JP2006176823A - Film deposition system - Google Patents

Film deposition system Download PDF

Info

Publication number
JP2006176823A
JP2006176823A JP2004370497A JP2004370497A JP2006176823A JP 2006176823 A JP2006176823 A JP 2006176823A JP 2004370497 A JP2004370497 A JP 2004370497A JP 2004370497 A JP2004370497 A JP 2004370497A JP 2006176823 A JP2006176823 A JP 2006176823A
Authority
JP
Japan
Prior art keywords
space
gas
substrate stage
film
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004370497A
Other languages
Japanese (ja)
Inventor
Harunori Ushigawa
治憲 牛川
Tomoyasu Kondo
智保 近藤
Shigefumi Itsudo
成史 五戸
Satoshi Toyoda
聡 豊田
Kyuzo Nakamura
久三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2004370497A priority Critical patent/JP2006176823A/en
Publication of JP2006176823A publication Critical patent/JP2006176823A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the contamination of a target caused by a gaseous starting material or reaction gas to be introduced at the time of performing an ALD (Atomic Layer Deposition) process in the case a film deposition system is composed so that film deposition by an ALD process and film deposition by a sputtering process can be performed to a treatment substrate on a substrate stage in the same chamber. <P>SOLUTION: A substrate stage 12 is arranged inside a vacuum chamber 11, and a sputtering film deposition means 4 having a target is provided in such a manner that the target 41a and a treatment substrate are confronted each other. A partition plate 5 of partitioning a first space 51 in which the target is present and a second space 52 in which the substrate stage is present is provided, an opening part 5a to which the treatment substrate faces is formed at the partition plate, and a shielding means 6 freely movable between a close position at which the opening part is covered to enable the separation between the first space and the second space, and an open position at which the opening part is released is arranged. The second space is provided with a chemical film deposition means capable of performing film deposition according to a chemical film deposition process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、処理基板上に所定の薄膜を形成するための成膜装置に関し、特に、同一真空チャンバ内でスパッタリング法による成膜と、化学的成膜法による成膜との少なくとも一方を実施し得る成膜装置に関する。   The present invention relates to a film forming apparatus for forming a predetermined thin film on a processing substrate, and in particular, at least one of film formation by a sputtering method and film formation by a chemical film formation method is performed in the same vacuum chamber. The present invention relates to a film forming apparatus.

近年、LSIの高集積化及び高速化に伴って、半導体素子の微細化と多層化とが進み、これに伴って埋込配線構造が用いられるようになってきた。絶縁膜に形成したビアホールやトレンチなどの層間接続孔に埋め込まれる配線材料としては、比抵抗値が小さい銅を用いることが主流である。ここで、埋込配線中の銅は、アルミニウムなどの他の配線材料とは異なり、SiOなどの絶縁膜中に拡散し易いという性質があることが知られている。 In recent years, along with higher integration and higher speed of LSIs, semiconductor elements have been miniaturized and multilayered, and accordingly, embedded wiring structures have been used. As a wiring material embedded in an interlayer connection hole such as a via hole or a trench formed in an insulating film, it is a mainstream to use copper having a small specific resistance value. Here, it is known that copper in the embedded wiring has a property of being easily diffused into an insulating film such as SiO 2 unlike other wiring materials such as aluminum.

この場合、絶縁膜中への拡散に起因する絶縁不良などを防止するために 例えば絶縁膜と配線形成用の銅薄膜との間に(層間接続孔の内面)、CVD法やスパッタリング法などにより、導電性の薄膜(バリア膜)を介在させることで、銅薄膜と絶縁膜とが直接接触することを防止して絶縁膜への拡散を抑制または防止することが考えられている。   In this case, in order to prevent insulation failure caused by diffusion into the insulating film, for example, between the insulating film and the copper thin film for wiring formation (inner surface of the interlayer connection hole), by CVD method or sputtering method, By interposing a conductive thin film (barrier film), it is considered that the copper thin film and the insulating film are prevented from coming into direct contact to suppress or prevent diffusion into the insulating film.

このバリア膜の成膜方法としては、化学的成膜法、例えばALD法があげられ、このALD法は、真空チャンバ内に設置した処理基板を所定温度まで昇温させた後、原料ガス及び反応ガスのうちいずれか一方を導入して処理基板に吸着させる工程と、導入したガスを一旦真空排気した後、他方を導入して処理基板上で反応させる工程とを繰り返すことによって、原子層程度で金属窒化物層を積層し、所定膜厚のバリア膜を得るものである(特許文献1)。
特開平11−54459号(例えば、請求項1の記載参照)
Examples of the film formation method for the barrier film include a chemical film formation method, for example, an ALD method. In this ALD method, the temperature of a processing substrate installed in a vacuum chamber is raised to a predetermined temperature, and then a source gas and reaction are performed. By repeating either the step of introducing one of the gases and adsorbing the gas onto the processing substrate, or the step of once evacuating the introduced gas and then introducing the other gas to react on the processing substrate, the atomic layer is reduced to about A metal nitride layer is laminated to obtain a barrier film having a predetermined thickness (Patent Document 1).
Japanese Patent Laid-Open No. 11-54459 (for example, see the description of claim 1)

このALD法によってバリア膜を形成する場合、層間絶縁膜などへの充分な付着強度が得られないという問題がある。このことから、ALD法によるバリア膜の形成に先立って、例えばスパッタリング法でバリア膜の密着層を形成することが考えられる。この場合、ALD法によるバリア膜の形成とスパッタリング法による密着層の形成とを別個の真空チャンバで行なうと、バリア膜形成の作業効率が低下する等の問題が生じることから、同一の真空チャンバ内でALD法によるバリア膜の形成とスパッタリング法による密着層の形成とを行うことが要請される。   When a barrier film is formed by this ALD method, there is a problem that sufficient adhesion strength to an interlayer insulating film or the like cannot be obtained. From this, it is conceivable to form an adhesion layer of the barrier film by sputtering, for example, prior to formation of the barrier film by ALD. In this case, if the formation of the barrier film by the ALD method and the formation of the adhesion layer by the sputtering method are performed in separate vacuum chambers, problems such as a reduction in the working efficiency of the barrier film formation occur. Therefore, it is required to form a barrier film by an ALD method and an adhesion layer by a sputtering method.

同一の真空チャンバ内でALD法による薄膜形成とスパッタリング法による薄膜形成とを行い得るようにする場合、スパッタリング用のターゲットの表面に、ALD法による成膜の際に導入されるガスが吸着して汚染される虞がある。ターゲットが汚染されると、スパッタリング法による成膜時に例えば異常放電を誘発する等の不具合が生じ、良好な成膜ができない。   When thin film formation by ALD method and thin film formation by sputtering method can be performed in the same vacuum chamber, the gas introduced during film formation by ALD method is adsorbed on the surface of sputtering target. There is a risk of contamination. If the target is contaminated, a problem such as inducing abnormal discharge occurs at the time of film formation by sputtering, and good film formation cannot be performed.

そこで、本発明の課題は、上記点に鑑み、同一の真空チャンバ内で、ターゲットの汚染を防止して、化学的成膜法による成膜とスパッタリング法による成膜とを良好に行い得る成膜装置を提供することにある。   Therefore, in view of the above points, an object of the present invention is to perform film formation by chemical film formation and film formation by sputtering in a single vacuum chamber while preventing target contamination. To provide an apparatus.

上記課題を解決するために、本発明の成膜装置は、真空排気手段が接続された真空チャンバを備え、この真空チャンバ内に、処理基板の設置を可能とする基板ステージを配置すると共に、この基板ステージに対向させて配置した成膜材料であるターゲットを有し、基板ステージ上の処理基板に対しスパッタリング法により成膜を行い得るスパッタリング成膜手段を設けた成膜装置であって、前記真空チャンバをターゲットが存する第1空間と基板ステージが存する第2空間とに仕切る仕切り板を設け、この仕切り板に、基板ステージ上の処理基板が臨む開口部を形成すると共に、この開口部を覆って第1空間及び第2空間相互の隔絶を可能とする閉位置と、この開口部を開放する開位置との間で移動自在な遮蔽手段を配置し、第2空間に所定のガスの導入するガス導入手段を有し、基板ステージ上の処理基板に対し化学的成膜法により成膜を行い得る化学的成膜手段を第2空間に設けたことを特徴とする。   In order to solve the above problems, a film forming apparatus of the present invention includes a vacuum chamber to which a vacuum evacuation unit is connected, and a substrate stage in which a processing substrate can be installed is disposed in the vacuum chamber. A film forming apparatus having a target which is a film forming material arranged to face a substrate stage and provided with a sputtering film forming means capable of forming a film on a processing substrate on the substrate stage by sputtering. A partition plate is provided for partitioning the chamber into a first space in which the target exists and a second space in which the substrate stage exists, and an opening is formed on the partition plate so that the processing substrate on the substrate stage faces, and the opening is covered. Shielding means that is movable between a closed position that allows the first space and the second space to be isolated from each other and an open position that opens the opening is disposed in the second space. Has a gas introducing means for introducing the gas, characterized in that the chemical film forming means capable of performing film formation by a chemical deposition method to process the substrate on the substrate stage provided in the second space.

本発明によれば、遮蔽手段が閉位置に保持された状態で、スパッタリング成膜手段を作動させて基板ステージ上の処理基板に対しスパッタリング法によって所定の薄膜を形成する。次いで、遮蔽手段を閉位置から開位置に移動させ、化学的成膜手段を作動させて基板ステージ上の処理基板に対し化学的成膜法によって所定の薄膜を形成する。この場合、基板ステージ上の処理基板に対し化学的成膜法による薄膜形成を行う間、遮蔽手段によって開口部を覆うことで、第1空間及び第2空間が相互に隔絶されているため、化学的成膜法を行う際に導入される原料ガスや反応ガスのターゲットが存する第1空間への流れ込みが防止され、これにより、ガスの吸着に起因したターゲットの汚染が防止される。   According to the present invention, a predetermined thin film is formed by the sputtering method on the processing substrate on the substrate stage by operating the sputtering film forming unit while the shielding unit is held at the closed position. Next, the shielding means is moved from the closed position to the open position, the chemical film forming means is operated, and a predetermined thin film is formed on the processing substrate on the substrate stage by a chemical film forming method. In this case, the first space and the second space are isolated from each other by covering the opening with the shielding means while the thin film is formed by the chemical film formation method on the processing substrate on the substrate stage. The flow of the raw material gas and the reaction gas introduced into the first space where the target film formation method is carried out is prevented, thereby preventing contamination of the target due to gas adsorption.

尚、前記化学的成膜法は、例えば、原料ガスを導入して処理基板表面に原料ガスを吸着させる工程と、反応ガスを導入して吸着した原料ガスと反応させる工程とを周期的に繰り返して行うALD法である。   In the chemical film-forming method, for example, a step of introducing a source gas to adsorb the source gas on the surface of the processing substrate and a step of introducing a reaction gas and reacting with the adsorbed source gas are periodically repeated. This is an ALD method.

前記基板ステージを仕切り板に向かって往復動自在として、基板ステージの外周縁部が開口部の縁部に当接可能としておけば、処理基板に対しスパッタリング法による成膜を行う際に、第1空間と第2空間とを相互に密閉できる。これにより、例えばスパッタリング法による成膜の際に第2空間を区画する真空チャンバの側壁などの汚染が防止できてよい。   If the substrate stage can be reciprocated toward the partition plate and the outer peripheral edge of the substrate stage can be brought into contact with the edge of the opening, the first film can be formed on the processing substrate by sputtering. The space and the second space can be sealed together. Thereby, for example, contamination of the side wall of the vacuum chamber that partitions the second space may be prevented during film formation by sputtering.

前記ガス導入手段は、基板ステージの仕切り板側に位置してこの基板ステージを囲うように設けたリング状のヘッド部を有し、このベッド部に、処理基板に向かって所定のガスを噴出するように所定の間隔を置いて複数のガス導入孔を形成しておけば、処理基板に対し所定の所定のガスを均等に供給できてよい。   The gas introducing means has a ring-shaped head portion provided on the partition plate side of the substrate stage so as to surround the substrate stage, and a predetermined gas is jetted toward the processing substrate on the bed portion. If a plurality of gas introduction holes are formed at predetermined intervals as described above, a predetermined predetermined gas may be evenly supplied to the processing substrate.

前記真空排気手段の排気管を、真空チャンバの第1空間及び第2空間にそれぞれ接続し、第1空間及び第2空間を独立して真空排気できるように構成しておけば、例えば、基板ステージを移動させて第1空間と第2空間とを相互に密閉した状態で成膜を実施する場合でも、第1空間及び第2空間をそれぞれ真空排気できてよい。   If the exhaust pipe of the vacuum exhaust means is connected to the first space and the second space of the vacuum chamber, respectively, and the first space and the second space can be independently evacuated, for example, a substrate stage Even when the film formation is performed in a state where the first space and the second space are sealed with each other, the first space and the second space may be evacuated.

化学的成膜法による成膜の際に、ターゲット近傍へのガスの流れ込みを防止するために、前記第1空間に存するターゲットの近傍に、所定のパージガスの導入を可能とする他のガス導入手段を設けてもよい。   Other gas introduction means for introducing a predetermined purge gas in the vicinity of the target existing in the first space in order to prevent gas from flowing into the vicinity of the target during film formation by the chemical film formation method. May be provided.

以上説明したように、本発明の成膜装置は、同一の真空チャンバ内で、ターゲットの汚染を防止して、化学的成膜法による成膜とスパッタリング法による成膜とを良好に行い得るという効果を奏する。   As described above, the film forming apparatus of the present invention can perform the film formation by the chemical film formation method and the film formation by the sputtering method in the same vacuum chamber while preventing contamination of the target. There is an effect.

図1乃至図4を参照して、1は、同一の真空チャンバ内で、ターゲットの汚染を防止して、化学的成膜法であるALD法による成膜とスパッタリング法による成膜とを良好に行い得る本発明の成膜装置である。成膜装置1は、ターボ分子ポンプなどの真空排気手段2を有する真空チャンバ11を有し、真空チャンバ11の底部には、シリコンウェハーなどの処理基板Sの載置を可能とする基板ステージ12が設けられている。基板ステージ12には、処理基板Sを所定温度に加熱するために、例えば抵抗加熱方式の公知の加熱手段(図示せず)が内蔵されている。   Referring to FIGS. 1 to 4, 1 prevents the target from being contaminated in the same vacuum chamber, and improves the film formation by the ALD method, which is a chemical film formation method, and the film formation by the sputtering method. This is a film forming apparatus of the present invention that can be performed. The film forming apparatus 1 includes a vacuum chamber 11 having a vacuum exhaust unit 2 such as a turbo molecular pump, and a substrate stage 12 that enables a processing substrate S such as a silicon wafer to be placed on the bottom of the vacuum chamber 11. Is provided. In order to heat the processing substrate S to a predetermined temperature, the substrate stage 12 incorporates, for example, a known heating means (not shown) of a resistance heating method.

また、基板ステージ12の直上に位置して真空チャンバ11内には、処理基板Sに対し化学的成膜法による成膜を行う際に、所定のガスを導入する第1及び第2の各ガス導入手段31、32が設けられ、この加熱手段と各ガス導入手段31、32とが化学的成膜手段3を構成する。図3に示すように、第1及び第2のガス導入手段31、32は、基板ステージ12を囲うように同心状であって上下方向にずらして設けたリング状のヘッド部31a、32aをそれぞれ有し、各ベッド部31a、32aには、処理基板Sに向かって所定のガスを噴出するように90度づつ角度をずらして4個のガス導入孔31b、32bが形成されている。また、各ヘッド部31a、32aは、マスフローコントローラを設けたガス管31c、32cを介して、図示しない所定のガス源(例えば、原料ガス源、反応ガス源)にそれぞれ連通している。   Also, first and second gases that are introduced into the vacuum chamber 11 located immediately above the substrate stage 12 when a film is formed on the processing substrate S by a chemical film forming method are introduced. Introducing means 31 and 32 are provided, and the heating means and the gas introducing means 31 and 32 constitute the chemical film forming means 3. As shown in FIG. 3, the first and second gas introducing means 31 and 32 are respectively provided with ring-shaped head portions 31 a and 32 a that are concentrically provided so as to surround the substrate stage 12 and are shifted in the vertical direction. Each of the bed portions 31a and 32a has four gas introduction holes 31b and 32b that are shifted by 90 degrees so that a predetermined gas is ejected toward the processing substrate S. The head portions 31a and 32a communicate with predetermined gas sources (for example, a source gas source and a reactive gas source) (not shown) via gas pipes 31c and 32c provided with a mass flow controller.

例えば処理基板S上に形成した絶縁膜にパターニングして形成した層間接続孔にALD法によりバリア膜を形成する場合、原料ガスとしては、タンタル(Ta)、チタン(Ti)、タングステン(W)などを化学構造中に含む有機金属ガスであり、反応ガスとしては、原料ガスと反応し、金属の構成元素を化学構造中に含む金属薄膜を析出させるアンモニアガスなどである。   For example, when a barrier film is formed by an ALD method in an interlayer connection hole formed by patterning an insulating film formed on the processing substrate S, source gases include tantalum (Ta), titanium (Ti), tungsten (W), etc. The reaction gas is an ammonia gas that reacts with the raw material gas and deposits a metal thin film containing the constituent elements of the metal in the chemical structure.

そして、基板ステージ12に載置した処理基板Sを所定温度まで昇温させた後、原料ガス及び反応ガスのうちいずれか一方を導入して処理基板Sに吸着させる工程と、この一方のガスを一旦真空排気した後、他方を導入して処理基板S上で反応させる工程とを繰り返すことによって、原子層程度で金属窒化物層を積層し、所定膜厚の薄膜が得られる。タンタル(Ta)、チタン(Ti)、タングステン(W)などのピュアメタルを成膜する場合には、原料ガスを吸着させる工程と、H2ラジカル又はPVDで成膜、改質を行う工程とを繰り返すようにすればよい。   Then, after raising the temperature of the processing substrate S placed on the substrate stage 12 to a predetermined temperature, a step of introducing one of the source gas and the reaction gas and adsorbing the processing substrate S to the processing substrate S, and this one gas Once the vacuum is evacuated, the process of introducing the other and reacting on the processing substrate S is repeated, whereby the metal nitride layer is stacked in the atomic layer to obtain a thin film having a predetermined thickness. When depositing a pure metal such as tantalum (Ta), titanium (Ti), or tungsten (W), the process of adsorbing the source gas and the process of depositing and modifying with H2 radicals or PVD are repeated. What should I do?

ここで、ALD法によって成膜すると、付着強度が弱いという問題がある。このことから、本実施の形態では、同一真空チャンバ11内でALD法による薄膜形成に先立ってスパッタリング法で所定の密着層を形成できるように、真空チャンバ12の上面にはスパッタリング手段であるスパッタリングカソード41が設けられている。   Here, when a film is formed by the ALD method, there is a problem that the adhesion strength is weak. Therefore, in this embodiment, a sputtering cathode, which is a sputtering means, is formed on the upper surface of the vacuum chamber 12 so that a predetermined adhesion layer can be formed by the sputtering method prior to the thin film formation by the ALD method in the same vacuum chamber 11. 41 is provided.

スパッタリングカソード41は、公知の構造を有し、処理基板Sに対向して設けたターゲット41aを有する。ターゲット41aは、処理基板S上に成膜しようする薄膜の組成に応じて公知の方法で作製される。例えば、スパッタリング法でバリア膜の密着層を形成する場合のターゲットとしては、タンタル(Ta)、チタン(Ti)、タングステン(W)など、原料ガスに含まれる金属の構成元素を主成分とするものである。また、ターゲット41aは、このターゲット41aの前方にプラズマが発生させるため、ターゲット41aに直流電圧または高周波電圧を印加するスパッタ電源42に接続されている。この場合、処理基板Sもまた、バイアス電圧を印加するためにスパッタ電源42に接続されている。   The sputtering cathode 41 has a known structure and has a target 41 a provided to face the processing substrate S. The target 41a is manufactured by a known method according to the composition of the thin film to be formed on the processing substrate S. For example, as a target for forming an adhesion layer of a barrier film by sputtering, the main component is a constituent element of a metal contained in a source gas such as tantalum (Ta), titanium (Ti), tungsten (W), etc. It is. The target 41a is connected to a sputtering power source 42 that applies a DC voltage or a high-frequency voltage to the target 41a in order to generate plasma in front of the target 41a. In this case, the processing substrate S is also connected to the sputtering power source 42 in order to apply a bias voltage.

真空チャンバ11の上部には、第3のガス導入手段43が設けられている。ガス導入手段3は、マスフローコントローラを介設したガス管43aを介して図示しないガス源に連通し、アルゴンなどのスパッタガスを一定の流量で導入できるようになっており、スパッタリングカソード41、スパッタ電源42及び第3のガス導入手段43がスパッタリング手段4を構成する。   A third gas introduction unit 43 is provided in the upper part of the vacuum chamber 11. The gas introduction means 3 communicates with a gas source (not shown) via a gas pipe 43a provided with a mass flow controller, and can introduce a sputtering gas such as argon at a constant flow rate. 42 and the third gas introduction means 43 constitute the sputtering means 4.

ところで、上記のように、同一の真空チャンバ11内でALD法による成膜とスパッタリング法による成膜とを行い得るように成膜装置1を構成した場合、ターゲット41aの表面(スパッタ面)に、ALD法による成膜の際に導入される原料ガスや吸着ガスが吸着して汚染される虞がある。ターゲット41aが汚染されると、スパッタリング法による成膜時に例えば異常放電を誘発する等の不具合が生じ、良好な成膜の妨げとなる虞がある。   By the way, when the film-forming apparatus 1 is configured so that film formation by the ALD method and film formation by the sputtering method can be performed in the same vacuum chamber 11 as described above, the surface (sputter surface) of the target 41a is There is a possibility that the raw material gas and the adsorbed gas introduced during the film formation by the ALD method are adsorbed and contaminated. If the target 41a is contaminated, a problem such as inducing abnormal discharge occurs during film formation by sputtering, which may hinder good film formation.

本実施の形態では、真空チャンバ11をターゲット42aが存する第1空間51と基板ステージ12が存する第2空間52とに仕切る仕切り板5を設けた。そして、この仕切り板5に、ターゲット41aから基板ステージ12上の処理基板Sが臨む開口部5aを形成すると共に、この開口部5aを覆って第1空間51及び第2空間52相互の隔絶を可能とする閉位置と、この開口部5aを開放する開位置との間で移動自在な遮蔽手段6を配置した。図4に示すように、遮蔽手段6は、開口部5aの面積より大きな面積を有するシャッター部61を有し、このシャッター61には、アーム部62の一端が連結され、その他端は、このアーム部62を水平方向に旋回さえるモータなどの駆動手段の回転軸63に連結されている。   In the present embodiment, the partition plate 5 that partitions the vacuum chamber 11 into a first space 51 where the target 42a exists and a second space 52 where the substrate stage 12 exists is provided. An opening 5a is formed in the partition plate 5 so that the processing substrate S on the substrate stage 12 faces the target 41a, and the first space 51 and the second space 52 can be isolated from each other by covering the opening 5a. Shielding means 6 that is movable between a closed position and an open position that opens the opening 5a is disposed. As shown in FIG. 4, the shielding means 6 has a shutter portion 61 having an area larger than the area of the opening 5a. One end of an arm portion 62 is connected to the shutter 61, and the other end is the arm. It is connected to a rotating shaft 63 of a driving means such as a motor for turning the portion 62 in the horizontal direction.

これにより、基板ステージ12上の処理基板Sに対しALD法によって成膜する間、シャッター部61により開口部5aを覆うことで、第1空間51と第2空間52とを相互に隔絶でき、導入される原料ガスや反応ガスによるターゲット41aが存する第1空間51への流れ込みを防止して、ガス吸着に起因したターゲット41aの汚染が防止できる。この場合、ターゲット41aの近傍に、希ガスなどの所定のパージガスの導入を可能とする第4のガス導入手段44を設けて、第1空間51と第2空間との間の圧力差でシャッター部61と開口部5aとの間の間隙を通って第1空間に原料ガスや反応ガスが流れ込むのを防止するのが好ましい。   Accordingly, the first space 51 and the second space 52 can be isolated from each other by covering the opening 5a with the shutter portion 61 while the film is formed on the processing substrate S on the substrate stage 12 by the ALD method. Inflow of the target 41a due to the raw material gas or reaction gas into the first space 51 can be prevented, and contamination of the target 41a due to gas adsorption can be prevented. In this case, a fourth gas introduction means 44 that enables introduction of a predetermined purge gas such as a rare gas is provided in the vicinity of the target 41a, and the shutter portion is caused by a pressure difference between the first space 51 and the second space. It is preferable to prevent the source gas and the reaction gas from flowing into the first space through the gap between the opening 61 and the opening 5a.

また、スパッタリング法による成膜の際に、第2空間52を区画する真空チャンバ11に設けた防着板11aなどの汚染を防止するために、基板ステージ12には、エアーシリンダなどの駆動手段12aを連結し、仕切り板5に向かって昇降(往復動)自在とし、仕切り板5に当接可能である。この場合、基板ステージ12の外周縁部には、耐熱性を有するOリングや金属性のラビリンスシールなどのシール(図示せず)が設けられ、基板ステージ12を上昇させてその外周縁部を仕切り板5に形成した開口部5aの縁部に当接させ、第1空間及び第2空間52を相互に密閉した状態で処理基板sに対しスパッタリング法によって成膜することもできる。この場合、処理基板Sの上面が第1空間51に突出するように仕切り板5の板厚を設定している(図2参照)。   Further, in order to prevent contamination of the deposition preventing plate 11a provided in the vacuum chamber 11 that partitions the second space 52 during film formation by sputtering, the substrate stage 12 includes a driving means 12a such as an air cylinder. Can be moved up and down (reciprocating) toward the partition plate 5, and can be brought into contact with the partition plate 5. In this case, a seal (not shown) such as a heat-resistant O-ring or a metal labyrinth seal is provided on the outer peripheral edge of the substrate stage 12, and the substrate stage 12 is raised to partition the outer peripheral edge. It is also possible to form a film on the processing substrate s by a sputtering method in contact with the edge of the opening 5a formed in the plate 5 and with the first space and the second space 52 sealed. In this case, the thickness of the partition plate 5 is set so that the upper surface of the processing substrate S protrudes into the first space 51 (see FIG. 2).

他方で、シャッター部61の下面の外周縁部に、耐熱性を有するOリングや金属性のラビリンスシールなどのシール(図示せず)を設けると共に、シャッター部61を昇降自在であるように駆動手段63を構成しておけば、シャッター部61を下降させてその外周縁部を仕切り板5に当接させ、第1空間51を密閉した状態で処理基板Sに対しALD法による成膜が行い得るようにしてもよい。真空排気手段2の排気管21、22は、真空チャンバの第1空間51及び第2空間52にそれぞれ接続され、例えば、真空ポンプの上流側に切換弁(図示せず)を配置しておき、この切換弁を切換えて第1空間51及び第2空間52を独立して真空排気できるように構成している。   On the other hand, a seal (not shown) such as a heat-resistant O-ring or a metallic labyrinth seal is provided on the outer peripheral edge of the lower surface of the shutter portion 61, and driving means is provided so that the shutter portion 61 can be moved up and down. If 63 is constituted, film formation by the ALD method can be performed on the processing substrate S in a state where the shutter 61 is lowered and the outer peripheral edge thereof is brought into contact with the partition plate 5 and the first space 51 is sealed. You may do it. The exhaust pipes 21 and 22 of the vacuum exhaust means 2 are respectively connected to the first space 51 and the second space 52 of the vacuum chamber. For example, a switching valve (not shown) is arranged upstream of the vacuum pump, This switching valve is switched so that the first space 51 and the second space 52 can be evacuated independently.

ところで、ALD法による成膜を行う場合、その成膜速度を高めるには、原料ガスや反応ガスの処理基板への吸着速度を高めると共に第2空間52内に導入した原料ガスや反応ガスが急速に真空排気できるようにする必要がある。他方で、スパッタリング法によって処理基板Sに対し成膜する場合、処理基板面内での薄膜の膜厚の均一性を高めるには、ターゲット41aと処理基板Sとの間の距離を設定する必要がある。   By the way, when performing the film formation by the ALD method, in order to increase the film formation rate, the material gas or the reaction gas introduced into the second space 52 is rapidly increased while the adsorption rate of the material gas or the reaction gas to the processing substrate is increased. It is necessary to be able to evacuate. On the other hand, when the film is formed on the processing substrate S by the sputtering method, it is necessary to set the distance between the target 41a and the processing substrate S in order to improve the uniformity of the thin film thickness within the processing substrate surface. is there.

本実施の形態では、基板ステージ12が仕切り板5に当接した位置で、ターゲット41aと処理基板Sとの間の距離が120mmより長くなると共に、基板ステージ12を下降させた位置(ALD法による成膜を行う位置)で、ターゲット41aと処理基板Sとの間の距離が300mmより短くなり、かつ、第2空間52の容積が可能な限り小さくなるように仕切り板5の真空チャンバ底面からの高さ位置を設定している。ヘッド部31a、32aと処理基板Sとの間の距離は、15〜30mmの範囲に設定される。これにより、ALD法による成膜を行う際に、原料ガス、反応ガスの切換えが早くできて、成膜速度を高めることが可能になる。   In the present embodiment, at the position where the substrate stage 12 is in contact with the partition plate 5, the distance between the target 41a and the processing substrate S is longer than 120 mm and the position where the substrate stage 12 is lowered (according to the ALD method). The position between the target 41a and the processing substrate S is shorter than 300 mm, and the volume of the second space 52 is as small as possible from the bottom surface of the vacuum chamber of the partition plate 5 The height position is set. The distance between the head portions 31a and 32a and the processing substrate S is set in a range of 15 to 30 mm. As a result, when the film is formed by the ALD method, the source gas and the reactive gas can be switched quickly, and the film formation rate can be increased.

次に、本発明の成膜装置1を用いて、絶縁膜に形成した層間接続孔に配線用の埋込層を形成する先立ってバリア膜を形成する場合の作動について説明する。処理基板Sの表面の脱ガスなどの前処理工程が終了した後、基板ステージ12に処理基板Sを載置する。この状態では、遮蔽手段6は開位置にあり、第1空間51及び第2空間52は連通している(図1参照)。次いで、基板ステージ12を上昇させて第1空間51を隔絶し、第1空間51内の圧力が所定値に到達すると、第3のガス導入手段4を介してスパッタガスを第1空間51に導入すると共に、スパッタ電源42を介してターゲット16に高周波電圧を印加することでターゲット41aの前方にプラズマを発生させて、ターゲット41aをスパッタリングし、絶縁膜上に所定膜厚で絶縁膜側密着層を形成する(図2参照)。   Next, the operation when a barrier film is formed prior to the formation of the wiring buried layer in the interlayer connection hole formed in the insulating film using the film forming apparatus 1 of the present invention will be described. After the pretreatment process such as degassing of the surface of the processing substrate S is completed, the processing substrate S is placed on the substrate stage 12. In this state, the shielding means 6 is in the open position, and the first space 51 and the second space 52 are in communication (see FIG. 1). Next, the substrate stage 12 is raised to isolate the first space 51, and when the pressure in the first space 51 reaches a predetermined value, the sputtering gas is introduced into the first space 51 via the third gas introduction means 4. At the same time, a high frequency voltage is applied to the target 16 via the sputtering power source 42 to generate plasma in front of the target 41a, the target 41a is sputtered, and an insulating film side adhesion layer is formed on the insulating film with a predetermined film thickness. Form (see FIG. 2).

次いで、基板ステージ12を下降させ、基板ステージ12に内蔵した加熱手段を作動させて処理基板Sを加熱する(図1参照)。この場合、遮蔽手段6を、駆動手段63によって開位置から閉位置に移動させて第1空間51及び第2空間52を相互に隔絶する。この場合、真空排気手段2によって、第1空間51及び第2空間52は独立して真空排気する。次いで、第2空間52の圧力が所定値に到達すると共に処理基板Sが所定温度に達すると、第1のガス導入手段31を介して原料原料ガスを導入して、処理基板の表面に原料ガスを吸着させる。次いで、第1のガス導入手段31に設けたマスフローコントローラを制御して原料ガスの供給を停止し、再度第2空間52の圧力が所定値に到達するまで真空排出する。   Next, the substrate stage 12 is lowered, and the processing substrate S is heated by operating the heating means built in the substrate stage 12 (see FIG. 1). In this case, the shielding means 6 is moved from the open position to the closed position by the driving means 63 to isolate the first space 51 and the second space 52 from each other. In this case, the first space 51 and the second space 52 are independently evacuated by the evacuation means 2. Next, when the pressure in the second space 52 reaches a predetermined value and the processing substrate S reaches a predetermined temperature, the raw material gas is introduced through the first gas introduction means 31 and the raw material gas is introduced onto the surface of the processing substrate. To adsorb. Next, the supply of the raw material gas is stopped by controlling the mass flow controller provided in the first gas introduction means 31, and vacuum discharge is performed until the pressure in the second space 52 reaches a predetermined value again.

次いで、第2のガス導入手段32を介して、第2空間52に反応ガスを導入し、処理基板基板S表面に吸着された原料ガスと反応させる。この場合、反応ガスをラジカル化して導入してもよい。そして、第2のガス導入手段32に設けたマスフローコントローラを制御して反応ガスの供給を停止し、再度第2空間52の圧力が所定値に到達するまで真空排出する。そして、上記手順を所望回数繰り返すことで、密着層上に所定膜厚でバリア膜が形成される。   Next, a reactive gas is introduced into the second space 52 via the second gas introducing means 32 and reacted with the source gas adsorbed on the surface of the processing substrate substrate S. In this case, the reaction gas may be radicalized and introduced. Then, the mass flow controller provided in the second gas introduction means 32 is controlled to stop the supply of the reaction gas, and the vacuum is discharged again until the pressure in the second space 52 reaches a predetermined value again. Then, by repeating the above procedure a desired number of times, a barrier film having a predetermined thickness is formed on the adhesion layer.

所定膜厚のバリア膜を形成した後、遮蔽手段6を再度閉位置から開位置に移動させると共に、基板ステージ12を上昇させて第1空間51及び第2空間52を相互に隔絶し(図2参照)、第1空間51内の圧力が所定値に到達すると、第3のガス導入手段4を介してスパッタガスを第1空間51に導入すると共に、スパッタ電源42を介してターゲット41aに高周波電圧を印加することでターゲット41aの前方にプラズマを発生させて、ターゲット41aをスパッタリングして、バリア膜の表面に金属薄膜すなわちバリア膜側密着層を形成する。   After the barrier film having a predetermined thickness is formed, the shielding unit 6 is moved again from the closed position to the open position, and the substrate stage 12 is raised to isolate the first space 51 and the second space 52 from each other (FIG. 2). When the pressure in the first space 51 reaches a predetermined value, the sputtering gas is introduced into the first space 51 via the third gas introduction means 4 and the high frequency voltage is applied to the target 41a via the sputtering power source 42. Is applied to generate plasma in front of the target 41a, and the target 41a is sputtered to form a metal thin film, that is, a barrier film side adhesion layer on the surface of the barrier film.

尚、本実施の形態では、基板ステージ12を上昇させ、第1空間51及び第2空間52を相互に隔絶した状態で、スパッタリング法による成膜を行うこととしたが、これに限定されるものではなく、例えば、ALD法による成膜中に、遮蔽手段6を開位置に保持すると共に、スパッタガスを導入し、ターゲット41aに高周波電圧を印加してプラズマを発生させるようにしてもよい。この場合、原料ガスと反応ガスとを反応させて処理基板Sの表面上でバリア膜を形成する間、スパッタリングによって原料ガスと同じ金属の構成元素を主成分とする金属を処理基板Sに入射させることで、バリア膜中の金属の構成元素の含有率が増加させて改質でき、緻密なバリア膜が得られる。   In the present embodiment, the substrate stage 12 is raised and the first space 51 and the second space 52 are separated from each other. However, the present invention is not limited to this. Instead, for example, during the film formation by the ALD method, the shielding unit 6 may be held at the open position, and a sputtering gas may be introduced to generate a plasma by applying a high frequency voltage to the target 41a. In this case, while the source gas and the reaction gas are reacted to form a barrier film on the surface of the processing substrate S, a metal whose main component is a constituent element of the same metal as the source gas is incident on the processing substrate S by sputtering. As a result, the content of the constituent elements of the metal in the barrier film can be increased and modified, and a dense barrier film can be obtained.

原料ガスが有機金属化合物の場合、スパッタリングによってこの構成元素が処理基板Sの表面に入射することにより、分解が促進されてカーボン等の不純物がバリア膜からはじき出されるため、不純物の少ない低抵抗のバリア膜を取得することができる。例えば、ターゲット41aとして金属タンタル、原料ガスとして有機タンタルガス、反応ガスとしてアンモニアガスを使用した場合、処理基板Sの表面上で有機タンタルとアンモニアガスとが反応している間に、金属タンタルが入射し、処理基板S表面に窒化タンタルの薄膜が析出される。   When the source gas is an organometallic compound, this constituent element is incident on the surface of the processing substrate S by sputtering, so that decomposition is accelerated and impurities such as carbon are ejected from the barrier film. A membrane can be obtained. For example, when metal tantalum is used as the target 41a, organic tantalum gas is used as the source gas, and ammonia gas is used as the reaction gas, the metal tantalum is incident while the organic tantalum and ammonia gas react on the surface of the processing substrate S. Then, a tantalum nitride thin film is deposited on the surface of the processing substrate S.

また、本実施の形態では、絶縁膜と銅配線膜との間にバリア層を形成するものを例として説明し、化学的成膜法としてALD法を用いているが、これに限定されるものではなく、化学的成膜法としてはCVD法でもよく、スパッタリング法及び化学的成膜法を実施して薄膜を形成するものであれば、適用できる。   In this embodiment, an example in which a barrier layer is formed between an insulating film and a copper wiring film is described as an example, and the ALD method is used as a chemical film formation method, but the present invention is not limited to this. Instead, the chemical film-forming method may be a CVD method, and can be applied as long as a thin film is formed by performing a sputtering method and a chemical film-forming method.

本発明の成膜装置を、化学的成膜法を実施する位置で概略的に示す断面図。Sectional drawing which shows schematically the film-forming apparatus of this invention in the position which implements a chemical film-forming method. 本発明の成膜装置を、スパッタリング法を実施する位置で概略的に示す断面図。Sectional drawing which shows schematically the film-forming apparatus of this invention in the position which implements sputtering method. 化学的成膜法の行う際に用いるガスリングを説明する図。The figure explaining the gas ring used when performing a chemical film-forming method. 第1空間及び第2空間を相互に隔絶する遮蔽手段を説明する図The figure explaining the shielding means which isolates 1st space and 2nd space mutually

符号の説明Explanation of symbols

1 成膜装置
11 真空チャンバ
12 基板ステージ
2 真空排気手段
3 化学的成膜手段
3a、3b、43 ガス導入手段
4 スパッタリング成膜手段
41a ターゲット
5 仕切り板
5a 開口部
6 遮蔽手段
DESCRIPTION OF SYMBOLS 1 Deposition apparatus 11 Vacuum chamber 12 Substrate stage 2 Vacuum exhaust means 3 Chemical film formation means 3a, 3b, 43 Gas introduction means 4 Sputtering film formation means 41a Target 5 Partition plate 5a Opening 6 Shielding means

Claims (6)

真空排気手段が接続された真空チャンバを備え、この真空チャンバ内に、処理基板の設置を可能とする基板ステージを配置すると共に、この基板ステージに対向させて配置した成膜材料であるターゲットを有し、基板ステージ上の処理基板に対しスパッタリング法により成膜を行い得るスパッタリング成膜手段を設けた成膜装置であって、
前記真空チャンバをターゲットが存する第1空間と基板ステージが存する第2空間とに仕切る仕切り板を設け、この仕切り板に、基板ステージ上の処理基板が臨む開口部を形成すると共に、この開口部を覆って第1空間及び第2空間相互の隔絶を可能とする閉位置と、この開口部を開放する開位置との間で移動自在な遮蔽手段を配置し、第2空間に所定のガスの導入するガス導入手段を有し、基板ステージ上の処理基板に対し化学的成膜法により成膜を行い得る化学的成膜手段を第2空間に設けたことを特徴とする成膜装置。
A vacuum chamber to which an evacuation unit is connected is provided. In this vacuum chamber, a substrate stage capable of setting a processing substrate is disposed, and a target that is a film forming material disposed to face the substrate stage is provided. A film forming apparatus provided with a sputtering film forming means capable of forming a film on the processing substrate on the substrate stage by a sputtering method,
A partition plate is provided for partitioning the vacuum chamber into a first space where a target is present and a second space where a substrate stage is present, and an opening is formed on the partition plate so that the processing substrate on the substrate stage faces. Shielding means that is movable between a closed position that allows the first space and the second space to be isolated from each other and an open position that opens the opening is disposed, and a predetermined gas is introduced into the second space. A film forming apparatus comprising: a gas introducing unit configured to provide a chemical film forming unit capable of forming a film on a processing substrate on a substrate stage by a chemical film forming method.
前記化学的成膜法は、原料ガスを導入して処理基板表面に原料ガスを吸着させる工程と、反応ガスを導入して吸着した原料ガスと反応させる工程とを周期的に繰り返して行うALD法であることを特徴とする請求項1記載の成膜装置。 The chemical film-forming method is an ALD method in which a source gas is introduced to adsorb the source gas on the surface of the processing substrate, and a reaction gas is introduced to react with the adsorbed source gas periodically. The film forming apparatus according to claim 1, wherein: 前記基板ステージを仕切り板に向かって往復動自在として、基板ステージの外周縁部が開口部の縁部に当接可能としたことを特徴とする請求項1または請求項2記載の成膜装置。 3. The film forming apparatus according to claim 1, wherein the substrate stage is reciprocally movable toward the partition plate so that an outer peripheral edge portion of the substrate stage can contact an edge portion of the opening. 前記ガス導入手段は、基板ステージの仕切り板側に位置してこの基板ステージを囲うように設けたリング状のヘッド部を有し、このベッド部に、処理基板に向かって所定のガスを噴出するように所定の間隔を置いて複数のガス導入孔を形成したことを特徴とする請求項1乃至請求項3のいずれかに記載の成膜装置。 The gas introducing means has a ring-shaped head portion provided on the partition plate side of the substrate stage so as to surround the substrate stage, and a predetermined gas is jetted toward the processing substrate on the bed portion. The film forming apparatus according to claim 1, wherein a plurality of gas introduction holes are formed at predetermined intervals as described above. 前記真空排気手段の排気管を、真空チャンバの第1空間及び第2空間にそれぞれ接続し、第1空間及び第2空間を独立して真空排気できるように構成したことを特徴とする請求項1または請求項4のいずれかに記載の成膜装置。 The exhaust pipe of the evacuation means is connected to the first space and the second space of the vacuum chamber, respectively, and the first space and the second space can be independently evacuated. Or the film-forming apparatus in any one of Claim 4. 前記第1空間に存するターゲットの近傍に、所定のパージガスの導入を可能とする他のガス導入手段を設けたことを特徴とする請求項1乃至請求項5のいずれかに記載の成膜装置。
6. The film forming apparatus according to claim 1, further comprising another gas introduction unit that allows introduction of a predetermined purge gas in the vicinity of the target in the first space.
JP2004370497A 2004-12-22 2004-12-22 Film deposition system Pending JP2006176823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004370497A JP2006176823A (en) 2004-12-22 2004-12-22 Film deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004370497A JP2006176823A (en) 2004-12-22 2004-12-22 Film deposition system

Publications (1)

Publication Number Publication Date
JP2006176823A true JP2006176823A (en) 2006-07-06

Family

ID=36731190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370497A Pending JP2006176823A (en) 2004-12-22 2004-12-22 Film deposition system

Country Status (1)

Country Link
JP (1) JP2006176823A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307305A (en) * 2005-05-02 2006-11-09 Ulvac Japan Ltd Film deposition system
CN103031527A (en) * 2011-09-30 2013-04-10 鸿富锦精密工业(深圳)有限公司 Magnetron sputtering coating device
CN110295351A (en) * 2019-05-27 2019-10-01 东莞市汇成真空科技有限公司 A kind of coating machine that target body being isolated by convertible target door
WO2021143047A1 (en) * 2020-01-14 2021-07-22 深圳清华大学研究院 High-precision, low-stress optical thin-film deposition method and device
CN115074671A (en) * 2021-03-11 2022-09-20 鑫天虹(厦门)科技有限公司 Shielding mechanism and substrate processing chamber with same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473935A (en) * 1990-07-16 1992-03-09 Nippon Telegr & Teleph Corp <Ntt> Apparatus and method for plasma machining
JPH0578829A (en) * 1991-09-24 1993-03-30 Nikon Corp Sputtering device
JPH0665738A (en) * 1992-08-25 1994-03-08 Matsushita Electric Works Ltd Device for film formation and method therefor
JPH0766125A (en) * 1993-08-30 1995-03-10 Sony Corp Reduced pressure processing system
JPH1154459A (en) * 1997-08-07 1999-02-26 Ulvac Japan Ltd Formation of barrier film
JPH11106911A (en) * 1997-10-08 1999-04-20 Canon Inc Thin film forming device and formation of compound thin film using it
JP2004040120A (en) * 2002-07-15 2004-02-05 Samsung Electronics Co Ltd Monoatomic layer deposition reaction apparatus
JP2004277799A (en) * 2003-03-14 2004-10-07 Matsushita Electric Ind Co Ltd Film-forming apparatus and cleaning method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473935A (en) * 1990-07-16 1992-03-09 Nippon Telegr & Teleph Corp <Ntt> Apparatus and method for plasma machining
JPH0578829A (en) * 1991-09-24 1993-03-30 Nikon Corp Sputtering device
JPH0665738A (en) * 1992-08-25 1994-03-08 Matsushita Electric Works Ltd Device for film formation and method therefor
JPH0766125A (en) * 1993-08-30 1995-03-10 Sony Corp Reduced pressure processing system
JPH1154459A (en) * 1997-08-07 1999-02-26 Ulvac Japan Ltd Formation of barrier film
JPH11106911A (en) * 1997-10-08 1999-04-20 Canon Inc Thin film forming device and formation of compound thin film using it
JP2004040120A (en) * 2002-07-15 2004-02-05 Samsung Electronics Co Ltd Monoatomic layer deposition reaction apparatus
JP2004277799A (en) * 2003-03-14 2004-10-07 Matsushita Electric Ind Co Ltd Film-forming apparatus and cleaning method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307305A (en) * 2005-05-02 2006-11-09 Ulvac Japan Ltd Film deposition system
JP4613092B2 (en) * 2005-05-02 2011-01-12 株式会社アルバック Deposition equipment
CN103031527A (en) * 2011-09-30 2013-04-10 鸿富锦精密工业(深圳)有限公司 Magnetron sputtering coating device
CN110295351A (en) * 2019-05-27 2019-10-01 东莞市汇成真空科技有限公司 A kind of coating machine that target body being isolated by convertible target door
CN110295351B (en) * 2019-05-27 2024-02-27 东莞市汇成真空科技有限公司 Coating machine for isolating target body through turnover target door
WO2021143047A1 (en) * 2020-01-14 2021-07-22 深圳清华大学研究院 High-precision, low-stress optical thin-film deposition method and device
CN115074671A (en) * 2021-03-11 2022-09-20 鑫天虹(厦门)科技有限公司 Shielding mechanism and substrate processing chamber with same

Similar Documents

Publication Publication Date Title
KR101187619B1 (en) Vacuum film-forming apparatus
EP1100980B1 (en) Processing system and method for chemical vapor deposition
US7717061B2 (en) Gas switching mechanism for plasma processing apparatus
US7670432B2 (en) Exhaust system for a vacuum processing system
US8440259B2 (en) Vapor based combinatorial processing
JP5312036B2 (en) Method and system for performing plasma atomic layer deposition
JP2006057162A (en) Method for forming barrier film
JP2016111347A (en) FORMATION METHOD OF Cu WIRING AND DEPOSITION SYSTEM, STORAGE MEDIUM
TW201443265A (en) Atomic layer deposition apparatus and atomic layer deposition method
KR101759769B1 (en) METHOD OF FORMING Ti FILM
JP2006176823A (en) Film deposition system
JP4783585B2 (en) Deposition equipment
TW202043520A (en) Methods and apparatus for filling a feature disposed in a substrate
JP2009130288A (en) Thin-film forming method
JP4734020B2 (en) Deposition equipment
US20180197760A1 (en) Dual PVD Chamber And Hybrid PVD-CVD Chambers
JP4613092B2 (en) Deposition equipment
JP4664061B2 (en) Film forming apparatus and film forming method
US20230323531A1 (en) Coating interior surfaces of complex bodies by atomic layer deposition
TWI851768B (en) Semiconductor processing apparatus and method for etching substrate
JP4637556B2 (en) Film forming apparatus, composite wiring film forming apparatus including the film forming apparatus, and thin film manufacturing method
KR20070104254A (en) Method for forming ti film and computer readable storage medium
JPS61106773A (en) Gas phase growing device of thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A977 Report on retrieval

Effective date: 20100224

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Effective date: 20100513

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110322