JP4613092B2 - Deposition equipment - Google Patents

Deposition equipment Download PDF

Info

Publication number
JP4613092B2
JP4613092B2 JP2005134206A JP2005134206A JP4613092B2 JP 4613092 B2 JP4613092 B2 JP 4613092B2 JP 2005134206 A JP2005134206 A JP 2005134206A JP 2005134206 A JP2005134206 A JP 2005134206A JP 4613092 B2 JP4613092 B2 JP 4613092B2
Authority
JP
Japan
Prior art keywords
chamber
gas
sputtering
film
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005134206A
Other languages
Japanese (ja)
Other versions
JP2006307305A5 (en
JP2006307305A (en
Inventor
智保 近藤
治憲 牛川
成史 五戸
聡 豊田
久三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005134206A priority Critical patent/JP4613092B2/en
Publication of JP2006307305A publication Critical patent/JP2006307305A/en
Publication of JP2006307305A5 publication Critical patent/JP2006307305A5/ja
Application granted granted Critical
Publication of JP4613092B2 publication Critical patent/JP4613092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、処理基板上に所定の薄膜を形成するための成膜装置に関し、特に、同一真空チャンバ内でスパッタリング法による成膜と、化学的成膜法による成膜との少なくとも一方を実施し得る成膜装置に関する。   The present invention relates to a film forming apparatus for forming a predetermined thin film on a processing substrate, and in particular, at least one of film formation by a sputtering method and film formation by a chemical film formation method is performed in the same vacuum chamber. The present invention relates to a film forming apparatus.

近年、LSIの高集積化及び高速化に伴って、半導体素子の微細化と多層化とが進み、これに伴って埋込配線構造が用いられるようになってきた。絶縁膜に形成したビアホールやトレンチなどの層間接続孔に埋め込まれる配線材料としては、比抵抗値が小さい銅を用いることが主流である。ここで、埋込配線中の銅は、アルミニウムなどの他の配線材料とは異なり、SiOなどの絶縁膜中に拡散し易いという性質があることが知られている。 In recent years, along with higher integration and higher speed of LSIs, semiconductor elements have been miniaturized and multilayered, and accordingly, embedded wiring structures have been used. As a wiring material embedded in an interlayer connection hole such as a via hole or a trench formed in an insulating film, it is a mainstream to use copper having a small specific resistance value. Here, it is known that copper in the embedded wiring has a property of being easily diffused into an insulating film such as SiO 2 unlike other wiring materials such as aluminum.

この場合、絶縁膜中への拡散に起因する絶縁不良などを防止するために 例えば絶縁膜と配線形成用の銅薄膜との間に(層間接続孔の内面)、CVD法やスパッタリング法などにより、導電性の薄膜(バリア膜)を介在させることで、銅薄膜と絶縁膜とが直接接触することを防止して絶縁膜への拡散を抑制または防止することが考えられている。   In this case, in order to prevent insulation failure caused by diffusion into the insulating film, for example, between the insulating film and the copper thin film for wiring formation (inner surface of the interlayer connection hole), by CVD method or sputtering method, By interposing a conductive thin film (barrier film), it is considered that the copper thin film and the insulating film are prevented from coming into direct contact to suppress or prevent diffusion into the insulating film.

このバリア膜の成膜方法としては、化学的成膜法、例えばALD法があげられ、このALD法は、真空チャンバ内に設置した処理基板を所定温度まで昇温させた後、原料ガス及び反応ガスのうちいずれか一方を導入して処理基板に吸着させる工程と、導入したガスを一旦真空排気した後、他方を導入して処理基板上で反応させる工程とを繰り返すことによって、原子層程度で金属層を積層して所定膜厚のバリア膜を得るものである(特許文献1)。
特開平11−54459号(例えば、請求項1の記載参照)
Examples of the film formation method for the barrier film include a chemical film formation method, for example, an ALD method. In this ALD method, after raising the temperature of a processing substrate installed in a vacuum chamber to a predetermined temperature, a source gas and a reaction are performed. By repeating either the step of introducing one of the gases and adsorbing it on the processing substrate, and the step of once evacuating the introduced gas and then introducing the other and reacting on the processing substrate, the atomic layer is reduced to about A barrier layer having a predetermined thickness is obtained by laminating metal layers (Patent Document 1).
Japanese Patent Laid-Open No. 11-54459 (for example, see the description of claim 1)

このALD法によってバリア膜を形成すると、層間絶縁膜などへの充分な付着強度が得られないという問題がある。このことから、ALD法によるバリア膜の形成に先立って、例えばスパッタリング法でバリア膜の密着層を形成することが考えられる。この場合、ALD法によるバリア膜の形成とスパッタリング法による密着層の形成とを別個の真空チャンバで行なうと、バリア膜形成の作業効率が低下する等の問題が生じることから、同一の真空チャンバ内でALD法によるバリア膜の形成とスパッタリング法による密着層の形成とを行うことが要請される。   When a barrier film is formed by this ALD method, there is a problem that sufficient adhesion strength to an interlayer insulating film or the like cannot be obtained. From this, it is conceivable to form an adhesion layer of the barrier film by sputtering, for example, prior to formation of the barrier film by ALD. In this case, if the formation of the barrier film by the ALD method and the formation of the adhesion layer by the sputtering method are performed in separate vacuum chambers, problems such as a reduction in the working efficiency of the barrier film formation occur. Therefore, it is required to form a barrier film by an ALD method and an adhesion layer by a sputtering method.

同一の真空チャンバ内でALD法による薄膜形成とスパッタリング法による薄膜形成とを行い得るようにする場合、スパッタリング用のターゲットの表面に、ALD法による成膜の際に導入されるガスが吸着して汚染される虞がある。ターゲットが汚染されると、スパッタリング法による成膜時に例えば異常放電を誘発する等の不具合が生じ、良好な成膜ができない。   When thin film formation by ALD method and thin film formation by sputtering method can be performed in the same vacuum chamber, the gas introduced during film formation by ALD method is adsorbed on the surface of sputtering target. There is a risk of contamination. If the target is contaminated, a problem such as inducing abnormal discharge occurs at the time of film formation by sputtering, and good film formation cannot be performed.

また、ALD法による成膜を行う際に、真空チャンバの容積が大きいと、原料ガスや反応ガスの処理基板への吸着速度を遅くなると共に、原料ガスや反応ガスを急速に真空排気できず、その結果、成膜速度を高く保持できないという問題が生じる。   In addition, when the film is formed by the ALD method, if the volume of the vacuum chamber is large, the adsorption rate of the source gas and reaction gas to the processing substrate is slowed down, and the source gas and reaction gas cannot be rapidly evacuated. As a result, there arises a problem that the film forming speed cannot be kept high.

そこで、本発明の課題は、上記点に鑑み、同一の真空チャンバ内で、ターゲットの汚染を防止して、化学的成膜法による成膜とスパッタリング法による成膜とを良好に行うことができ、その上、化学的成膜法による成膜速度を高く保持できる成膜装置を提供することにある。   Therefore, in view of the above points, the object of the present invention is to prevent the target from being contaminated in the same vacuum chamber and to perform the film formation by the chemical film formation method and the film formation by the sputtering method. In addition, an object of the present invention is to provide a film forming apparatus capable of maintaining a high film forming rate by a chemical film forming method.

上記課題を解決するために、本発明の成膜装置は、真空排気手段を設けた真空チャンバを備え、この真空チャンバが、成膜材料であるターゲットを有し、このターゲットをスパッタリング法によりスパッタリングして成膜を行い得るスパッタ室と、ガス導入手段を有し、このガス導入手段から所定のガスの導入して化学的成膜法により成膜を行い得る化学的成膜室とに左右に区画され、スパッタ室内及び化学的成膜室の各成膜位置の間で処理基板を移動自在とする基板搬送手段を設けた成膜装置であって、前記スパッタ室内で処理基板とこの処理基板に対向して配置されるターゲットと間の距離に対し、化学的成膜室内で処理基板とこの処理基板に対向した化学的成膜室の内壁との間の距離を0.07〜0.3の範囲に設定したことを特徴とする。   In order to solve the above problems, a film forming apparatus of the present invention includes a vacuum chamber provided with a vacuum evacuation unit, the vacuum chamber having a target that is a film forming material, and sputtering the target by a sputtering method. A sputtering chamber capable of forming a film and a gas introducing means, and a chemical film forming chamber in which a predetermined gas is introduced from the gas introducing means and a film can be formed by a chemical film forming method is divided into right and left. A film forming apparatus provided with a substrate transfer means for allowing the processing substrate to move between the film forming positions in the sputtering chamber and the chemical film forming chamber, wherein the processing substrate faces the processing substrate in the sputtering chamber. The distance between the processing substrate in the chemical film forming chamber and the inner wall of the chemical film forming chamber facing the processing substrate in the chemical film forming chamber is in the range of 0.07 to 0.3. With the feature set to That.

本発明によれば、基板搬送手段によって処理基板をスパッタ室に移動させた後、スパッタリング法により所定の薄膜を形成する。次いで、基板搬送手段によって、スパッタ室から化学的成膜室に処理基板を搬送し、化学的成膜法によって所定の薄膜を形成する。この場合、基板ステージ上の処理基板に対し化学的成膜法による成膜を行う間、化学的成膜室との境界をなすスパッタ室の側壁自体が隔壁となって、化学的成膜法を行う際に導入される原料ガスや反応ガスのターゲット近傍への流れ込みを抑制し、これにより、ガスの吸着に起因したターゲットの汚染が防止される。   According to the present invention, after the processing substrate is moved to the sputtering chamber by the substrate transfer means, the predetermined thin film is formed by the sputtering method. Next, the substrate is transferred from the sputtering chamber to the chemical film formation chamber by the substrate transfer means, and a predetermined thin film is formed by the chemical film formation method. In this case, during the film formation by the chemical film formation method on the processing substrate on the substrate stage, the side wall of the sputtering chamber that forms a boundary with the chemical film formation chamber itself becomes a partition, and the chemical film formation method is performed. The flow of the raw material gas and the reaction gas introduced when performing the process to the vicinity of the target is suppressed, and thereby the contamination of the target due to the gas adsorption is prevented.

また、処理基板とこの処理基板に対向した化学的成膜室の内壁との間の距離をスパッタ室のものと比較して小さくしたため、化学的成膜室内の容積が小さくなり、原料ガスや反応ガスの処理基板への吸着速度を早くでき、原料ガスや反応ガスを急速に真空排気できる。その結果、成膜速度を高く保持することができる。   In addition, since the distance between the processing substrate and the inner wall of the chemical film formation chamber facing the processing substrate is smaller than that of the sputtering chamber, the volume in the chemical film formation chamber is reduced, and the source gas and reaction are reduced. The adsorption rate of the gas to the processing substrate can be increased, and the source gas and the reaction gas can be rapidly evacuated. As a result, the deposition rate can be kept high.

尚、前記化学的成膜法は、例えば、原料ガスを導入して処理基板表面に原料ガスを吸着させる工程と、反応ガスを導入して吸着した原料ガスと反応させる工程とを周期的に繰り返して行うALD法である。   In the chemical film-forming method, for example, a step of introducing a source gas to adsorb the source gas on the surface of the processing substrate and a step of introducing a reaction gas and reacting with the adsorbed source gas are periodically repeated. This is an ALD method.

また、前記化学的成膜室との境界をなすスパッタ室の側壁に沿って所定のガスの導入を可能とするガス導入手段を設けておけば、化学的成膜法によって処理基板に成膜する間、このガス導入手段を介してガスを導入して、スパッタ室と化学的成膜室との間にガスカーテンを形成することで、化学的成膜法を行う際に導入される原料ガスや反応ガスのスパッタ室への流れ込みを防止できてよい。   In addition, if a gas introducing means is provided that enables introduction of a predetermined gas along the side wall of the sputtering chamber that forms a boundary with the chemical film forming chamber, the film is formed on the processing substrate by the chemical film forming method. In the meantime, by introducing a gas through this gas introduction means and forming a gas curtain between the sputtering chamber and the chemical film formation chamber, the source gas introduced when performing the chemical film formation method or The reaction gas may be prevented from flowing into the sputtering chamber.

また、前記化学的成膜用のガス導入手段は、処理基板を囲うように設けたリング状のヘッド部を有し、このベッド部に、処理基板に向かって所定のガスを噴出するように所定の間隔を置いて複数のガス導入孔を形成しておけば、処理基板に所定のガスを均等に供給できてよい。   Further, the chemical film forming gas introducing means has a ring-shaped head portion provided so as to surround the processing substrate, and a predetermined gas is jetted to the bed portion toward the processing substrate. If a plurality of gas introduction holes are formed at intervals, a predetermined gas may be evenly supplied to the processing substrate.

前記真空排気手段の排気管を、スパッタ室及び化学的成膜室にそれぞれ接続し、各室を独立して真空排気できるように構成することがよい。   It is preferable to connect the exhaust pipe of the vacuum exhaust means to the sputtering chamber and the chemical film formation chamber, respectively, so that each chamber can be evacuated independently.

以上説明したように、本発明の成膜装置は、同一の真空チャンバ内で、ターゲットの汚染を防止して、化学的成膜法による成膜とスパッタリング法による成膜とを良好に行うことができ、その上、化学的成膜法による成膜速度を高く保持できるという効果を奏する。   As described above, the film forming apparatus of the present invention can perform the film formation by the chemical film formation method and the film formation by the sputtering method in the same vacuum chamber while preventing contamination of the target. In addition, there is an effect that the film forming rate by the chemical film forming method can be kept high.

図1乃至図3を参照して、1は、同一の真空チャンバ内で、化学的成膜法であるALD法による成膜とスパッタリング法による成膜とを行い得る本発明の成膜装置である。成膜装置1は、ターボ分子ポンプなどの真空排気手段2を有する真空チャンバ11を有する(図2参照)。この場合、真空チャンバ11は、その中央部において、相互に連通するスパッタ室11aとALD室(化学的成膜室)11bとに左右に区画されている。   Referring to FIGS. 1 to 3, reference numeral 1 denotes a film forming apparatus of the present invention capable of performing film formation by an ALD method, which is a chemical film formation method, and film formation by a sputtering method, in the same vacuum chamber. . The film forming apparatus 1 has a vacuum chamber 11 having a vacuum exhaust means 2 such as a turbo molecular pump (see FIG. 2). In this case, the vacuum chamber 11 is divided into a left and right at a central portion thereof into a sputtering chamber 11a and an ALD chamber (chemical film formation chamber) 11b that communicate with each other.

真空チャンバ11には、後述するターゲットに対向したスパッタ室11a内の成膜位置と後述するガスリングに同心となるALD室11b内の成膜位置との間で、処理基板Sを同一平面内で移動するため基板搬送手段3が設けられている。基板搬送手段3は、モータなどの駆動手段31を有し、この駆動手段31の回転軸32には、回転台33が連結されている(図2参照)。真空チャンバ11内に配置された回転台33には、相互に対向させて、円形の開口を有する2個の基板載置部33a、33bが形成され、シリコンウェハーなどの処理基板S、Sをそれぞれ保持できるようになっている。 In the vacuum chamber 11, the processing substrate S is placed in the same plane between a film formation position in a sputtering chamber 11 a facing a target described later and a film formation position in an ALD chamber 11 b concentric with a gas ring described later. A substrate transfer means 3 is provided for movement. The substrate transport unit 3 includes a driving unit 31 such as a motor, and a rotary base 33 is connected to a rotating shaft 32 of the driving unit 31 (see FIG. 2). Two substrate mounting portions 33a and 33b having circular openings are formed on the turntable 33 disposed in the vacuum chamber 11 so as to face each other, and processing substrates S 1 and S 2 such as silicon wafers are formed. Can be held respectively.

ALD室11bには、ALD室11b内の成膜位置の直上に位置して、処理基板Sに対し化学的成膜法による成膜を行う際に、所定のガスを導入する第1及び第2の各ガス導入手段41、42が設けられている。また、ALD室11bの底面には、エアーシリンダ等の駆動手段43aを有する基板ステージ43が設けられ、基板搬送手段3によって基板載置部33a、33bに載置された処理基板SがALD室11bに搬送されてきたとき、駆動手段43aによって、基板ステージ43を回転台33下側の下降位置から上昇位置に移動されると、基板ステージ43が基板載置部33a、33bの開口を貫通して、処理基板Sが所定の高さ位置で支持される。この基板ステージ43には、例えば抵抗加熱方式の加熱手段(図示せず)が内蔵され、この加熱手段43と各ガス導入手段41、42とが化学的成膜手段4を構成する。   In the ALD chamber 11b, a first gas and a second gas which are located immediately above the film formation position in the ALD chamber 11b and into which a predetermined gas is introduced when the process substrate S is formed by a chemical film formation method. Each gas introducing means 41, 42 is provided. A substrate stage 43 having a driving means 43a such as an air cylinder is provided on the bottom surface of the ALD chamber 11b, and the processing substrate S placed on the substrate placement portions 33a and 33b by the substrate transport means 3 is transferred to the ALD chamber 11b. When the substrate stage 43 is moved from the lowered position below the turntable 33 to the raised position by the driving means 43a, the substrate stage 43 passes through the openings of the substrate placement portions 33a and 33b. The processing substrate S is supported at a predetermined height position. The substrate stage 43 incorporates, for example, a resistance heating type heating means (not shown), and the heating means 43 and the gas introduction means 41 and 42 constitute the chemical film forming means 4.

第1及び第2のガス導入手段41、42は、同心状であって上下方向にずらして設けたリング状のヘッド部41a、42aをそれぞれ有し、各ベッド部41a、42aには、処理基板Sに向かって所定のガスを噴出するように90度づつ角度をずらして4個のガス導入孔41b、42bが形成されている(図3参照)。各ヘッド部41a、42aは、マスフローコントローラを設けたガス管41c、42cを介して、図示しない所定のガス源(例えば、原料ガス源、反応ガス源)にそれぞれ連通している。   The first and second gas introduction means 41 and 42 have ring-shaped head portions 41a and 42a that are concentrically provided and shifted in the vertical direction, and each bed portion 41a and 42a has a processing substrate. Four gas introduction holes 41b and 42b are formed by shifting the angle by 90 degrees so that a predetermined gas is ejected toward S (see FIG. 3). Each of the head portions 41a and 42a communicates with a predetermined gas source (for example, a source gas source and a reactive gas source) (not shown) via gas pipes 41c and 42c provided with a mass flow controller.

例えば、処理基板S上に形成した絶縁膜にパターニングして形成した層間接続孔にALD法によりバリア膜を形成する場合、原料ガスとしては、タンタル(Ta)、チタン(Ti)、タングステン(W)などを化学構造中に含む有機金属ガスであり、反応ガスとしては、原料ガスと反応し、金属の構成元素を化学構造中に含む金属薄膜を析出させるアンモニアガスなどである。   For example, when a barrier film is formed by an ALD method in an interlayer connection hole formed by patterning an insulating film formed on the processing substrate S, source gases include tantalum (Ta), titanium (Ti), and tungsten (W). The reaction gas is an ammonia gas that reacts with the raw material gas and deposits a metal thin film containing a metal constituent element in the chemical structure.

そして、基板ステージ43で支持された処理基板S、Sを、内蔵した加熱手段43によって所定温度まで昇温させた後、原料ガス及び反応ガスのうちいずれか一方を導入して処理基板S、Sに吸着させる工程と、この一方のガスを一旦真空排気した後、他方を導入して処理基板S、S上で反応させる工程とを繰り返すことによって、原子層程度で金属窒化物層を積層し、所定膜厚の薄膜が得られる。 Then, after the processing substrates S 1 and S 2 supported by the substrate stage 43 are heated to a predetermined temperature by the built-in heating means 43, either the source gas or the reaction gas is introduced to process the processing substrate S. 1 and the process of adsorbing to S 2 and the process of once evacuating one of the gases and then introducing the other to react on the treated substrates S 1 and S 2 , thereby repeating the metal nitridation at about the atomic layer. A physical layer is laminated | stacked and the thin film of a predetermined film thickness is obtained.

ALD法による薄膜形成に先立ってスパッタリング法で所定の密着層を形成できるように、スパッタ室11bの天井部にはスパッタリングカソード51が設けられている。スパッタリングカソード51は、公知の構造を有し、処理基板S、Sに対向させて設けたターゲット51aを有する。ターゲット51aは、処理基板S上に成膜しようする薄膜の組成に応じて公知の方法で作製される。例えば、スパッタリング法でバリア膜の密着層を形成する場合のターゲットとしては、タンタル(Ta)、チタン(Ti)、タングステン(W)など、原料ガスに含まれる金属の構成元素を主成分とするものである。 A sputtering cathode 51 is provided on the ceiling of the sputtering chamber 11b so that a predetermined adhesion layer can be formed by sputtering prior to thin film formation by ALD. The sputtering cathode 51 has a known structure and includes a target 51a provided to face the processing substrates S 1 and S 2 . The target 51a is manufactured by a known method according to the composition of the thin film to be formed on the processing substrate S. For example, as a target for forming an adhesion layer of a barrier film by sputtering, the main component is a constituent element of a metal contained in a source gas such as tantalum (Ta), titanium (Ti), tungsten (W), etc. It is.

ターゲット51aは、このターゲット51aの前方にプラズマが発生させるため、ターゲット51aに直流電圧または高周波電圧を印加するスパッタ電源52に接続されている。この場合、処理基板S1、S2に、バイアス電圧を印加できるように図示省略したバイ アス電源に接続してもよい。スパッタ室11aにはまた、第3のガス導入手段53が設けられている。ガス導入手段53は、マスフローコントローラを介設したガス管53aを介して図示しないガス源に連通し、アルゴンなどのスパッタガスを一定の流量で導入でき、スパッタリン
グカソード51、スパッタ電源52及び第3のガス導入手段53がスパッタリング手段5を構成する。

The target 51a is connected to a sputtering power source 52 that applies a DC voltage or a high-frequency voltage to the target 51a in order to generate plasma in front of the target 51a. In this case, the substrate S1, S2, may be connected to a bias power source not shown so that a bias voltage can be applied. A third gas introduction means 53 is also provided in the sputtering chamber 11a. The gas introduction means 53 communicates with a gas source (not shown) via a gas pipe 53a provided with a mass flow controller, and can introduce a sputtering gas such as argon at a constant flow rate. The gas introduction means 53 constitutes the sputtering means 5.

ここで、スパッタリング法により処理基板S、Sに対し成膜する際に処理基板S、S面内での膜厚の均一性を高めるため、ターゲット51aと基板載置部33a、33b上の処理基板Sとの間の距離L1を、120mm〜300mmの範囲に設定している。他方、ALD法による成膜を行う場合、処理基板S、Sに原料ガスや反応ガスを均等に供給しつつ処理基板Sへの吸着速度が早く、原料ガスや反応ガスを急速に真空排気できるようにして成膜速度を高く保持できるようにする必要がある。 Here, to enhance the uniformity of the film thickness of the processing substrate S 1, S 2 plane in formation with respect to substrate S 1, S 2 by a sputtering method, a target 51a and the substrate mounting portion 33a, 33b The distance L1 between the upper processing substrate S is set in a range of 120 mm to 300 mm. On the other hand, when film formation is performed by the ALD method, the source gas and the reaction gas are uniformly supplied to the processing substrates S 1 and S 2 , the adsorption rate to the processing substrate S is high, and the source gas and the reaction gas are rapidly evacuated. It is necessary to make it possible to maintain a high film formation rate.

本実施の形態では、基板ステージ43で支持された処理基板S、Sとこの処理基板S、Sに対向したALD室11bの上壁までの距離L2が、20mm〜35mmの範囲に設定されるように(距離L1に対する距離L2の比率が約0.07〜0.3の範囲となる(D1:D2=1:0.07〜0.3))、ALD室11bの上面までの高さを設定し、真空チャンバ11を断面L字形に形成した(図1参照)。この場合、ヘッド部41a、42aと処理基板S、Sとの間の距離は、15〜30mmの範囲に設定することが好ましい。15mmより短いと、ALD室11bに導入されるガスが十分に拡散せず、処理基板S、Sに原料ガスや反応ガスを均等に供給できない。他方、30mmより長いと、距離D2が大きくなってALD室11bの容積が大きくなり、成膜速度が高く保持できない。このため、ヘッド部のALD室11bへの取付けなどを考慮して、距離D2が、20mm〜35mmの範囲に設定される。 In the present embodiment, the distance L2 between the processing substrates S 1 and S 2 supported by the substrate stage 43 and the upper wall of the ALD chamber 11b facing the processing substrates S 1 and S 2 is in the range of 20 mm to 35 mm. As set (the ratio of the distance L2 to the distance L1 is in the range of about 0.07 to 0.3 (D1: D2 = 1: 0.07 to 0.3)) up to the upper surface of the ALD chamber 11b. The height was set and the vacuum chamber 11 was formed in an L-shaped cross section (see FIG. 1). In this case, the distance between the head portions 41a and 42a and the processing substrates S 1 and S 2 is preferably set in a range of 15 to 30 mm. If it is shorter than 15 mm, the gas introduced into the ALD chamber 11b is not sufficiently diffused, and the raw material gas and the reactive gas cannot be evenly supplied to the processing substrates S 1 and S 2 . On the other hand, if it is longer than 30 mm, the distance D2 is increased, the volume of the ALD chamber 11b is increased, and the film formation rate cannot be kept high. For this reason, the distance D2 is set in the range of 20 mm to 35 mm in consideration of the attachment of the head portion to the ALD chamber 11b and the like.

また、ALD法を行う際に導入される原料ガスや反応ガスのスパッタ室11aへの流れ込みを防止するために、ALD室11bとの境界をなすスパッタ室11aの側壁111に沿って、不活性ガスなどの所定のガスの導入する第3のガス導入手段6を設けている。   Further, in order to prevent the source gas and reaction gas introduced when performing the ALD method from flowing into the sputtering chamber 11a, an inert gas is formed along the side wall 111 of the sputtering chamber 11a that forms a boundary with the ALD chamber 11b. A third gas introduction means 6 for introducing a predetermined gas such as is provided.

上記のように成膜装置1を構成することで、ALD法によって成膜する間、ALD室11bとの境界をなすスパッタ室11aの側壁111が隔壁となること及びこの側壁111に沿って第3のガス導入手段5を介して不活性ガスを導入し、スパッタ室11aとALD室11bとの境界部の空間11cにガスカーテンを形成することが相俟って、ALD法を行う際に導入される原料ガスや反応ガスのスパッタ室11aへの流れ込みを防止でき、その結果、ガス吸着に起因したターゲット51aの汚染が防止できる。   By forming the film forming apparatus 1 as described above, the side wall 111 of the sputtering chamber 11a that forms a boundary with the ALD chamber 11b becomes a partition during film formation by the ALD method, and the third along the side wall 111 is the third. Introducing an inert gas through the gas introducing means 5 and forming a gas curtain in the space 11c at the boundary between the sputtering chamber 11a and the ALD chamber 11b, are introduced when the ALD method is performed. As a result, contamination of the target 51a due to gas adsorption can be prevented.

また、ALD室11bの高さ寸法を小さく設定することでその容積が小さくなって、基板ステージ43上の処理基板S、Sに対し原料ガスや反応ガスが均等に供給されると共に、その吸着速度が早くなりかつ原料ガスや反応ガスが急速に真空排気できる。その結果、ALD法による成膜速度を高く保持できる。この場合、真空排気手段2の排気管21、22は、スパッタ室11a及びALD室11bにそれぞれ接続し、例えば、真空排気手段2の上流側に切換弁(図示せず)を配置しておき、この切換弁を切換えて各室11a、11bを独立して真空排気できるように構成している。 Further, by setting the height dimension of the ALD chamber 11b to be small, the volume of the ALD chamber 11b is reduced, and the source gas and the reaction gas are uniformly supplied to the processing substrates S 1 and S 2 on the substrate stage 43. The adsorption speed is increased and the source gas and reaction gas can be quickly evacuated. As a result, the film formation rate by the ALD method can be kept high. In this case, the exhaust pipes 21 and 22 of the evacuation unit 2 are connected to the sputtering chamber 11a and the ALD chamber 11b, respectively. For example, a switching valve (not shown) is disposed upstream of the evacuation unit 2. By switching this switching valve, each chamber 11a, 11b can be evacuated independently.

次に、本発明の成膜装置1を用いて、絶縁膜に形成した層間接続孔に配線用の埋込層を形成する先立ってバリア膜を形成する場合の作動について説明する。2枚の処理基板S、S表面の脱ガスなどの前処理工程が終了した後、駆動手段31によって回転台33を回転させつつ、基板載置部33a、33bにそれぞれ載置し、一方の処理基板Sを、スパッタ室11a内の成膜位置に移動する(この場合、他方の処理基板Sは、ALD室11bの成膜位置にある)。 Next, the operation when a barrier film is formed prior to the formation of the wiring buried layer in the interlayer connection hole formed in the insulating film using the film forming apparatus 1 of the present invention will be described. After the pretreatment process such as degassing of the surfaces of the two processing substrates S 1 and S 2 is finished, the rotating means 33 is rotated by the driving means 31 and placed on the substrate placement parts 33a and 33b, respectively. the processing substrate S 1, moves to the film formation position in the sputtering chamber 11a (in this case, the other substrate S 2, is in the deposition position of the ALD chamber 11b).

次いで、真空排気手段2を作動させ、スパッタ室11a内の圧力が所定値に到達すると、第3のガス導入手段53を介してスパッタガスを導入すると共に、スパッタ電源52を介してターゲット51aに高周波電圧を印加することでターゲット51aの前方にプラズマを発生させて、ターゲット51aをスパッタリングし、絶縁膜上に所定膜厚で絶縁膜側密着層を形成する。この場合、他の処理基板Sに対してALD法による成膜を行わない。 Next, when the evacuation unit 2 is operated and the pressure in the sputtering chamber 11a reaches a predetermined value, the sputtering gas is introduced through the third gas introduction unit 53 and the high frequency is supplied to the target 51a through the sputtering power source 52. By applying a voltage, plasma is generated in front of the target 51a, the target 51a is sputtered, and an insulating film side adhesion layer is formed with a predetermined thickness on the insulating film. In this case, not performed film formation by ALD method to other substrate S 2.

次いで、駆動手段31によって回転台33を回転させ、絶縁膜側密着層を形成した一方の処理基板SをALD室11b内の成膜位置に移動させる(この場合、他方の処理基板Sはスパッタ室11a内の成膜位置に移動する)。次いで、駆動手段43aによって、基板ステージ43を上昇位置に移動させて処理基板Sを支持すると共に、基板ステージ内蔵した加熱手段を作動させて処理基板Sを加熱し、この処理基板Sが所定温度に達すると共にALD室11bの圧力が所定値に到達すると、第1のガス導入手段41を介して原料ガスを導入し、処理基板Sの表面に原料ガスを吸着させる。次いで、第1のガス導入手段41に設けたマスフローコントローラを制御して原料ガスの供給を停止し、再度ALD室11bの圧力が所定値に到達するまで真空排出する。 Then, by rotating the turntable 33 by the drive means 31, the one of the substrate S 1 forming the insulating film side adhesive layer is moved to the film formation position in the ALD chamber 11b (in this case, the other substrate S 2 is It moves to the film forming position in the sputtering chamber 11a). Then, by the driving means 43a, to support the substrate S and the substrate stage 43 is moved to the raised position, the heating means is embedded substrate stage is operated to heat the substrate S 1, the substrate S 1 is given When the pressure in the ALD chamber 11b with reaching the temperature reaches a predetermined value, through the first gas introducing means 41 introduces a source gas is adsorbed raw material gas on the surface of the treated substrate S 1. Next, the supply of the raw material gas is stopped by controlling the mass flow controller provided in the first gas introduction means 41, and vacuum discharge is performed until the pressure in the ALD chamber 11b reaches a predetermined value again.

次いで、第2のガス導入手段42を介して、ALD室11bに反応ガスを導入し、処理基板基板S表面に吸着された原料ガスと反応させる。この場合、反応ガスをラジカル化して導入してもよい。そして、第2のガス導入手段42に設けたマスフローコントローラを制御して反応ガスの供給を停止し、再度ALD室11bの圧力が所定値に到達するまで真空排出する。そして、上記手順を所望回数繰り返すことで、密着層上に所定膜厚でバリア膜が形成される。ALD法により処理基板S上にバリア膜が形成される間、スパッタ室11aにある処理基板S上には、上記と同様,スパッタリング法による成膜が行われる。 Then, through the second gas introducing means 42, introducing a reactive gas into the ALD chamber 11b, is reacted with the raw material gas adsorbed on the substrate the substrate S 1 surface. In this case, the reaction gas may be radicalized and introduced. Then, the mass flow controller provided in the second gas introduction means 42 is controlled to stop the supply of the reaction gas, and the vacuum is discharged until the pressure in the ALD chamber 11b reaches a predetermined value again. Then, by repeating the above procedure a desired number of times, a barrier film having a predetermined thickness is formed on the adhesion layer. While the barrier film is formed by ALD on the processing substrate S 1, on the substrate S 2 in the sputtering chamber 11a is similar to the above, is formed by a sputtering method is performed.

所定膜厚のバリア膜を形成した後、駆動手段43aによって基板ステージ43を下降位置に移動し、基板載置部33aに処理基板Sを載置し、回転台33をさらに回転させて、バリア膜が形成された処理基板Sを再度スパッタ室11aの成膜位置に移動させ、その圧力が所定値に到達すると、第3のガス導入手段53を介してスパッタガスを導入すると共に、スパッタ電源52を介してターゲット51aに高周波電圧を印加することでターゲット51aの前方にプラズマを発生させて、ターゲット51aをスパッタリングして、バリア膜の表面に金属薄膜すなわちバリア膜側密着層を形成する。 After forming a predetermined film thickness of the barrier film, and moves the substrate stage 43 in the lowered position by the driving means 43a, placing the processed substrate S 1 on the substrate platform 33a, and further rotate the rotary table 33, the barrier film is moved to the film formation position again sputtering chamber 11a of the substrate S 1 which is formed, when the pressure reaches a predetermined value, as well as introducing a sputtering gas through the third gas introducing means 53, the sputtering power source A high frequency voltage is applied to the target 51a via 52 to generate plasma in front of the target 51a, and the target 51a is sputtered to form a metal thin film, that is, a barrier film side adhesion layer on the surface of the barrier film.

尚、本実施の形態では、回転台33を有する基板搬送手段3を設けたものについて説明したが、処理基板S、Sをスパッタ室11a及び化学的成膜室11bの各成膜位置相互の間で移動させることができれば、これに限定されるものではない。 In the present embodiment, the substrate transport means 3 having the turntable 33 has been described. However, the processing substrates S 1 and S 2 are formed on the sputtering chamber 11a and the chemical deposition chamber 11b. If it can be made to move between, it will not be limited to this.

また、絶縁膜と銅配線膜との間にバリア層を形成するものを例として説明し、化学的成膜法としてALD法を用いているが、これに限定されるものではなく、化学的成膜法としてはCVD法でもよく、スパッタリング法及び化学的成膜法を実施して薄膜を形成するものであれば、適用できる。   Further, an example in which a barrier layer is formed between an insulating film and a copper wiring film will be described, and the ALD method is used as a chemical film forming method. However, the present invention is not limited to this. The film method may be a CVD method, and can be applied as long as a thin film is formed by performing a sputtering method and a chemical film formation method.

また、本実施の形態では、ガス導入手段41、42としてリング状のヘッド部41a、41bを用いたものについて説明したが、これに限定されるものではなく、化学的成膜室の上面にシャワープレートなどを設けてもよく、加熱手段としては、ALD室11bの天井部に設けた赤外線ヒータなどでもよい。   In this embodiment, the gas introduction means 41 and 42 using the ring-shaped head portions 41a and 41b are described. However, the present invention is not limited to this, and a shower is provided on the upper surface of the chemical film formation chamber. A plate or the like may be provided, and the heating means may be an infrared heater provided on the ceiling of the ALD chamber 11b.

本発明の成膜装置を概略的に示す断面図。1 is a cross-sectional view schematically showing a film forming apparatus of the present invention. 図1のII−II線に沿った断面図。Sectional drawing along the II-II line of FIG. 化学的成膜法の行う際に用いるガスリングを説明する図。The figure explaining the gas ring used when performing a chemical film-forming method.

符号の説明Explanation of symbols

1 成膜装置
11 真空チャンバ
11a スパッタ室
11b 化学的成膜室(ALD室)
3 基板搬送手段
41a、41b、53 ガス導入手段
51a ターゲット
DESCRIPTION OF SYMBOLS 1 Film-forming apparatus 11 Vacuum chamber 11a Sputtering chamber 11b Chemical film-forming chamber (ALD chamber)
3 Substrate transport means 41a, 41b, 53 Gas introduction means 51a Target

Claims (5)

真空排気手段を設けた真空チャンバを備え、この真空チャンバが、成膜材料であるターゲットを有し、このターゲットをスパッタリング法によりスパッタリングして成膜を行い得るスパッタ室と、ガス導入手段を有し、このガス導入手段から所定のガスの導入して化学的成膜法により成膜を行い得る化学的成膜室とに左右に区画され、スパッタ室内及び化学的成膜室の各成膜位置の間で処理基板を移動自在とする基板搬送手段を設けた成膜装置であって、前記スパッタ室内で処理基板とこの処理基板に対向して配置されるターゲットと間の距離に対し、化学的成膜室内で処理基板とこの処理基板に対向した化学的成膜室の内壁との間の距離を0.07〜0.3の範囲に設定したことを特徴とする成膜装置。 A vacuum chamber provided with a vacuum evacuation unit, the vacuum chamber having a target that is a film forming material, a sputtering chamber capable of performing film formation by sputtering the target by a sputtering method, and a gas introduction unit And a chemical film forming chamber in which a predetermined gas is introduced from this gas introducing means and a film can be formed by a chemical film forming method. A film forming apparatus provided with a substrate transfer means for allowing the processing substrate to move freely between them, wherein a chemical growth is performed with respect to a distance between the processing substrate and a target disposed opposite to the processing substrate in the sputtering chamber. A film forming apparatus characterized in that a distance between a processing substrate and an inner wall of a chemical film forming chamber facing the processing substrate in the film chamber is set in a range of 0.07 to 0.3. 前記化学的成膜法は、原料ガスを導入して処理基板表面に原料ガスを吸着させる工程と、反応ガスを導入して吸着した原料ガスと反応させる工程とを周期的に繰り返して行うALD法であることを特徴とする請求項1記載の成膜装置。 The chemical film-forming method is an ALD method in which a source gas is introduced to adsorb the source gas on the surface of the processing substrate, and a reaction gas is introduced to react with the adsorbed source gas periodically. The film forming apparatus according to claim 1, wherein: 前記化学的成膜室との境界をなすスパッタ室の側壁に沿って所定のガスの導入を可能とする他のガス導入手段を設けたことを特徴とする請求項1または請求項2記載の成膜装置。 3. The composition according to claim 1, further comprising another gas introduction means for introducing a predetermined gas along a side wall of the sputtering chamber that forms a boundary with the chemical film formation chamber. Membrane device. 前記化学的成膜用のガス導入手段は、処理基板を囲うように設けたリング状のヘッド部を有し、このベッド部に、処理基板に向かって所定のガスを噴出するように所定の間隔を置いて複数のガス導入孔を形成したことを特徴とする請求項1乃至請求項3のいずれかに記載の成膜装置。 The gas introduction means for chemical film formation has a ring-shaped head portion provided so as to surround the processing substrate, and a predetermined interval is emitted to the bed portion so as to eject a predetermined gas toward the processing substrate. The film forming apparatus according to claim 1, wherein a plurality of gas introduction holes are formed by placing a plurality of gas introduction holes. 前記真空排気手段の排気管を、スパッタ室及び化学的成膜室にそれぞれ接続し、各室を独立して真空排気できるように構成したことを特徴とする請求項1または請求項4のいずれかに記載の成膜装置。 The exhaust pipe of the vacuum exhaust means is connected to a sputtering chamber and a chemical film formation chamber, respectively, and each chamber can be independently vacuum exhausted. 2. The film forming apparatus according to 1.
JP2005134206A 2005-05-02 2005-05-02 Deposition equipment Active JP4613092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134206A JP4613092B2 (en) 2005-05-02 2005-05-02 Deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134206A JP4613092B2 (en) 2005-05-02 2005-05-02 Deposition equipment

Publications (3)

Publication Number Publication Date
JP2006307305A JP2006307305A (en) 2006-11-09
JP2006307305A5 JP2006307305A5 (en) 2008-06-26
JP4613092B2 true JP4613092B2 (en) 2011-01-12

Family

ID=37474518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134206A Active JP4613092B2 (en) 2005-05-02 2005-05-02 Deposition equipment

Country Status (1)

Country Link
JP (1) JP4613092B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100927621B1 (en) 2007-03-22 2009-11-20 삼성에스디아이 주식회사 Apparatus for depositing a protective film layer, and a deposition method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017457A (en) * 1998-07-03 2000-01-18 Shincron:Kk Thin film forming apparatus and thin film forming method
JP2004277799A (en) * 2003-03-14 2004-10-07 Matsushita Electric Ind Co Ltd Film-forming apparatus and cleaning method therefor
JP2006176823A (en) * 2004-12-22 2006-07-06 Ulvac Japan Ltd Film deposition system
JP2006176822A (en) * 2004-12-22 2006-07-06 Ulvac Japan Ltd Film deposition system and film deposition method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017457A (en) * 1998-07-03 2000-01-18 Shincron:Kk Thin film forming apparatus and thin film forming method
JP2004277799A (en) * 2003-03-14 2004-10-07 Matsushita Electric Ind Co Ltd Film-forming apparatus and cleaning method therefor
JP2006176823A (en) * 2004-12-22 2006-07-06 Ulvac Japan Ltd Film deposition system
JP2006176822A (en) * 2004-12-22 2006-07-06 Ulvac Japan Ltd Film deposition system and film deposition method

Also Published As

Publication number Publication date
JP2006307305A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP4879509B2 (en) Vacuum deposition system
TWI506159B (en) Film deposition apparatus
US10475641B2 (en) Substrate processing apparatus
US9412582B2 (en) Reaction tube, substrate processing apparatus, and method of manufacturing semiconductor device
JP4354908B2 (en) Processing equipment
JP5195174B2 (en) Film forming apparatus and film forming method
US6365518B1 (en) Method of processing a substrate in a processing chamber
CN107974668B (en) Susceptor assembly and processing chamber
TWI470112B (en) Film deposition apparatus, substrate process apparatus, film deposition method, and computer readable storage medium
JP5545061B2 (en) Processing apparatus and film forming method
JP4480516B2 (en) Formation method of barrier film
KR20100027041A (en) Film deposition apparatus, film deposition method and storage medium
TWI742098B (en) Ruthenium (Ru) wiring and manufacturing method of the ruthenium wiring
JP5093078B2 (en) Deposition equipment
KR20040001036A (en) Thin film deposition method
JP6793031B2 (en) Substrate processing equipment and substrate processing method, and substrate processing system
JP6457307B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
JP4613092B2 (en) Deposition equipment
JP4783585B2 (en) Deposition equipment
JP7274387B2 (en) Film forming apparatus and film forming method
JP2009130288A (en) Thin-film forming method
JP2006176823A (en) Film deposition system
JP4734020B2 (en) Deposition equipment
JP2010212430A (en) Atomic layer deposition apparatus
JP4664061B2 (en) Film forming apparatus and film forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4613092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250