JP4610855B2 - Near-field light generating element, near-field light recording device, and near-field light microscope - Google Patents

Near-field light generating element, near-field light recording device, and near-field light microscope Download PDF

Info

Publication number
JP4610855B2
JP4610855B2 JP2003003939A JP2003003939A JP4610855B2 JP 4610855 B2 JP4610855 B2 JP 4610855B2 JP 2003003939 A JP2003003939 A JP 2003003939A JP 2003003939 A JP2003003939 A JP 2003003939A JP 4610855 B2 JP4610855 B2 JP 4610855B2
Authority
JP
Japan
Prior art keywords
light
cone
field light
generating element
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003003939A
Other languages
Japanese (ja)
Other versions
JP2004216473A (en
JP2004216473A5 (en
Inventor
雅一 平田
学 大海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2003003939A priority Critical patent/JP4610855B2/en
Publication of JP2004216473A publication Critical patent/JP2004216473A/en
Publication of JP2004216473A5 publication Critical patent/JP2004216473A5/ja
Application granted granted Critical
Publication of JP4610855B2 publication Critical patent/JP4610855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、近視野光を発生させる素子、および近視野光を利用した高密度情報記録装置のためのヘッド、高解像顕微鏡のためのプローブに関する。
【0002】
【従来の技術】
近視野光発生素子は、高密度な情報記録再生を行う光記録装置における光ヘッドや、高解像度での観察を行う近視野光顕微鏡における光プローブなどに用いられている。
【0003】
高密度な光記録装置の開発は、近年の画像や動画などの情報量の爆発的増加に伴い積極的に進められている。CD(コンパクトディスク)やDVD(デジタル多用途ディスク)に代表される光ディスクは光の回折限界によって記録密度に限界があることが知られている。この限界を超えるために、より波長の短い光を利用する方法や、近視野光を利用する方法が提案されている。近視野光を利用する光記録装置は、波長以下のサイズの光学的微小開口に光を入射し、開口からわずかに広がった近視野光と記録媒体表面とを相互作用させ、透過あるいは反射した散乱光を検出することで微小なデータマークを読み出す方法である。記録再生できる最小マークサイズは入射光の波長ではなく、開口サイズによって限定されるため、微小な開口を作製することで記録密度の向上が可能となる。
【0004】
近視野光を用いた光記録装置においては、開口が記録媒体表面に近接する必要がある。また、高いデータ転送速度を実現するためには開口が高速に記録媒体表面上を走査する必要がある。これらの条件を満たすために、代表的には従来の磁気記録で用いられるフライングヘッド方式が提案されている(例えば、非特許文献1参照。)。ヘッドの構造は平面基板に半導体プロセスによって浮上スライダと微小開口を形成したものである。例えばシリコン基板上に二酸化シリコン層を積層し、リソグラフィによってティップ用レジストパターンを形成し、二酸化シリコン層をエッチングすることによって、二酸化シリコンから成る錐状ティップを作製する。これにアルミニウムを200nm程度、真空蒸着した後にFIB(集束イオンビーム)装置によってティップ先端を切断することによって、先端に光学的開口を持つティップを作製する。
【0005】
また、近視野光顕微鏡で用いられる光プローブは、光ファイバを加熱・延引・切断し、アルミニウム遮光膜を蒸着した後に先端を切断して光学的開口を形成することで作製する。
【0006】
上述のような近視野光発生素子においては、入射光強度に対して開口から発生する近視野光強度(ここではプローブの光効率と呼ぶ)を向上させる取り組みがなされてきた。プローブの光効率が低いと、十分なコントラストが得られず、近視野光顕微鏡の場合には出力画像の精度、近視野光記録装置の場合にはデータ転送速度、記録密度が不十分になるためである。
【0007】
光効率の向上のために、プローブ先端をFIBで切断するときにビームをプローブの真横から当てることで先端を平らにするなどの工夫がなされてきた(例えば、非特許文献2参照。)。また、開口面内に微小な突起を形成することによって解像度を向上させる試み(例えば、非特許文献3参照。)や、プローブの付け根に遮光膜のエッジを形成することで解像度を向上させる試み(例えば、非特許文献4参照。)もある。
【0008】
また、光学的開口の輪郭形状を三角形として、入射光の偏光方向と三角形の一辺が直交する構造にすることで、光効率を向上させている(例えば、特許文献1参照。)。
【0009】
【特許文献1】
特開2001−118543号公報
【0010】
【非特許文献1】
Issiki,F.et al,Applied Physics Letters,76(7),804(2000)
【0011】
【非特許文献2】
Veerman,J.A.et al,Applied Physics Letters,72(24),3115(1998)
【0012】
【非特許文献3】
Ohtsu,M.,J.Lightwave Tech.,13(7),1200(1995)
【0013】
【非特許文献4】
Yatsui, T. et al,Applied Physics Letters,71(13),1756(1997)
【0014】
【発明が解決しようとする課題】
しかし、非特許文献2または3や特許文献1に示した手法では、光学的開口の大きさが光の波長以下であることから、入射した光が光学的開口に近づくにつれて、光の伝搬に寄与する領域の径が小さくなり、その径がほぼ光の波長以下になると伝搬光は急激に減衰する(カットオフ領域)。このため、光学的開口のサイズや形状を変化させても、光学的開口に到達した光は既に大きく減衰しており、その効果は限定的であった。
【0015】
非特許文献4に示した手法では、上記の問題に取り組んでいるが、遮光膜のエッジと近視野光の発生するプローブ先端との距離が大きく、十分な効果を得ているとは言えなかった。
【0016】
本発明は、前述のようないくつかの試みをふまえて、近視野光顕微鏡の解像度、あるいは近視野光記録装置のデータ転送速度および記録密度をより向上させるために、近視野光発生素子の光効率を向上させるものである。
【0017】
【課題を解決するための手段】
上述の課題を解決するために、本発明においては、光学的に透明な錐体と、前記錐体を覆う遮光膜を有する近視野光発生素子であって、前記錐体と前記遮光膜をそれぞれ一部または全部覆う金属膜と、前記錐体の頂点を含む斜面の一部分に載る前記遮光膜が、除去された錐体露出部と、前記錐体と前記金属膜が前記錐体露出部を介して接触することを有する近視野光発生素子とする。
【0018】
これにより、前記錐体内のカットオフ領域での光の伝搬を避けて、金属膜を介してエネルギーを近視野光発生素子先端に伝搬させることができるため、従来の構造に比べて高効率な近視野光発生が可能となる。
【0019】
また、前記近視野光発生素子において、前記錐体露出部の前記錐体斜面方向の長さが、数十nmから光の波長程度であることを特徴とする。
【0020】
これにより、前記カットオフ領域の大きさに対して必要かつ十分な領域にて、光の伝搬を避けて、金属膜上のエネルギーとして伝搬させることが可能となる。
【0021】
また、前記近視野光発生素子において、前記錐体露出部が、前記錐体の頂点を含んだ前記錐体の切り欠き形状となることを特徴とする。
【0022】
これにより、伝搬光を効率的に前記金属膜上のエネルギーに変換することができ、高効率な近視野光発生が可能となる。
【0023】
また、前記近視野光発生素子において、前記錐体の頂点近傍に、前記錐体が前記遮光膜および前記金属膜に覆われない、光の波長以下の大きさとなる光学的開口を有することを特徴とする。
【0024】
これにより、前記近視野光発生素子の先端において、効率的に近視野光が発生させることができる。
【0025】
また、前記近視野光発生素子を近視野光記録装置に用いることを特徴とする。
【0026】
これにより、近視野光記録装置の高データ転送速度化、高記録密度化が可能となる。
【0027】
また、前記近視野光発生素子を近視野光顕微鏡に用いることを特徴とする。
【0028】
これにより、近視野光顕微鏡の出力画像の高精度化が可能となる。
【0029】
【発明の実施の形態】
以下に、この発明の実施の形態を図面に基づいて説明する。
【0030】
(実施の形態1)
図1は、本実施の形態1に係る情報記録再生装置の構成を説明した図である。本実施の形態に係る情報再生装置は、従来の磁気ディスク装置と基本構成は類似である。近視野光を発生する微小開口(図示略)を有する近視野光ヘッド104を、記録媒体105の表面に数十nmまで近接した状態で記録媒体105を図中矢印112で示した方向に高速に回転させる。近視野光ヘッド104が記録媒体105に対して常に一定の相対配置で浮上するために、フレクシャー108をサスペンションアーム107の先端部に形成している。サスペンションアーム107はボイスコイルモータ(図示略)によって記録媒体105の半径方向に移動可能である。近視野光ヘッド104は、記録媒体105に微小開口が対面するように配置されている。レーザ101からの光束を近視野光ヘッド104に導く為に、レンズ102と、サスペンションアーム107に固定されたコアとクラッドからなる光導波路103を用いている。光導波路103は、レーザからの光束の持つ偏光方向を保存するように、コア断面形状を長方形にした偏光保存型の導波路を用いた。必要に応じて、レーザ101は回路系110により強度変調などをかけることもできる。また、記録媒体105に記録された情報を読みだす為の受光ヘッド106がサスペンションアーム109に取り付けられ、サスペンションアーム109はサスペンションアーム107と同じボイスコイルモータ(図示略)に取り付けされている。
【0031】
図2は本実施の形態1に係る情報記録再生装置の導波路と近視野光ヘッドについて説明した図である。図2のようなヘッド構造は、例えば(Kato,K.et al,International Symposium On Optical Memory 2000)において提案されている構造に類似である。基板111にはヘッド用レンズ機能を実現するために、例えば透明なガラス基板上にマイクロレンズ205を形成し、さらにその記録媒体面側に常に一定の相対配置で浮上するためにエアベアリングサーフェス204が形成されている。基板111の底面には近視野光発生素子206が形成されている。マイクロレンズ205は、光導波路103からの光束を近視野光発生素子206に集光している。
【0032】
この開口基板111の上部には、200nm厚のアルミニウム(図示略)が蒸着されたミラー面203を持つミラー基板210と、コア201とクラッド202からなる光導波路103が固定されている。ここで開口基板111として、使用するレーザの波長での光を透過するガラス基板を用いたが、シリコン基板等を用い、マイクロレンズ205と光束が透過する部分だけ使用する波長での光を透過する材料で作成してもよい。また、マイクロレンズ205は、通常の球面あるいは非球面レンズ、屈折率分布形レンズ、フレネルレンズなどを用いる事ができる。特に平面状のレンズであるフレネルレンズを用いると、径の大きなレンズを作成しても近視野光ヘッドの厚さを薄くすることが可能である。フレネルレンズは、フォトリソグラフィ技術を用いて大量生産可能である。
【0033】
本発明は、図2で示したヘッド構造のうち、近視野光発生素子206と、入射光偏光に特徴がある。図3は本実施の形態1に係る情報記録再生装置の光ヘッドのうち、底面の近視野光発生素子206付近を示した図である。略三角錐形状の近視野光発生素子206は先端に光学的開口301を有する。図4(a)は、図3に示したA−A’平面での近視野光発生素子206付近の断面図である。図4(b)は光学的開口301付近の上面図である。
【0034】
基板111の上(底面)に二酸化ケイ素から成る高さ数μm〜10μm程度の三角錐402が形成されている。三角錐402と三角錐402付近の基板111はアルミニウムからなる遮光膜403に覆われている。遮光膜403の厚みは200〜300nm程度である。遮光膜403は三角錐402の1つの側面において、三角錐402の頂点から底辺に向かって数百nm〜数μm程度下方まで、除去されている。遮光膜403が除去された面は錐体露出部404を形作っている。遮光膜403の除去にはFIB(集束イオンビーム)装置を用いると良い。遮光膜403と錐体露出部404は、三角錐402の頂点に位置する光学的開口301を除いて、金属膜405で覆われている。金属膜405の厚みは数十nm程度であり、材料には金を用いることができる。
【0035】
図4(a)において下方から入射した光は、三角錐402の頂点に向かって伝搬する。この光は、三角錐402の中心軸を錐体露出部404面に垂直に下ろした線と三角錐402の中心軸に張る平面に平行な偏光方向を持つ。三角錐402頂点近傍の錐体露出部404に到達した前記の光は、金属膜405のプラズモンを励起し、金属膜405を介して光学的開口301に向かって伝搬する。ここで、光学的開口301から近視野光が発生する。
【0036】
錐体露出部404とそれに接する金属膜405を持たない場合、光学的開口以外の三角錐402は遮光膜のみに覆われている。入射した光は三角錐402を伝搬するが、光学的開口に近づくにつれて伝搬に寄与する領域の径が小さくなり、その径がほぼ光の波長以下になると、伝搬光は急激に減衰する(カットオフ領域)。このため、光効率が低下する。本実施の形態では、錐体露出部404とそれに接する金属膜405を有する上記構造により、カットオフ領域での光の伝搬を避けて、金属膜を介してエネルギーを光学的開口に伝搬させることができるため、従来の構造に比べて高効率な近視野光発生が可能となる。
【0037】
ここまで略三角錐形状の近視野光発生素子206について説明してきたが、他の錐体を用いて同様な効果を得ることができる。図5は略円錐形状を有する近視野光発生素子206の光学的開口付近の上面図である。図4(b)と同様に光学的開口301は錐体露出部404を除いて遮光膜403に囲まれており、かつ錐体露出部404を介して金属膜405に接している。略三角錐形状の近視野光発生素子では、FIBによる加工の際、三角錐402の側平面に平行に遮光膜403を加工する必要があるが、略円錐形状の近視野光発生素子の場合、その必要がないのは自明であり、よってその作製は容易となる。
【0038】
図6は図4のバリエーションである。構造はほぼ同様であるが、金属膜405は、錐体露出部404と錐体露出部側の側面の遮光膜403のみを覆っている点が異なる。図4の構造に比べて、金属膜405を局在させることができるため、高い記録密度に対応することが可能となる。
【0039】
(実施の形態2)
図7は本発明の実施の形態2に係る、近視野光発生素子付近の断面図である。近視野光発生素子付近以外の構成は実施の形態1と同様であり、図7は実施の形態1における図4(a)に対応する。
【0040】
基板111の上(底面)に二酸化シリコンから成る高さ数μm〜10μm程度の三角錐402が形成されている。三角錐402と三角錐402付近の基板111はアルミニウムからなる遮光膜403に覆われている。遮光膜403の厚みは200〜300nm程度である。遮光膜403は三角錐402の1つの側面において、三角錐402の頂点から底辺に向かって数百nm〜数μm程度下方まで、除去されている。三角錐402において遮光膜403が除去された部位は、数nm〜数十nm程度の深さでエッチングされている。エッチングされた面は2つの平面からなる錐体露出部404を形作っている。前記2つの平面が交わる線をエッジ701と呼ぶ。遮光膜403と錐体露出部404は、三角錐402の頂点に位置する光学的開口301を除いて、金属膜405で覆われている。金属膜405の厚みは数十nm程度であり、材料には金を用いることができる。
【0041】
光学的開口301から近視野光が発生する原理は、本発明の実施の形態1において説明した原理とほぼ同様であるが、エッジ701のために金属膜405のプラズモンがより強く励起される。
【0042】
錐体露出部404と金属膜405とエッジ701を有する上記構造により、従来の構造に比べて高効率な近視野光発生が可能となる。
【0043】
図8は図7のバリエーションである。構造はほぼ同様であるが、金属膜405は、錐体露出部404と錐体露出部側の側面の遮光膜403のみを覆っている点が異なる。図7の構造に比べて、金属膜405を局在させることができるため、高い記録密度に対応することが可能となる。
【0044】
ここまで略三角錐形状の近視野光発生素子について説明してきたが、実施の形態1と同様に、他の錐体を用いても同様な効果を得ることができる。
【0045】
(実施の形態3)
図9は本発明の実施の形態3に係る、近視野光発生素子付近の断面図である。
図9は実施の形態2における図7に対応する。
【0046】
近視野光発生素子付近以外の構成は実施の形態2と同様であるが、光学的開口を有しない点が大きく異なる。三角錐402は錐体露出部404を除いて遮光膜403に覆われ、錐体露出部404と遮光膜403の全体が金属膜405に覆われたままになっている。よって、略三角錐形状の近視野光発生素子の頂点901は金属膜405に覆われている。
【0047】
図9において下方から入射した光は、三角錐402の頂点に向かって伝搬する。この光は、三角錐402の中心軸を錐体露出部404面に垂直に下ろした線と三角錐402の中心軸に張る平面に平行な偏光方向を持つ。三角錐402頂点近傍の錐体露出部404に到達した前記の光は、金属膜405のプラズモンを励起し、金属膜405を介して頂点901に向かって伝搬する。ここで、頂点901から近視野光が発生する。
【0048】
本実施の形態では、光学的開口ではなく頂点901から近視野光が発生するため、近視野光発生素子と記録媒体105は極めて微小な領域で相互作用を生じることができる。よって、高い記録密度に対応することが可能となる。
【0049】
また、遮光膜403の全体が金属膜405に覆われているため、銀のような酸化しやすい材料を遮光膜403に用いた場合にも、遮光膜403の酸化を防ぎ、近視野光発生素子の性能劣化を防ぐことができる。
【0050】
(実施の形態4)
図10は、本発明の実施の形態4に関わる走査型近視野光顕微鏡を示す構成図である。この走査型近視野光顕微鏡は、近視野光プローブ1000と、光情報測定用の光源1001と、光源1001の前面に配置したレンズ1002と、レンズ1002で集光した光を近視野光プローブ1000まで伝搬する光ファイバ1003と、試料1010の下方に配置されたプリズム1011と、プリズム1011で反射した伝搬光を集光するレンズ1014と、集光した伝搬光を受光する光検出部1009と、を備えている。
【0051】
近視野光プローブ1000は片持ち梁1015を有しており、片持ち梁1015の先端には近視野光発生素子206を備えている。近視野光206の構造は本発明の実施の形態1から3に示したものと同様である。片持ち梁1015の近視野光発生素子206を備えた側の側面には遮光膜1016が成膜されている。
【0052】
光ファイバ1003は入射光の偏光方向を保存する偏光保存型のファイバである。また、近視野光プローブ1000の上方には、レーザ光を出力するレーザ発振器1004と、片持ち梁1015と遮光膜1016の界面で反射したレーザ光を反射するミラー1005と、反射したレーザ光を受光して光電変換する上下2分割した光電変換部1006と、を備えている。さらに、試料1010およびプリズム1011をXYZ方向に移動制御する粗動機構1013および微動機構1012と、これら粗動機構1013および微動機構1012を駆動するサーボ機構1007と、装置全体の制御をするコンピュータ1008とを備えている。
【0053】
つぎに、この走査型近視野光顕微鏡の動作について説明する。レーザ発振器1004から放出したレーザ光は、片持ち梁1015と遮光膜1016の界面で反射する。近視野光プローブ1000の片持ち梁1015は近視野光発生素子206と試料1010の表面が接近すると、試料1010との間の引力または斥力によってたわむ。このため、反射したレーザ光の光路が変化するため、これを光電変換部1006で検出する。
【0054】
光電変換部1006により検出した信号は、サーボ機構1007に送られる。サーボ機構1007は、光電変換部1006で検出した信号に基づいて、試料1010に対する近視野光プローブ1000のアプローチや、表面の観察の際に、近視野光プローブ1000のたわみが一定となるように、粗動機構1013および微動機構1012を制御する。コンピュータ1008は、サーボ機構1007の制御信号から表面形状の情報を受け取る。ま た、光源1001から放出された光は、レンズ1002により集光され、光ファイバ1003に至る。光ファイバ1003内を伝搬した光は、偏光が保存されたまま近視野光プローブ1000の近視野光発生素子206から試料1010に照射される。一方、プリズム1011により反射した試料1010の光学的情報は、レンズ1014により集光され、光検出部1009に導入される。光検出部1009の信号は、コンピュータ1008のアナログ入力インタフェースを介して取得され、コンピュータ1008により光学的情報として検出される。なお、近視野光発生素子206への光入射方法は、光ファイバ1003を用いずに、光源1001から放出された光をレンズによって直接近視野光発生素子206上へ集光して入射光を導入する方法でも良い。
【0055】
さらに、ここまで、試料1010を透過した光を検出する透過モードについて説明したが、試料1010で反射した光を検出する反射モードにおいても近視野光プローブ1000を用いることができる。また、近視野光プローブ1000をバイモルフなどで加振することによって、片持ち梁1015を振動させ、近視野光発生素子206と試料1010との間に働く斥力や引力によって生じる、片持ち梁1015の振幅の変化や、片持ち梁1015の振動の周波数変化を一定に保つように近視野光発生素子206と試料1010との距離を制御するダイナミックフォースモードでも近視野光プローブ1000を用いる事ができる。
【0056】
このような、高効率な近視野光発生が可能な近視野光発生素子206を用いた構成の走査型近視野光顕微鏡においては、実施の形態1から3に示した効果が近視野光顕微鏡においても発現し、観察画像の精度を向上させることができる。
【0057】
【発明の効果】
以上説明したように、本発明では、錐体露出部とそれに接する金属膜を有する構造により、カットオフ領域での光の伝搬を避けて、金属膜を介してエネルギーを光学的開口に伝搬させることができるため、従来の構造に比べて高効率な近視野光発生が可能となる。
【0058】
また、金属膜が錐体露出部と錐体露出部側の側面の遮光膜のみを覆う構造により、金属膜を局在させて、高い記録密度に対応することが可能となる。
【0059】
また、略円錐形状の近視野光発生素子とすることにより、FIB装置を用いた錐体露出部の形成が容易になる。
【0060】
また、本発明によれば、錐体露出部と金属膜に加えてエッジを有する上記構造により、金属膜のプラズモンがより強く励起されるため、さらに高効率な近視野光発生が可能となる。
【0061】
また、本発明では、光学的開口ではなく頂点から近視野光が発生するため、近視野光発生素子と記録媒体は極めて微小な領域で相互作用を生じることができる。よって、高い記録密度に対応することが可能となる。
【0062】
また、遮光膜の全体が金属膜に覆われているため、銀のような酸化しやすい材料を遮光膜に用いた場合にも、遮光膜の酸化を防ぎ、近視野光発生素子の性能劣化を防ぐことができる。
【0063】
また、本発明によれば、近視野光発生素子を用いた構成の走査型近視野光顕微鏡において、上記のような近視野光発生素子の効果が近視野光顕微鏡においても発現し、観察画像の精度を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る情報記録再生装置の構成を説明した図である。
【図2】本発明の実施の形態1に係る情報記録再生装置の導波路と近視野光ヘッドについて説明した図である。
【図3】本発明の実施の形態1に係る情報記録再生装置の光ヘッドにおいて、底面の近視野光発生素子付近を示した図である。
【図4】本発明の実施の形態1に係る情報記録再生装置の光ヘッドにおいて、近視野光発生素子付近を示した断面図および光学的開口付近を示した上面図である。
【図5】本発明の実施の形態1に係る情報記録再生装置の光ヘッドにおいて、光学的開口付近を示した上面図である。
【図6】本発明の実施の形態1に係る情報記録再生装置の光ヘッドにおいて、近視野光発生素子付近を示した断面図である。
【図7】本発明の実施の形態2に係る情報記録再生装置の光ヘッドにおいて、近視野光発生素子付近を示した断面図である。
【図8】本発明の実施の形態2に係る情報記録再生装置の光ヘッドにおいて、近視野光発生素子付近を示した断面図である。
【図9】本発明の実施の形態3に係る情報記録再生装置の光ヘッドにおいて、近視野光発生素子付近を示した断面図である。
【図10】本発明の実施の形態4に係る顕微鏡の構成を説明した図である。
【符号の説明】
101 レーザ
102 レンズ
103 光導波路
104 近視野光ヘッド
105 記録媒体
106 受光ヘッド
107 サスペンションアーム
108 フレクシャー
109 サスペンションアーム
110 回路系
111 基板
201 コア
202 クラッド
203 ミラー面
204 エアベアリングサーフェス
205 マイクロレンズ
206 微小開口
210 ミラー基板
301 光学的開口
402 三角錐
403 遮光膜
404 錐体露出部
405 金属膜
701 エッジ
901 頂点
1001 光源
1002 レンズ
1003 光ファイバ
1004 レーザ発振器
1005 ミラー
1006 光電変換部
1007 サーボ機構
1008 コンピュータ
1009 光検出部
1010 試料
1011 プリズム
1012 微動機構
1013 粗動機構
1014 レンズ
1015 片持ち梁
1016 遮光膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an element that generates near-field light, a head for a high-density information recording apparatus using near-field light, and a probe for a high-resolution microscope.
[0002]
[Prior art]
The near-field light generating element is used in an optical head in an optical recording apparatus that performs high-density information recording / reproduction, an optical probe in a near-field light microscope that performs observation at high resolution, and the like.
[0003]
Development of high-density optical recording devices has been actively promoted with the explosive increase in the amount of information such as images and moving images in recent years. It is known that an optical disc represented by a CD (compact disc) or a DVD (digital versatile disc) has a recording density limit due to a diffraction limit of light. In order to exceed this limit, a method using light having a shorter wavelength and a method using near-field light have been proposed. An optical recording device that uses near-field light is light that is incident on an optical microscopic aperture that is smaller than the wavelength, and the near-field light that has spread slightly from the aperture interacts with the surface of the recording medium to transmit or reflect the scattered light. In this method, a minute data mark is read by detecting light. Since the minimum mark size that can be recorded / reproduced is limited not by the wavelength of the incident light but by the aperture size, the recording density can be improved by producing a minute aperture.
[0004]
In an optical recording apparatus using near-field light, the aperture needs to be close to the surface of the recording medium. In order to realize a high data transfer rate, it is necessary to scan the surface of the recording medium at a high speed. In order to satisfy these conditions, a flying head method typically used in conventional magnetic recording has been proposed (for example, see Non-Patent Document 1). The structure of the head is such that a floating slider and a minute opening are formed on a flat substrate by a semiconductor process. For example, a silicon dioxide layer is laminated on a silicon substrate, a tip resist pattern is formed by lithography, and the silicon dioxide layer is etched to produce a conical tip made of silicon dioxide. Aluminum is vacuum-deposited to about 200 nm on this, and then the tip end is cut by a FIB (focused ion beam) apparatus to produce a tip having an optical opening at the tip.
[0005]
An optical probe used in a near-field optical microscope is manufactured by heating, extending, and cutting an optical fiber, depositing an aluminum light-shielding film, and then cutting the tip to form an optical opening.
[0006]
In the near-field light generating element as described above, efforts have been made to improve the near-field light intensity (herein referred to as the light efficiency of the probe) generated from the aperture with respect to the incident light intensity. If the probe's light efficiency is low, sufficient contrast cannot be obtained, and in the case of a near-field optical microscope, the accuracy of the output image, and in the case of a near-field optical recording device, the data transfer speed and recording density are insufficient. It is.
[0007]
In order to improve the light efficiency, a device has been devised such as flattening the tip by applying a beam from the side of the probe when the tip of the probe is cut with FIB (see, for example, Non-Patent Document 2). In addition, an attempt to improve resolution by forming minute protrusions in the opening surface (see, for example, Non-Patent Document 3) or an attempt to improve resolution by forming an edge of a light-shielding film at the base of the probe ( For example, see Non-Patent Document 4.)
[0008]
Moreover, the optical efficiency is improved by making the outline shape of the optical aperture a triangle, and making the polarization direction of incident light and one side of the triangle orthogonal to each other (see, for example, Patent Document 1).
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-118543
[Non-Patent Document 1]
Issiki, F.M. et al, Applied Physics Letters, 76 (7), 804 (2000).
[0011]
[Non-Patent Document 2]
Veerman, J.M. A. et al, Applied Physics Letters, 72 (24), 3115 (1998).
[0012]
[Non-Patent Document 3]
Ohtsu, M .; , J .; Lightwave Tech. , 13 (7), 1200 (1995)
[0013]
[Non-Patent Document 4]
Yatsui, T .; et al, Applied Physics Letters, 71 (13), 1756 (1997).
[0014]
[Problems to be solved by the invention]
However, in the methods shown in Non-Patent Document 2 or 3 and Patent Document 1, since the size of the optical aperture is less than or equal to the wavelength of light, the incident light contributes to the propagation of light as it approaches the optical aperture. When the diameter of the area to be reduced becomes smaller and the diameter is almost equal to or less than the wavelength of light, the propagating light is rapidly attenuated (cut-off area). For this reason, even if the size and shape of the optical aperture are changed, the light that has reached the optical aperture is already greatly attenuated, and the effect is limited.
[0015]
In the technique shown in Non-Patent Document 4, the above problem is addressed, but the distance between the edge of the light-shielding film and the probe tip where near-field light is generated is large, and it cannot be said that a sufficient effect is obtained. .
[0016]
The present invention is based on several attempts as described above, in order to further improve the resolution of the near-field light microscope, or the data transfer speed and recording density of the near-field optical recording apparatus, and the light of the near-field light generating element. It improves efficiency.
[0017]
[Means for Solving the Problems]
In order to solve the above-described problem, in the present invention, a near-field light generating element having an optically transparent cone and a light-shielding film covering the cone, each of the cone and the light-shielding film. A metal film covering part or all of the film, the cone exposed part on the part of the slope including the apex of the cone, the cone exposed part removed, and the cone and the metal film via the cone exposed part A near-field light generating element having contact with each other.
[0018]
As a result, it is possible to avoid the propagation of light in the cutoff region in the cone and to propagate the energy to the tip of the near-field light generating element through the metal film. Field light can be generated.
[0019]
In the near-field light generating element, the length of the cone exposed portion in the cone slope direction is from several tens of nm to the wavelength of light.
[0020]
This makes it possible to avoid the propagation of light and propagate it as energy on the metal film in an area necessary and sufficient for the size of the cut-off area.
[0021]
In the near-field light generating element, the cone exposed portion has a notch shape of the cone including the apex of the cone.
[0022]
Thereby, propagating light can be efficiently converted into energy on the metal film, and high-efficiency near-field light can be generated.
[0023]
Further, in the near-field light generating element, an optical aperture having a size equal to or less than a wavelength of light, the cone not being covered with the light shielding film and the metal film, is provided near the apex of the cone. And
[0024]
Thereby, near-field light can be efficiently generated at the tip of the near-field light generating element.
[0025]
The near-field light generating element is used in a near-field optical recording apparatus.
[0026]
This makes it possible to increase the data transfer speed and the recording density of the near-field optical recording apparatus.
[0027]
The near-field light generating element is used in a near-field light microscope.
[0028]
This makes it possible to increase the accuracy of the output image of the near-field light microscope.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0030]
(Embodiment 1)
FIG. 1 is a diagram illustrating the configuration of the information recording / reproducing apparatus according to the first embodiment. The information reproducing apparatus according to the present embodiment is similar in basic configuration to the conventional magnetic disk apparatus. With the near-field optical head 104 having a minute aperture (not shown) for generating near-field light close to the surface of the recording medium 105 up to several tens of nanometers, the recording medium 105 is moved at high speed in the direction indicated by the arrow 112 in the figure. Rotate. A flexure 108 is formed at the tip of the suspension arm 107 so that the near-field optical head 104 always floats with a fixed relative arrangement with respect to the recording medium 105. The suspension arm 107 can be moved in the radial direction of the recording medium 105 by a voice coil motor (not shown). The near-field optical head 104 is arranged so that a minute opening faces the recording medium 105. In order to guide the light beam from the laser 101 to the near-field optical head 104, a lens 102 and an optical waveguide 103 composed of a core and a clad fixed to a suspension arm 107 are used. As the optical waveguide 103, a polarization-preserving waveguide having a rectangular core cross-sectional shape was used so as to preserve the polarization direction of the light flux from the laser. If necessary, the laser 101 can be intensity-modulated by the circuit system 110. A light receiving head 106 for reading information recorded on the recording medium 105 is attached to a suspension arm 109, and the suspension arm 109 is attached to the same voice coil motor (not shown) as the suspension arm 107.
[0031]
FIG. 2 is a diagram for explaining the waveguide and the near-field optical head of the information recording / reproducing apparatus according to the first embodiment. The head structure as shown in FIG. 2 is similar to the structure proposed in (Kato, K. et al, International Symposium On Optical Memory 2000), for example. In order to realize the lens function for the head on the substrate 111, for example, a microlens 205 is formed on a transparent glass substrate, and an air bearing surface 204 is provided on the recording medium surface side so that the air bearing surface 204 always floats in a certain relative arrangement. Is formed. A near-field light generating element 206 is formed on the bottom surface of the substrate 111. The micro lens 205 condenses the light beam from the optical waveguide 103 on the near-field light generating element 206.
[0032]
A mirror substrate 210 having a mirror surface 203 on which aluminum (not shown) having a thickness of 200 nm is deposited, and an optical waveguide 103 composed of a core 201 and a clad 202 are fixed on the upper portion of the opening substrate 111. Here, a glass substrate that transmits light at the wavelength of the laser to be used is used as the aperture substrate 111. However, a silicon substrate or the like is used, and only the portion that transmits the microlens 205 and the light beam transmits light at the wavelength used. You may make with material. The microlens 205 can be a normal spherical or aspherical lens, a gradient index lens, a Fresnel lens, or the like. In particular, when a Fresnel lens, which is a planar lens, is used, it is possible to reduce the thickness of the near-field optical head even if a lens having a large diameter is formed. Fresnel lenses can be mass-produced using photolithography technology.
[0033]
The present invention is characterized by the near-field light generating element 206 and the incident light polarization in the head structure shown in FIG. FIG. 3 is a view showing the vicinity of the near-field light generating element 206 on the bottom of the optical head of the information recording / reproducing apparatus according to the first embodiment. The near-field light generating element 206 having a substantially triangular pyramid shape has an optical aperture 301 at the tip. 4A is a cross-sectional view of the vicinity of the near-field light generating element 206 on the plane AA ′ shown in FIG. FIG. 4B is a top view in the vicinity of the optical aperture 301.
[0034]
On the substrate 111 (bottom surface), a triangular pyramid 402 made of silicon dioxide and having a height of about several μm to 10 μm is formed. The triangular pyramid 402 and the substrate 111 in the vicinity of the triangular pyramid 402 are covered with a light shielding film 403 made of aluminum. The thickness of the light shielding film 403 is about 200 to 300 nm. The light shielding film 403 is removed on one side surface of the triangular pyramid 402 from the apex of the triangular pyramid 402 to the lower side by about several hundred nm to several μm. The surface from which the light shielding film 403 has been removed forms a cone-exposed portion 404. An FIB (focused ion beam) apparatus may be used for removing the light shielding film 403. The light shielding film 403 and the cone exposed portion 404 are covered with a metal film 405 except for the optical opening 301 located at the apex of the triangular pyramid 402. The thickness of the metal film 405 is about several tens of nm, and gold can be used as a material.
[0035]
In FIG. 4A, light incident from below propagates toward the apex of the triangular pyramid 402. This light has a polarization direction parallel to a line extending from the central axis of the triangular pyramid 402 perpendicular to the surface of the cone exposed portion 404 and a plane extending from the central axis of the triangular pyramid 402. The light that has reached the cone exposed portion 404 near the apex of the triangular pyramid 402 excites the plasmon of the metal film 405 and propagates toward the optical aperture 301 via the metal film 405. Here, near-field light is generated from the optical aperture 301.
[0036]
When the cone exposed portion 404 and the metal film 405 in contact therewith are not provided, the triangular pyramid 402 other than the optical aperture is covered only with the light shielding film. Incident light propagates through the triangular pyramid 402, but the diameter of the region that contributes to propagation decreases as it approaches the optical aperture, and when the diameter becomes less than or equal to the wavelength of the light, the propagating light attenuates rapidly (cutoff). region). For this reason, light efficiency falls. In the present embodiment, the structure having the cone exposed portion 404 and the metal film 405 in contact with the cone can avoid the propagation of light in the cut-off region and propagate the energy through the metal film to the optical aperture. Therefore, it is possible to generate near-field light with higher efficiency than the conventional structure.
[0037]
Although the near-field light generating element 206 having a substantially triangular pyramid shape has been described so far, similar effects can be obtained by using other cones. FIG. 5 is a top view of the vicinity of the optical aperture of the near-field light generating element 206 having a substantially conical shape. Similar to FIG. 4B, the optical opening 301 is surrounded by the light shielding film 403 except for the cone exposed portion 404, and is in contact with the metal film 405 through the cone exposed portion 404. In the near-field light generating element having a substantially triangular pyramid shape, it is necessary to process the light-shielding film 403 in parallel with the side plane of the triangular pyramid 402 during processing by FIB. Obviously, it is not necessary, and the fabrication is easy.
[0038]
FIG. 6 is a variation of FIG. The structure is almost the same except that the metal film 405 covers only the cone exposed portion 404 and the light shielding film 403 on the side surface on the cone exposed portion side. Compared with the structure of FIG. 4, the metal film 405 can be localized, so that it is possible to cope with a high recording density.
[0039]
(Embodiment 2)
FIG. 7 is a cross-sectional view of the vicinity of a near-field light generating element according to Embodiment 2 of the present invention. The configuration other than the vicinity of the near-field light generating element is the same as that in the first embodiment, and FIG. 7 corresponds to FIG. 4A in the first embodiment.
[0040]
On the substrate 111 (bottom surface), a triangular pyramid 402 made of silicon dioxide and having a height of about several μm to 10 μm is formed. The triangular pyramid 402 and the substrate 111 in the vicinity of the triangular pyramid 402 are covered with a light shielding film 403 made of aluminum. The thickness of the light shielding film 403 is about 200 to 300 nm. The light shielding film 403 is removed on one side surface of the triangular pyramid 402 from the apex of the triangular pyramid 402 to the lower side by about several hundred nm to several μm. A portion of the triangular pyramid 402 from which the light shielding film 403 has been removed is etched to a depth of about several nanometers to several tens of nanometers. The etched surface forms a cone-exposed portion 404 composed of two planes. A line where the two planes intersect is called an edge 701. The light shielding film 403 and the cone exposed portion 404 are covered with a metal film 405 except for the optical opening 301 located at the apex of the triangular pyramid 402. The thickness of the metal film 405 is about several tens of nm, and gold can be used as a material.
[0041]
The principle that near-field light is generated from the optical aperture 301 is substantially the same as the principle described in Embodiment Mode 1 of the present invention, but the plasmon of the metal film 405 is more strongly excited due to the edge 701.
[0042]
With the above structure having the cone exposed portion 404, the metal film 405, and the edge 701, it is possible to generate near-field light with higher efficiency than the conventional structure.
[0043]
FIG. 8 is a variation of FIG. The structure is almost the same except that the metal film 405 covers only the cone exposed portion 404 and the light shielding film 403 on the side surface on the cone exposed portion side. Compared with the structure of FIG. 7, the metal film 405 can be localized, so that it is possible to cope with a high recording density.
[0044]
Although the near-triangle-pyramidal near-field light generating element has been described so far, similar effects can be obtained even when other cones are used as in the first embodiment.
[0045]
(Embodiment 3)
FIG. 9 is a cross-sectional view near the near-field light generating element according to Embodiment 3 of the present invention.
FIG. 9 corresponds to FIG. 7 in the second embodiment.
[0046]
The configuration other than the vicinity of the near-field light generating element is the same as that of the second embodiment, except that it does not have an optical aperture. The triangular pyramid 402 is covered with the light shielding film 403 except for the cone exposed portion 404, and the entire cone exposed portion 404 and the light shielding film 403 remain covered with the metal film 405. Therefore, the vertex 901 of the near-field light generating element having a substantially triangular pyramid shape is covered with the metal film 405.
[0047]
In FIG. 9, light incident from below propagates toward the apex of the triangular pyramid 402. This light has a polarization direction parallel to a line extending from the central axis of the triangular pyramid 402 perpendicular to the surface of the cone exposed portion 404 and a plane extending from the central axis of the triangular pyramid 402. The light that has reached the cone exposed portion 404 near the apex of the triangular pyramid 402 excites the plasmon of the metal film 405 and propagates toward the apex 901 through the metal film 405. Here, near-field light is generated from the vertex 901.
[0048]
In this embodiment mode, near-field light is generated not from the optical aperture but from the apex 901, so that the near-field light generating element and the recording medium 105 can interact with each other in a very small area. Therefore, it is possible to cope with a high recording density.
[0049]
Further, since the entire light shielding film 403 is covered with the metal film 405, even when a material that easily oxidizes such as silver is used for the light shielding film 403, the light shielding film 403 is prevented from being oxidized, and the near-field light generating element It is possible to prevent the deterioration of performance.
[0050]
(Embodiment 4)
FIG. 10 is a configuration diagram showing a scanning near-field optical microscope according to the fourth embodiment of the present invention. This scanning near-field optical microscope includes a near-field optical probe 1000, a light source 1001 for measuring optical information, a lens 1002 disposed in front of the light source 1001, and light collected by the lens 1002 up to the near-field optical probe 1000. A propagating optical fiber 1003, a prism 1011 disposed below the sample 1010, a lens 1014 that collects the propagation light reflected by the prism 1011, and a light detection unit 1009 that receives the collected propagation light. ing.
[0051]
The near-field optical probe 1000 has a cantilever 1015, and a near-field light generating element 206 is provided at the tip of the cantilever 1015. The structure of the near-field light 206 is the same as that shown in the first to third embodiments of the present invention. A light shielding film 1016 is formed on the side surface of the cantilever 1015 on the side provided with the near-field light generating element 206.
[0052]
The optical fiber 1003 is a polarization preserving fiber that preserves the polarization direction of incident light. Above the near-field optical probe 1000, a laser oscillator 1004 that outputs laser light, a mirror 1005 that reflects laser light reflected at the interface between the cantilever 1015 and the light shielding film 1016, and the reflected laser light are received. And a photoelectric conversion unit 1006 divided into upper and lower parts for photoelectric conversion. Furthermore, a coarse movement mechanism 1013 and a fine movement mechanism 1012 that control the movement of the sample 1010 and the prism 1011 in the XYZ directions, a servo mechanism 1007 that drives the coarse movement mechanism 1013 and the fine movement mechanism 1012, and a computer 1008 that controls the entire apparatus. It has.
[0053]
Next, the operation of this scanning near-field optical microscope will be described. The laser light emitted from the laser oscillator 1004 is reflected at the interface between the cantilever 1015 and the light shielding film 1016. When the near-field light generating element 206 and the surface of the sample 1010 come close to each other, the cantilever 1015 of the near-field optical probe 1000 is bent by an attractive force or a repulsive force between the sample 1010 and the near-field light probe 1000. For this reason, since the optical path of the reflected laser light changes, this is detected by the photoelectric conversion unit 1006.
[0054]
A signal detected by the photoelectric conversion unit 1006 is sent to the servo mechanism 1007. The servo mechanism 1007 is based on the signal detected by the photoelectric conversion unit 1006 so that the deflection of the near-field optical probe 1000 is constant during the approach of the near-field optical probe 1000 to the sample 1010 and the surface observation. The coarse movement mechanism 1013 and the fine movement mechanism 1012 are controlled. The computer 1008 receives surface shape information from the control signal of the servo mechanism 1007. In addition, light emitted from the light source 1001 is collected by the lens 1002 and reaches the optical fiber 1003. The light propagating through the optical fiber 1003 is applied to the sample 1010 from the near-field light generating element 206 of the near-field optical probe 1000 while maintaining the polarization. On the other hand, the optical information of the sample 1010 reflected by the prism 1011 is collected by the lens 1014 and introduced into the light detection unit 1009. A signal from the light detection unit 1009 is acquired via an analog input interface of the computer 1008 and detected as optical information by the computer 1008. The light incident method to the near-field light generating element 206 is not using the optical fiber 1003 but condenses the light emitted from the light source 1001 directly onto the near-field light generating element 206 by a lens and introduces the incident light. The method of doing
[0055]
Furthermore, although the transmission mode for detecting the light transmitted through the sample 1010 has been described so far, the near-field optical probe 1000 can be used in the reflection mode for detecting the light reflected by the sample 1010. Further, the cantilever 1015 is vibrated by vibrating the near-field optical probe 1000 with a bimorph or the like, and the cantilever 1015 generated by repulsive force or attractive force acting between the near-field light generating element 206 and the sample 1010. The near-field optical probe 1000 can also be used in a dynamic force mode in which the distance between the near-field light generating element 206 and the sample 1010 is controlled so as to keep the change in amplitude and the change in the frequency of vibration of the cantilever 1015 constant.
[0056]
In the scanning near-field light microscope having the configuration using the near-field light generating element 206 capable of generating near-field light with high efficiency as described above, the effects described in the first to third embodiments can be achieved in the near-field light microscope. And the accuracy of the observed image can be improved.
[0057]
【The invention's effect】
As described above, in the present invention, energy is propagated to the optical aperture through the metal film by avoiding the propagation of light in the cut-off region by the structure having the cone exposed portion and the metal film in contact therewith. Therefore, it is possible to generate near-field light with higher efficiency than the conventional structure.
[0058]
Further, the structure in which the metal film covers only the cone-exposed portion and the light-shielding film on the side of the cone-exposed portion can localize the metal film and cope with high recording density.
[0059]
In addition, by using a substantially conical near-field light generating element, it is easy to form the cone exposed portion using the FIB apparatus.
[0060]
Further, according to the present invention, the plasmon of the metal film is more strongly excited by the above structure having the edge in addition to the cone exposed portion and the metal film, so that it is possible to generate near-field light with higher efficiency.
[0061]
In the present invention, near-field light is generated not from the optical aperture but from the apex, so that the near-field light generating element and the recording medium can interact in a very small area. Therefore, it is possible to cope with a high recording density.
[0062]
In addition, since the entire light-shielding film is covered with a metal film, even when a material that easily oxidizes, such as silver, is used for the light-shielding film, the light-shielding film is prevented from being oxidized and the performance of the near-field light generating element is deteriorated. Can be prevented.
[0063]
Further, according to the present invention, in the scanning near-field light microscope having a configuration using the near-field light generating element, the effect of the near-field light generating element as described above also appears in the near-field light microscope, Accuracy can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of an information recording / reproducing apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a diagram illustrating a waveguide and a near-field optical head of the information recording / reproducing apparatus according to Embodiment 1 of the present invention.
FIG. 3 is a view showing the vicinity of a near-field light generating element on the bottom surface in the optical head of the information recording / reproducing apparatus according to Embodiment 1 of the present invention.
4 is a cross-sectional view showing the vicinity of a near-field light generating element and a top view showing the vicinity of an optical aperture in the optical head of the information recording / reproducing apparatus according to Embodiment 1 of the present invention. FIG.
FIG. 5 is a top view showing the vicinity of an optical aperture in the optical head of the information recording / reproducing apparatus according to Embodiment 1 of the present invention.
FIG. 6 is a cross-sectional view showing the vicinity of a near-field light generating element in the optical head of the information recording / reproducing apparatus according to Embodiment 1 of the present invention.
FIG. 7 is a cross-sectional view showing the vicinity of a near-field light generating element in an optical head of an information recording / reproducing apparatus according to Embodiment 2 of the present invention.
FIG. 8 is a cross-sectional view showing the vicinity of a near-field light generating element in an optical head of an information recording / reproducing apparatus according to Embodiment 2 of the present invention.
FIG. 9 is a cross-sectional view showing the vicinity of a near-field light generating element in an optical head of an information recording / reproducing apparatus according to Embodiment 3 of the present invention.
FIG. 10 is a diagram illustrating a configuration of a microscope according to a fourth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 Laser 102 Lens 103 Optical waveguide 104 Near field optical head 105 Recording medium 106 Light receiving head 107 Suspension arm 108 Flexure 109 Suspension arm 110 Circuit system 111 Substrate 201 Core 202 Cladding 203 Mirror surface 204 Air bearing surface 205 Micro lens 206 Micro aperture 206 Mirror Substrate 301 Optical aperture 402 Triangular pyramid 403 Shading film 404 Cone exposed portion 405 Metal film 701 Edge 901 Apex 1001 Light source 1002 Lens 1003 Optical fiber 1004 Laser oscillator 1005 Mirror 1006 Photoelectric conversion unit 1007 Servo mechanism 1008 Computer 1009 Photodetection unit 1010 Sample 1011 Prism 1012 Fine movement mechanism 1013 Coarse movement mechanism 1014 Lens 1015 Cantilever beam 1016 Film

Claims (6)

基板に配置された光学的に透明な錐体と、
前記錐体を覆う遮光膜とを有し、近視野光を発生させる近視野光発生素子であって、
前記錐体の先端部の周の一部分に載る前記遮光膜が除去された錐体露出部とを有し、
前記錐体露出部に金属膜が備えられることにより、前記錐体及び前記金属膜が接触しており、
前記遮光膜は、前記錐体露出部を除いて前記錐体を覆うことを特徴とする近視野光発生素子。
An optically transparent cone located on the substrate;
A near-field light generating element that has a light-shielding film covering the cone and generates near-field light,
A cone exposed portion from which the light-shielding film placed on a portion of the circumference of the tip of the cone is removed;
By providing a metal film in the cone exposed portion, the cone and the metal film are in contact,
The near-field light generating element, wherein the light shielding film covers the cone except for the cone exposed portion.
前記錐体露出部の前記錐体斜面方向の長さが、数十nmから光の波長程度である、請求項1記載の近視野光発生素子。  The near-field light generating element according to claim 1, wherein a length of the cone exposed portion in the cone slope direction is approximately several tens of nm to a wavelength of light. 前記錐体露出部が、前記錐体の頂点を含んだ前記錐体の切り欠き
形状となる、請求項1または2に記載の近視野光発生素子。
The near-field light generating element according to claim 1, wherein the cone exposed portion has a cutout shape of the cone including the apex of the cone.
前記錐体の頂点近傍に、前記錐体が前記遮光膜および前記金属膜に覆われない、光の波長以下の大きさとなる光学的開口を有する、請求項1から3のいずれかに記載の近視野光発生素子。  The near according to any one of claims 1 to 3, wherein the cone has an optical aperture that is not covered by the light-shielding film and the metal film and has a size equal to or smaller than a wavelength of light, in the vicinity of the apex of the cone. Field light generation element. 請求項1から4のいずれかに記載の近視野光発生素子を用いた近視野光記録装置。  A near-field optical recording apparatus using the near-field light generating element according to claim 1. 請求項1から4のいずれかに記載の近視野光発生素子を用いた近視野光顕微鏡。  A near-field light microscope using the near-field light generating element according to claim 1.
JP2003003939A 2003-01-10 2003-01-10 Near-field light generating element, near-field light recording device, and near-field light microscope Expired - Fee Related JP4610855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003939A JP4610855B2 (en) 2003-01-10 2003-01-10 Near-field light generating element, near-field light recording device, and near-field light microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003939A JP4610855B2 (en) 2003-01-10 2003-01-10 Near-field light generating element, near-field light recording device, and near-field light microscope

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008329442A Division JP4593666B2 (en) 2008-12-25 2008-12-25 Near-field light generating element, near-field light recording device, and near-field light microscope

Publications (3)

Publication Number Publication Date
JP2004216473A JP2004216473A (en) 2004-08-05
JP2004216473A5 JP2004216473A5 (en) 2006-01-12
JP4610855B2 true JP4610855B2 (en) 2011-01-12

Family

ID=32895057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003939A Expired - Fee Related JP4610855B2 (en) 2003-01-10 2003-01-10 Near-field light generating element, near-field light recording device, and near-field light microscope

Country Status (1)

Country Link
JP (1) JP4610855B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7489597B2 (en) 2004-09-27 2009-02-10 Sharp Kabushiki Kaisha Electromagnetic field generating element, information recording/reproducing head, and information recording/reproducing apparatus
JP4710746B2 (en) * 2005-09-28 2011-06-29 コニカミノルタホールディングス株式会社 Thermally assisted magnetic recording head and magnetic recording apparatus
JP5048455B2 (en) * 2006-11-29 2012-10-17 エスアイアイ・ナノテクノロジー株式会社 Photomask defect correction apparatus and method

Also Published As

Publication number Publication date
JP2004216473A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP4094229B2 (en) Near-field optical head and manufacturing method thereof
JP4024570B2 (en) Near-field light generating element, near-field light recording device, and near-field light microscope
JP4060150B2 (en) Micro-integrated near-field optical recording head and optical recording apparatus using the same
JP4184570B2 (en) Information recording / reproducing device
KR20060065430A (en) Optical fiber illuminator, method of fabricating the optical fiber illuminator, optical recording head, and optical recording and reading apparatus having the optical fiber illuminator
JP4245117B2 (en) Optical information recording / reproducing apparatus
JP4267834B2 (en) Information recording / reproducing device
JP4421742B2 (en) Optical head
JP4601867B2 (en) Near-field optical head
JP4308731B2 (en) Near-field optical head and information reproducing apparatus using the near-field optical head
US7312445B2 (en) Pyramid-shaped near field probe using surface plasmon wave
JP4610855B2 (en) Near-field light generating element, near-field light recording device, and near-field light microscope
JP4593666B2 (en) Near-field light generating element, near-field light recording device, and near-field light microscope
EP0996122B1 (en) Near-field optical head
JP4162317B2 (en) Near-field optical memory head
JP4245118B2 (en) Information recording / reproducing device
JP4286473B2 (en) Near-field optical head
JP4482254B2 (en) Optical head
JP2000099979A (en) Beam condensing optical device
JP3892264B2 (en) Manufacturing method of near-field light generating element
JP2001110090A (en) Recording medium and method of manufacturing the same, as well as optical information recording and reproducing device
JP2006053979A (en) Near field optical head
JP2001126282A (en) Optical information recording/reproducing device
JP2001034981A (en) Slider and flexure for information recording/ reproducing device
JP2000260050A (en) Optical recording/reproducing device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4610855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees