JP4601912B2 - Cylindrical pressure vessel processing method - Google Patents

Cylindrical pressure vessel processing method Download PDF

Info

Publication number
JP4601912B2
JP4601912B2 JP2003110756A JP2003110756A JP4601912B2 JP 4601912 B2 JP4601912 B2 JP 4601912B2 JP 2003110756 A JP2003110756 A JP 2003110756A JP 2003110756 A JP2003110756 A JP 2003110756A JP 4601912 B2 JP4601912 B2 JP 4601912B2
Authority
JP
Japan
Prior art keywords
pipe material
container
pipe
core member
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003110756A
Other languages
Japanese (ja)
Other versions
JP2004314117A (en
Inventor
悟美 葛本
久次郎 須山
Original Assignee
株式会社モリタユージー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社モリタユージー filed Critical 株式会社モリタユージー
Priority to JP2003110756A priority Critical patent/JP4601912B2/en
Publication of JP2004314117A publication Critical patent/JP2004314117A/en
Application granted granted Critical
Publication of JP4601912B2 publication Critical patent/JP4601912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、円筒状圧力容器とその加工方法及び加工装置に関するものである。
【0002】
【従来の技術】
消火器は、約1MPaの圧縮ガスを消火薬剤噴射用の圧力源として使用するため、図11の如く、金属製、特に鋼鉄製の円筒状圧力容器としての消火器容器31を備えている。消火器容器31の上端開口縁に形成した口金部31aには、圧漏れ防止用のゴム製パッキン32を装着したバルブ操作部33をユニオンキャップ34によって取付けてある。消火器容器31の口金部31aの外周面に形成した螺子山(図示略)には、消火器内の圧縮ガスによる負荷がバルブ操作部33及びユニオンキャップ34を介して作用する。このため、消防法では、上記負荷に耐え得る螺子山を形成できるように、口金部31aの有効肉厚(円筒状胴部の内径が120mm未満の場合は1.0mm以上、円筒状胴部の内径が120mm以上の場合は1.2mm以上)を規定している。
【0003】
図11の消火器容器31は、図12(A)の如く、所定厚に形成した口金部31aと、鋼板をプレス加工により絞り成形した天板31bと、鋼板をロール加工すると共に縦溶接Aにより円筒状に形成した胴部31cと、鋼板をプレス加工により絞り成形した底板31dとからなり、胴部31cの両端開口部に天板31b及び底板31dを溶着すると共に、天板31bの鏡面部を打ち抜いてその孔31eの周縁部に口金部31aを溶着したものである。
【0004】
また、従来の消火器容器には、図12(B)(C)の如く、3つの鋼鉄製の部材で構成したものもある。図12(B)の消火器容器は、胴部31cの両端開口部に、口金部31aを一体に成形した天板31bと底板31dとを溶着したものである(例えば特許文献1参照)。図12(C)の消火器容器は、所定厚に形成した口金部31aと、鋼板をプレス加工により深絞り成形した上側部材31f及び下側部材31gとからなり、上側部材31f及び下側部材31gの開口端部を突き合わせて溶着すると共に、上側部材31fの鏡面部を打ち抜いてその孔31eの周縁部に口金部31aを溶着したものである。
【0005】
【特許文献1】
特開平8−267161号公報(図1B参照)
【0006】
【発明が解決しようとする課題】
消火器容器を製造するに際しては、従来から溶接工程中に溶接不良による圧漏れが発生するという問題があった。図12(A)の消火器容器の製造中に発生した溶接不良による圧漏れの件数を調べたところ、100,000本中907本(約0.9%)に圧漏れが見られた。図12(A)の消火器容器の各溶接箇所A〜Dの圧漏れ件数を表1に示す。
【0007】
【表1】

Figure 0004601912
【0008】
表1から、図12(A)の消火器容器で発生した圧漏れの約96%が、胴部31cの縦溶接A又は天板31b及び胴部31cの突合せ溶接Bのいずれかで発生していることが分かる。胴部31cの縦溶接Aの圧漏れは、その殆どが縦溶接Aの上下端部で発生している。胴部31cの縦溶接Aの上下端部で溶接不良が多いのは、鋼板から胴部31cを形成するときと、胴部31cに天板31b及び底板31dを接合するときの2度に渡って溶接しているために、その近傍の溶接箇所と比較して溶接による変形度合が大きくなっているからである。天板31b及び胴部31cの突合せ溶接Bの圧漏れは、図11の如く、天板31b及び胴部31cの肉厚差が原因になっている。天板31bが胴部31cよりも厚いのは、絞り成形により展延した天板31bの鏡面部、特にその孔31eの周縁部を口金部31aの有効肉厚に対応して所定厚に形成するために、口金部31aよりも肉厚の鋼板から天板31bを成形する一方で、消火器容器の軽量化を図るために薄い鋼板から胴部31cを成形しているからである。
【0009】
図12(B)の消火器容器は、同図(A)の消火器容器の円周溶接Dがないものであるが、表1の如く円周溶接Dの圧漏れ件数が少ないことから、同図(A)の消火器容器と比較しても圧漏れ発生率に大差がない。同図(C)の消火器容器は、最も圧漏れし易い縦溶接Aがないので、同図(A)(B)の消火器容器と比較して圧漏れ発生率が低くなる。しかし、同図(C)の消火器容器は、上側部材31fの鏡部31eを口金部31aに対応した厚さに形成するために、同図(A)(B)の天板31bとなる鋼板よりも肉厚の鋼板から上側部材31fを成形しているので、同図(A)(B)のものと比較して肉厚部分が多いために重くなるという問題があった。
【0010】
また、鋼鉄製以外の消火器容器、例えば樹脂製やアルミ製の消火器容器には、溶接箇所が一箇所のものや溶接箇所がないものもあった。これらの消火器容器には、軽量で、かつ、溶接不良により圧漏れが発生し難い(発生しない)という利点がある反面、耐久性が低く、しかも製造コストが嵩むという問題があった。
【0011】
本発明はかかる課題に鑑み創案するに至ったものであって、その目的は、軽量で、かつ、溶接不良による圧漏れが発生し難い鋼鉄製の円筒状圧力容器を提供することにある。
【0012】
【課題を解決するための手段】
本発明に係る円筒状圧力容器の加工方法は、円筒状胴部の下端部から口金部までを一体に成形した容器本体と、該容器本体の下端開口部を閉塞する底板との2部材を接合してなる鋼鉄製の円筒状圧力容器の加工方法であって、へら絞り加工機の回転軸の一端のチャックによって鋼鉄製のパイプ材をチャックすると共に、2個の前記容器本体の口金部を突き合わせた状態での該口金部の内面形状に対応した形状部を有する2個一組のコア部材を前記パイプ材の内径に対向状態で嵌合し、該2個一組のコア部材の相対向する先端部にはそれぞれ凹部と凸部が設けられており、一方の前記コア部材の凸部が他方の前記コア部材の凹部に移動自在に嵌入され、前記パイプ材をその軸線回りに回転させると共に、前記パイプ材に対してその軸線方向に圧縮力を付加した状態で、前記コア部材の前記形状部に対応する前記パイプ材の所定部分の外周面を絞り手段で押圧しつつ軸線方向に往復移動させることにより、前記パイプ材の所定部分を縮径させると共に前記コア部材の前記形状部に押圧して、前記口金部となる縮径肥肉化部を形成ようにしている。
【0013】
本発明によれば、円筒状胴部の下端部から口金部までを一体に成形した容器本体をパイプ材から成形しているので、従来のものと比較して溶接の少ない鋼鉄製の円筒状圧力容器を製造できる。特に図12(A)(B)に示す胴部31cの縦溶接Aと、天板31b及び胴部31cの突合せ溶接Bとを省いているので、溶接不良による圧漏れを大幅に低減できる。パイプ材としては、縦溶接Aの不要なシームレス管が最適であるが、コスト面を考慮すると縦溶接Aの上下端部の溶接不良が少ない電縫溶接管でも構わない。
【0014】
円筒状圧力容器の軽量化は、その大部分を占める容器本体を所要の耐圧力が得られる範囲内で薄く形成することにより達成できるが、その際、容器本体の口金部の有効肉厚に留意する必要がある。一般的なプレス加工やへら絞り加工によって、金属材料を塑性変形させると、当該変形部分が展延して薄くなる。本発明では、パイプ材の軸線方向に圧縮力を付加しつつへら絞り加工しているので、パイプ材の変形部分、即ち縮径部分は、展延による強度の低下及び上記圧縮力の加圧断面積の狭小化によって、単位断面積当りの上記圧縮力が非加工部分よりも大きくなるために、軸線方向に圧縮されて短くなる。パイプ材の圧縮分の肉は、パイプ材の縮径部分から非加工部分へ逃げないようにパイプ材の外周面を絞り手段で押圧しつつ軸線方向に移動させることにより、パイプ材の縮径部分の内部で分散する。これによりパイプ材の一部に容器本体の口金部となる縮径肥肉化部を形成できる。この場合、パイプ材の非加工部分が容器本体の円筒状胴部になるから、加工前のパイプ材として所要の耐圧性が得られる範囲内で薄いものを使用することにより、円筒状圧力容器の軽量化を図ることができる。容器本体の口金部の厚さは、パイプ材の圧縮長を変更することにより適宜設定でき、パイプ材が薄くてもその圧縮長を長くすることで口金部の有効肉厚を確保できる。
【0015】
また、2個の容器本体の口金部を突き合わせた状態での該口金部の内面形状に対応した形状部を有する2個一組のコア部材をパイプ材の内径に対向状態で嵌合し、パイプ材の所定部分を縮径させると共にコア部の前記形状部に押圧して縮径肥肉化部を形成するので、パイプ材の縮径肥肉化部を所期の形状及び肉厚に加工することができる。さらに、該縮径肥肉化部の中央部でパイプ材を切断すると、同時に2個の容器本体を作製することできる。なお、コア部材の形状は、2個一組で、2個の円筒状容器の口金部を突き合せた状態の内面形状と同形状になればよく、2個のコア部材が相違する形状であっても構わない。
【0017】
また、絞り手段による押圧力を、絞り手段がパイプ材の所定部分の外側部分から中央部分に向かって移動するときと、絞り手段がパイプ材の所定部分の中央部分から外側部分に向かって移動するときとで変えるようにしても良い。
【0018】
【発明の実施の形態】
以下、図面を参照しつつ本発明に係る円筒状圧力容器とその加工方法及び加工装置について説明する。なお、本実施形態では、円筒状圧力容器として消火器容器を用いて説明する。
【0019】
図1は、本発明に係る加工方法を使用して製造した鋼鉄製の消火器容器1を備えた消火器を例示している。この消火器容器1は、同図の如く、円筒状胴部2aの下端部からその上端開口縁の口金部2bまでを一体に成形した容器本体2と、容器本体2の下端開口部に嵌合する底板3とからなり、容器本体2に底板3を嵌合させた状態で円周溶接により接合してある。容器本体2は、口金部2bを有効肉厚(円筒状胴部の内径が120mm未満の場合は1.0mm以上、円筒状胴部の内径が120mm以上の場合は1.2mm以上)で、かつ、円筒状胴部2aよりも肉厚に形成してある。底板3は、鋼板をプレス加工又はへら絞り加工などの周知の加工方法により所定形状に成形したものである。
【0020】
図2は、本発明に係る加工方法を使用した加工装置11を例示している。この加工装置11は、鋼鉄製のパイプ材2’をその軸線回りに回転駆動する回転駆動手段12と、パイプ材2’の軸線方向に圧縮力を付加する加圧手段13と、パイプ材2’の外周面を押圧して縮径肥肉化させる絞り手段14と、パイプ材2’を切断する切断手段15(図9参照)とを備え、鋼鉄製のパイプ材2’から2個の容器本体2を同時に成形するものである。
【0021】
回転駆動手段12は、ベース17の片端上面部に立設した固定支柱12aの内側面に設けた図示外の回転軸に駆動チャック12bを設けたものである。駆動チャック12bは、パイプ材2’の片端部を把持固定すると共にその軸線回りに回転駆動し、パイプ材2’を同期して回転させる。駆動チャック12bの端面には、コア部材18を脱着可能に取付けてある。
【0022】
加圧手段13は、固定支柱12aと対向してベース17上に立設した可動支柱13aの内側面に従動チャック13bを設けたものである。可動支柱13aは、固定支柱12aと接近離間する直線運動要素である。従動チャック13bの端面には、パイプ材2’に嵌入させるコア部材19を脱着可能に取付けてある。従動チャック13bは、パイプ材2’の端部にコア部材19を嵌入してその端面をパイプ材2’の端部に接触させ、パイプ材2’を介して伝達される駆動チャック12bの駆動力によって回転する。
【0023】
コア部材18,19は、同一軸線上に配設され、2個一組で、図1に示す容器本体2を2個用意し、各々の口金部2bを突き合せた状態の内面形状に対応した形状に形成してある。具体的には、コア部材18は、容器本体2の円筒状胴部2aから口金部2bの根元部分に至る内面形状に対応した形状になっており、コア部材19は、2個の容器本体2の口金部2bを突き合せた状態で一方の容器本体2の口金部2bの根元部分から他方の容器本体2の円筒状胴部2aの下端部に至る内面形状に対応した形状になっている。また、コア部材18の先端面には、コア部材19の先端部に突設した凸部19aを嵌入するための凹部18aを穿設してある。
【0024】
絞り手段14は、パイプ材2’の軸線直交方向及び軸線方向に移動しつつパイプ材2’の外周面を押圧するスピニングローラで、パイプ材2’の軸線方向との角度を任意の角度に変更可能になっている。
【0025】
切断手段15は、図9の如く、パイプ材2’の外周面を軸線直交方向に押圧する切断バイトである。
【0026】
次に、図3乃至図9を参照しつつ本発明に係る円筒状容器の加工方法を使用して消火器容器を製造する工程について説明する。
【0027】
まず、図3の如く、パイプ材2’をその片端開口部から回転駆動手段12の駆動チャック12bに取付けたコア部材18に嵌入すると共に駆動チャック12bによってパイプ材2’の片端部を把持固定する。この状態から加圧手段13を駆動して回転駆動手段12に接近させ、図4の如く、加圧手段13の従動チャック13bに取付けたコア部材19をパイプ材2’の他端開口部に嵌入すると共に、従動チャック13bの端面をパイプ材2’の他端部に接触させる。図4の状態では、パイプ材2’の開口端部が駆動チャック12b及び従動チャック13bの端面に接触しているが、コア部材19の凸部19aは、その先端部がコア部材18の凹部18aに嵌入しているだけである。このため、コア部材18の先端部とコア部材19の凸部19aの根元部分との間に間隔d0が設けられている。この状態で、更に可動支柱13aを回転駆動手段12側へ駆動すると、パイプ材2’の軸芯方向に圧縮力を付加することができる。
【0028】
図5及び図6は、パイプ材2’の縮径肥肉化工程を示している。図5の如く、回転駆動手段12によりパイプ材2’をその軸線回りに回転させると共に加圧手段13によりパイプ材2’の軸芯方向に圧縮力を付加した状態で、絞り手段14をパイプ材2’の軸線直交方向に往復動させてパイプ材2’の外周面中央部を叩くことによりパイプ材2’の中央部を窪ませて粗加工する。次に、図6の如く、絞り手段14をパイプ材2’の軸線方向に往復動させつつパイプ材2’の外周面を押圧する。これにより、図7の如く、パイプ材2’の中央部に縮径肥肉化部2b’を形成できる。
【0029】
図5及び図6の工程では、パイプ材2’の中央部は、縮径した際に展延するから、当該縮径部分の強度が低下する。また、パイプ材2’の縮径部分に作用する単位断面積当りの圧縮力は、非加工部分2a’よりも大きくなる。これによりパイプ材2’の縮径部分が軸芯方向に圧縮され、図4乃至図7に示す如く、コア部材18の先端部とコア部材19の凸部19aの根元部分との間の間隔がd0→d1→d2→d3の順に徐々に狭まっていく。図5及び図6の工程で、パイプ材2’の圧縮分の肉は、パイプ材2’の縮径部分の範囲内で分散する。その結果、当該縮径部分が、図7の如く、パイプ材2’の非加工部分2a’よりも肉厚の縮径肥肉化部2b’となる。縮径肥肉化部2b’は、その中央部が最も肉厚で、非加工部分2a’に近付くにつれて徐々に薄くなっている。これは、縮径肥肉化部2b’の中央部で上記圧縮力がパイプ材2’の軸芯方向に最も大きく作用するからである。また、縮径肥肉化部2b’の厚さは、パイプ材2’の圧縮長(d0−d3)を変更することにより適宜設定でき、パイプ材2’が薄くても前記圧縮長を長くすることで縮径肥肉化部2b’を肉厚に形成できる。
【0030】
なお、図6の工程では、絞り手段14の移動方向及び位置によって押圧力を適宜変更しても構わない。例えば絞り手段14がパイプ材2’の外側から中央部に向かって移動するときはパイプ材2’を強く押圧し、かつ、パイプ材2’の中央部から外側へ移動するときは弱く押圧することで、縮径肥肉化部2b’の中央部の肥肉化を促進でき、またこの逆の動作により縮径肥肉化部2b’の中央部の過厚分を分散させることもできる。これによりパイプ材2’の縮径肥肉化部2b’の外形状を所期の形状に形成することができる。パイプ材2’の内形状は、コア部材18,19の形状によって定まるから、パイプ材2’の縮径肥肉化部2b’の外形状を所期の形状に形成することで、当該縮径肥肉化部2b’を所期の肉厚に形成できる。
【0031】
また、図7の縮径肥肉化工程が終了した段階で、コア部材18の先端部とコア部材19の凸部19aの根元部分との間に間隔d3(例えば数mm程度)を開けておくことで、縮径肥肉化工程が終了するまでの間中、パイプ材2’に圧縮力を付加し続けることができる。なお、縮径肥肉化工程の終了時にコア部材18の先端部とコア部材19の凸部19aの根元部分との間の間隔をなくすようにしても構わない。
【0032】
図8及び図9は、パイプ材2’の切断工程を示している。パイプ材2’の回転を停止させた状態で、図8の如く、可動支柱13aを固定支柱12aから離間させ、コア部材18の先端部とコア部材19の凸部19aの根元部分との間に間隔d4を開ける。この間隔d4は、縮径肥肉化部2b’の長さの1/2以上である。これにより縮径肥肉化部2b’の中央部に中空部20を設けることができる。そして、図9の如く、回転駆動手段12によりパイプ材2’を回転させた状態で、切断手段15をパイプ材2’の縮径肥肉化部2b’の中央部に接触させてパイプ材2’を切断する。
【0033】
上記の各工程を経て、同時に2個の容器本体2を成形することができる。そして、各容器本体2を加工装置11から取り外し、円筒状胴部2a側の開口端部に、図1の如く、底板3を円周溶接により接合する工程と、口金部2bの外周部に雄ねじを形成する工程と、口金部2bの端部、即ちパイプ材2’の切断面を研磨して面取りする工程とを経て消火器容器1が出来上がる。
【0034】
以上、本発明の一実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば上記実施形態では、回転駆動手段12をベース17上に固定したものを示したが、回転駆動手段12を加圧手段13と同様の直線運動要素としても構わない。この場合、回転駆動手段12も加圧手段の構成要素となり、パイプ材2’に対して圧縮力を左右対称に作用させることができる。これにより同時に加工した2個の容器本体2の形状誤差を低減させることができる。
【0035】
また、上記実施形態では、加圧手段13の従動チャック13bに駆動機構を設けていないが、従動チャック13bにパイプ材2’の把持機構及び駆動機構を設けても構わない。この場合、パイプ材2’を切断して2個の容器本体2に分けた後であっても、駆動チャック12b及び従動チャック13bによって各容器本体2を把持固定すると共にその軸線回りに回転させることができる。これにより、パイプ材2’の切断工程の後に続けて容器本体2の切断面の面取り工程を行なえる。
【0036】
また、上記実施形態では、パイプ材2’を切断したのち、口金部2bにねじ切り加工を施したが、図10の如く、パイプ材2’を切断する前に縮径肥肉化部2b’のねじ切り工程を行なっても構わない。ねじ切り工程は、回転駆動手段12によりパイプ材2’を回転させた状態で、パイプ材2’の縮径肥肉化部2b’の外周面をねじ切り手段16で押圧しつつねじ切り手段16をパイプ材2’の軸線方向に移動させて、縮径肥肉化部2b’に雄ねじを形成する。ねじ切り手段16は、図10の如く、パイプ材2’の外周面を軸線直交方向に押圧するねじ切りバイトである。この場合、切断工程で切断する縮径肥肉化部2b’の中央部には、雄ねじを形成する必要はない。
【0037】
また、上記実施形態では、コア部材18,19を容器本体2の内面形状に対応した形状に形成したものを挙げて説明したが、コア部材18,19は、少なくとも容器本体2の円筒状胴部2aの上端から口金部2bに至る部分、即ち縮径肥肉化加工を施した部分の内面形状に対応したものであればよく、容器本体2の円筒状胴部2aに対応する部分の形状については、円筒状胴部2aの内径よりも小径であっても構わない。
【0038】
また、上記実施形態では、異なる形状のコア部材18,19を挙げて説明したが、これらは同一形状であっても構わない。この場合、コア部材18,19をパイプ材2’の軸線方向に進退自在に構成することで、パイプ材2’を切断する際に縮径肥肉化部2b’の中央部に中空部20を形成できる。
【0039】
なお、本実施形態では、円筒状圧力容器として消火器容器を挙げて説明したが、円筒状圧力容器としては、圧縮ガスを封入したガスボンベもある。
【0040】
【発明の効果】
本発明の加工方法は前述の如く、容器本体の円筒状胴部の下端部から口金部までを溶接なしで一体に成形したので、該容器本体と底板の円周溶接のみで鋼鉄製の円筒状圧力容器を製造できる。すなわち、従来の製造方法と比較して溶接箇所が少なくなるから、円筒状圧力容器の溶接不良による圧漏れを低減でき、しかもその美観を向上させることができる。
【0041】
鋼鉄製のパイプ材をその軸線回りに回転させると共に、パイプ材に対してその軸線方向に圧縮力を付加した状態で、パイプ材の外周面を絞り手段で押圧しつつ軸線方向に移動させたので、パイプ材の一部に縮径肥肉化部を形成できる。これによりパイプ材の非加工部分を円筒状胴部とし、かつ、縮径肥肉化部を口金部とする円筒状圧力容器の容器本体を形成でき、縮径肥肉化部がパイプ材の非加工部分よりも肉厚であることから、容器本体の口金部の有効肉厚を確保しつつ円筒状胴部を薄く形成できる。このように円筒状圧力容器の大部分を占める容器本体を軽量にすることができるから、軽量な円筒状圧力容器を提供可能になる。
【0042】
しかも、パイプ材の所定部分を縮径させると共にコア部材の形状部に押圧して、口金部となる縮径肥肉化部を形成するので、縮径肥肉化部、ひいては口金部を所期の形状及び肉厚に形成することができ、また、パイプ材を縮径肥肉化部で切断することにより2個の容器本体を同時に形成することができる。
【0043】
2個一組のコア部材の相対向する先端部にそれぞれ凹部と凸部を設け、一方のコア部材の凸部を他方のコア部材の凹部に移動自在に嵌入した構成とすることにより、2個一組のコア部材の同軸度を確保して、加工精度を高めることができる。また、絞り手段による押圧力を、絞り手段がパイプ材の所定部分の外側部分から中央部分に向かって移動するときと、絞り手段がパイプ材の所定部分の中央部分から外側部分に向かって移動するときとで変えることにより、縮径肥肉化部、ひいては口金部の形状及び肉厚の精度を高めることができる。
【図面の簡単な説明】
【図1】本発明に係る加工方法を使用して製造した消火器容器を例示する縦断面図である。
【図2】本発明に係る加工方法を使用した加工装置を例示する模式図である。
【図3】パイプ材を回転駆動手段に取付ける工程を示す模式図である。
【図4】パイプ材を回転駆動手段に取付けた状態を示す模式図である。
【図5】パイプ材の縮径肥肉化工程の粗加工を示す模式図である。
【図6】パイプ材の縮径肥肉化工程の仕上げ加工を示す模式図である。
【図7】パイプ材の縮径肥肉化部を示す縦断面図である。
【図8】パイプ材のねじ切り工程を示す模式図である。
【図9】パイプ材の切断工程を示す模式図である。
【図10】パイプ材の切断工程を示す模式図である。
【図11】従来の消火器容器を例示する縦断面図である。
【図12】(A)は、図11の消火器容器の加工方法を例示する模式図で、(B)及び(C)は、他の加工方法を示す模式図である。
【符号の説明】
1 消火器容器
2 容器本体
2a 円筒状胴部
2b 口金部
2’ パイプ材
2b’ 縮径肥肉化部
3 底板
11 加工装置
12 回転駆動手段
12b 駆動チャック
13 加圧手段
13b 従動チャック
14 絞り手段
15 切断手段
18,19 コア部材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cylindrical pressure vessel, a processing method thereof, and a processing apparatus.
[0002]
[Prior art]
Since the fire extinguisher uses compressed gas of about 1 MPa as a pressure source for extinguishing a fire extinguishing agent, the fire extinguisher includes a fire extinguisher container 31 as a cylindrical pressure container made of metal, particularly steel, as shown in FIG. A valve operating part 33 fitted with a rubber packing 32 for preventing pressure leakage is attached to a base part 31 a formed at the upper end opening edge of the fire extinguisher container 31 by a union cap 34. A load of compressed gas in the fire extinguisher acts on a screw thread (not shown) formed on the outer peripheral surface of the base part 31 a of the fire extinguisher container 31 via the valve operating part 33 and the union cap 34. For this reason, in the Fire Service Act, the effective thickness of the base 31a (1.0 mm or more when the inner diameter of the cylindrical body is less than 120 mm, If the inner diameter is 120 mm or more, it is defined as 1.2 mm or more).
[0003]
As shown in FIG. 12A, the fire extinguisher container 31 of FIG. 11 includes a base 31a formed to a predetermined thickness, a top plate 31b obtained by drawing a steel plate by press working, and rolling the steel plate and performing vertical welding A. The body 31c is formed in a cylindrical shape, and a bottom plate 31d is formed by drawing a steel plate by press working. The top plate 31b and the bottom plate 31d are welded to both end openings of the body 31c, and the mirror surface portion of the top plate 31b is provided. The die 31a is welded to the peripheral edge of the hole 31e.
[0004]
In addition, some conventional fire extinguisher containers are composed of three steel members as shown in FIGS. The fire extinguisher container of FIG. 12 (B) is obtained by welding a top plate 31b and a bottom plate 31d integrally formed with a base part 31a to both end openings of a body part 31c (see, for example, Patent Document 1). The fire extinguisher container of FIG. 12C includes a base part 31a formed to a predetermined thickness, and an upper member 31f and a lower member 31g obtained by deep drawing a steel plate by press working, and the upper member 31f and the lower member 31g. The opening end portions of the upper member 31f are abutted and welded, and the mirror surface portion of the upper member 31f is punched to weld the base portion 31a to the peripheral portion of the hole 31e.
[0005]
[Patent Document 1]
JP-A-8-267161 (see FIG. 1B)
[0006]
[Problems to be solved by the invention]
When manufacturing a fire extinguisher container, there has conventionally been a problem that pressure leakage due to poor welding occurs during the welding process. When the number of pressure leaks due to poor welding that occurred during the manufacture of the fire extinguisher container of FIG. 12 (A) was examined, 907 out of 100,000 pieces (about 0.9%) showed pressure leaks. Table 1 shows the number of pressure leaks at each welding point A to D of the fire extinguisher container of FIG.
[0007]
[Table 1]
Figure 0004601912
[0008]
From Table 1, about 96% of the pressure leakage that occurred in the fire extinguisher container of FIG. 12 (A) occurred in either the longitudinal welding A of the trunk 31c or the butt weld B of the top plate 31b and the trunk 31c. I understand that. Most of the pressure leakage of the vertical welding A of the trunk portion 31c occurs at the upper and lower ends of the vertical welding A. There are many welding defects at the upper and lower ends of the longitudinal welding A of the body 31c when the body 31c is formed from the steel plate and when the top plate 31b and the bottom plate 31d are joined to the body 31c. This is because, since welding is performed, the degree of deformation due to welding is larger than that in the vicinity of the welded portion. The pressure leakage of the butt weld B between the top plate 31b and the body portion 31c is caused by the difference in thickness between the top plate 31b and the body portion 31c as shown in FIG. The reason why the top plate 31b is thicker than the body portion 31c is that the mirror surface portion of the top plate 31b expanded by drawing, particularly the peripheral edge portion of the hole 31e, is formed with a predetermined thickness corresponding to the effective thickness of the base portion 31a. Therefore, while the top plate 31b is formed from a steel plate thicker than the base portion 31a, the trunk portion 31c is formed from a thin steel plate in order to reduce the weight of the fire extinguisher container.
[0009]
The fire extinguisher container of FIG. 12 (B) does not have the circumferential weld D of the fire extinguisher container of FIG. 12 (A), but the number of pressure leaks of the circumferential weld D as shown in Table 1 is small. Even when compared with the fire extinguisher container of FIG. Since the fire extinguisher container of FIG. 10C does not have the vertical weld A that is most likely to cause pressure leak, the rate of occurrence of pressure leak is lower than that of the fire extinguisher container of FIGS. However, the fire extinguisher container of FIG. 6C is a steel plate that forms the top plate 31b of FIGS. 6A and 6B in order to form the mirror portion 31e of the upper member 31f with a thickness corresponding to the base portion 31a. Since the upper member 31f is formed from a thicker steel plate, there is a problem that it is heavier because there are more thick portions than those shown in FIGS.
[0010]
Moreover, some fire extinguisher containers other than steel, for example, resin or aluminum fire extinguisher containers, have one welded part or no welded part. These fire extinguisher containers are light in weight and have the advantage that pressure leakage does not easily occur due to poor welding (does not occur), but there is a problem that durability is low and manufacturing cost increases.
[0011]
The present invention has been invented in view of such problems, and an object of the present invention is to provide a steel cylindrical pressure vessel that is light in weight and hardly causes pressure leakage due to poor welding.
[0012]
[Means for Solving the Problems]
The processing method of the cylindrical pressure vessel according to the present invention is a method of joining two members, a container body integrally formed from the lower end portion of the cylindrical body portion to the base portion, and a bottom plate that closes the lower end opening portion of the container body. A steel cylindrical pressure vessel processing method, in which a steel pipe material is chucked by a chuck at one end of a rotary shaft of a spatula drawing machine, and the cap portions of two container bodies are butted together A set of two core members having a shape corresponding to the inner surface shape of the base portion in a state of being connected is fitted to the inner diameter of the pipe material in a facing state, and the two sets of core members are opposed to each other. Each of the tip portions is provided with a recess and a protrusion, the protrusion of one of the core members is movably fitted into the recess of the other core member, and the pipe member is rotated around its axis, Pressure in the axial direction against the pipe material With the force applied, the predetermined portion of the pipe member is contracted by reciprocating in the axial direction while pressing the outer peripheral surface of the predetermined portion of the pipe member corresponding to the shape portion of the core member with the squeezing means. A diameter-reduced and thickened portion to be the base portion is formed by pressing the shape portion of the core member and making the diameter portion.
[0013]
According to the present invention, since the container body formed integrally from the lower end portion of the cylindrical body portion to the base portion is formed from the pipe material, the cylindrical pressure made of steel with less welding compared to the conventional one. A container can be manufactured. In particular, since the longitudinal welding A of the body 31c and the butt welding B of the top plate 31b and the body 31c shown in FIGS. 12A and 12B are omitted, pressure leakage due to poor welding can be greatly reduced. As the pipe material, a seamless pipe that does not require vertical welding A is optimal. However, in consideration of cost, an electric resistance welded pipe that has few welding defects at the upper and lower ends of the vertical welding A may be used.
[0014]
The weight reduction of the cylindrical pressure vessel can be achieved by forming the container body that occupies most of the container within the range where the required pressure resistance can be obtained, but at that time, pay attention to the effective thickness of the base part of the container body. There is a need to. When a metal material is plastically deformed by general press working or spatula drawing, the deformed portion is spread and thinned. In the present invention, the spatula is drawn while applying a compressive force in the axial direction of the pipe material. Therefore, the deformed portion of the pipe material, that is, the reduced diameter portion, is caused by a decrease in strength due to spreading and the pressure breaking of the compressive force. Due to the narrowing of the area, the compression force per unit cross-sectional area becomes larger than that of the non-processed portion, so that it is compressed and shortened in the axial direction. The compressed part of the pipe material is moved in the axial direction while pressing the outer peripheral surface of the pipe material with the squeezing means so that it does not escape from the reduced diameter part of the pipe material to the non-processed part. Distributed within. Thereby, the reduced diameter thickening part used as the nozzle | cap | die part of a container main body can be formed in a part of pipe material. In this case, since the non-processed portion of the pipe material becomes the cylindrical body portion of the container body, by using a thin pipe material within a range where the required pressure resistance can be obtained as the pipe material before processing, Weight reduction can be achieved. The thickness of the base part of the container body can be appropriately set by changing the compression length of the pipe material, and even if the pipe material is thin, the effective thickness of the base part can be secured by increasing the compression length.
[0015]
A pair of core members having a shape corresponding to the shape of the inner surface of the base in a state in which the bases of the two container bodies are butted together are fitted to the inner diameter of the pipe material in a facing state; Since the predetermined portion of the material is reduced in diameter and pressed against the shape portion of the core portion to form the reduced diameter thickened portion, the reduced diameter thickened portion of the pipe material is processed into the desired shape and thickness . be able to. Moreover, when cutting the pipe in the center portion of the fused径肥meat section, it is possible to produce two container body at the same time. The shape of the core members may be the same shape as the shape of the inner surface of the pair of two cylindrical containers that are in contact with the base portions of the two cylindrical containers. It doesn't matter.
[0017]
Further, the pressing force by the squeezing means moves when the squeezing means moves from the outer portion of the predetermined portion of the pipe material toward the central portion, and when the squeezing means moves from the central portion of the predetermined portion of the pipe material toward the outer portion. It may be changed depending on the time.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a cylindrical pressure vessel, a processing method thereof, and a processing apparatus according to the present invention will be described with reference to the drawings. In the present embodiment, a fire extinguisher container is used as the cylindrical pressure container.
[0019]
FIG. 1 illustrates a fire extinguisher equipped with a steel fire extinguisher container 1 manufactured using the processing method according to the present invention. As shown in the figure, the fire extinguisher container 1 is fitted into a container body 2 integrally formed from a lower end portion of a cylindrical body 2a to a base portion 2b of an upper end opening edge thereof, and a lower end opening portion of the container body 2 The bottom plate 3 is joined to the container body 2 by circumferential welding with the bottom plate 3 fitted. The container body 2 has an effective thickness of the base portion 2b (1.0 mm or more when the inner diameter of the cylindrical body is less than 120 mm, 1.2 mm or more when the inner diameter of the cylindrical body is 120 mm or more), and The wall is formed thicker than the cylindrical body 2a. The bottom plate 3 is obtained by forming a steel plate into a predetermined shape by a known processing method such as pressing or spatula drawing.
[0020]
FIG. 2 illustrates a processing apparatus 11 using the processing method according to the present invention. This processing apparatus 11 includes a rotation driving means 12 for rotating and driving a steel pipe material 2 ′ around its axis, a pressurizing means 13 for applying a compressive force in the axial direction of the pipe material 2 ′, and a pipe material 2 ′. Squeezing means 14 for pressing and reducing the diameter of the outer peripheral surface and cutting means 15 for cutting the pipe material 2 ′ (see FIG. 9), and two container bodies from the steel pipe material 2 ′. 2 are molded simultaneously.
[0021]
The rotation drive means 12 is provided with a drive chuck 12b on a rotation shaft (not shown) provided on the inner surface of a fixed column 12a erected on the upper surface of one end of the base 17. The drive chuck 12b grips and fixes one end portion of the pipe material 2 ′ and is driven to rotate about the axis thereof to rotate the pipe material 2 ′ in synchronization. A core member 18 is detachably attached to the end surface of the drive chuck 12b.
[0022]
The pressurizing means 13 is provided with a follower chuck 13b facing the fixed column 12a and the inner surface of the movable column 13a standing on the base 17. The movable column 13a is a linear motion element that approaches and separates from the fixed column 12a. A core member 19 to be fitted into the pipe material 2 ′ is detachably attached to the end face of the driven chuck 13b. The driven chuck 13b has a core member 19 fitted into the end of the pipe member 2 ', the end surface thereof is brought into contact with the end of the pipe member 2', and the driving force of the drive chuck 12b transmitted through the pipe member 2 '. Rotate by.
[0023]
The core members 18 and 19 are disposed on the same axis, and two sets of the container main bodies 2 shown in FIG. 1 are prepared as a set, and correspond to the inner surface shape in a state where the base portions 2b are abutted with each other. It is formed into a shape. Specifically, the core member 18 has a shape corresponding to the shape of the inner surface from the cylindrical body portion 2a of the container body 2 to the root portion of the base portion 2b, and the core member 19 includes two container bodies 2. The shape corresponding to the inner surface shape from the base part of the base part 2b of one container body 2 to the lower end part of the cylindrical body part 2a of the other container body 2 in a state where the base part 2b of the container body 2 is abutted. Further, a concave portion 18 a for fitting a convex portion 19 a protruding from the distal end portion of the core member 19 is formed in the distal end surface of the core member 18.
[0024]
The squeezing means 14 is a spinning roller that presses the outer peripheral surface of the pipe material 2 ′ while moving in the direction orthogonal to the axis of the pipe material 2 ′ and the axial direction, and changes the angle with the axis direction of the pipe material 2 ′ to an arbitrary angle. It is possible.
[0025]
As shown in FIG. 9, the cutting means 15 is a cutting tool that presses the outer peripheral surface of the pipe material 2 ′ in the direction orthogonal to the axis.
[0026]
Next, the process of manufacturing a fire extinguisher container using the cylindrical container processing method according to the present invention will be described with reference to FIGS.
[0027]
First, as shown in FIG. 3, the pipe member 2 'is fitted into the core member 18 attached to the drive chuck 12b of the rotational drive means 12 through the opening at one end thereof, and the one end portion of the pipe member 2' is held and fixed by the drive chuck 12b. . In this state, the pressurizing means 13 is driven to approach the rotational drive means 12, and the core member 19 attached to the driven chuck 13b of the pressurizing means 13 is inserted into the other end opening of the pipe member 2 'as shown in FIG. At the same time, the end surface of the driven chuck 13b is brought into contact with the other end of the pipe member 2 ′. In the state of FIG. 4, the opening end of the pipe member 2 ′ is in contact with the end surfaces of the drive chuck 12 b and the driven chuck 13 b, but the protrusion 19 a of the core member 19 has a tip 18 a recess 18 a of the core member 18. It is only inserted in. For this reason, a gap d 0 is provided between the distal end portion of the core member 18 and the root portion of the convex portion 19 a of the core member 19. In this state, when the movable support 13a is further driven toward the rotational drive means 12, the compressive force can be applied in the axial direction of the pipe material 2 ′.
[0028]
FIG.5 and FIG.6 has shown the diameter reduction thickening process of pipe material 2 '. As shown in FIG. 5, in the state where the pipe member 2 ′ is rotated around its axis by the rotation driving means 12 and the compression force is applied in the axial direction of the pipe material 2 ′ by the pressurizing means 13, the throttle means 14 is moved to the pipe material. By reciprocating in the direction orthogonal to the 2 ′ axis and hitting the central portion of the outer peripheral surface of the pipe material 2 ′, the central portion of the pipe material 2 ′ is recessed and roughened. Next, as shown in FIG. 6, the outer peripheral surface of the pipe member 2 ′ is pressed while the throttle means 14 is reciprocated in the axial direction of the pipe member 2 ′. As a result, as shown in FIG. 7, a reduced diameter thickened portion 2b ′ can be formed at the center of the pipe member 2 ′.
[0029]
In the process of FIG. 5 and FIG. 6, since the central portion of the pipe material 2 ′ expands when the diameter is reduced, the strength of the reduced diameter portion is reduced. Further, the compressive force per unit cross-sectional area acting on the reduced diameter portion of the pipe material 2 ′ is larger than that of the non-processed portion 2a ′. As a result, the reduced diameter portion of the pipe material 2 ′ is compressed in the axial direction, and as shown in FIGS. 4 to 7, the distance between the tip end portion of the core member 18 and the root portion of the convex portion 19a of the core member 19 is reduced. It gradually narrows in the order of d 0 → d 1 → d 2 → d 3 . 5 and 6, the compressed meat of the pipe material 2 ′ is dispersed within the range of the reduced diameter portion of the pipe material 2 ′. As a result, the reduced diameter portion becomes a reduced diameter thickened portion 2b ′ having a thickness larger than that of the non-processed portion 2a ′ of the pipe material 2 ′ as shown in FIG. The central portion of the reduced diameter thickened portion 2b ′ is the thickest, and gradually becomes thinner as it approaches the non-processed portion 2a ′. This is because the compressive force acts most in the axial direction of the pipe material 2 ′ at the central portion of the reduced diameter thickened portion 2b ′. Further, the thickness of the reduced diameter thickening portion 2b ′ can be appropriately set by changing the compression length (d 0 −d 3 ) of the pipe material 2 ′, and the compression length can be set even if the pipe material 2 ′ is thin. By increasing the length, the reduced diameter thickened portion 2b ′ can be formed thick.
[0030]
In the process of FIG. 6, the pressing force may be appropriately changed depending on the moving direction and position of the throttle means 14. For example, when the squeezing means 14 moves from the outside of the pipe material 2 ′ toward the center, the pipe material 2 ′ is pressed strongly, and when it moves from the center of the pipe material 2 ′ to the outside, it is pressed weakly. Thus, thickening of the central portion of the reduced-diameter thickened portion 2b ′ can be promoted, and an excessive thickness of the central portion of the reduced-diameter thickened portion 2b ′ can be dispersed by the reverse operation. As a result, the outer shape of the reduced diameter thickened portion 2b ′ of the pipe material 2 ′ can be formed into the desired shape. Since the inner shape of the pipe member 2 ′ is determined by the shapes of the core members 18 and 19, the outer diameter of the reduced-diameter and thickened portion 2b ′ of the pipe member 2 ′ is formed into the desired shape, thereby reducing the diameter. The thickened portion 2b ′ can be formed to the desired thickness.
[0031]
Further, at the stage where the diameter-reducing and thickening process of FIG. 7 is completed, a gap d 3 (for example, about several mm) is opened between the tip end portion of the core member 18 and the root portion of the convex portion 19a of the core member 19. By setting, the compression force can be continuously applied to the pipe material 2 ′ until the diameter-reducing and thickening step is completed. In addition, you may make it eliminate the space | interval between the front-end | tip part of the core member 18, and the root part of the convex part 19a of the core member 19 at the time of completion | finish of a diameter reduction thickening process.
[0032]
8 and 9 show the cutting process of the pipe material 2 '. In a state where the rotation of the pipe material 2 ′ is stopped, as shown in FIG. 8, the movable column 13a is separated from the fixed column 12a, and between the tip of the core member 18 and the root portion of the convex portion 19a of the core member 19 The interval d 4 is opened. This interval d 4 is ½ or more of the length of the reduced diameter thickened portion 2b ′. Thereby, the hollow part 20 can be provided in the center part of the reduced diameter thickening part 2b '. Then, as shown in FIG. 9, in a state where the pipe material 2 ′ is rotated by the rotation driving means 12, the cutting means 15 is brought into contact with the central portion of the reduced diameter thickening portion 2b ′ of the pipe material 2 ′ to bring the pipe material 2 into contact. Disconnect '.
[0033]
Through the above steps, two container bodies 2 can be formed simultaneously. And each container main body 2 is removed from the processing apparatus 11, the process which joins the baseplate 3 to the opening edge part by the side of the cylindrical trunk | drum 2a by circumference welding as shown in FIG. 1, and a male screw to the outer peripheral part of the nozzle | cap | die part 2b. The fire extinguisher container 1 is completed through the process of forming the end of the base part 2b, that is, the process of polishing and chamfering the cut surface of the pipe member 2 '.
[0034]
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above embodiment, the rotation driving means 12 is fixed on the base 17. However, the rotation drive unit 12 may be a linear motion element similar to the pressurization unit 13. In this case, the rotation driving means 12 is also a component of the pressurizing means, and the compressive force can be applied symmetrically to the pipe material 2 ′. Thereby, the shape error of the two container main bodies 2 processed simultaneously can be reduced.
[0035]
Moreover, in the said embodiment, although the drive mechanism is not provided in the driven chuck 13b of the pressurization means 13, you may provide the holding mechanism and drive mechanism of pipe material 2 'in the driven chuck 13b. In this case, even after the pipe material 2 'is cut and divided into two container bodies 2, each container body 2 is held and fixed by the drive chuck 12b and the driven chuck 13b and rotated around its axis. Can do. Thereby, the chamfering process of the cut surface of the container main body 2 can be performed after the cutting process of the pipe material 2 ′.
[0036]
Further, in the above embodiment, after cutting the pipe material 2 ′, the cap portion 2b is threaded, but as shown in FIG. 10, before the pipe material 2 ′ is cut, the reduced diameter thickening portion 2b ′. You may perform a threading process. In the threading process, the pipe member 2 ′ is rotated by the rotation driving unit 12, and the thread cutting unit 16 is pressed against the pipe member 2 ′ while pressing the outer peripheral surface of the reduced diameter thickening portion 2 b ′ with the threading unit 16. By moving in the 2 ′ axial direction, a male screw is formed in the reduced diameter thickened portion 2b ′. As shown in FIG. 10, the thread cutting means 16 is a thread cutting tool that presses the outer peripheral surface of the pipe material 2 ′ in the direction orthogonal to the axis. In this case, it is not necessary to form a male screw at the central portion of the reduced diameter thickened portion 2b ′ cut in the cutting step.
[0037]
In the above-described embodiment, the core members 18 and 19 are described as being formed in a shape corresponding to the shape of the inner surface of the container body 2. However, the core members 18 and 19 are at least the cylindrical body portion of the container body 2. What is necessary is just to correspond to the inner surface shape of the part from the upper end of 2a to the base part 2b, that is, the part subjected to the reduced diameter thickening process, and the shape of the part corresponding to the cylindrical body 2a of the container body 2 May be smaller than the inner diameter of the cylindrical body 2a.
[0038]
In the above embodiment, the core members 18 and 19 having different shapes have been described. However, they may have the same shape. In this case, by configuring the core members 18 and 19 so as to be able to advance and retract in the axial direction of the pipe material 2 ′, the hollow portion 20 is formed at the center of the reduced diameter thickening portion 2b ′ when the pipe material 2 ′ is cut. Can be formed.
[0039]
In the present embodiment, the fire extinguisher container has been described as the cylindrical pressure container. However, as the cylindrical pressure container, there is a gas cylinder in which compressed gas is sealed.
[0040]
【The invention's effect】
Since the processing method of the present invention is integrally formed without welding from the lower end portion of the cylindrical body portion of the container body to the base portion as described above, the cylindrical shape made of steel is formed only by circumferential welding of the container body and the bottom plate. A pressure vessel can be manufactured. That is, since the number of welding locations is reduced as compared with the conventional manufacturing method, pressure leakage due to poor welding of the cylindrical pressure vessel can be reduced, and the aesthetics can be improved.
[0041]
Since the steel pipe was rotated around its axis, and the outer peripheral surface of the pipe was moved in the axial direction while pressing the outer peripheral surface of the pipe with the squeezing means while applying a compressive force to the pipe. A reduced diameter thickening portion can be formed in a part of the pipe material. As a result, it is possible to form a container body of a cylindrical pressure vessel in which the non-processed portion of the pipe material is a cylindrical body portion and the diameter-reduced and thickened portion is a base portion. Since it is thicker than the processed portion, the cylindrical body can be formed thin while ensuring the effective thickness of the base of the container body. Thus, since the container main body which occupies most cylindrical pressure vessels can be reduced in weight, a lightweight cylindrical pressure vessel can be provided.
[0042]
In addition, since a predetermined portion of the pipe material is reduced in diameter and pressed against the shape portion of the core member to form a reduced diameter thickened portion that becomes a die portion, the reduced diameter thickened portion, and thus the die portion, is expected. The two container bodies can be formed simultaneously by cutting the pipe material at the reduced diameter thickening portion.
[0043]
Two sets of core members are provided with a concave portion and a convex portion at opposing tip portions, and the convex portion of one core member is movably fitted into the concave portion of the other core member. The coaxiality of the set of core members can be ensured, and the processing accuracy can be increased. Further, the pressing force by the squeezing means moves when the squeezing means moves from the outer portion of the predetermined portion of the pipe material toward the central portion, and when the squeezing means moves from the central portion of the predetermined portion of the pipe material toward the outer portion. By changing according to the time, the accuracy of the shape and thickness of the reduced diameter thickening portion and by extension the base portion can be increased.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view illustrating a fire extinguisher container manufactured using a processing method according to the present invention.
FIG. 2 is a schematic view illustrating a processing apparatus using the processing method according to the present invention.
FIG. 3 is a schematic diagram showing a process of attaching a pipe material to a rotation driving means.
FIG. 4 is a schematic view showing a state in which a pipe material is attached to a rotation driving means.
FIG. 5 is a schematic view showing rough processing in a diameter-reducing thickening process of a pipe material.
FIG. 6 is a schematic view showing a finishing process in a pipe material reduced diameter thickening step.
FIG. 7 is a longitudinal sectional view showing a reduced diameter thickening portion of a pipe material.
FIG. 8 is a schematic diagram showing a threading process of a pipe material.
FIG. 9 is a schematic view showing a pipe material cutting step.
FIG. 10 is a schematic view showing a pipe material cutting step.
FIG. 11 is a longitudinal sectional view illustrating a conventional fire extinguisher container.
12A is a schematic view illustrating a processing method of the fire extinguisher container of FIG. 11, and FIGS. 12B and 12C are schematic views illustrating other processing methods.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fire extinguisher container 2 Container main body 2a Cylindrical trunk | drum 2b Base part 2 'Pipe material 2b' Reduced diameter thickening part 3 Bottom plate 11 Processing apparatus 12 Rotation drive means 12b Drive chuck 13 Pressurization means 13b Follower chuck 14 Restriction means 15 Cutting means 18, 19 Core member

Claims (2)

円筒状胴部の下端部から口金部までを一体に成形した容器本体と、該容器本体の下端開口部を閉塞する底板との2部材を接合してなる鋼鉄製の円筒状圧力容器の加工方法であって、
へら絞り加工機の回転軸の一端のチャックによって鋼鉄製のパイプ材をチャックすると共に、2個の前記容器本体の口金部を突き合わせた状態での該口金部の内面形状に対応した形状部を有する2個一組のコア部材を前記パイプ材の内径に対向状態で嵌合し、該2個一組のコア部材の相対向する先端部にはそれぞれ凹部と凸部が設けられており、一方の前記コア部材の凸部が他方の前記コア部材の凹部に移動自在に嵌入され、前記パイプ材をその軸線回りに回転させると共に、前記パイプ材に対してその軸線方向に圧縮力を付加した状態で、前記コア部材の前記形状部に対応する前記パイプ材の所定部分の外周面を絞り手段で押圧しつつ軸線方向に往復移動させることにより、前記パイプ材の所定部分を縮径させると共に前記コア部材の前記形状部に押圧して、前記口金部となる縮径肥肉化部を形成することを特徴とする円筒状圧力容器の加工方法。
A processing method of a steel cylindrical pressure vessel formed by joining two members, a container body integrally formed from the lower end portion of the cylindrical body portion to the base portion, and a bottom plate closing the lower end opening of the container body. Because
The steel pipe material is chucked by the chuck at one end of the rotary shaft of the spatula drawing machine, and has a shape portion corresponding to the inner surface shape of the mouthpiece portion in a state where the mouthpiece portions of the two container bodies are abutted with each other. A set of two core members are fitted to the inner diameter of the pipe material in an opposed state, and the opposite end portions of the set of two core members are respectively provided with a concave portion and a convex portion, In a state where the convex portion of the core member is movably fitted in the concave portion of the other core member, the pipe member is rotated around its axis, and a compressive force is applied to the pipe member in the axial direction. The predetermined diameter of the pipe material is reduced and the core member is reduced in diameter by reciprocating in the axial direction while pressing the outer peripheral surface of the predetermined area of the pipe material corresponding to the shape portion of the core member with a squeezing means. Of the above It is pressed against the Jo portion, the cylindrical pressure vessel method machining and forming a reduced 径肥 thickening unit to be the mouthpiece.
前記絞り手段による押圧力を、該絞り手段が前記パイプ材の所定部分の外側部分から中央部分に向かって移動するときと、該絞り手段が前記パイプ材の所定部分の中央部分から外側部分に向かって移動するときとで変えることを特徴とする請求項1に記載の円筒状圧力容器の加工方法。When the pressing means moves from the outer part of the predetermined part of the pipe material toward the central part, the pressing means moves from the central part of the predetermined part of the pipe material to the outer part. The method for processing a cylindrical pressure vessel according to claim 1 , wherein the processing method varies depending on when the cylinder is moved.
JP2003110756A 2003-04-15 2003-04-15 Cylindrical pressure vessel processing method Expired - Lifetime JP4601912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110756A JP4601912B2 (en) 2003-04-15 2003-04-15 Cylindrical pressure vessel processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110756A JP4601912B2 (en) 2003-04-15 2003-04-15 Cylindrical pressure vessel processing method

Publications (2)

Publication Number Publication Date
JP2004314117A JP2004314117A (en) 2004-11-11
JP4601912B2 true JP4601912B2 (en) 2010-12-22

Family

ID=33471526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110756A Expired - Lifetime JP4601912B2 (en) 2003-04-15 2003-04-15 Cylindrical pressure vessel processing method

Country Status (1)

Country Link
JP (1) JP4601912B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4877746B2 (en) * 2006-03-23 2012-02-15 株式会社日立産機システム Screw rotor manufacturing method
JP4642732B2 (en) * 2006-10-27 2011-03-02 日本スピンドル製造株式会社 Plastic working method
US7487656B2 (en) * 2007-03-30 2009-02-10 The Gates Corporation Method of spinning multiple parts
US8468698B2 (en) 2009-07-15 2013-06-25 Honda Motor Co., Ltd. Spinning method
US8356506B2 (en) * 2011-02-25 2013-01-22 Szuba Consulting, Inc. Method of forming industrial housings
CN102941271B (en) * 2012-09-14 2015-10-28 河南平高电气股份有限公司 The spin-on process of conductive contact finger neck part and supporting spinning processing device
CN102941270B (en) * 2012-09-14 2015-08-12 河南平高电气股份有限公司 The spin-on process of conductive contact finger and supporting spinning processing device
CN102941438B (en) * 2012-09-14 2015-07-01 河南平高电气股份有限公司 Processing method of electrically conductive contact finger
KR102363184B1 (en) * 2019-11-28 2022-02-15 삼우산기 주식회사 Fire extinguisher for improved body integrity
KR102347242B1 (en) * 2021-05-17 2022-01-04 주식회사 삼금아스코 Metal product shape processing method and metal product according to it

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262283A (en) * 1993-03-09 1994-09-20 Hashida Giken Kogyo Kk Method for forming bottom in bottle-like metal vessel and its device
JPH08132145A (en) * 1994-11-01 1996-05-28 Ngk Insulators Ltd Annular bending method for metallic pipe and device therefor
JPH0970361A (en) * 1995-06-26 1997-03-18 Toyo Rikagaku Kenkyusho:Kk Manufacture of double container made of metal
JPH09276967A (en) * 1996-04-19 1997-10-28 Kubota Tekkosho:Kk Manufacture of stepped rotary body
JPH09278580A (en) * 1996-04-11 1997-10-28 Tanaka Kikinzoku Kogyo Kk Production of crucible for growing single crystal
JPH09295093A (en) * 1996-05-09 1997-11-18 Samutetsuku Kk Method and device for manufacturing multi plate disk clutch case or the like
JPH11277153A (en) * 1998-03-30 1999-10-12 Ngk Insulators Ltd Formation of constriction to cylindrical member
JP2001070180A (en) * 1999-09-06 2001-03-21 Zojirushi Corp Method for joining metallic cylindrical body and metallic container produced by the method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262283A (en) * 1993-03-09 1994-09-20 Hashida Giken Kogyo Kk Method for forming bottom in bottle-like metal vessel and its device
JPH08132145A (en) * 1994-11-01 1996-05-28 Ngk Insulators Ltd Annular bending method for metallic pipe and device therefor
JPH0970361A (en) * 1995-06-26 1997-03-18 Toyo Rikagaku Kenkyusho:Kk Manufacture of double container made of metal
JPH09278580A (en) * 1996-04-11 1997-10-28 Tanaka Kikinzoku Kogyo Kk Production of crucible for growing single crystal
JPH09276967A (en) * 1996-04-19 1997-10-28 Kubota Tekkosho:Kk Manufacture of stepped rotary body
JPH09295093A (en) * 1996-05-09 1997-11-18 Samutetsuku Kk Method and device for manufacturing multi plate disk clutch case or the like
JPH11277153A (en) * 1998-03-30 1999-10-12 Ngk Insulators Ltd Formation of constriction to cylindrical member
JP2001070180A (en) * 1999-09-06 2001-03-21 Zojirushi Corp Method for joining metallic cylindrical body and metallic container produced by the method

Also Published As

Publication number Publication date
JP2004314117A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP4601912B2 (en) Cylindrical pressure vessel processing method
JPH0911055A (en) Device and method which repeatably fix and combine two constituent members
CN107249779B (en) End upsetting metal tube and its manufacturing method
US8468698B2 (en) Spinning method
JP4547702B2 (en) Bottomed tube and manufacturing method thereof
JP2760269B2 (en) Manufacturing method of bulge-shaped piping
JPH07227629A (en) Method and device for manufacturing tool for fixing pipe capable of compressing cylindrical part thereof
JP4346951B2 (en) Manufacturing method of fuel inlet
JP2007050423A (en) Method and die for squeezing metallic round pipe
TWI272143B (en) Forging method, forged article and forging apparatus
JP3240078B2 (en) How to bend a metal tube with a small radius of curvature
KR20080070571A (en) Yoke manufacturing method
CA2536076A1 (en) Internal high pressure shaping method for shaping conical metal tubes
JPH10318081A (en) Common rail and its manufacture
WO2004033143A1 (en) Method to make mechanical components for fluid-dynamic devices, compressors or motors operating at high pressure, and mechanical components thus achieved
JPH0154128B2 (en)
JP2004154820A (en) Method and device for expanding inside diameter of tubular member
JPH0316206B2 (en)
JP2001047127A (en) Manufacture of intermediate drawn tube
JP2007090387A (en) Method for manufacturing brake piston
JPH08132145A (en) Annular bending method for metallic pipe and device therefor
CN220698866U (en) Inner diameter positioning outer expansion tool for circular ring thin-wall part
JP5700995B2 (en) Friction stir welding jig and backing member for friction stir welding
JP2005052891A (en) Device for reducing diameter and method for manufacturing metallic parts reducing diameter
JP2941666B2 (en) Swaging method of pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4601912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term