JP4599574B2 - Iron nitride magnetic powder - Google Patents

Iron nitride magnetic powder Download PDF

Info

Publication number
JP4599574B2
JP4599574B2 JP2004317193A JP2004317193A JP4599574B2 JP 4599574 B2 JP4599574 B2 JP 4599574B2 JP 2004317193 A JP2004317193 A JP 2004317193A JP 2004317193 A JP2004317193 A JP 2004317193A JP 4599574 B2 JP4599574 B2 JP 4599574B2
Authority
JP
Japan
Prior art keywords
magnetic powder
iron nitride
magnetic
powder
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004317193A
Other languages
Japanese (ja)
Other versions
JP2005183932A (en
Inventor
憲司 正田
岳文 網野
晶 永富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2004317193A priority Critical patent/JP4599574B2/en
Publication of JP2005183932A publication Critical patent/JP2005183932A/en
Application granted granted Critical
Publication of JP4599574B2 publication Critical patent/JP4599574B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Description

本発明は、高記録密度媒体の磁性層を構成するのに適した窒化鉄系磁性粉末に関する。   The present invention relates to an iron nitride magnetic powder suitable for constituting a magnetic layer of a high recording density medium.

近年の磁気記録媒体には一層の高記録密度化が望まれており,それを達成するために記録波長の短波長化が進められてきた。このため,磁性粒子の大きさは,短波長の信号を記録する領域の長さよりも極めて小さくなければ,明瞭な磁化遷移状態を作り出すことができず,実質的に記録不可能となる。よって,磁性粉末には,粒子の大きさが記録波長よりも十分に小さいことが要求される。   In recent years, higher recording density has been desired for magnetic recording media, and in order to achieve this, the recording wavelength has been shortened. For this reason, unless the size of the magnetic particle is extremely smaller than the length of the region for recording a short-wavelength signal, a clear magnetization transition state cannot be created, and recording becomes virtually impossible. Therefore, the magnetic powder is required to have a particle size sufficiently smaller than the recording wavelength.

また,高密度化を進めるためには,記録信号の分解能を上げる必要があり,そのため磁気記録媒体のノイズを低減することが重要となる。ノイズは粒子の大きさからくるところが多く,微粒子であればあるほどノイズの低減が進む。よって,高記録密度用の磁性粉末
としては,この点からも粒子の大きさが十分に小さいことが要求される。
Further, in order to increase the density, it is necessary to increase the resolution of the recording signal, and therefore it is important to reduce the noise of the magnetic recording medium. Noise often comes from the size of the particles, and the finer the particles, the more noise is reduced. Therefore, the magnetic powder for high recording density is required to have a sufficiently small particle size from this point.

さらに,高密度化に対応した磁気記録媒体に用いられる磁性粉末としては,高密度な媒体中での磁性の保持および出力確保のため,より高い保磁力(Hc)が必要になる。さらにその保磁力分布(SFD)についても,できるだけ分布を狭くし,分布幅を小さくしておくことが,高密度記録のためには必要である。   Further, the magnetic powder used in the magnetic recording medium corresponding to the higher density requires a higher coercive force (Hc) in order to maintain magnetism and ensure output in the high-density medium. Further, for the coercive force distribution (SFD), it is necessary for the high density recording to make the distribution as narrow and narrow as possible.

このような磁性粉末が得られたとしても,塗料化して塗布する際の磁性層の厚さが厚いと,最短記録波長領域においては,従来記録波長が長かったために目立った問題にならなかった自己減磁損失や,磁性層の厚さに起因する厚み損失などの影響が大きく顕れ,十分な分解能が得られないといった現象が生じる。このような現象は,磁性粉末による磁気特性の改善や,媒体製造技術による表面性向上だけでは克服できず,磁性層の薄層化が必要になる。磁性層を薄層化する場合,粒子の大きさが従来の100nm程度のものを使用する限り,薄くするには限界が生じるため,この点からも粒子の大きさが小さいことが要求される。   Even if such a magnetic powder is obtained, if the magnetic layer is thick when applied in paint, the self-recording has not been a noticeable problem in the shortest recording wavelength region due to the long recording wavelength. Effects such as demagnetization loss and thickness loss due to the thickness of the magnetic layer are prominent, and a phenomenon in which sufficient resolution cannot be obtained occurs. Such a phenomenon cannot be overcome only by improving the magnetic properties with magnetic powder and improving the surface properties with medium manufacturing technology, and it is necessary to make the magnetic layer thinner. When the magnetic layer is thinned, as long as a conventional particle having a size of about 100 nm is used, there is a limit to reducing the thickness, and from this point, the particle size is required to be small.

しかし,微粒子化し,或る一定以上に粒子の体積減少が生じると,熱揺らぎによって著しい磁気特性の低下を生じ,さらに小さくすると超常磁性を示して磁性を示さなくなるという現象を示す。また微粒子化するに従って比表面積が増大するので耐酸化性が悪化するという問題もある。よって高密度記録媒体に適した磁性粉末としては,微粒子化してもこの超常磁性に耐えうる熱安定性,すなわち大きな異方性定数を持ち,高Hc,高σs ,低SFDおよび耐酸化性を実現できるものが必要となり,また,その粉末は極薄塗布が可能であるほどの微粒子でなければならない。しかし,このような特性を持つ磁性材料は今のところ実用化には至っていない。   However, when the particle size is reduced to a certain level or more, the magnetic properties are significantly deteriorated due to thermal fluctuation, and when it is further reduced, superparamagnetism is exhibited and magnetism is not exhibited. Moreover, since the specific surface area increases as the particle size is reduced, there is a problem that the oxidation resistance deteriorates. Therefore, as a magnetic powder suitable for high-density recording media, thermal stability that can withstand this superparamagnetism even when micronized, that is, a large anisotropy constant, high Hc, high σs, low SFD, and oxidation resistance is realized. What you can do is needed, and the powder must be fine enough to be applied very thinly. However, magnetic materials having such characteristics have not yet been put into practical use.

特許文献1には,高保磁力Hc,高飽和磁化σs を発現する磁性体として比表面積の大きな窒化鉄系の磁性体が記載されており,Fe162相の結晶磁気異方性と粉末の比表面積を大きくすることの相乗効果として,形状に因らずに高磁気特性が得られると教示している。 Patent Document 1, high coercive force Hc, describes a large iron nitride-based magnetic material having a specific surface area as magnetic expressing high saturation magnetization [sigma] s, Fe 16 N 2 phase crystal magnetic anisotropy and powder of As a synergistic effect of increasing the specific surface area, it teaches that high magnetic properties can be obtained regardless of the shape.

特許文献2には,低コストで高飽和磁化σs を発現する磁性体として,10〜90%のFe162を生成させた磁性粉末が記載され,特にFe162相の生成割合が60%のところで飽和磁化が極大になると教示している。 Patent Document 2 describes a magnetic powder in which 10 to 90% of Fe 16 N 2 is generated as a magnetic material that expresses high saturation magnetization σ s at low cost, and the generation ratio of Fe 16 N 2 phase is particularly 60. %, The saturation magnetization is maximized.

特許文献3では,特許文献1に改良を加えた磁性粉末として,本質的に球状ないし楕円状の希土類−鉄−ホウ素系,希土類−鉄系,希土類−窒化鉄系の磁性粉末を提案し,それを用いてテープ媒体を作製した際に優れた特性が得られること,なかでもFe162相を主相とする希土類−窒化鉄系磁性粉末は20nm程度の微粒子であるにもかかわらず,保磁力が200KA/m以上と高く,またBET比表面積が小さいことから飽和磁化も高く,保存安定性がよいと記載され,この希土類−窒化鉄系磁性粉末を使用することにより,塗布型磁気記録媒体の記録密度を飛躍的に高めることができると記載されている。この希土類−窒化鉄系磁性粉末の製法は,希土類を表面に被着したマグネタイト粒子を還元して希土類−鉄系の磁性粉末にした後,アンモニアガスによる窒化処理を行って生成させるアンモニア窒化法である。なお,特許文献3では、希土類−窒化鉄系の磁性粉末において鉄の一部を他の遷移金属元素で置換できるとされているが,コバルトを多量に添加すると、窒化反応に長時間を要するとされている。 Patent Document 3 proposes an essentially spherical or elliptical rare earth-iron-boron, rare earth-iron, rare earth-iron nitride magnetic powder as an improved magnetic powder from Patent Document 1, Excellent properties can be obtained when a tape medium is produced by using a rare earth-iron nitride magnetic powder mainly composed of Fe 16 N 2 phase, although it is a fine particle of about 20 nm. It is described that the magnetic force is as high as 200 KA / m or more, and since the BET specific surface area is small, the saturation magnetization is also high and the storage stability is good. By using this rare earth-iron nitride magnetic powder, a coating type magnetic recording medium is used. It is described that the recording density can be dramatically increased. The rare earth-iron nitride magnetic powder is produced by an ammonia nitriding method in which magnetite particles with a rare earth deposited on the surface are reduced to rare earth-iron magnetic powder and then nitriding with ammonia gas. is there. In Patent Document 3, it is said that a part of iron in the rare earth-iron nitride magnetic powder can be replaced with other transition metal elements. However, if a large amount of cobalt is added, it takes a long time for the nitriding reaction. Has been.

特許文献4には,アンモニアガスによる低温窒化法によってFe162相からなる窒化
鉄系磁性粉末を得る基本的な発明が記載されている。
特開2000-277311 号公報 特開2001-176715 号公報 国際公開WO 03/079332 A1 号公報 特開平11-340023 号公報
Patent Document 4 describes a basic invention for obtaining an iron nitride magnetic powder composed of an Fe 16 N 2 phase by a low temperature nitriding method using ammonia gas.
JP 2000-277311 A JP 2001-176715 A International Publication WO 03/079332 A1 Publication Japanese Patent Laid-Open No. 11-340023

上記特許文献1〜3では,大きな結晶磁気異方性を持つFe162相を生成させると,微粒子で磁気特性の良い磁性粉末が得られると記載されているが,Fe162相の比率が多い方が必ずしもよいとは記載されていない。例えば特許文献2ではFe162相が60%程度生成したときに最も高いσs が得られることが記載されている。また特許文献3では,磁性粉末の内層(コア部分)のFe162相とα−Fe相の割合については,すべてFe162である必要はなく,α−Feとの混相としてもよく,窒化処理条件を調整することによって,所望の保磁力を得るために容易に設定できると述べられている。しかし,これらは保磁力や飽和磁化のみを考えた際には大きな問題にはならないが,粉体の保磁力分布(BSFD)やテープの配向方向(x方向とする)の保磁力分布(SFDx)の観点から見ると,Fe162相とα−Fe相,Fe4N相(Fe162相よりもさらに窒素を多く含む)では保磁力が大きく異なるため,かような混相ではSFDは極大点が2つあるいは3つあるような広い分布になる。 In Patent Documents 1 to 3, when to generate a Fe 16 N 2 phase that has a large crystal magnetic anisotropy, but good magnetic powder magnetic properties of fine particles is described to be obtained, the Fe 16 N 2 phase It is not described that a higher ratio is necessarily better. For example, Patent Document 2 describes that the highest σs can be obtained when about 60% of Fe 16 N 2 phase is formed. In Patent Document 3, the ratio of the Fe 16 N 2 phase and the α-Fe phase in the inner layer (core portion) of the magnetic powder need not be Fe 16 N 2 , and may be a mixed phase with α-Fe. It is stated that it can be easily set to obtain a desired coercive force by adjusting nitriding conditions. However, these are not significant problems when considering only the coercive force and the saturation magnetization, but the coercive force distribution (BSFD) of the powder and the coercive force distribution (SFDx) in the tape orientation direction (x direction). From the point of view, the coercive force differs greatly between the Fe 16 N 2 phase, the α-Fe phase, and the Fe 4 N phase (which contains more nitrogen than the Fe 16 N 2 phase). It has a wide distribution with two or three local maximum points.

磁性粉末の保磁力分布が広いということは,Hcの高い粒子や低い粒子が混在していることになり,したがって,そのような磁性粉末を塗料化しテープ化して高密度記録媒体とした場合に,ノイズが発生しやすくなる。また,低Hc成分が存在すると,その粒子は熱揺らぎにより磁化が保持できずに記録が消去されてしまう可能性があるため,信頼性の面で問題が生じる。したがって,高記録密度磁気媒体用の磁性粉末としては,α−Fe相やFe4Nなどの混相が混在していない,本質的にFe162相である磁性粉末であることが好ましい。特許文献4には低温窒化法でFe162相の粒子を製造する方法が記載されているが,その結晶状態と保磁力Hcや保磁力分布に関する教示はない。 The wide coercive force distribution of magnetic powder means that particles with high or low Hc are mixed. Therefore, when such magnetic powder is coated and taped to form a high-density recording medium, Noise is likely to occur. In addition, if a low Hc component is present, there is a problem in terms of reliability because the particles may not retain magnetization due to thermal fluctuations and the recording may be erased. Therefore, the magnetic powder for the high recording density magnetic medium is preferably a magnetic powder that is essentially an Fe 16 N 2 phase and does not contain a mixed phase such as α-Fe phase or Fe 4 N. Patent Document 4 describes a method of producing Fe 16 N 2 phase particles by a low temperature nitriding method, but there is no teaching regarding the crystal state, coercive force Hc, and coercive force distribution.

Fe162相からなる窒化鉄系磁性粉末の耐酸化性については、例えば特許文献3に記載の希土類−鉄系の磁性粉末,例えばYを5.3原子%含むFe162相とα−Feの混合相からなる平均粒径20nmの磁性粉末においてΔσs 12.6%のものが得られている。しかし、一層の微粒子化を行った際には著しく比表面積は増大するので,さらに耐酸化性の向上が必要とされることが予想される。このように,Fe162相からなる窒化Fe系磁性粉末においては,高Hc、高σs 、低SFDを実現したまま、微粒子粉末の耐酸化性を改善する方法については、現在のところ有効な手段が得られていないのが実状である。 Regarding the oxidation resistance of the iron nitride-based magnetic powder composed of Fe 16 N 2 phase, for example, rare earth-iron-based magnetic powder described in Patent Document 3, for example, Fe 16 N 2 phase containing 5.3 atomic% Y and α A magnetic powder composed of a mixed phase of -Fe and having an average particle diameter of 20 nm and having Δσs of 12.6% is obtained. However, since the specific surface area is remarkably increased when finer particles are formed, further improvement in oxidation resistance is expected. As described above, a method for improving the oxidation resistance of the fine particle powder while achieving high Hc, high σs, and low SFD is effective at present in Fe nitride magnetic powder composed of Fe 16 N 2 phase. The reality is that no means are available.

したがって本発明は,高記録密度磁気媒体に使用できるような優れた磁気特性,特に高Hc,低BSFD,耐酸化性が両立し得るFe162系の窒化鉄粉末を得ることを課題としたものである。 Accordingly, an object of the present invention is to obtain an Fe 16 N 2 -based iron nitride powder capable of satisfying both excellent magnetic properties that can be used for a high recording density magnetic medium, particularly high Hc, low BSFD, and oxidation resistance. Is.

本発明者らは,前記課題を解決するために種々の試験研究を重ねたが,Feの粒子にアンモニアガスに代表される窒素含有ガスを反応させてFe162相を主相とする粒子に窒化するさいに,該窒化反応を0.1MPa以上,好ましくは0.3MPa以上の加圧下で進行させると,実質的にFe162相からなる窒化鉄系磁性粉末を安定して製造できることを見い出した。すなわち,加圧下での窒化反応によりα−FeやFe4Nなどの異相の生成が抑制され,実質的にFe162相からなる粉体を製造することができる。したがって本発明によれば,Fe162相主体の窒化鉄粒子からなる磁性粉末であって,保磁力Hcが200KA/m以上で粉体保磁力分布BSFDが2以下であることを特徴とする窒化鉄系磁性粉末を提供する。この窒化鉄系磁性粉末は,好ましくはFe162相をXRDピーク積分割合で80%以上含有する窒化鉄粒子からなり,粉体保磁力分布においてHc120KA/m以下の割合が15%以下である。また平均粒径が好ましくは50nm以下である。また,本願発明の窒化鉄系磁性粉末は,焼結防止剤として,Feに対する原子百分率で5〜30 at.%のAlと,Feに対する原子百分率で0.5〜10 at.%の希土類元素(Yを含む)とを組み合わせて含有するか,或いは,Feに対する原子百分率で1〜10 at.%のSiと,Feに対する原子百分率で0.5〜10 at.%の希土類元素(Yを含む)とを組み合わせて含有する。 In order to solve the above-mentioned problems, the present inventors have made various tests and researches. The particles containing Fe 16 N 2 phase as the main phase by reacting Fe particles with a nitrogen-containing gas typified by ammonia gas. When the nitriding reaction is allowed to proceed under a pressure of 0.1 MPa or more, preferably 0.3 MPa or more when nitriding is performed, iron nitride-based magnetic powder consisting essentially of Fe 16 N 2 phase can be stably produced. I found out. That is, the production of a foreign phase such as α-Fe or Fe 4 N is suppressed by the nitriding reaction under pressure, and a powder substantially consisting of an Fe 16 N 2 phase can be produced. Therefore, according to the present invention, the magnetic powder is composed of iron nitride particles mainly composed of Fe 16 N 2 phase, wherein the coercive force Hc is 200 KA / m or more and the powder coercive force distribution BSFD is 2 or less. An iron nitride magnetic powder is provided. This iron nitride-based magnetic powder is preferably composed of iron nitride particles containing Fe 16 N 2 phase in an XRD peak integration ratio of 80% or more, and the ratio of Hc 120 KA / m or less in the powder coercive force distribution is 15% or less. . The average particle size is preferably 50 nm or less. In addition, the iron nitride magnetic powder of the present invention comprises 5 to 30 at.% Al as an atomic percentage relative to Fe and 0.5 to 10 at.% Rare earth element (as an atomic percentage relative to Fe) as sintering inhibitors. Y in combination) or 1 to 10 at.% Si in atomic percent relative to Fe and 0.5 to 10 at.% Rare earth element inclusive relative to Fe (including Y) In combination.

本発明の磁性粉末は本質的にFe162相からなる高Hcで低SFDの微粉末であるから,これを塗布型の磁気記録媒体に応用することにより,磁気記録媒体の高記録密度化が達成できる。このため今後増加すると予想される情報量をバックアップするデータストレージ分野に貢献できる。 Since the magnetic powder of the present invention is a fine powder of high Hc and low SFD consisting essentially of Fe 16 N 2 phase, it can be applied to a coating type magnetic recording medium to increase the recording density of the magnetic recording medium. Can be achieved. Therefore, it can contribute to the data storage field that backs up the amount of information expected to increase in the future.

本発明者らは,特許文献4において低温窒化法によるFe162粒子の製造法を提案した以後も,この種の窒化鉄系磁性粉末を高記録密度磁気記録媒体に適用すべく研究を続けてきたが,Fe粒子を窒化処理するさいに,この窒化反応を0.1MPa以上,好ましくは0.3 MPa以上の加圧条件下で進行させた場合には,加圧しない場合に比べて,粉体の保磁力Hcが向上し,Hc120KA/m以上で且つ粉体保磁力分布BSFDが2以下の高保磁力粉体が得られることを知見した。加圧下で窒化を行うと,結晶性の良好なFe16N2単相の粒子が生成し易くなるものと考えられる。すなわち,この加圧によりこれまでよりも異相の生成を抑え,Fe162相を一層生成させやすくすることができる。さらに加圧下で窒化を行うと,遷移金属元素例えばCoやNiを添加した場合にも窒化に長時間を要せずに窒化反応が進行することが判明し,さらにCoやNiを含有するFe162相主体の磁性粉末は良好な耐酸化性を示すことがわかった。窒化の反応温度については特許文献4に記載したとおり,それほど高温を必要とせず,200℃以下でよい。 The present inventors have continued research to apply this kind of iron nitride magnetic powder to a high recording density magnetic recording medium even after the proposal of a method for producing Fe 16 N 2 particles by a low temperature nitriding method in Patent Document 4. However, when nitriding the Fe particles, the nitriding reaction is allowed to proceed under a pressure condition of 0.1 MPa or more, preferably 0.3 MPa or more, compared with the case where no pressure is applied. The coercive force Hc was improved, and it was found that a high coercive force powder having Hc of 120 KA / m or more and a powder coercivity distribution BSFD of 2 or less was obtained. When nitriding is performed under pressure, Fe 16N2 single-phase particles with good crystallinity are likely to be formed. That is, this pressurization can suppress the generation of a different phase than before, and make it easier to generate the Fe 16 N 2 phase. Further, when nitriding is performed under pressure, it is found that even when a transition metal element such as Co or Ni is added, the nitriding reaction proceeds without requiring a long time for nitriding, and further Fe 16 containing Co or Ni. It was found that the N 2 phase-based magnetic powder showed good oxidation resistance. As described in Patent Document 4, the reaction temperature of nitridation is not so high and may be 200 ° C. or less.

非加圧下での窒化処理では,温度が低いとα−Fe相が残存し,温度が高いとFe4N相が生成し易くなるので,Fe162単相の粒子を得るのための温度制御が難しく,このため,高Hcと低BSFDを両立する粉体を作製するのが困難である。本発明によれば,窒化処理を行う際の圧力を0.1MPa以上,好ましくは0.3MPa以上とすることにより,高Hcと低BSFDが両立した窒化鉄系磁性粉末を得ることができる。得られるFe162相主体の磁性粉末がHc120KA/m以上で且つBSFDが2以下であるためには,Fe162相が,X線回折法で測定したXRDピーク積分割合で80%以上,好ましくは90%以上であるのがよい。 In non-pressurized nitriding, the α-Fe phase remains when the temperature is low, and the Fe 4 N phase is likely to be formed when the temperature is high. Therefore, the temperature for obtaining Fe 16 N 2 single phase particles It is difficult to control, and for this reason, it is difficult to produce a powder that has both high Hc and low BSFD. According to the present invention, an iron nitride magnetic powder having both high Hc and low BSFD can be obtained by setting the pressure during nitriding to 0.1 MPa or more, preferably 0.3 MPa or more. In order for the obtained magnetic powder mainly composed of Fe 16 N 2 phase to have Hc 120 KA / m or more and BSFD 2 or less, Fe 16 N 2 phase has an XRD peak integration ratio measured by X-ray diffraction method of 80% or more. , Preferably 90% or more.

加圧下での窒化処理に供する原料としてはFe(α−Fe)粒子を用いればよいが,このFe粒子粉末は,ゲーサイト,ヘマタイト,マグネタイト,ウスタイト,α−Fe,カルボニル鉄,鉄アセチルアセトナート等を還元または分解して得たFe粒子粉末を使用すればよい。その粒子形状は特に制限を受けず,針状,紡錘状,球状,楕円状などいずれでもよいが,平均粒径については50nm以下が好ましく,20nm以下がさらに好ましい。50nm以下のFe粒子を用いることにより,50nm以下のFe162単相粒子の磁性粉末を得ることができ,このものは短波長記録に適した磁性材料となる。また50nm以下の微粒子であることにより,表面平滑性が良好となりノイズが少ない高記録密度磁気媒体を得ることができる。 Fe (α-Fe) particles may be used as a raw material for nitriding under pressure, but these Fe particle powders are goethite, hematite, magnetite, wustite, α-Fe, carbonyl iron, iron acetylacetonate. An Fe particle powder obtained by reducing or decomposing etc. may be used. The particle shape is not particularly limited and may be any shape such as a needle shape, a spindle shape, a spherical shape, and an elliptical shape, but the average particle size is preferably 50 nm or less, and more preferably 20 nm or less. By using Fe particles of 50 nm or less, a magnetic powder of Fe 16 N 2 single phase particles of 50 nm or less can be obtained, and this is a magnetic material suitable for short wavelength recording. Further, when the fine particles are 50 nm or less, a high recording density magnetic medium with good surface smoothness and less noise can be obtained.

この出発原料には,窒化を著しく阻害しない程度の量であれば,焼結を防止するための焼結防止剤を粒子内に固溶させてもよく,また表面に被着しても良い。焼結防止剤としては,Al,Si,Cr,V,Mn,Mo,Ni,P,B,Zr,Yを含む希土類元素などの成分を含むものが挙げられるが,ゲーサイトを原料とした場合は固溶しやすいAl系が適し,またマグネタイトなどの場合は固溶,被着しやすいSi系が適している。また,AlとSiについては,窒化を促進する効果もあるため,添加することにより磁気特性や生産性の改善効果が増加し,一層望ましい。   In this starting material, if it is an amount that does not significantly inhibit nitriding, a sintering inhibitor for preventing sintering may be dissolved in the particles or may be deposited on the surface. Antisintering agents include those containing components such as rare earth elements including Al, Si, Cr, V, Mn, Mo, Ni, P, B, Zr, and Y. Is suitable for Al, which is easy to dissolve, and Si, which is easy to dissolve and deposit, is suitable for magnetite. Al and Si also have the effect of promoting nitriding, so adding them increases the effect of improving magnetic properties and productivity, and is more desirable.

とくに,焼結防止剤としては,Alと希土類元素(Yを含む)を組み合わせるか,またはSiと希土類元素(Yを含む)を組み合わせて使用するのがよい。この場合,AlについてはFeに対する原子百分率で5〜30 at.%の範囲,SiについてはFeに対する原子百分率で1〜10 at.%の範囲として,これらを,Feに対する原子百分率で0.5〜10 at.%の範囲の希土類元素(Yを含む)と組み合わせるのがよい。これらの焼結防止剤の含有量が前記の下限値より少ない場合には焼結防止効果が現れにくく,また前記の上限値より多い場合には非磁性成分の割合が多くなって飽和磁化σs が低下するので好ましくない。   In particular, as a sintering inhibitor, it is preferable to use a combination of Al and rare earth elements (including Y) or a combination of Si and rare earth elements (including Y). In this case, for Al, the atomic percentage with respect to Fe is in the range of 5 to 30 at.%, And for Si, the atomic percentage with respect to Fe is in the range of 1 to 10 at.%. It may be combined with rare earth elements (including Y) in the range of 10 at.%. When the content of these sintering inhibitors is less than the above lower limit value, the sintering preventing effect is difficult to appear, and when the content is more than the above upper limit value, the ratio of non-magnetic components increases and the saturation magnetization σ s increases. Since it falls, it is not preferable.

また出発材料にはCoまたはNiの1種または2種を添加して,Fe162相からなる窒化鉄系磁性粉末の耐酸化性を向上させることができるが,その添加量についてはFeに対する原子百分率で合計0.1〜30at.%%であるのが好ましく、10〜30at.%がさらに好ましい。合計添加量が0.1at.%未満では耐酸化性の改善効果が現れず、30at.%を超えると、窒化反応に長時間を要するようになって好ましくない。CoまたはNiの1種または2種を合計0.1〜30at.%,好ましくは10〜30at.%添加することが耐酸化性と窒化反応の両面において好適である。本発明によれば,耐酸化性の指標であるΔσs が15%以下の窒化鉄系磁性粉末を得ることができる。 In addition, one or two kinds of Co or Ni can be added to the starting material to improve the oxidation resistance of the iron nitride magnetic powder composed of the Fe 16 N 2 phase. The total atomic percentage is preferably 0.1 to 30 at.%, More preferably 10 to 30 at.%. When the total addition amount is less than 0.1 at.%, The effect of improving the oxidation resistance does not appear, and when it exceeds 30 at.%, The nitriding reaction takes a long time, which is not preferable. It is preferable to add one or two kinds of Co or Ni in a total amount of 0.1 to 30 at.%, Preferably 10 to 30 at.% In terms of oxidation resistance and nitriding reaction. According to the present invention, an iron nitride-based magnetic powder having an oxidation resistance index Δσs of 15% or less can be obtained.

α−Feを得るための還元処理については,原料粉が分解や還元によりα−Feになるのであれば,どのような還元剤を用いても良く,特に限定されるものではないが,乾式法で還元する場合には水素H2が用いられる。このとき,還元が不十分で酸素が残留していると,窒化処理の速度を著しく遅くするので好ましくない。また還元時の温度が高すぎると,粒子間の焼結が起こり,平均粒径の増大や分散性の悪化を招くので,500℃以下の温度例えば300〜500℃で還元するのがよい。 Regarding the reduction treatment for obtaining α-Fe, any reducing agent may be used as long as the raw material powder becomes α-Fe by decomposition or reduction. In the case of reduction with hydrogen, hydrogen H 2 is used. At this time, if the reduction is insufficient and oxygen remains, it is not preferable because the speed of nitriding is remarkably slowed. If the temperature at the time of reduction is too high, sintering between particles occurs, leading to an increase in average particle diameter and deterioration of dispersibility. Therefore, it is preferable to reduce at a temperature of 500 ° C. or lower, for example, 300 to 500 ° C.

Fe粒子粉末を本発明に従って窒化処理するさいには,アンモニアガスに代表される窒素含有ガスを使用し,0.1MPa以上の加圧下,好ましくは0.3MPa以上の加圧下で,200℃以下の温度で数時間〜数十時間の窒化処理を行うのがよい。この加圧法については特に制限されるものではなく,加圧に耐えうる炉を用いてアンモニアガス或いはアンモニアを含んだ混合ガスをフローさせ,その上流側と下流側の圧力制御を行うことにより,炉内圧を調節する方法が便利である。なお,炉内に通流するガス中の酸素量は数ppm以下であることが望ましい。   When nitriding the Fe particle powder according to the present invention, a nitrogen-containing gas typified by ammonia gas is used, and the pressure is 200 ° C. or lower under a pressure of 0.1 MPa or more, preferably 0.3 MPa or more. A nitriding treatment is preferably performed at a temperature for several hours to several tens of hours. This pressurization method is not particularly limited, and the furnace is constructed by flowing ammonia gas or a mixed gas containing ammonia using a furnace that can withstand pressurization and controlling the pressure on the upstream side and the downstream side. A method of adjusting the internal pressure is convenient. It is desirable that the amount of oxygen in the gas flowing into the furnace is several ppm or less.

このようにして,本発明によれば,実質的にFe162相からなる窒化鉄系磁性粉末を得ることができ,この磁性粉末は高密度磁気記録媒体用の磁性材料として好適である。すなわち,平均粒径が50nm以下で,Hc120KA/m以上で且つBSFDが2以下を示すことができ,また粉体保磁力分布のうち,Hc120KA/m以下の割合が15%以下の実質的にFe162相からなる磁性粉末が得られるので,熱揺らぎの問題やテープ化した場合のノイズ発生の問題のない高密度磁気記録媒体用の磁性材料となり得る。さらにCoまたはNiの1種または2種を含有したものは耐酸化性にも優れるので実用的な価値が高い。 As described above, according to the present invention, an iron nitride-based magnetic powder substantially consisting of an Fe 16 N 2 phase can be obtained, and this magnetic powder is suitable as a magnetic material for a high-density magnetic recording medium. That is, the average particle size can be 50 nm or less, Hc120 KA / m or more and BSFD can be 2 or less, and the ratio of Hc120 KA / m or less can be substantially 15% or less in the powder coercive force distribution. Since a magnetic powder composed of 16 N 2 phase can be obtained, it can be a magnetic material for high-density magnetic recording media without the problem of thermal fluctuation and noise generation when taped. Further, those containing one or two kinds of Co or Ni are excellent in oxidation resistance and have high practical value.

なお,BSFDが2を超えると,すなわちHc分布が広くて高Hc成分と低Hc成分の割合が多くなると,テープ化した際のノイズの原因になり,さらに低Hcの磁性粉末は,熱揺らぎによって記録が消去されてしまう危険性があり,信頼性に問題が生じるので,BSFDは2以下であることが望ましい。   If the BSFD exceeds 2, that is, if the Hc distribution is wide and the ratio of the high Hc component and the low Hc component increases, it causes noise when taped, and the low Hc magnetic powder is caused by thermal fluctuations. The BSFD is preferably 2 or less because there is a risk that the record will be erased and a problem arises in reliability.

以下に本発明に従う窒化鉄系磁性粉末の実施例を挙げるが,その特性を評価した試験方法について先ず説明する。実施例に限らず本明細書に記載した各特性値についても,以下の試験方法に従って評価したものを言う。   Examples of the iron nitride magnetic powder according to the present invention will be described below. First, a test method for evaluating the characteristics will be described. Not only the examples but also the characteristic values described in the present specification are those evaluated according to the following test methods.

〔粉体特性の評価法〕
・粒子サイズの測定:透過型電子顕微鏡での倍率10万倍以上の写真を複数枚準備し,そこから400個以上の粒子に対して,個々の粒子の最も長い部分を測定し,その平均値を用いる。
・粉末の磁気特性の測定:VSM(デジタルメジャーメントシステムズ社製)を用いて,最大796KA/mの外部印加磁場で測定する。
・粉体保磁力分布(BSFD)の測定:上記のVSMを使用し,まず外部磁場796KA/mを或る一方向に印加し(こちらを正方向とする),ついで外部磁場0まで7.96KA/mごとに減少させ,その後逆方向(負方向)に7.96KA/mごとに印加してヒステリシス曲線を作成し,その負方向で描かれたヒステリシス曲線の微分曲線(保磁力分布曲線)のピークについての半価幅をBHaとし,下式によりBSFDを算出する。
BSFD=BHa/Hc
・粉体保磁力分布におけるHc120KA/m以下の割合の算出:上記の保磁力分布曲線を0〜−796KA/mの範囲で積分した面積を全体の保磁力分布の100%としたときの,120KA/m以下の範囲で積分した面積の占める割合である。すなわち下式により算出する。
120KA/m以下の割合=100×(保磁力分布曲線の120KA/m以下の面積)/(保磁力分布曲線全体の面積)
・磁性粉末の耐酸化性(Δσs )の測定:恒温恒湿器内で60℃,90%RHにおいて一週間保存後,保存前後の飽和磁化値σs の変化量%を下式に従って算出する。
100×(保存前の飽和磁化値−保存後の飽和磁化値)/保存前の飽和磁化値
・比表面積の測定:BET法で測定する。
[Evaluation method of powder characteristics]
・ Measurement of particle size: Prepare multiple photographs with magnification of 100,000 times or more with a transmission electron microscope, and measure the longest part of each particle for 400 or more particles. Is used.
Measurement of magnetic properties of powder: Measure with an externally applied magnetic field of 796 KA / m at maximum using VSM (manufactured by Digital Measurement Systems).
・ Measurement of powder coercive force distribution (BSFD): Using the above-mentioned VSM, first, an external magnetic field of 796 KA / m is applied in one direction (this is the positive direction) and then 7.96 KA up to an external magnetic field of 0. The hysteresis curve is created by applying the voltage in increments of 7.m / m and then applied in the reverse direction (negative direction) every 7.96 KA / m, and the differential curve (coercivity distribution curve) of the hysteresis curve drawn in the negative direction is created. The half-width for the peak is BHa, and BSFD is calculated by the following formula.
BSFD = BHa / Hc
Calculation of the ratio of Hc120KA / m or less in the powder coercive force distribution: 120KA when the area obtained by integrating the above coercive force distribution curve in the range of 0 to −796 KA / m is defined as 100% of the entire coercive force distribution. It is the ratio of the area integrated in the range of / m or less. That is, it is calculated by the following formula.
Ratio of 120 KA / m or less = 100 × (area of 120 KA / m or less of coercive force distribution curve) / (area of entire coercive force distribution curve)
Measurement of oxidation resistance (Δσs) of magnetic powder: After storage for 1 week at 60 ° C. and 90% RH in a constant temperature and humidity chamber, the change% of the saturation magnetization value σs before and after storage is calculated according to the following formula.
100 × (saturation magnetization value before storage−saturation magnetization value after storage) / saturation magnetization value before storage / specific surface area measurement: measured by BET method.

〔テープ特性の評価法〕
(1) 磁性塗料の作成
磁性粉末0.500gを秤量し,ポット(内径45mm,深さ13mm)へ入れる。蓋を開けた状態で10分間放置する。次にビヒクル〔塩ビ系樹脂MR-110(22wt%),シクロヘキサノン(38.7wt%),アセチルアセトン(0.3wt%), ステアリン酸nブチル(0.3wt%), メチルエチルケトン(MEK,38.7wt%)の混合溶液〕をマイクロピペットで0.700 mL採取し,これを前記のポットに添加する。すぐにスチールボール(2φ)30g,ナイロンボール(8φ)10個をポットへ加え,蓋を閉じ10分間静置する。その後,このポットを遠心式ボールミル(FRITSCH P−6 )にセットし,ゆっくりと回転数を上げ,600 rpm にあわせ,60分間分散を行う。遠心式ボールミルが停止した後,ポットを取り出し,マイクロピペットを使用し,あらかじめMEKとトルエンを1:1で混合しておいた調整液を1.800 ml添加する。再度,遠心式ボールミルにポットをセットし,600 rpm で5分間分散し,分散を終了する。
[Evaluation method of tape properties]
(1) Preparation of magnetic paint Weigh 0.500g of magnetic powder and put it into a pot (inner diameter 45mm, depth 13mm). Leave for 10 minutes with the lid open. Next, vehicle [PVC resin MR-110 (22wt%), cyclohexanone (38.7wt%), acetylacetone (0.3wt%), n-butyl stearate (0.3wt%), methyl ethyl ketone (MEK, 38.7wt%) ] Is collected with a micropipette and added to the pot. Immediately add 30 g of steel balls (2φ) and 10 nylon balls (8φ) to the pot, close the lid and let stand for 10 minutes. After that, set this pot on a centrifugal ball mill (FRITSCH P-6), slowly increase the rotation speed, adjust to 600 rpm, and disperse for 60 minutes. After the centrifugal ball mill has stopped, remove the pot and use a micropipette to add 1.800 ml of a pre-mixed MEK and toluene mixture at 1: 1. Set the pot on the centrifugal ball mill again, disperse for 5 minutes at 600 rpm, and complete the dispersion.

(2) 磁気テープの作製
前記の分散を終了したあと,ポットの蓋を開け,ナイロンボールを取り除き,塗料をスチールボールごとアプリケータ(55μm)へ入れ,支持フイルム(東レ株式会社製のポリエチレンフィルム:商品名15C−B500 :膜厚15μm)に対して塗布を行う。塗布後,すばやく,5.5 kGの配向器のコイル中心に置き,磁場配向させ,その後乾燥させる。
(2) Preparation of magnetic tape After the above dispersion was completed, the pot lid was opened, the nylon ball was removed, the paint was put together with the steel ball into the applicator (55 μm), and the support film (polyethylene film manufactured by Toray Industries, Inc .: Product name 15C-B500: film thickness 15 μm). Immediately after coating, place it in the center of the coil of 5.5 kG aligner, orient the magnetic field, and then dry it.

(3) テープ特性の評価試験
・磁気特性の測定:得られたテープについてVSMを用いて,最大796KA/mの外部印加磁場で,保磁力Hcx,SFDxおよびSQxの測定を行う。
・テープの耐酸化性(ΔBm)の測定:恒温恒湿器内で60℃,90%RHにおいて一週間保存後,保存前後のBmの変化量%を算出する。
(3) Tape property evaluation test and magnetic property measurement: The coercive force Hcx, SFDx and SQx are measured with an externally applied magnetic field of 796 KA / m at maximum using the obtained tape.
・ Measurement of oxidation resistance (ΔBm) of tape: After storage for 1 week at 60 ° C. and 90% RH in a thermo-hygrostat, the% change in Bm before and after storage is calculated.

〔実施例1〕
表面にSiとYの酸化物層を有する平均粒径27nmのマグネタイト粒子(SiとYの含有量はFeに対する原子百分率でそれぞれ4.7at.%および1.0at.%)からなる粉末を出発原料とした。この粉末を炉内に装入して昇温し,500℃で1時間水素ガスを流して還元処理したあと,100℃まで冷却し,その段階で通流ガスを水素ガスからアンモニアガスに切り替え,再度昇温して165℃に達したところで,排ガスの出口圧力を調節することによって,炉内圧力を0.1MPaの加圧条件下に制御し,この条件下で11時間の窒化処理を行った。
[Example 1]
Starting powder made of magnetite particles having an Si and Y oxide layer on the surface and an average particle size of 27 nm (Si and Y contents are 4.7 atomic% and 1.0 atomic%, respectively, in terms of atomic percentage relative to Fe) It was. This powder was charged into the furnace, heated up, and reduced by flowing hydrogen gas at 500 ° C for 1 hour, then cooled to 100 ° C. At that stage, the flow gas was switched from hydrogen gas to ammonia gas, When the temperature was raised again and reached 165 ° C., the pressure in the furnace was controlled by adjusting the exhaust gas outlet pressure, and the nitriding treatment was performed for 11 hours under this condition. .

窒化処理後は排ガスの出口圧力を大気圧に戻して加圧を止めたうえ,80℃まで冷却して窒素ガスに切り替え,この窒素ガスに,酸素濃度が0.01〜2vol.%濃度となるように小量の空気を添加することによって被処理粉末表面を徐酸化処理したあと,この粉末を大気中に取り出した。   After the nitriding treatment, the exhaust gas outlet pressure is returned to atmospheric pressure and the pressurization is stopped. Then, the exhaust gas is cooled to 80 ° C. and switched to nitrogen gas, and this nitrogen gas has an oxygen concentration of 0.01 to 2 vol.%. After adding a small amount of air, the surface of the powder to be treated was gradually oxidized, and the powder was taken out into the atmosphere.

得られた粉末の平均粒径は25nm,BET法による比表面積は43m2/gであった。また磁気特性評価の結果,Hc=224KA/m,σs =111Am2/Kg,BSFD=1.41であり,粉体の耐酸化性Δσs については19.8%,粉体保磁力分布におけるHc120KA/m以下の割合は11.6%であった。図1に,本例で得られた磁性粉末について測定されたのヒステリシス曲線および微分曲線を示した。 The average particle size of the obtained powder was 25 nm, and the specific surface area by the BET method was 43 m 2 / g. As a result of the evaluation of the magnetic properties, Hc = 224 KA / m, σs = 111 Am 2 / Kg, BSFD = 1.41, the oxidation resistance Δσs of the powder was 19.8%, and the Hc120KA / The ratio of m or less was 11.6%. FIG. 1 shows hysteresis curves and differential curves measured for the magnetic powder obtained in this example.

本例で得られた磁性粉末を用いて作成したテープの特性評価の結果では,Hcx =251KA/m,SFDx=0.66,SQx=0.73であり,テープの耐酸化性ΔBmは9.8%であった。   As a result of the characteristic evaluation of the tape prepared using the magnetic powder obtained in this example, Hcx = 251KA / m, SFDx = 0.66, SQx = 0.73, and the oxidation resistance ΔBm of the tape is 9. It was 8%.

〔実施例2〕
排ガスの出口圧力を調節することによって,炉内圧力を0.3MPaの加圧条件下に制御した以外は,実施例1を繰り返した。
[Example 2]
Example 1 was repeated except that the pressure inside the furnace was controlled under a pressure of 0.3 MPa by adjusting the outlet pressure of the exhaust gas.

得られた粉末の平均粒径は25nm,BET法による比表面積は44m2/gであった。磁気特性評価の結果では,Hc=239KA/m,σs =97Am2/Kg,BSFD=1.31であり,粉体の耐酸化性Δσs については23.7%,粉体保磁力分布におけるHc120KA/m以下の割合は9.3%であった。テープ特性評価の結果は,Hcx =265KA/m,SFDx=0.56,SQx=0.75であり,テープの耐酸化性ΔBmは11.8%であった。 The average particle diameter of the obtained powder was 25 nm, and the specific surface area by the BET method was 44 m 2 / g. As a result of the magnetic property evaluation, Hc = 239 KA / m, σs = 97 Am 2 / Kg, BSFD = 1.31, the oxidation resistance Δσs of the powder is 23.7%, and Hc120KA / in the coercive force distribution of the powder. The ratio of m or less was 9.3%. As a result of tape characteristic evaluation, Hcx = 265 KA / m, SFDx = 0.56, SQx = 0.75, and the oxidation resistance ΔBm of the tape was 11.8%.

〔実施例3〕
出発原料として,焼結防止剤としてAlおよびYをFeに対する原子百分率でそれぞれ9.4at.%および1.9 at.%含有した平均粒径20nmのゲーサイトを用いた以外は、実施例1を繰り返した。
Example 3
Example 1 was used except that goethite with an average particle size of 20 nm containing 9.4 at.% And 1.9 at.% Of atomic percentages of Fe and Al as the sintering inhibitor was used as a starting material. Repeated.

得られた粉末の平均粒径は15nm,BET法による比表面積は69m2/gであった。磁気特性評価の結果は,Hc=214KA/m,σs =67Am2/Kg,BSFD=1.77であり,粉体の耐酸化性Δσs は35.3%,粉体保磁力分布におけるHc120KA/m以下の割合は13.2%であった。テープ特性評価の結果は,Hcx =233KA/m,SFDx=0.71,SQx=0.70であり,テープの耐酸化性ΔBmは16.8%であった。 The average particle diameter of the obtained powder was 15 nm, and the specific surface area by BET method was 69 m 2 / g. The results of magnetic property evaluation are Hc = 214 KA / m, σs = 67 Am 2 / Kg, BSFD = 1.77, the oxidation resistance Δσs of the powder is 35.3%, and the Hc120 KA / m in the powder coercive force distribution. The following proportion was 13.2%. As a result of tape characteristic evaluation, Hcx = 233KA / m, SFDx = 0.71, SQx = 0.70, and the oxidation resistance ΔBm of the tape was 16.8%.

〔実施例4〕
出発原料として、CoをFeに対する原子百分率で3.0at.%含有する平均粒径20nmのゲーサイト(ただし,焼結防止剤としてAl=9.1at.%,Y=1.0at.%を含有する)を用いた以外は、実施例1を繰り返した。
Example 4
As a starting material, a goethite with an average particle diameter of 20 nm containing Co at an atomic percentage of Fe of Fe of 3.0 nm (provided Al = 9.1 at.%, Y = 1.0 at.% As a sintering inhibitor) Example 1 was repeated except that was used.

得られた粉末の平均粒径は15nm,BET法による比表面積は66m2/gであった。磁気特性評価の結果では,Hc=210KA/m,σs =71Am2/Kg,BSFD=1.80であり,粉体の耐酸化性Δσs は14.5%,粉体保磁力分布におけるHc120KA/m以下の割合は13.5%であった。テープ特性評価の結果は,Hcx =228KA/m,SFDx=0.73,SQx=0.70であり,テープの耐酸化性ΔBmは8.0%であった。 The average particle diameter of the obtained powder was 15 nm, and the specific surface area by the BET method was 66 m 2 / g. As a result of the magnetic property evaluation, Hc = 210 KA / m, σs = 71 Am 2 / Kg, BSFD = 1.80, the oxidation resistance Δσs of the powder is 14.5%, and Hc120KA / m in the powder coercive force distribution. The following ratio was 13.5%. As a result of tape characteristic evaluation, Hcx = 228KA / m, SFDx = 0.73, SQx = 0.70, and the oxidation resistance ΔBm of the tape was 8.0%.

〔実施例5〕
出発原料として、CoをFeに対する原子百分率で20at.%含有する平均粒径25nmのゲーサイト(ただし,焼結防止剤としてAl=9.1at.%,Y=1.0at.%を含有する)を用いた以外は、実施例1を繰り返した。
Example 5
As a starting material, a goethite with an average particle size of 25 nm containing Co at an atomic percentage of Fe of 20 at.% (But containing Al = 9.1 at.%, Y = 1.0 at.% As a sintering inhibitor) Example 1 was repeated except that was used.

得られた粉末の平均粒径は21nm,BET法による比表面積は55m2/gであった。磁気特性評価の結果では,Hc=221KA/m,σs =104Am2/Kg,BSFD=1.52であり,粉体の耐酸化性Δσs は8.7%,粉体保磁力分布におけるHc120KA/m以下の割合は11.8%であった。テープ特性評価の結果は,Hcx =244KA/m,SFDx=0.68,SQx=0.71であり,テープの耐酸化性ΔBmは4.6%であった。 The average particle diameter of the obtained powder was 21 nm, and the specific surface area by the BET method was 55 m 2 / g. As a result of magnetic property evaluation, Hc = 221 KA / m, σ s = 104 Am 2 / Kg, BSFD = 1.52, the oxidation resistance Δσ s of the powder is 8.7%, and Hc 120 KA / m in the coercive force distribution of the powder. The following proportion was 11.8%. The results of tape characteristic evaluation were Hcx = 244KA / m, SFDx = 0.68, SQx = 0.71, and the oxidation resistance ΔBm of the tape was 4.6%.

〔実施例6〕
出発原料として、NiをFeに対する原子百分率で10at.%含有する平均粒径25nmのゲーサイト(ただし,焼結防止剤としてAl=9.1at.%,Y=1.0at.%を含有する)を用いた以外は、実施例1を繰り返した。
Example 6
As a starting material, a goethite with an average particle diameter of 25 nm containing 10 atomic% of Ni with respect to Fe (however, Al = 9.1 at.% And Y = 1.0 at.% Are included as sintering inhibitors) Example 1 was repeated except that was used.

得られた粉末の平均粒径は20nm,BET法による比表面積は57m2/gであった。磁気特性評価の結果では,Hc=218KA/m,σs =102Am2/Kg,BSFD=1.62であり,粉体の耐酸化性Δσs は9.0%,粉体保磁力分布におけるHc120KA/m以下の割合は12.1%であった。テープ特性評価の結果は,Hcx =230KA/m,SFDx=0.69,SQx=0.71であり,テープの耐酸化性ΔBmは4.9%であった。 The average particle diameter of the obtained powder was 20 nm, and the specific surface area by BET method was 57 m 2 / g. As a result of magnetic property evaluation, Hc = 218 KA / m, σ s = 102 Am 2 / Kg, BSFD = 1.62, the oxidation resistance Δσ s of the powder is 9.0%, and Hc 120 KA / m in the powder coercive force distribution. The following proportion was 12.1%. The tape characteristic evaluation results were Hcx = 230 KA / m, SFDx = 0.69, SQx = 0.71, and the oxidation resistance ΔBm of the tape was 4.9%.

〔比較例1〕
排ガスの出口圧力を大気圧に開放することによって,炉内を加圧しなかった(炉内圧=0.01MPa以下)以外は,実施例1を繰り返した。
[Comparative Example 1]
Example 1 was repeated except that the inside of the furnace was not pressurized by releasing the exhaust gas outlet pressure to atmospheric pressure (furnace pressure = 0.01 MPa or less).

得られた粉末の平均粒径は25nm,BET法による比表面積は45m2/gであった。磁気特性評価の結果は,Hc=158KA/m,σs =117Am2/Kg,BSFD=2.71であり,耐酸化性Δσs については25.2%,粉体保磁力分布におけるHc120KA/m以下の割合は21.1%であった。図2に,本例で得られた磁性粉末について測定されたのヒステリシス曲線および微分曲線を示した。テープ特性評価の結果は,Hcx =172KA/m,SFDx=1.65,SQx=0.63であり,テープの耐酸化性ΔBmは13.0%であった。 The average particle diameter of the obtained powder was 25 nm, and the specific surface area by the BET method was 45 m 2 / g. The results of magnetic property evaluation are Hc = 158 KA / m, σs = 117 Am 2 / Kg, BSFD = 2.71, oxidation resistance Δσs is 25.2%, and Hc120 KA / m or less in the powder coercive force distribution. The proportion was 21.1%. FIG. 2 shows hysteresis curves and differential curves measured for the magnetic powder obtained in this example. As a result of tape characteristic evaluation, Hcx = 172KA / m, SFDx = 1.65, SQx = 0.63, and the oxidation resistance ΔBm of the tape was 13.0%.

上記の各例での製造条件,得られた磁性粉末のバルク特性および磁気特性,並びにテープ特性を表1に示した。   Table 1 shows the manufacturing conditions in each of the above examples, the bulk characteristics and magnetic characteristics of the obtained magnetic powder, and the tape characteristics.

Figure 0004599574
Figure 0004599574

これらの例から明らかなように,実施例1や2のように窒化を加圧下で行った場合には,非加圧下の比較例1に比べて平均粒径や比表面積が同等でも,磁気特性特に保磁力Hcが高くなって120KA/m以上となり,粉体の保磁力分布BSFDも2以下になる。この特徴はテープ特性にも現れており,高Hcx で低SFDxとなる。特に注目すべき点は,実施例1〜2の方が比較例1に比較して,低Hc成分の比率が大幅に減少している点である。このことは,実施例1〜2ではFe162相以外の異相が少なく,実質的にFe16N2相からなる粉体が得られたことを示している。また,実施例4〜5のように適量のCoやNiを含むものでは粉体のΔσs が低下し,これに伴ってテープのΔBmも低下し,耐酸化性が向上していることがわかる。 As is clear from these examples, when nitriding was performed under pressure as in Examples 1 and 2, the magnetic properties were the same even though the average particle size and specific surface area were the same as in Comparative Example 1 under no pressure. In particular, the coercive force Hc is increased to 120 KA / m or more, and the coercive force distribution BSFD of the powder is also 2 or less. This feature also appears in the tape characteristics, which is high Hcx and low SFDx. Of particular note is that the ratio of the low Hc component in Examples 1 and 2 is significantly lower than that in Comparative Example 1. This embodiment 1-2 in Fe 16 N 2 is less heterogeneous phases other than phase, shows that the powder consisting of substantially Fe 16N2 phase was obtained. Further, it can be seen that the powders containing appropriate amounts of Co and Ni as in Examples 4 to 5 have a reduced Δσs of the powder, and accordingly, the ΔBm of the tape is also lowered, and the oxidation resistance is improved.

〔実施例7〕
実施例1で得られた窒化鉄系磁性粉末を、磁性層と非磁性層との重層構造を有する磁気テープの作製試験に供し、電磁変換測定と保存安定性評価を行った。磁性塗料の作製については、窒化鉄系磁性粉末100重量部に対し、以下の材料を下記組成となるような割合で配合した。また、非磁性塗料の作製においては、非磁性粉末85重量部に対し、以下の材料を下記組成となるような割合で配合した。いずれの混合物もニーダーおよびサンドグラインダーサンドグラインダー を用いて、混練、分散を行った。得られた磁性層形成用塗布液および非磁性層(下層)形成用塗布液を、アラミド支持体からなるベースフイルム上にそれぞれ、下層厚が2.0μm、磁性層厚が0.20μmの目標厚みとなるように塗布し、磁性層が湿潤状態にあるうちに、磁場をかけて配向させ、乾燥、カレンダーを行い、重層構造の磁気テープを作製した。
Example 7
The iron nitride magnetic powder obtained in Example 1 was subjected to a production test of a magnetic tape having a multilayer structure of a magnetic layer and a nonmagnetic layer, and an electromagnetic conversion measurement and storage stability evaluation were performed. For the production of the magnetic coating material, the following materials were blended in a proportion of the following composition with respect to 100 parts by weight of the iron nitride magnetic powder. Moreover, in preparation of a nonmagnetic coating material, the following materials were blended at a ratio such that the following composition was added to 85 parts by weight of the nonmagnetic powder. All the mixtures were kneaded and dispersed using a kneader and a sand grinder. The obtained coating liquid for forming a magnetic layer and the coating liquid for forming a nonmagnetic layer (lower layer) are each formed on a base film made of an aramid support and have a target layer thickness of 2.0 μm and a magnetic layer thickness of 0.20 μm. While the magnetic layer was in a wet state, it was oriented by applying a magnetic field, dried and calendered to produce a multi-layered magnetic tape.

〔磁性塗料の組成〕
窒化鉄系磁性粉末 100 重量部
カーボンブラック 5 重量部
アルミナ 3 重量部
塩化ビニル樹脂(MR110 ) 15重量部
ポリウレタン樹脂(UR8200) 15 重量部
ステアリン酸 1 重量部
アセチルアセトン 1 重量部
メチルエチルケトン 190 重量部
シクロヘキサノン 80 重量部
トルエン 110 重量部
[Composition of magnetic paint]
Iron nitride magnetic powder 100 parts carbon black 5 parts alumina 3 parts vinyl chloride resin (MR110) 15 parts polyurethane resin (UR8200) 15 parts by weight stearic acid 1 part by weight acetylacetone 1 part by weight methyl ethyl ketone 190 parts by weight cyclohexanone 80 parts by weight 110 parts by weight of toluene

〔非磁性塗料の組成〕
非磁性粉末α-Fe2O3 85重量部
カーボンブラック 20 重量部
アルミナ 3 重量部
塩化ビニル樹脂(MR110 ) 15重量部
ポリウレタン樹脂(UR8200) 15 重量部
メチルエチルケトン 190 重量部
シクロヘキサノン 80 重量部
トルエン 110 重量部
[Composition of non-magnetic paint]
Nonmagnetic powder α-Fe 2 O 3 85 parts by weight Carbon black 20 parts by weight Alumina 3 parts by weight Vinyl chloride resin (MR110) 15 parts by weight Polyurethane resin (UR8200) 15 parts by weight Methyl ethyl ketone 190 parts by weight Cyclohexanone 80 parts by weight Toluene 110 parts by weight

得られた磁気テープの磁気特性、電磁変換特性(C/N、出力)を測定した。そのうちC/N比は記録ヘッドをドラムテスターに取り付けて、デジタル信号を記録波長0.35μmで記録した。そのさい、MRヘッドを使用して再生信号を測定し、ノイズは変調ノイズを測定した。評価は、比較例1で得られた窒化鉄系磁性粉末を用いた場合の出力、C/Nを0dBとして表示した。これらの評価結果を表2に示した。   The magnetic characteristics and electromagnetic conversion characteristics (C / N, output) of the obtained magnetic tape were measured. Of these, the C / N ratio was obtained by attaching a recording head to a drum tester and recording a digital signal at a recording wavelength of 0.35 μm. At that time, the reproduction signal was measured using an MR head, and the noise was measured as modulation noise. In the evaluation, the output when the iron nitride magnetic powder obtained in Comparative Example 1 was used, and C / N was displayed as 0 dB. The evaluation results are shown in Table 2.

〔実施例8〜12〕
実施例2〜6で得られた窒化鉄系磁性粉末を用いた以外は、実施例7を繰り返し、実施例7と同様の評価を行った。それらの結果を表2に示した。
[Examples 8 to 12]
Example 7 was repeated except that the iron nitride magnetic powder obtained in Examples 2 to 6 was used, and the same evaluation as in Example 7 was performed. The results are shown in Table 2.

〔比較例2〕
比較例1で得られた窒化鉄系磁性粉末を用いた以外は、実施例7を繰り返し、実施例7と同様の評価を行った。その結果を表2に併記した。
[Comparative Example 2]
Example 7 was repeated except that the iron nitride magnetic powder obtained in Comparative Example 1 was used, and the same evaluation as in Example 7 was performed. The results are also shown in Table 2.

Figure 0004599574
Figure 0004599574

表2の結果から、と比較例2 を比較すると、実施例1〜6の窒化鉄系磁性粉末を使用した実施例7〜12重層テープは、比較例2のものに比べて出力、ノイズ、C/Nが改善されており、良好な磁気記録媒体が得られたことがわかる。   From the results shown in Table 2, when Comparative Example 2 is compared, Examples 7-12 multilayer tapes using the iron nitride-based magnetic powders of Examples 1-6 have higher output, noise, and C than those of Comparative Example 2. / N is improved, indicating that a good magnetic recording medium was obtained.

本発明に従う窒化鉄系磁性粉末(実施例1のもの)を測定して得られたヒステリシス曲線および微分曲線である。It is a hysteresis curve and a differential curve obtained by measuring the iron nitride magnetic powder (of Example 1) according to the present invention. 比較例の窒化鉄系磁性粉末(比較例1のもの)を測定して得られたヒステリシス曲線および微分曲線である。It is a hysteresis curve and a differential curve obtained by measuring the iron nitride-based magnetic powder of Comparative Example (Comparative Example 1).

Claims (7)

0.3MPa以上の加圧下で窒化処理されてなる平均粒子径が20nm以下である、Fe162相主体の磁性粉末であって、保磁力Hcが200KA/m以上で粉体保磁力分布BSFDが2以下であることを特徴とする窒化鉄系磁性粉末。 A magnetic powder mainly composed of Fe 16 N 2 phase having an average particle diameter of 20 nm or less obtained by nitriding under a pressure of 0.3 MPa or more, and having a coercive force Hc of 200 KA / m or more and a powder coercive force distribution BSFD Is an iron nitride-based magnetic powder, wherein 粉体保磁力分布のうち、Hc120KA/m以下の割合が15%以下である請求項1に記載の窒化鉄系磁性粉末。   2. The iron nitride magnetic powder according to claim 1, wherein the proportion of Hc120KA / m or less in the powder coercivity distribution is 15% or less. CoまたはNiの1種または2種を、Feに対する原子百分率で合計0.1〜30at.%含有する請求項1または2に記載の窒化鉄系磁性粉末。   One or two kinds of Co or Ni are added in a total percentage of 0.1 to 30 at. The iron nitride magnetic powder according to claim 1 or 2, comprising: 耐酸化性指標であるΔσsが15%以下である請求項3に記載の窒化鉄系磁性粉末。ただし、Δσsは試料を恒温恒湿器内で60℃、90%RHにおいて一週間保存後、保存前後の飽和磁化値σsから下式に従って算出した%である。
100×(保存前の飽和磁化値−保存後の飽和磁化値)/保存前の飽和磁化値
The iron nitride-based magnetic powder according to claim 3, wherein Δσs, which is an oxidation resistance index, is 15% or less. However, Δσs is% calculated according to the following equation from the saturation magnetization value σs before and after storage after the sample was stored in a constant temperature and humidity chamber at 60 ° C. and 90% RH for one week.
100 × (saturation magnetization value before storage−saturation magnetization value after storage) / saturation magnetization value before storage
Fe162相をXRDピーク積分割合で80%以上含有する請求項1ないし4のいずれかに記載の窒化鉄系磁性粉末。 The iron nitride based magnetic powder according to any one of claims 1 to 4, which contains Fe 16 N 2 phase in an XRD peak integral ratio of 80% or more. 焼結防止剤として、Feに対する原子百分率で5〜30at.%のAlと、Feに対する原子百分率で0.5〜10at.%の希土類元素(Yを含む)とを組み合わせて含有する請求項1ないし5のいずれかに記載の窒化鉄系磁性粉末。   As a sintering inhibitor, an atomic percentage of 5 to 30 at. % Al and atomic percentage with respect to Fe, 0.5 to 10 at. 6. The iron nitride-based magnetic powder according to claim 1, wherein the iron nitride-based magnetic powder contains a rare earth element (including Y) in combination. 焼結防止剤として、Feに対する原子百分率で1〜10at.%のSiと、Feに対する原子百分率で0.5〜10at.%の希土類元素(Yを含む)とを組み合わせて含有する請求項1ないし5のいずれかに記載の窒化鉄系磁性粉末。   As a sintering inhibitor, 1 to 10 at. % Si and atomic percentage with respect to Fe, 0.5 to 10 at. 6. The iron nitride-based magnetic powder according to claim 1, wherein the iron nitride-based magnetic powder contains a rare earth element (including Y) in combination.
JP2004317193A 2003-11-27 2004-10-29 Iron nitride magnetic powder Expired - Fee Related JP4599574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004317193A JP4599574B2 (en) 2003-11-27 2004-10-29 Iron nitride magnetic powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003396981 2003-11-27
JP2004317193A JP4599574B2 (en) 2003-11-27 2004-10-29 Iron nitride magnetic powder

Publications (2)

Publication Number Publication Date
JP2005183932A JP2005183932A (en) 2005-07-07
JP4599574B2 true JP4599574B2 (en) 2010-12-15

Family

ID=34797280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317193A Expired - Fee Related JP4599574B2 (en) 2003-11-27 2004-10-29 Iron nitride magnetic powder

Country Status (1)

Country Link
JP (1) JP4599574B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216178A (en) * 2005-02-04 2006-08-17 Hitachi Maxell Ltd Magnetic tape
JP4779092B2 (en) * 2005-07-28 2011-09-21 Dowaエレクトロニクス株式会社 Magnetic powder suitable for low noise media
JP4758203B2 (en) * 2005-11-14 2011-08-24 Dowaエレクトロニクス株式会社 High coercive force iron-based magnetic powder and magnetic recording medium
JP4769130B2 (en) * 2006-06-14 2011-09-07 Dowaエレクトロニクス株式会社 Iron nitride magnetic powder, method for producing the same, and magnetic recording medium
JP2009249682A (en) * 2008-04-04 2009-10-29 Nec Tokin Corp Hard magnetic alloy and method for producing the same
AU2012296365B2 (en) 2011-08-17 2016-09-15 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
CN105074836B (en) 2013-02-07 2018-01-05 明尼苏达大学董事会 Nitrided iron permanent magnet and the technology for forming nitrided iron permanent magnet
JP2016536777A (en) * 2013-06-27 2016-11-24 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Magnet containing iron nitride material and iron nitride material
AU2015235987B2 (en) 2014-03-28 2017-03-16 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
CN106796834A (en) 2014-08-08 2017-05-31 明尼苏达大学董事会 Multilayer iron-nitride retentive material
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
CN107075674A (en) 2014-08-08 2017-08-18 明尼苏达大学董事会 Iron-nitride retentive material is formed using chemical vapor deposition or liquid phase epitaxy
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
JP6405881B2 (en) * 2014-10-20 2018-10-17 株式会社デンソー Method for producing magnetic nanoparticles
US12018386B2 (en) 2019-10-11 2024-06-25 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112019A (en) * 1992-09-28 1994-04-22 Asahi Chem Ind Co Ltd Nitride magnetic material
JPH09268351A (en) * 1996-12-02 1997-10-14 Seiko Epson Corp Rare earth-iron permanent magnet alloy
JP2000277311A (en) * 1999-03-25 2000-10-06 Toyota Central Res & Dev Lab Inc Iron nitride-based magnetic powder material, manufacture thereof, and magnetic recording medium
WO2003079333A1 (en) * 2002-03-18 2003-09-25 Hitachi Maxell, Ltd. Magnetic recording medium and magnetic recording cartridge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112019A (en) * 1992-09-28 1994-04-22 Asahi Chem Ind Co Ltd Nitride magnetic material
JPH09268351A (en) * 1996-12-02 1997-10-14 Seiko Epson Corp Rare earth-iron permanent magnet alloy
JP2000277311A (en) * 1999-03-25 2000-10-06 Toyota Central Res & Dev Lab Inc Iron nitride-based magnetic powder material, manufacture thereof, and magnetic recording medium
WO2003079333A1 (en) * 2002-03-18 2003-09-25 Hitachi Maxell, Ltd. Magnetic recording medium and magnetic recording cartridge

Also Published As

Publication number Publication date
JP2005183932A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
US7241501B2 (en) Iron nitride magnetic powder and method of producing the powder
JP4791513B2 (en) Iron nitride magnetic powder and magnetic recording medium using the same
US6964811B2 (en) Magnetic powder, method for producing the same and magnetic recording medium comprising the same
JP4599574B2 (en) Iron nitride magnetic powder
JP4534059B2 (en) Iron nitride magnetic powder and method for producing the same
JP2006092672A (en) Magnetic tape
JP3848486B2 (en) Iron nitride magnetic powder material for magnetic recording medium, method for producing the same, and magnetic recording medium
JP2000277311A5 (en)
Sasaki et al. Development of NanoCAP technology for high-density recording
JP2008108943A (en) Magnetic powder and magnetic recording medium using it
JP4057593B2 (en) Iron nitride magnetic powder, method for producing the same, and magnetic recording medium
US7074281B2 (en) Magnetic powder for magnetic recording
JP2011096312A (en) Iron nitride magnetic powder and magnetic recording medium using the same
JP2008084419A (en) Magnetic recording medium
JP5556982B2 (en) Ferromagnetic metal particle powder, method for producing the same, and magnetic recording medium
JP2011227974A (en) Iron nitride based magnetic powder and magnetic recording medium using the same
JP2009009646A (en) Magnetic recording medium
JP4070147B1 (en) Magnetic recording medium
JPH0349026A (en) Magnetic powder of acicular alloy and production thereof and magnetic recording medium formed by using this powder
JP4669916B2 (en) Method for producing magnetic powder for magnetic recording
JP2011129172A (en) Iron nitride-based magnetic powder and magnetic recording medium using the same
JP2009224611A (en) Iron nitride-based magnetic powder and magnetic recording medium using the same
JP2007149258A (en) Magnetic recording medium
JP4554875B2 (en) Manufacturing method of magnetic tape
JP2008071425A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100903

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees