分等に塩素イオンや硫酸イオンが溶け込んで強酸性雰囲気を形成し、周囲の構造物等に激しい腐食を起こす。しかしながら、このワニスの充填により、動翼3,4の翼植込み部22とロータ2の翼取付部24との隙間への高炉ガスの進入が防止され、動翼3,4及びロータ2における腐食の発生及びそれによって促進される疲労強度の低下が防止される。   In the dry furnace top pressure recovery turbine facility, chlorine ions and sulfate ions in the blast furnace gas, which are mostly removed by water washing in the case of a wet type, are sent to the downstream side without being removed. Therefore, when dew condensation occurs on the downstream side, chlorine ions or sulfate ions dissolve in the dew condensation portion and the like to form a strongly acidic atmosphere, causing severe corrosion in surrounding structures. However, the filling of the varnish prevents the blast furnace gas from entering the gap between the blade implantation portion 22 of the rotor blades 3 and 4 and the blade mounting portion 24 of the rotor 2, and corrosion of the rotor blades 3 and 4 and the rotor 2 is prevented. Occurrence and reduction of fatigue strength promoted thereby are prevented.

一方、乾式炉頂圧回収タービンにおいては、動翼3,4の翼植込み部22に亀裂が発生するという問題があるため、定期的に非破壊検査等を行なう必要がある。この検査は、上記炉頂圧回収タービン1を分解し、動翼3,4をロータ2から抜き取って、動翼単体の状態で行なわれる。動翼3,4の抜き取り作業は次のように行われる。   On the other hand, in the dry furnace top pressure recovery turbine, there is a problem that cracks occur in the blade implantation portions 22 of the rotor blades 3 and 4, and therefore, it is necessary to periodically perform non-destructive inspection and the like. This inspection is carried out in a state where the furnace top pressure recovery turbine 1 is disassembled, the rotor blades 3 and 4 are extracted from the rotor 2, and the rotor blade is a single unit. The extraction operation of the rotor blades 3 and 4 is performed as follows.

動翼3,4がロータ2に組み込まれた状態で、動翼3,4の翼植込み部22とロータ2の翼取付部24とを、例えば、高温電気炉により約350°C(所定温度)で24時間(所定時間)加熱する。この加熱により上記ワニスは炭化し、この炭化によって強い接着力を有していたワニスもその接着強度が低下して、動翼3,4の翼植込み部22をロータ2の翼取付部24から容易に引き抜くことができるようになる。なお、この所定時間には上記所定温度に達するまでの昇温時間も含まれる。これは、動翼3,4の翼植込み部22の温度が所定温度に達しているか否かを厳密に測定することは実作業上困難であり、むしろ昇温時間も含めた慨時間として設定する方が現実的なためである。   In a state where the rotor blades 3 and 4 are incorporated in the rotor 2, the blade implantation portion 22 of the rotor blades 3 and 4 and the blade mounting portion 24 of the rotor 2 are about 350 ° C. (predetermined temperature) by a high temperature electric furnace, for example. For 24 hours (predetermined time). By this heating, the varnish is carbonized, and the varnish having a strong adhesive force due to the carbonization also decreases its adhesive strength, so that the blade implantation portion 22 of the rotor blades 3 and 4 can be easily removed from the blade mounting portion 24 of the rotor 2. Can be pulled out. Note that the predetermined time includes a temperature raising time until the predetermined temperature is reached. In practice, it is difficult to actually measure whether or not the temperature of the blade implantation portion 22 of the rotor blades 3 and 4 has reached a predetermined temperature. Rather, it is set as a drought time including the temperature rising time. This is because it is more realistic.

上記加熱終了後に自然冷却を行い、図4及び図5に示すように、ロータ2及び動翼3,4の翼植込み部22に、抜き取り治具31を取り付ける。抜き取り治具31は、この治具31をロータ2に固定するための固定部32と、ロータ2の2つの翼取付部24の間の突出部25に側方からねじ込まれて、治具31をこの突出部25に固定するための2本のねじ部33と、先端が動翼3,4の翼植込み部22にねじ込まれて、動翼3,4の翼植込み部22を油圧で引き抜くための引き抜きロッド34とからなる。   After the heating is completed, natural cooling is performed, and an extraction jig 31 is attached to the blade implantation portion 22 of the rotor 2 and the rotor blades 3 and 4 as shown in FIGS. The extraction jig 31 is screwed from the side into a fixing part 32 for fixing the jig 31 to the rotor 2 and a protruding part 25 between the two blade attachment parts 24 of the rotor 2, and the jig 31 is Two screw portions 33 for fixing to the projecting portion 25 and the tip are screwed into the blade implantation portion 22 of the rotor blades 3 and 4, and the blade implantation portion 22 of the rotor blades 3 and 4 is pulled out hydraulically. It consists of a drawing rod 34.

この引き抜きロッド34に油圧をかけて、動翼3,4の翼植込み部22をロータ2の翼取付部24から引き抜く。このとき、動翼3,4の翼植込み部22とロータ2の翼取付部24との間に充填されていたワニスは、上記加熱により炭化し、その接着強度はほとんどゼロになっているから、動翼3,4をロータ2から容易に引き抜くことができる。これは、炭化したワニスが動翼3,4の翼植込み部22に薄く滑らかなコーティング層を形成し
て、動翼3,4の抜き取り時の摩擦抵抗を小さくしているためと考えられる。
Hydraulic pressure is applied to the pulling rod 34 to pull out the blade implantation portion 22 of the rotor blades 3 and 4 from the blade mounting portion 24 of the rotor 2. At this time, the varnish filled between the blade implanting portion 22 of the rotor blades 3 and 4 and the blade mounting portion 24 of the rotor 2 is carbonized by the heating, and its adhesive strength is almost zero. The rotor blades 3 and 4 can be easily pulled out from the rotor 2. This is presumably because the carbonized varnish forms a thin and smooth coating layer on the blade implantation portion 22 of the rotor blades 3 and 4 to reduce the frictional resistance when the rotor blades 3 and 4 are extracted.

そして、なるべく早い段階で動翼3,4のザブトン部23とロータ2との隙間27に挿入したくさび形状の挿入ピースを取り除く。このような方法で動翼3,4をロータ2から抜き取ることにより、従来のバーナの部分加熱による剥離作用を利用した抜き取り方法に比べて、動翼3,4の翼植込み部22やロータ2の翼取付部24に、疲労強度に影響を与えるようなかじり等の損傷を発生させる可能性は極めて低くなる。   Then, at the earliest possible stage, the wedge-shaped insertion piece inserted into the gap 27 between the Zabton portion 23 of the rotor blades 3 and 4 and the rotor 2 is removed. By extracting the rotor blades 3 and 4 from the rotor 2 in this manner, the blade implanting portion 22 of the rotor blades 3 and 4 and the rotor 2 can be compared with the conventional extraction method using the peeling action by partial heating of the burner. The possibility of causing damage such as galling that affects the fatigue strength in the blade mounting portion 24 is extremely low.

なお、加熱温度は、上述の350°Cに限定されるものではないが、200°C以上400°C以下であることが望ましい。後述の試験結果から、エポキシ樹脂系のワニスは、その種類に拘わらず加熱温度が200°C以上になると炭化して、その接着強度を低下させる傾向が見受けられる。特に、上記ワニスについては、200°Cの加熱でその接着強度が常用運転時の温度である140°C時の50%以下となる。   The heating temperature is not limited to the above-mentioned 350 ° C., but is desirably 200 ° C. or more and 400 ° C. or less. From the test results described below, it can be seen that epoxy resin varnish tends to carbonize and lower its adhesive strength when the heating temperature is 200 ° C. or higher, regardless of its type. In particular, the adhesive strength of the varnish is 50% or less at 140 ° C., which is the temperature during normal operation, by heating at 200 ° C.

この一方、加熱温度が400°Cを超えると、SUS630ステンレス鋼からなる動翼材及びSUS403ステンレス鋼からなるロータ材に材料劣化を起こす恐れが出てくる。したがって、この上限温度は使用している動翼材及びロータ材によって適切に設定すればよい。なお、上記所定温度の下限温度は、250°C以上であることがさらに望ましく、350°C以上であることが最も望ましい。   On the other hand, when the heating temperature exceeds 400 ° C., there is a risk of material deterioration in the rotor blade material made of SUS630 stainless steel and the rotor material made of SUS403 stainless steel. Therefore, the upper limit temperature may be appropriately set depending on the moving blade material and the rotor material used. The lower limit temperature of the predetermined temperature is more preferably 250 ° C. or higher, and most preferably 350 ° C. or higher.

上記ワニスについては、250°Cでその接着強度が常用温度である140°Cの時の20%以下となり、さらに350°Cでは数%以下となるからである。この一方、350°Cの加熱でも動翼の抜き取りに充分な接着強度の低下が見られるため、動翼材やロータ材への熱的影響に対する更なる配慮、電気炉作業の効率化等を考慮して、上記所定温度の上限温度を350°C以下とすることもできる。   This is because the adhesive strength of the varnish is 20% or less at 250 ° C. and 140 ° C., which is the normal temperature, and is several percent or less at 350 ° C. On the other hand, even when heated to 350 ° C, there is a decrease in adhesive strength sufficient to extract the rotor blades, so further consideration is given to the thermal effects on the rotor blade material and rotor material, and more efficient electric furnace work is considered. And the upper limit temperature of the said predetermined temperature can also be 350 degrees C or less.

また、加熱時間(所定時間)は、必ずしも上述の24時間に限定されるものではない。主として実際の加熱作業の作業性等を考慮してここでは24時間に設定したが、この加熱時間は、少なくとも加熱開始後の昇温時間も含めて10時間以上あれば、ワニスに一定の炭化を発生させ、ワニスの接着強度を弱めることができると推定される。なお、この加熱時間を17時間以上とすれば、さらに確実にワニスの接着強度を低下させることができる。   The heating time (predetermined time) is not necessarily limited to the above-mentioned 24 hours. In consideration of workability of the actual heating work, etc., it is set to 24 hours here. However, if this heating time is at least 10 hours including at least the temperature rising time after the start of heating, the varnish is subjected to constant carbonization. It is estimated that the adhesive strength of the varnish can be weakened. If the heating time is set to 17 hours or longer, the adhesive strength of the varnish can be more reliably reduced.

この一方、ロータ等の大きさにもよるが、動翼3,4の翼植込み部22の温度は、加熱開始後数時間程度でほぼ上記所定温度に到達する。また、上述のように、加熱温度が400°Cを超えると動翼材及びロータ材に材料劣化を起こす恐れが出てくるため、加熱時間はワニスの炭化及び劣化が得られる範囲で極力短くすることも必要である。このような観点及び後述の試験結果から、加熱時間を最大24時間とすることもできる。   On the other hand, although depending on the size of the rotor or the like, the temperature of the blade implantation part 22 of the rotor blades 3 and 4 reaches the predetermined temperature approximately several hours after the start of heating. In addition, as described above, if the heating temperature exceeds 400 ° C, the blade material and the rotor material may be deteriorated. Therefore, the heating time should be as short as possible within a range where carbonization and deterioration of the varnish can be obtained. It is also necessary. From this viewpoint and the test results described later, the heating time can be set to a maximum of 24 hours.

さらに、上記ワニスは、シリコーン変性エポキシ樹脂ワニスとシリコーン系エポキシ樹脂硬化剤とが100:65の質量比率で混合されたものが使用されたが、混合比率は必ずしもこれに限定されるものではなく、100:25〜100の質量比率で混合されたものであれば、上記と同様の性能が得られるものと考えられる。   Furthermore, the varnish used was a mixture of a silicone-modified epoxy resin varnish and a silicone-based epoxy resin curing agent in a mass ratio of 100: 65, but the mixing ratio is not necessarily limited to this, If it is mixed at a mass ratio of 100: 25 to 100, it is considered that the same performance as above can be obtained.

なお、上述の乾式炉頂圧回収タービンの動翼抜き取り方法は一例にすぎず、本発明の趣旨に基づいて種々の変形が可能であり、それらを本発明の範囲から排除するものではない。   In addition, the moving blade extraction method of the dry furnace top pressure recovery turbine described above is only an example, and various modifications are possible based on the gist of the present invention, and they are not excluded from the scope of the present invention.

炉頂圧回収タービンの動翼の翼植込み部とロータの翼取付部との間に、腐食防止観点か
ら充填されるエポキシ樹脂系のワニスについて、加熱による接着強度の低下とそれによる抜き取りの容易性を検証するため、次の2種類の試験を行った。
(1)板状試験片による引張試験
〔試験条件〕
板状試験片を製作し、3種類のエポキシ樹脂系のワニスについて、乾式炉頂圧回収タービンの常用運転時の温度である140°Cで24時間加熱そして自然冷却後の接着強度、及び、250°Cで24時間加熱そして自然冷却後の接着強度を、平均引張力を測定することによりそれぞれ検証した。使用した3種類のワニスは、次のとおりである。
With regard to epoxy resin varnish filled from the viewpoint of corrosion prevention between the blade implantation part of the rotor blade of the furnace top pressure recovery turbine and the rotor blade mounting part, the adhesive strength decreases due to heating and the ease of extraction In order to verify this, the following two types of tests were conducted.
(1) Tensile test using plate specimens [Test conditions]
A plate-shaped test piece was manufactured, and three types of epoxy resin-based varnish were heated at 140 ° C., which is the temperature during normal operation of the dry furnace top pressure recovery turbine, for 24 hours and after natural cooling, and 250 The adhesive strength after 24 hours of heating at 0 ° C. and natural cooling was verified by measuring the average tensile force. The three types of varnish used are as follows.

Aワニス:エポキシ当量が555〜680のシリコーン変性エポキシ樹脂ワニスとシリ
コーン系エポキシ樹脂硬化剤とが、100:65の質量比率で混合されたも

Bワニス:エポキシ樹脂塗料(商品名:ネオゴーセ#200)とポリアミド樹脂系エポ
キシ樹脂硬化剤とが、4:1の質量比率で混合されたもの
Cワニス:エポキシ当量が184〜194のエポキシ樹脂とポリアミド樹脂系エポキシ
樹脂硬化剤とが、7:3の質量比率で混合されたもの
〔試験結果〕
上記A〜Cワニスについての引張強度の試験結果を図6に示す。これより次のことが判明した。
A varnish: Silicone-modified epoxy resin varnish with epoxy equivalent of 555-680 and silica
A corn-based epoxy resin curing agent mixed at a mass ratio of 100: 65
B varnish: Epoxy resin paint (trade name: Neo Goose # 200) and polyamide resin epoxy
A xy resin curing agent mixed in a mass ratio of 4: 1 C varnish: epoxy resin having an epoxy equivalent of 184 to 194 and polyamide resin epoxy
A resin curing agent mixed at a mass ratio of 7: 3 [test result]
The test result of the tensile strength about said AC varnish is shown in FIG. From this, the following was found.

乾式炉頂圧回収タービンの常用運転時の温度である140°Cで24時間加熱そして自然冷却後の平均引張力は、CワニスがAワニスの約3.5倍と最も大きく、BワニスはAワニスの約0.6倍と最も小さかった。また、250°Cで24時間加熱そして自然冷却後の平均引張力は、Aワニスは140°C加熱時の約1/4に低下し、Bワニスは140°C加熱時の約1/2に低下し、Cワニスは140°C加熱時の約1/4にそれぞれ低下した。   The average tensile force after heating for 24 hours at 140 ° C, which is the temperature during normal operation of the dry furnace top pressure recovery turbine, and after natural cooling, C varnish is about 3.5 times the A varnish, B varnish is A It was the smallest, about 0.6 times the varnish. In addition, the average tensile force after heating at 250 ° C for 24 hours and after natural cooling decreases to about 1/4 of the varnish when heated to 140 ° C, and B varnish to about ½ when heated to 140 ° C. C varnish was reduced to about ¼ when heated at 140 ° C.

〔結論〕
上記A〜Cのいずれのエポキシ樹脂系ワニスついても、250°Cで24時間加熱することにより平均引張力は約1/2〜1/4に低下し、加熱による接着強度の低下が明らかとなった。ただし、Bワニスについては乾式炉頂圧回収タービンの常用運転時の温度である140°Cで加熱した後の平均引張力が最も低く、しかも250°Cで加熱した後の接着強度の低下が最も小さかった。
[Conclusion]
For any of the above-mentioned epoxy resin varnishes A to C, the average tensile force decreases to about 1/2 to 1/4 by heating at 250 ° C. for 24 hours, and it becomes clear that the adhesive strength is reduced by heating. It was. However, for B varnish, the average tensile force after heating at 140 ° C, which is the temperature during normal operation of the dry furnace top pressure recovery turbine, is the lowest, and the decrease in adhesive strength after heating at 250 ° C is the most. It was small.

(2)実機動翼を用いた抜き取り試験
上述の板状試験片の試験結果に基づき、乾式炉頂圧回収タービンの常用運転時の温度である140°Cで充分な接着強度が確保でき、かつ加熱による接着強度の低下が大きいという観点から、上記A及びCのエポキシ樹脂系ワニスについて、実機動翼を用いた引き抜き試験を行った。
(2) Sampling test using actual moving blades Based on the test results of the plate test piece described above, sufficient adhesive strength can be secured at 140 ° C, which is the temperature during normal operation of the dry furnace top pressure recovery turbine, and A pull-out test using an actual moving blade was performed on the epoxy resin varnishes A and C from the viewpoint that the decrease in adhesive strength due to heating was large.

〔試験条件〕
試験ワニス:上記A及びCのエポキシ樹脂系ワニス
使用動翼:翼植込み部の長さが200mmの実機動翼(SUS630ステンレス鋼)
使用ロータ:翼取付部の長さが220mmの試験ブロック(SUS403ステンレス鋼

加熱時期:ワニス充填後の4日間の常温乾燥後
加熱温度:乾式炉頂圧回収タービンの常用運転時の温度である140°C、板状試験片
の試験によって加熱による明らかな接着強度の低下が見られた250°C、
動翼材及びロータ材に材料劣化を起こさない上限温度の400°Cに近い3
50°Cの計3種類の温度
〔Test conditions〕
Test varnish: Epoxy resin varnish of A and C above Used moving blade: Actual moving blade with wing implantation part length of 200 mm (SUS630 stainless steel)
Rotor used: Test block with wing attachment length of 220 mm (SUS403 stainless steel
)
Heating time: After drying at room temperature for 4 days after filling with varnish Heating temperature: 140 ° C, a plate-shaped test piece that is the temperature during normal operation of the dry furnace top pressure recovery turbine
In the test of 250 ° C., a clear decrease in adhesive strength due to heating was observed,
Close to the upper limit temperature of 400 ° C that does not cause material deterioration in the rotor blade material and rotor material 3
3 types of temperature at 50 ° C

加熱方法:高温電気炉
加熱時間:昇温時は50°C/時とし、加熱時間はこの昇温時間も含めて24時間
抜き取り治具:実機動翼抜き取り治具(図4及び図5参照)
測定時期:加熱後に自然冷却を行った後
測定温度:常温
測定方法:動翼の動き始めの油圧、動翼の移動時の油圧の2種類の圧力を測定
ただし、治具の強度上による制約から、引き抜き最大圧力を400kg/c
2 gとする。
〔試験結果〕
上記Aワニス及びCワニスについての引き抜き試験結果を図7に示す。これより次のことが判明した。ただし、図7において引き抜き油圧が400kg/cm2 gと示されている場合には、実際にはその油圧で動翼を引き抜くことができなかったことを示す。
Heating method: High-temperature electric furnace Heating time: 50 ° C / hour during heating, heating time is 24 hours including this heating time Extraction jig: Actual machine blade extraction jig (see Figs. 4 and 5)
Measurement time: After natural cooling after heating Measurement temperature: normal temperature Measurement method: Measure the two types of pressure, the hydraulic pressure at the beginning of the moving blade and the hydraulic pressure at the moving of the moving blade
However, due to restrictions on the strength of the jig, the maximum extraction pressure is 400 kg / c.
m 2 g.
〔Test results〕
The pull-out test results for the A varnish and C varnish are shown in FIG. From this, the following was found. However, when the drawing hydraulic pressure is shown as 400 kg / cm 2 g in FIG. 7, it indicates that the moving blade could not actually be pulled out by the hydraulic pressure.

上記板状試験片の試験結果と同様に、Aワニス及びCワニスは、ともに乾式炉頂圧回収タービンの常用運転時の温度である140°Cの加熱時に、剥離を起こさない充分な接着強度を有する。また、250°Cでの加熱時には、Aワニスについては移動時及び動き始めの圧力が、少なくとも常用運転時の温度である140°Cの加熱時の20%以下に低下し、Cワニスについては動き始めの圧力が、140°Cの加熱時の50%以下に低下する。   Similar to the test results of the above plate-shaped test pieces, both the A varnish and the C varnish have sufficient adhesive strength that does not cause peeling when heated at 140 ° C., which is the temperature during normal operation of the dry furnace top pressure recovery turbine. Have. In addition, when heated at 250 ° C, the pressure at the time of movement and the start of movement of the A varnish is reduced to 20% or less at the time of heating at 140 ° C, which is the temperature during normal operation, and the movement of the C varnish. The initial pressure drops below 50% during heating at 140 ° C.

350°Cでの加熱時には、Aワニスについては移動時及び動き始めの圧力が、手でも軽く抜き取れる程度の1kg/cm2 g以下となった。Cワニスについては、移動時の圧力がAワニスと同程度にまで低下する一方、動き始めの圧力は250°Cでの加熱時と同程度の低下にとどまった。
〔結論〕
上記A及びCワニスのいずれのエポキシ樹脂系ワニスついても、常用運転時には充分な接着強度を有する一方、加熱による接着強度の低下性能は、Aワニスの方がCワニスよりも格段に優れており、Aワニスについては350°Cの加熱で、手でも軽く抜き取れる程度にまでになった。
At the time of heating at 350 ° C., the pressure at the time of movement and the start of movement of the A varnish was 1 kg / cm 2 g or less so that it could be easily pulled out by hand. As for the C varnish, the pressure at the time of movement decreased to the same level as that of the A varnish, while the pressure at the start of movement only decreased to the same level as when heated at 250 ° C.
[Conclusion]
Any epoxy resin varnish of the above A and C varnishes has sufficient adhesive strength during normal operation, while the A varnish is far superior to C varnish in reducing the adhesive strength by heating. The A varnish was heated to 350 ° C. so that it could be pulled out by hand.

また、A及びCワニスのいずれのワニスついても、250°Cの加熱で相当程度の接着強度の低下が見られ、特にAワニスについては抜き取りにほとんど支障のないものであった。この試験結果及びエポキシ樹脂系ワニスの一般的性質から、200°C程度の加熱でも一定の接着強度の低下が得られるものと考えられる。   Moreover, in any of the A and C varnishes, a considerable decrease in the adhesive strength was observed when heated at 250 ° C., and in particular, the A varnish had little trouble in extraction. From this test result and the general properties of the epoxy resin varnish, it is considered that a certain decrease in adhesive strength can be obtained even by heating at about 200 ° C.

さらに、加熱時間は、主として実際の加熱作業の作業性等を考慮してすべて24時間として行ったが、少なくとも昇温時間を含めて10時間以上、好ましくは17時間以上の加熱を行えば、A及びCワニスのいずれのワニスついても一定の接着強度の低下が得られるものと推定される。   Further, the heating time was all set to 24 hours mainly considering the workability of the actual heating work, etc., but if heating is performed for at least 10 hours, preferably at least 17 hours including the temperature rising time, A It is estimated that a certain decrease in adhesive strength can be obtained with any of the varnishes C and C.

乾式炉頂圧回収タービンを示す断面正面図である。It is a section front view showing a dry type furnace top pressure recovery turbine. 図1の動翼及びロータを示す側面図である。It is a side view which shows the moving blade and rotor of FIG. 図1の動翼の翼スロット部を示す斜視図である。It is a perspective view which shows the blade slot part of the moving blade of FIG. 抜き取り治具を取り付けた状態のロータを示す平面図である。It is a top view which shows the rotor of the state which attached the extraction jig | tool. 抜き取り治具を取り付けた状態の動翼及びロータを示す側面図である。It is a side view which shows the moving blade and rotor of the state which attached the extraction jig | tool. 板状試験片による引張試験結果を示す棒グラフである。It is a bar graph which shows the tension test result by a plate-shaped test piece. 実機動翼を用いた抜き取り試験結果を示す折れ線グラフである。It is a line graph which shows the sampling test result using a real machine blade.

符号の説明Explanation of symbols

1 炉頂圧回収タービン
2 ロータ
3 第1段動翼
4 第2段動翼
5 第1段静翼
6 第2段静翼
7 インレットケース
8 ベルマウス
9,10 ジャーナル軸受
11 スラスト軸受
21 翼部
22 翼植込み部
23 ザブトン部
24 翼取付部
25 突出部
26,27 隙間
31 抜き取り治具
32 固定部
33 ねじ部
34 引き抜きロッド
DESCRIPTION OF SYMBOLS 1 Furnace top pressure recovery turbine 2 Rotor 3 1st stage moving blade 4 2nd stage moving blade 5 1st stage stationary blade 6 2nd stage stationary blade 7 Inlet case 8 Bellmouth 9, 10 Journal bearing 11 Thrust bearing 21 Blade part 22 Blade implantation part 23 Zabton part 24 Wing attachment part 25 Projection part 26, 27 Gap 31 Extraction jig 32 Fixing part 33 Screw part 34 Extraction rod

Claims (2)

高炉から供給される高炉ガスにより回転駆動されると共に動翼(3,4)の翼植込み部(22)とロータ(2)の翼取付部(24)との隙間にエポキシ樹脂系のワニスが充填されて組み込まれる乾式炉頂圧回収タービン(1)の動翼抜き取り方法において、前記ワニスは、シリコーン変性エポキシ樹脂ワニスとシリコーン系エポキシ樹脂硬化剤とが100:25〜100の質量比率で混合されたものであると共に、分解時に前記動翼の前記翼植込み部と前記ロータの前記翼取付部とを前記動翼が前記ロータに組み込まれた状態で高温電気炉により200°C以上400°C以下で所定時間だけ加熱して前記ワニスの接着強度を低下させた後に前記動翼を前記ロータから引き抜くことを特徴とする乾式炉頂圧回収タービンの動翼抜き取り方法。 The epoxy resin varnish is filled in the gap between the blade implantation part (22) of the rotor blade (3, 4) and the blade mounting part (24) of the rotor (2) while being rotationally driven by blast furnace gas supplied from the blast furnace. In the method of extracting a moving blade of a dry furnace top pressure recovery turbine (1) to be incorporated, the varnish is prepared by mixing a silicone-modified epoxy resin varnish and a silicone-based epoxy resin curing agent in a mass ratio of 100: 25 to 100. In addition, at the time of disassembly, the blade implantation portion of the moving blade and the blade attachment portion of the rotor are heated at 200 ° C. or more and 400 ° C. or less by a high-temperature electric furnace in a state where the blade is incorporated in the rotor. A method of extracting a moving blade of a dry furnace top pressure recovery turbine, wherein the moving blade is pulled out from the rotor after heating for a predetermined time to lower the adhesive strength of the varnish. 前記所定時間は、少なくとも10時間以上であることを特徴とする請求項に記載の乾式炉頂圧回収タービンの動翼抜き取り方法The predetermined time is, blades extraction method of dry furnace top pressure recovery turbine according to claim 1, characterized in that at least 10 hours or more.
JP2005335234A 2005-11-21 2005-11-21 Removal method of moving blade of dry furnace top pressure recovery turbine Active JP4613122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005335234A JP4613122B2 (en) 2005-11-21 2005-11-21 Removal method of moving blade of dry furnace top pressure recovery turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005335234A JP4613122B2 (en) 2005-11-21 2005-11-21 Removal method of moving blade of dry furnace top pressure recovery turbine

Publications (2)

Publication Number Publication Date
JP2007138858A JP2007138858A (en) 2007-06-07
JP4613122B2 true JP4613122B2 (en) 2011-01-12

Family

ID=38202040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005335234A Active JP4613122B2 (en) 2005-11-21 2005-11-21 Removal method of moving blade of dry furnace top pressure recovery turbine

Country Status (1)

Country Link
JP (1) JP4613122B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4991651B2 (en) * 2008-07-15 2012-08-01 三井造船株式会社 Electric heating furnace for top pressure turbine rotor blades
CN102383867A (en) * 2011-11-02 2012-03-21 思安新能源股份有限公司 Coaxial constant-speed turbine set for blast furnace

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183801A (en) * 1982-04-19 1983-10-27 Mitsubishi Heavy Ind Ltd Anticorrosion of steam turbine
JPS59223761A (en) * 1983-06-02 1984-12-15 Yokohama Rubber Co Ltd:The Silicone-modified acrylic varnish
JPH01110837A (en) * 1987-10-22 1989-04-27 Kawasaki Steel Corp Dry type power recovering method for blast furnace exhaust gas
JPH04255772A (en) * 1991-02-06 1992-09-10 Hitake:Kk Fluorine-based coating material
JPH07166804A (en) * 1991-04-29 1995-06-27 Westinghouse Electric Corp <We> Turbine blade assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183801A (en) * 1982-04-19 1983-10-27 Mitsubishi Heavy Ind Ltd Anticorrosion of steam turbine
JPS59223761A (en) * 1983-06-02 1984-12-15 Yokohama Rubber Co Ltd:The Silicone-modified acrylic varnish
JPH01110837A (en) * 1987-10-22 1989-04-27 Kawasaki Steel Corp Dry type power recovering method for blast furnace exhaust gas
JPH04255772A (en) * 1991-02-06 1992-09-10 Hitake:Kk Fluorine-based coating material
JPH07166804A (en) * 1991-04-29 1995-06-27 Westinghouse Electric Corp <We> Turbine blade assembly

Also Published As

Publication number Publication date
JP2007138858A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
Azevedo et al. Erosion-fatigue of steam turbine blades
EP2161408A3 (en) Repaired turbine exhaust strut heat shield vanes and repair methods
EP2154518A3 (en) Method and apparatus for measuring on-line failure of turbine thermal barrier coatings
ATE490405T1 (en) METHOD FOR OPERATING A WIND TURBINE, WIND TURBINE AND USE OF THE METHOD
JP4613122B2 (en) Removal method of moving blade of dry furnace top pressure recovery turbine
JP2010019254A (en) Sealing mechanism equipped with pivot plate and rope seal
ATE528503T1 (en) METHOD FOR OPERATING A WIND TURBINE
JP2009041449A (en) Repair method for gas turbine rotor vane
Luo et al. Fatigue failure analysis of rotor compressor blades concerning the effect of rotating stall and surge
JP2007009911A (en) Cooled type gas turbine stator vane in gas turbine, use of gas turbine stator vane, and method for operation of gas turbine
Shin et al. Assessment of the characteristic of thermal barrier coating applied to gas turbine blade by thermo-gradient mechanical fatigue test
EP2093375A3 (en) Method of repair for cantilevered stators
JP2014080872A (en) Moving blade plantation structure of furnace top pressure recovery turbine
王光存 et al. Study on erosion behavior and mechanism of impeller’s material FV520B in centrifugal compressor
JP4991651B2 (en) Electric heating furnace for top pressure turbine rotor blades
US10513930B2 (en) Systems and methods for pre-stressing blades
JP2004270484A (en) Corrosion/wear resistant coating for steam turbine member and method of forming the coating
RU2318121C1 (en) Method of strengthening surface of steam turbine blade
Winens Airfoil thickness as a life limiting factor of gas turbine blades
Krutsilo et al. Thermoplastic hardening of gas turbine engines blades
Yoshioka et al. Development, reliability evaluation and service experiences of gas turbine blade life regeneration technology
Lyu et al. Study on fracture analysis of rotor blade in thermal power plant
Rabbolini et al. Structural Integrity Assessment of ORC Turbine Tie-Rods: An Analysis Based on Elastic Shakedown and Fracture Mechanics
Meyer et al. LONG–TERM EXPERIENCE AND DEVELOPMENT WITH TITANIUM BLADES FOR ADVANCED STEAM TURBINES
Mazur et al. Steam turbine low pressure blades fatigue failures caused by operational and external conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4613122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141022

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250