JP4057593B2 - Iron nitride magnetic powder, method for producing the same, and magnetic recording medium - Google Patents

Iron nitride magnetic powder, method for producing the same, and magnetic recording medium Download PDF

Info

Publication number
JP4057593B2
JP4057593B2 JP2005036020A JP2005036020A JP4057593B2 JP 4057593 B2 JP4057593 B2 JP 4057593B2 JP 2005036020 A JP2005036020 A JP 2005036020A JP 2005036020 A JP2005036020 A JP 2005036020A JP 4057593 B2 JP4057593 B2 JP 4057593B2
Authority
JP
Japan
Prior art keywords
reduction rate
magnetic
magnetic powder
coercive force
saturation magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005036020A
Other languages
Japanese (ja)
Other versions
JP2006222357A (en
Inventor
直樹 臼杵
勇治 佐々木
幹雄 岸本
和貴 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2005036020A priority Critical patent/JP4057593B2/en
Publication of JP2006222357A publication Critical patent/JP2006222357A/en
Application granted granted Critical
Publication of JP4057593B2 publication Critical patent/JP4057593B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、窒化鉄系磁性粉末とその製造方法に関し、またこの磁性粉末を用いた磁気記録媒体、特にデジタルビデオテープ、コンピュータ用バックアップテープ等、高密度記録が要求される磁気記録媒体に関するものである。

The present invention relates to an iron nitride-based magnetic powder and a method for producing the same, and also relates to a magnetic recording medium using the magnetic powder, particularly to a magnetic recording medium requiring high-density recording such as a digital video tape and a computer backup tape. is there.

塗布型磁気記録媒体、つまり、非磁性支持体上に磁性粉末と結合剤を含有する磁性層を有する磁気記録媒体は、記録再生方式がアナログ方式からデジタル方式への移行に伴い、一層の記録密度の向上が要求されている。特に、高記録密度用のビデオテープやコンピュータ用のバックアップテープ等では、この要求が、年々高まってきている。

Coating type magnetic recording media, that is, magnetic recording media having a magnetic layer containing a magnetic powder and a binder on a non-magnetic support, have a higher recording density as the recording / reproducing system shifts from analog to digital. Improvement is demanded. In particular, this demand is increasing year by year for video tapes for high recording density, backup tapes for computers, and the like.

記録密度の向上に不可欠な短波長記録に対応するためには、記録時の厚み損失を小さくするため、磁性層の厚さを300nm以下、特に100nm以下に薄膜化するのが効果的である。このような高記録密度媒体に用いられる再生用磁気ヘッドとしては、高出力が得られるMRヘッドが一般に用いられる。

In order to cope with short wavelength recording, which is indispensable for improving the recording density, it is effective to reduce the thickness of the magnetic layer to 300 nm or less, particularly 100 nm or less in order to reduce the thickness loss during recording. As a reproducing magnetic head used in such a high recording density medium, an MR head capable of obtaining a high output is generally used.

また、ノイズ低減のため、磁性粉末においては、年々、微粒子化がはかられ、現在、粒子径が100nm程度の針状のメタル磁性粉末が実用化されている。

さらに、短波長記録時の減磁による出力低下を防止するために、年々、高保磁力化がはかられ、鉄−コバルト合金化により、238.9A/m(3,000Oe)程度の保磁力が実現されている(特許文献1〜3参照)。

Further, in order to reduce noise, the magnetic powder is becoming finer every year, and at present, acicular metal magnetic powder having a particle diameter of about 100 nm is in practical use.

Furthermore, in order to prevent a decrease in output due to demagnetization during short wavelength recording, a high coercive force has been achieved year by year. It is realized (see Patent Documents 1 to 3).

しかし、針状磁性粒子を用いる磁気記録媒体では、保磁力が形状によるため、上記粒子径からのさらなる微粒子化は困難になってきている。すなわち、さらに微粒子化すると、比表面積が著しく大きくなり、飽和磁化が大きく低下する。

そのため、金属または合金磁性粉末の最大の特徴である高飽和磁化のメリットが損なわれ、金属または合金を使用すること自体意味がなくなる。

However, in a magnetic recording medium using acicular magnetic particles, since the coercive force depends on the shape, it is difficult to further reduce the particle size from the above particle diameter. That is, when the particle size is further reduced, the specific surface area is remarkably increased and the saturation magnetization is greatly reduced.

Therefore, the merit of high saturation magnetization, which is the greatest feature of metal or alloy magnetic powder, is lost, and the use of metal or alloy itself is meaningless.

そこで、上記針状の磁性粉末とは全く異なる磁性粉末として、希土類−遷移金属系粒状磁性粉末、例えば、粒状ないし楕円状の希土類−鉄−ホウ素系磁性粉末を使用した磁気記録媒体が提唱されている(特許文献4参照)。

この磁気記録媒体は、磁性粉末の超微粒子化が可能で、かつ高飽和磁化および高保磁力を実現でき、高記録密度化に大きく貢献するものである。

また、粒子形状が針状でない鉄系磁性粉末として、粒子形状が不定形で、Fe162 相を主相としたBET比表面積が10m2 /g程度の窒化鉄系磁性粉末を用いた磁気記録媒体も提案されている(特許文献5参照)。

Therefore, a magnetic recording medium using a rare earth-transition metal granular magnetic powder, for example, a granular or elliptical rare earth-iron-boron magnetic powder as a magnetic powder completely different from the acicular magnetic powder has been proposed. (See Patent Document 4).

This magnetic recording medium can make ultrafine particles of magnetic powder, can realize high saturation magnetization and high coercive force, and greatly contributes to high recording density.

Further, as an iron-based magnetic powder whose particle shape is not needle-shaped, a magnetic material using an iron nitride-based magnetic powder having an irregular particle shape and a BET specific surface area of about 10 m 2 / g with a Fe 16 N 2 phase as a main phase. A recording medium has also been proposed (see Patent Document 5).

特開平3−49026号公報(第4頁)JP-A-3-49026 (Page 4) 特開平10−83906号公報(第3頁)JP 10-83906 A (page 3) 特開平10−340805号公報(第2頁)Japanese Patent Laid-Open No. 10-340805 (second page) 特開2001−181754号公報(第4頁、第22頁)JP 2001-181754 A (4th page, 22nd page) 特開2000−277311号公報(第3頁、図4)Japanese Unexamined Patent Publication No. 2000-277311 (page 3, FIG. 4)

しかし、特許文献4の希土類−鉄−ホウ素系磁性粉末は、希土類化合物による高い磁気異方性とコアとなる鉄系材料による高飽和磁化のバランスの上で成立する複合材料で、これに新たに改良を加える、例えばその保磁力をより高めようとしても、磁気記録媒体に最適な分散性や化学安定性を維持した状態で上記磁気特性を改良することは難しい。

However, the rare earth-iron-boron magnetic powder disclosed in Patent Document 4 is a composite material formed on the balance of high magnetic anisotropy due to the rare earth compound and high saturation magnetization due to the iron-based material as the core. Even if an improvement is made, for example, to increase the coercive force, it is difficult to improve the magnetic properties while maintaining the optimum dispersibility and chemical stability for the magnetic recording medium.

また、特許文献5の窒化鉄系磁性粉末は、その実施例中にBET比表面積が10〜22m2 /gのものが示されているが、粒子サイズが大きすぎ、低ノイズ化を目的とした高密度磁気記録用には適さない。

さらに、特許文献5の窒化鉄系磁性粉末は、飽和磁化が高いことを最大の特徴としており、その実施例中に190〜200Am2 /kg(190〜200emu/g)のものが示されている。このように飽和磁化が高すぎる磁性粉末は、高密度記録用の磁気記録媒体には不向きである。なぜなら、飽和磁化が高すぎると媒体の磁束密度も大きくなりすぎ、記録減磁が顕著になるためである。この傾向は記録波長が短くなるほど顕著になるため、高密度記録用には適さない。

In addition, the iron nitride magnetic powder of Patent Document 5 has a BET specific surface area of 10 to 22 m 2 / g in the examples. However, the particle size is too large and the object is to reduce noise. Not suitable for high-density magnetic recording.

Further, the iron nitride magnetic powder of Patent Document 5 is characterized by high saturation magnetization, and in the examples, those of 190 to 200 Am 2 / kg (190 to 200 emu / g) are shown. . Thus, a magnetic powder with too high saturation magnetization is not suitable for a magnetic recording medium for high-density recording. This is because if the saturation magnetization is too high, the magnetic flux density of the medium becomes too large and recording demagnetization becomes remarkable. Since this tendency becomes more prominent as the recording wavelength becomes shorter, it is not suitable for high-density recording.

特に、高密度記録媒体では、記録減磁を低減するため、磁性粉末の飽和磁化を適度に低くし、かつ磁性層厚さを薄くすることが必須になっている。

磁束密度が低くなると、媒体表面からの磁束が小さくなり、再生出力が小さくなるが、MRヘッド等、最近の磁気ヘッド技術のめざましい進歩により、小さな磁束でも十分高い感度で再生できるようになってきた。したがって、高密度記録を達成するためには、磁性粉末の飽和磁化としては、従来必要とされてきた値よりも低い適度な値に設定し、保磁力をより高くすることが必要となっている。

In particular, in a high-density recording medium, in order to reduce recording demagnetization, it is essential to appropriately lower the saturation magnetization of the magnetic powder and reduce the thickness of the magnetic layer.

When the magnetic flux density is lowered, the magnetic flux from the medium surface is reduced and the reproduction output is reduced. However, due to remarkable progress in recent magnetic head technologies such as MR heads, even small magnetic fluxes can be reproduced with sufficiently high sensitivity. . Therefore, in order to achieve high density recording, it is necessary to set the saturation magnetization of the magnetic powder to an appropriate value lower than the conventionally required value and to increase the coercive force. .

また、高密度記録媒体では、保存安定性がきわめて重要になってくる。保存安定性が悪いと、一定時間経過後の飽和磁化の減少率が大きくなり、飽和磁化の値が小さくなる。こうなると、初期状態よりも磁束密度が低くなってしまい、媒体表面からの磁束が小さくなり再生出力が小さくなる結果、読み取りが不可能になる。

また、高密度記録媒体の保存安定性が悪いと、一定時間経過後の保磁力の減少率も大きくなる。保磁力が低くなると、外部磁場により記録した情報が消去されやすくなり、その結果、記録情報が保存できなくなる。

In high density recording media, storage stability is extremely important. If the storage stability is poor, the rate of decrease in saturation magnetization after a certain period of time increases and the value of saturation magnetization decreases. When this happens, the magnetic flux density becomes lower than in the initial state, the magnetic flux from the medium surface becomes smaller, and the reproduction output becomes smaller, so that reading becomes impossible.

In addition, if the storage stability of the high-density recording medium is poor, the rate of decrease in coercive force after a certain period of time also increases. When the coercive force is lowered, information recorded by the external magnetic field is easily erased, and as a result, the recorded information cannot be stored.

保存安定性を示す指標として、一般的に、60℃,90%RHの雰囲気下に7日間保持したのちの飽和磁化減少率(Δσs1 )および保磁力減少率(ΔHc1 )、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )および保磁力減少率(ΔHc2 )が用いられている。

Δσs1 、ΔHc1 は初期の減少率で、この値が大きいと記録情報が短期間で読み取れなくなる。Δσs2 、ΔHc2 は長期にわたり保存したときの減少率で、この値が小さいと極めて長い時間保存したのちも読み取ることが可能であることを示す。理想としては、Δσs1 、Δσs2 、ΔHc1 、ΔHc2 いずれの値も小さいほどよい。

As an index indicating storage stability, in general, the saturation magnetization reduction rate (Δσs 1 ) and coercivity reduction rate (ΔHc 1 ) after holding in an atmosphere of 60 ° C. and 90% RH for 7 days, As a reference, a saturation magnetization reduction rate (Δσs 2 ) and a coercivity reduction rate (ΔHc 2 ) when 7 days have passed since then are used.

Δσs 1 and ΔHc 1 are initial reduction rates. If this value is large, the recorded information cannot be read in a short period of time. Δσs 2 and ΔHc 2 are reduction rates when stored over a long period of time. If this value is small, it indicates that reading is possible even after storage for an extremely long time. Ideally, the smaller values of Δσs 1 , Δσs 2 , ΔHc 1 , and ΔHc 2 are better.

保存安定性を改善する方法の一つとして、鉄と窒素を少なくとも構成元素とした窒化鉄系磁性粉末の製造にあたり、還元処理および窒化処理を施す前の鉄系酸化物または水酸化物からなる原料粒子の表面に、希土類金属元素、アルミニウム、シリコンのうちの少なくともひとつの元素を被着処理することが、知られている。

しかしながら、この方法で原料粒子の表面に上記元素を多く被着させるようにすると、窒化処理時に窒化反応が進まなくなり、保磁力が高くならない。この理由は、窒化反応を起こすための窒素が粒子表面の被着相を通ることができないためと考えられる。このため窒化反応を進みやすくするには、粒子表面の被着相を薄くする必要があるが、この場合、保存安定性の改善の面で好結果が得られない。

As one of the methods for improving the storage stability, in the production of iron nitride-based magnetic powder containing iron and nitrogen as at least constituent elements, a raw material comprising an iron-based oxide or hydroxide before being subjected to reduction treatment and nitriding treatment It is known to deposit at least one element of rare earth metal elements, aluminum, and silicon on the surface of particles.

However, if a large amount of the above elements is deposited on the surface of the raw material particles by this method, the nitriding reaction does not proceed during the nitriding treatment, and the coercive force does not increase. The reason for this is considered that nitrogen for causing the nitriding reaction cannot pass through the deposition phase on the particle surface. For this reason, in order to facilitate the nitriding reaction, it is necessary to reduce the deposition phase on the particle surface, but in this case, good results cannot be obtained in terms of improving storage stability.

本発明は、このような事情に照らし、粒子サイズが小さく、かつ極めて高い保磁力を有し、しかも高密度記録に最適な飽和磁化を有し、さらに保存安定性にすぐれた窒化鉄系磁性粉末を得ること、またこの磁性粉末を使用することにより、すぐれた磁気特性を持ち、かつ保存安定性の良好な磁気記録媒体を得ることを課題としている。

In light of these circumstances, the present invention has a small particle size, an extremely high coercive force, an optimum saturation magnetization for high-density recording, and an iron nitride-based magnetic powder with excellent storage stability. It is another object of the present invention to obtain a magnetic recording medium having excellent magnetic characteristics and good storage stability by using the magnetic powder.

本発明者らは、上記課題を克服するため、鋭意検討した結果、窒化鉄系磁性粉末の製造にあたり、還元処理および窒化処理を施したのちの粒子に対し、希土類金属元素、アルミニウムうちの少なくともひとつの元素を含む無機化合物や、有機カルボン酸、有機スルホン酸、有機リン酸、これらの酸のエステル化物もしくはアミド化物からなる有機化合物を、粒子表面に被着させる被着処理を施すことにより、またこの被着処理後にさらに不活性ガス雰囲気中で特定の熱処理を施すことにより、粒子サイズが小さく、かつ極めて高い保磁力を有し、しかも高密度記録に最適な飽和磁化を有し、さらに保存安定性にすぐれた窒化鉄系磁性粉末が得られること、またこの窒化鉄系磁性粉末を用いることにより、すぐれた磁気特性を持ち、かつ保存安定性の良好な磁気記録媒体が得られることを見出し、本発明を完成するに至ったものである。

The present inventors have found that in order to overcome the above problems, a result of intensive studies, in the production of iron nitride-based magnetic powder, with respect to particles after subjected to reduction treatment and nitriding treatment, the rare earth metal element, at least one of aluminum By subjecting an inorganic compound containing one element, an organic carboxylic acid, an organic sulfonic acid, an organic phosphoric acid, an organic compound comprising an esterified product or an amidated product of these acids to the particle surface, In addition, by applying a specific heat treatment in an inert gas atmosphere after this deposition treatment, the particle size is small, the coercive force is extremely high, and the saturation magnetization is optimal for high-density recording, and further storage. It is possible to obtain an iron nitride magnetic powder with excellent stability, and by using this iron nitride magnetic powder, it has excellent magnetic properties and is preserved. Found that good magnetic recording medium of the qualitative is obtained in which the present invention has been completed.

すなわち、本発明は、鉄と窒素を少なくとも構成元素とし、希土類金属元素、アルミニウムうちの少なくともひとつの元素を含有し、かつFe162 相を少なくとも含み、鉄に対する窒素の含有量が1.0〜20.0原子%であり、粒子の平均サイズが5〜20nmの範囲の粒状ないし楕円状である窒化鉄系磁性粉末の製造にあたり、Fe162 相の生成後に、希土類金属元素、アルミニウムうちの少なくともひとつの元素を含む無機化合物または/および有機カルボン酸、有機スルホン酸、有機リン酸、これらの酸のエステル化物もしくはアミド化物からなる有機化合物を粒子表面に被着させる被着処理を行うことを特徴とする窒化鉄系磁性粉末の製造方法に係るものである。

また、本発明は、無機化合物または/および有機化合物を粒子表面に被着させる被着処理を行ったのち、不活性ガス中または酸素ガスと不活性ガスとの混合ガス中で、30〜150℃で熱処理を行う上記構成の窒化鉄系磁性粉末の製造方法に係るものである。

That is, the present invention comprises iron and nitrogen as at least constituent elements, contains at least one element of a rare earth metal element and aluminum , contains at least an Fe 16 N 2 phase, and has a nitrogen content of 1. In the production of an iron nitride magnetic powder having an average particle size of 0 to 20.0 atomic% and an average particle size in the range of 5 to 20 nm, the rare earth metal element and aluminum are formed after the formation of the Fe 16 N 2 phase. An inorganic compound containing at least one element of the above or / and an organic carboxylic acid, organic sulfonic acid, organic phosphoric acid, or an organic compound comprising an esterified product or an amidated product of these acids applied to the particle surface. The present invention relates to a method for producing an iron nitride magnetic powder.

Further, in the present invention, after performing an adhesion treatment for depositing an inorganic compound and / or an organic compound on the particle surface, in an inert gas or a mixed gas of an oxygen gas and an inert gas, a temperature of 30 to 150 ° C. This relates to a method for producing an iron nitride-based magnetic powder having the above-described configuration in which heat treatment is performed.

さらに、本発明は、上記構成の製造方法により得られた、鉄と窒素を少なくとも構成元素とし、希土類金属元素、アルミニウムうちの少なくともひとつの元素を含有し、かつFe162 相を少なくとも含み、鉄に対する窒素の含有量が1.0〜20.0原子%であり、粒子の平均サイズが5〜20nmの範囲の粒状ないし楕円状である窒化鉄系磁性粉末を提供できるものである。

特に、飽和磁化が80〜120Am2 /kg(80〜120emu/g)、保磁力が160〜280kA/m(2,000〜3,500Oe)であり、60℃,90%RHの雰囲気下に7日間保持したのちの飽和磁化減少率(Δσs1 )が0.1〜11%、同保磁力減少率(ΔHc1 )が0.1〜10%、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が0.1〜10%、同保磁力減少率(ΔHc2 )が0.1〜9%である上記構成の窒化鉄系磁性粉末を提供できるものである。

Furthermore, the present invention is obtained by the production method of the above-described configuration, the iron and nitrogen and at least an element, rare earth element contains at least one element selected from aluminum, and comprises at least a Fe 16 N 2 phase It is possible to provide an iron nitride magnetic powder having a granular or elliptical shape in which the content of nitrogen relative to iron is 1.0 to 20.0 atomic% and the average particle size is in the range of 5 to 20 nm.

In particular, the saturation magnetization is 80 to 120 Am 2 / kg (80 to 120 emu / g), the coercive force is 160 to 280 kA / m (2,000 to 3,500 Oe), and it is 7 in an atmosphere of 60 ° C. and 90% RH. The saturation magnetization reduction rate (Δσs 1 ) after holding for 0.1 days is 0.1 to 11%, the coercive force reduction rate (ΔHc 1 ) is 0.1 to 10%, and 7 days have passed since the seventh day. In this case, the iron nitride magnetic powder having the above-described structure, in which the saturation magnetization reduction rate (Δσs 2 ) is 0.1 to 10% and the coercive force reduction rate (ΔHc 2 ) is 0.1 to 9%, can be provided. .

また、本発明は、上記各構成の窒化鉄系磁性粉末を用いた磁気記録媒体、特に、保磁力が180〜300kA/m(2,300〜3,800Oe)で、60℃,90%RHの雰囲気下に7日間保持したのちの飽和磁化減少率(Δσs1 )が0.01〜10%、同保磁力減少率(ΔHc1 )が0.01〜5%、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が0.01〜8%、同保磁力減少率(ΔHc2 )が0.01〜4%である上記構成の磁気記録媒体を提供できるものである。

The present invention also provides a magnetic recording medium using the iron nitride-based magnetic powder having the above-described configuration, particularly a coercive force of 180 to 300 kA / m (2,300 to 3,800 Oe), 60 ° C. and 90% RH. The saturation magnetization decrease rate (Δσs 1 ) after being held in the atmosphere for 7 days is 0.01 to 10%, the coercive force decrease rate (ΔHc 1 ) is 0.01 to 5%, based on the 7th day, and further What can provide a magnetic recording medium having the above-described structure in which the saturation magnetization reduction rate (Δσs 2 ) after 7 days is 0.01 to 8% and the coercive force reduction rate (ΔHc 2 ) is 0.01 to 4%. It is.

このように、本発明では、鉄系酸化物または水酸化物からなる原料粒子を還元処理および窒化処理したのち、その粒子表面に特定の無機化合物または/および有機化合物を被着させる被着処理を施すようにしたことにより、またその後にさらに特定の熱処理を施すようにしたことにより、粒子サイズが小さく、かつ極めて高い保磁力を有し、しかも高密度記録に最適な飽和磁化を有し、さらに保存安定性にすぐれた窒化鉄系磁性粉末を得ることができる。また、この窒化鉄系磁性粉末を用いることにより、すぐれた磁気特性を持ち、かつ保存安定性の良好な磁気記録媒体を得ることができる。

Thus, in the present invention, after the raw material particles made of iron-based oxides or hydroxides are subjected to reduction treatment and nitriding treatment, the deposition treatment for depositing a specific inorganic compound and / or organic compound on the particle surface is performed. By applying it, and then applying a specific heat treatment, the particle size is small, the coercive force is extremely high, and the saturation magnetization is optimal for high-density recording. An iron nitride magnetic powder having excellent storage stability can be obtained. Further, by using this iron nitride magnetic powder, a magnetic recording medium having excellent magnetic properties and good storage stability can be obtained.

本発明の窒化鉄系磁性粉末の製造方法において、出発原料には、鉄系酸化物または水酸化物を使用する。例えば、ヘマタイト、マグネタイト、ゲータイト等が挙げられる。平均粒子サイズは、特に限定されないが、通常は、5〜20nmとするのがよい。粒子サイズが小さすぎると、還元処理時に粒子間焼結が生じやすく、また大きすぎると、還元処理が不均質となりやすく、粒子径や磁気特性の制御が困難となる。

In the method for producing an iron nitride magnetic powder of the present invention, an iron oxide or hydroxide is used as a starting material. For example, hematite, magnetite, goethite and the like can be mentioned. The average particle size is not particularly limited, but is usually 5 to 20 nm. If the particle size is too small, inter-particle sintering is likely to occur during the reduction treatment, and if it is too large, the reduction treatment tends to be heterogeneous, making it difficult to control the particle size and magnetic properties.

本発明において、上記の出発原料に対し、希土類金属元素を被着させることができる。この場合、通常、アルカリまたは酸の水溶液中に出発原料を分散させ、これに希土類金属元素の塩を溶解させ、中和反応等により、出発原料粉末に希土類金属元素を含む水酸化物や水和物を沈殿析出させるようにすればよい。また、シリコン、アルミニウム等の元素で構成された化合物を溶解させた溶液に、上記の出発原料を浸漬して、出発原料粉末に対しシリコン、アルミニウムを被着させるようにしてもよい。

このような表面処理時に用いる溶媒としては水が好ましいが、他の溶媒を用いることも当然可能である。これらの被着処理を効率良く行うため、還元剤、pH緩衝剤、粒径制御剤等の添加剤を混入させてもよい。これらの被着処理として、希土類元素とシリコン、アルミニウムを同時にあるいは交互に被着させてもよい。

In the present invention, a rare earth metal element can be deposited on the above starting material. In this case, the starting material powder is usually dispersed in an aqueous solution of alkali or acid, a salt of the rare earth metal element is dissolved in the starting material powder, and the starting material powder contains hydroxide or hydration containing the rare earth metal element. What is necessary is just to make it precipitate. Alternatively, the starting material may be immersed in a solution in which a compound composed of elements such as silicon and aluminum is dissolved, and silicon and aluminum may be deposited on the starting material powder.

As the solvent used during such surface treatment, water is preferable, but other solvents can naturally be used. In order to perform these deposition processes efficiently, additives such as a reducing agent, a pH buffering agent, and a particle size controlling agent may be mixed. As these deposition treatments, rare earth elements, silicon, and aluminum may be deposited simultaneously or alternately.

本発明においては、このような原料粒子を用いて、まず、水素気流中で加熱還元する。還元ガスとしては、特に限定されず、水素ガス以外に、一酸化炭素ガス等の還元性ガスを使用してもよい。還元温度としては、300〜600℃とするのが望ましい。還元温度が300℃より低くなると、還元反応が十分進まなくなり、600℃を超えると、粉末粒子の焼結が起こりやすくなり、いずれも好ましくない。

In the present invention, such raw material particles are first subjected to heat reduction in a hydrogen stream. The reducing gas is not particularly limited, and a reducing gas such as carbon monoxide gas may be used in addition to hydrogen gas. The reduction temperature is preferably 300 to 600 ° C. When the reduction temperature is lower than 300 ° C., the reduction reaction does not proceed sufficiently, and when it exceeds 600 ° C., the powder particles are likely to be sintered, which is not preferable.

つぎに、上記の加熱還元処理後、窒化処理することにより、Fe162 相を生成する。窒化処理は、アンモニアを含むガスを用いて行うのが望ましい。アンモニアガス単体のほかに、水素ガス、ヘリウムガス、窒素ガス、アルゴンガス等をキャリアーガスとした混合ガスを使用してもよい。窒素ガスは安価なため、特に好ましい。

窒化処理温度としては100〜200℃とするのがよい。窒化処理温度が低すぎると、窒化が十分進まず、保磁力増加の効果が少ない。また窒化処理温度が高すぎると、窒化が過剰に促進され、Fe4 NやFe3 N相等の割合が増加し、保磁力がむしろ低下し、また飽和磁化の過度な低下を引き起こしやすい。

Next, the Fe 16 N 2 phase is generated by nitriding after the above heat reduction treatment. The nitriding treatment is desirably performed using a gas containing ammonia. In addition to ammonia gas alone, a mixed gas using hydrogen gas, helium gas, nitrogen gas, argon gas or the like as a carrier gas may be used. Nitrogen gas is particularly preferred because it is inexpensive.

The nitriding temperature is preferably 100 to 200 ° C. If the nitriding temperature is too low, nitriding does not proceed sufficiently and the effect of increasing the coercive force is small. On the other hand, if the nitriding temperature is too high, nitriding is excessively promoted, the proportion of Fe 4 N, Fe 3 N phase, etc. increases, the coercive force is rather lowered, and the saturation magnetization is liable to be excessively lowered.

上記の窒化処理により、Fe162 相を生成させたのち、通常は、酸素ガスと窒素ガスとの混合ガスを用いて、安定化処理を施すのが望ましい。本発明においては、このようにFe162 相を生成させ、安定化処理を施したのち、さらに無機化合物または/および有機化合物を粒子表面に被着させる被着処理を行うことを特徴としている。

この被着処理は、上記安定化処理後の磁性粒子を、溶媒中に無機化合物または/および有機化合物を溶解させた溶液に再分散させることで、上記磁性粒子の粒子表面に無機化合物または/および有機化合物を被着させるものである。被着処理を効率良く行うために、還元剤、pH緩衝剤、粒径制御剤等の添加剤を混入させてもよい。

Usually, after the Fe 16 N 2 phase is generated by the above nitriding treatment, it is desirable to perform a stabilizing treatment using a mixed gas of oxygen gas and nitrogen gas. The present invention is characterized in that after the Fe 16 N 2 phase is generated and stabilized as described above, a deposition treatment for depositing an inorganic compound and / or an organic compound on the particle surface is further performed. .

In this deposition treatment, the magnetic particles after the stabilization treatment are redispersed in a solution in which an inorganic compound or / and an organic compound is dissolved in a solvent, so that the inorganic compound or / and An organic compound is deposited. In order to perform the deposition process efficiently, additives such as a reducing agent, a pH buffering agent, and a particle size controlling agent may be mixed.

上記の無機化合物とは、希土類金属元素、アルミニウムうちの少なくともひとつの元素を含む無機化合物である。

また、上記の有機化合物とは、有機カルボン酸(例えば、乳酸、パルミチン酸、ステアリン酸、サリチル酸、グルタル酸、p−ヒドロキシ安息香酸等)、カルボン酸部位をスルホン酸に置換した有機スルホン酸、リン酸に置換した有機リン酸、これら酸のエステル化物(例えば、脂肪酸エステル)もしくはアミド化物(例えば、パルミチン酸、ステアリン酸等の高級脂肪酸のアミド)からなる有機化合物である。

これらの無機化合物と有機化合物は、どちらか一方だけを被着させてもよいし、両方を被着させてもよい。両方を被着させる場合、無機化合物と有機化合物とを一緒に混合して被着させてもよいし、交互に被着させるようにしてもよい。

The above inorganic compound is an inorganic compound containing a rare earth metal element, at least one element of aluminum.

The above organic compounds are organic carboxylic acids (for example, lactic acid, palmitic acid, stearic acid, salicylic acid, glutaric acid, p-hydroxybenzoic acid, etc.), organic sulfonic acids in which the carboxylic acid moiety is substituted with sulfonic acid, phosphorus An organic compound composed of an organic phosphoric acid substituted with an acid, an esterified product of these acids (for example, a fatty acid ester) or an amidated product (for example, an amide of a higher fatty acid such as palmitic acid or stearic acid).

Only one of these inorganic compounds and organic compounds may be deposited, or both may be deposited. When both are deposited, the inorganic compound and the organic compound may be mixed and deposited together, or may be deposited alternately.

また、本発明においては、上記の被着処理後、さらに、不活性ガス中または酸素ガスと不活性ガスとの混合ガス中で、熱処理を行うことにより、保存安定性等のさらなる改善をはかることができる。熱処理温度は30〜150℃の範囲とするのがよい。熱処理温度が高すぎると生成した窒化鉄が分解し、保磁力が低下するおそれがある。なお、この熱処理は必ずしも必須ではなく、場合により省いてもよい。

Further, in the present invention, after the above-described deposition treatment, further improvement in storage stability and the like is achieved by performing heat treatment in an inert gas or a mixed gas of oxygen gas and inert gas. Can do. The heat treatment temperature is preferably in the range of 30 to 150 ° C. If the heat treatment temperature is too high, the produced iron nitride may be decomposed and the coercive force may be reduced. Note that this heat treatment is not necessarily required, and may be omitted depending on circumstances.

このようにして得られる本発明の窒化鉄系磁性粉末は、鉄と窒素を少なくとも構成元素とし、希土類金属元素、アルミニウムうちの少なくともひとつの元素を含有し、かつFe162 相を少なくとも含み、鉄に対する窒素の含有量が1.0〜20.0原子%、好ましくは3.0〜16.0原子%であり、粒子の平均サイズが5〜20nmの範囲の粒状ないし楕円状であることを特徴としている。

なお、上記の「粒状ないし楕円状」とは、磁性粉末の軸比(長軸比/短軸比)が1〜2、特に好ましくは1〜1.5であることを意味する。また、上記の「粒子の平均サイズ」とは、透過型電子顕微鏡(TEM)にて撮影した写真の粒子サイズを実測し、300個の平均値により求められる値を意味するものである。
Iron nitride-based magnetic powder of the present invention obtained in this way, the iron and nitrogen and at least an element, rare earth element contains at least one element selected from aluminum, and comprises at least a Fe 16 N 2 phase The content of nitrogen relative to iron is 1.0 to 20.0 atomic%, preferably 3.0 to 16.0 atomic%, and the average particle size is granular or elliptical in the range of 5 to 20 nm. It is characterized by.

The above-mentioned “granular or elliptical” means that the magnetic powder has an axial ratio (major axis ratio / minor axis ratio) of 1 to 2, particularly preferably 1 to 1.5. In addition, the above “average particle size” means a value obtained by measuring the particle size of a photograph taken with a transmission electron microscope (TEM) and calculating an average value of 300 particles.

また、この窒化鉄系磁性粉末は、飽和磁化が80〜120Am2 /kg(80〜120emu/g)、保磁力が160〜280kA/m(2,000〜3,500Oe)であり、60℃,90%RHの雰囲気下に7日間保持したのちの飽和磁化減少率(Δσs1 )が0.1〜11%、同保磁力減少率(ΔHc1 )が0.1〜10%、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が0.1〜10%、同保磁力減少率(ΔHc2 )が0.1〜9%であることを特徴としている。

The iron nitride magnetic powder has a saturation magnetization of 80 to 120 Am 2 / kg (80 to 120 emu / g), a coercive force of 160 to 280 kA / m (2,000 to 3,500 Oe), 60 ° C., After holding for 7 days in an atmosphere of 90% RH, the saturation magnetization reduction rate (Δσs 1 ) is 0.1 to 11%, the coercive force reduction rate (ΔHc 1 ) is 0.1 to 10%, and the seventh day It is characterized by a saturation magnetization reduction rate (Δσs 2 ) of 0.1 to 10% and a coercivity reduction rate (ΔHc 2 ) of 0.1 to 9% when 7 days have passed since that time.

本発明においては、上記構成の窒化鉄系磁性粉末を用いた磁気記録媒体を提供することができる。特に、上記構成の窒化鉄系磁性粉末を用いたことにより、保磁力が180〜300kA/m(2,300〜3,800Oe)で、60℃,90%RHの雰囲気下に7日間保持したのちの飽和磁化減少率(Δσs1 )が0.01〜10%、同保磁力減少率(ΔHc1 )が0.01〜5%、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が0.01〜8%、同保磁力減少率(ΔHc2 )が0.01〜4%である磁気記録媒体を提供できるものである。

In the present invention, a magnetic recording medium using the iron nitride magnetic powder having the above-described configuration can be provided. In particular, by using the iron nitride-based magnetic powder having the above configuration, the coercive force was 180 to 300 kA / m (2,300 to 3,800 Oe), and the film was held for 7 days in an atmosphere of 60 ° C. and 90% RH. The saturation magnetization reduction rate (Δσs 1 ) is 0.01 to 10%, the coercive force reduction rate (ΔHc 1 ) is 0.01 to 5%, and the saturation magnetization when 7 days have passed since the 7th day as a reference. A magnetic recording medium having a reduction rate (Δσs 2 ) of 0.01 to 8% and a coercive force reduction rate (ΔHc 2 ) of 0.01 to 4% can be provided.

以下に、上記構成の磁気記録媒体について、さらに詳しく説明する。

本発明の磁気記録媒体は、溶剤中に上記構成の窒化鉄系磁性粉末と結合剤を分散混合した磁性塗料を調製し、これを非磁性支持体上に塗布し乾燥して、磁性層を形成することにより、作製できる。磁性層の形成に先立ち、非磁性支持体上に酸化鉄、酸化チタン、酸化アルミニウム等の非磁性粉末と結合剤を含有する下塗り塗料を塗布し乾燥して、下塗り層を形成し、この上に磁性層を形成してもよい。

Hereinafter, the magnetic recording medium having the above configuration will be described in more detail.

The magnetic recording medium of the present invention is a magnetic coating material prepared by dispersing and mixing an iron nitride-based magnetic powder and a binder having the above structure in a solvent, coating this on a nonmagnetic support, and drying to form a magnetic layer. It can produce by doing. Prior to the formation of the magnetic layer, an undercoat paint containing a nonmagnetic powder such as iron oxide, titanium oxide or aluminum oxide and a binder is applied onto the nonmagnetic support and dried to form an undercoat layer thereon. A magnetic layer may be formed.

非磁性支持体としては、従来から使用されている磁気記録媒体用の非磁性支持体をいずれも使用できる。例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル類、ポリオレフィン類、セルローストリアセテート、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリスルフオン、アラミド、芳香族ポリアミド等からなる厚さが通常2〜15μm、特に2〜7μmのプラスチツクフイルムが用いられる。厚さが2μm未満では、製膜が難しく、またテープ強度が小さくなり、7μmを超えると、テープ全厚が厚くなり、テープ1巻当りの記憶容量が小さくなる。

As the nonmagnetic support, any conventionally used nonmagnetic support for magnetic recording media can be used. For example, the thickness composed of polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins, cellulose triacetate, polycarbonate, polyamide, polyimide, polyamideimide, polysulfone, aramid, aromatic polyamide, etc. is usually 2 to 15 μm, especially 2 to 7 μm. The plastic film is used. If the thickness is less than 2 μm, it is difficult to form a film, and the tape strength is reduced. If it exceeds 7 μm, the total thickness of the tape is increased, and the storage capacity per tape roll is reduced.

磁性層の厚さは、300nm以下、特に10〜300nmが好ましく、10〜250nmがより好ましく、10〜200nmが最も好ましい。磁性層の厚さが300nmを超えると、厚さ損失により再生出力が小さくなったり、残留磁束密度と厚さとの積が大きくなりすぎて、MRヘッドの飽和による再生出力の歪が起こりやすい。また、磁性層の厚さが10nm未満では、均一な磁性層が得られにくい。

本発明においては、使用する窒化鉄系磁性粉末が平均粒子サイズ5〜20nmという極めて微粒子の粒状ないし楕円状であるため、従来の針状磁性粉末ではほとんど不可能な極めて薄い磁性層厚さを実現できるものである。

The thickness of the magnetic layer is 300 nm or less, particularly preferably 10 to 300 nm, more preferably 10 to 250 nm, and most preferably 10 to 200 nm. When the thickness of the magnetic layer exceeds 300 nm, the reproduction output becomes small due to the thickness loss, or the product of the residual magnetic flux density and the thickness becomes too large, and the reproduction output is distorted due to the saturation of the MR head. Moreover, if the thickness of the magnetic layer is less than 10 nm, it is difficult to obtain a uniform magnetic layer.

In the present invention, the iron nitride magnetic powder to be used is an extremely fine particle or ellipse having an average particle size of 5 to 20 nm, so that an extremely thin magnetic layer thickness almost impossible with conventional acicular magnetic powder is realized. It can be done.

また、磁性層の平均面粗さRaは、1.0〜3.2nmであるのがよい。また、磁性層の凹凸の中心値をP0、最大の凸量をP1としたとき、(P1−P0)が10〜30nmで、第20番目の凸量をP20としたとき、(P1 −P20)が5nm以下であれば、MRヘッドを使用した場合に、MRヘッドとのコンタクトが良くなり、MRヘッドを使用したときの再生出力が高くなり、好ましい。磁性層には、導電性と表面潤滑性の向上を目的に、従来公知のカーボンブラックを含ませるのが望ましい。

The average surface roughness Ra of the magnetic layer is preferably 1.0 to 3.2 nm. When the central value of the unevenness of the magnetic layer is P0, the maximum convex amount is P1, (P1-P0) is 10 to 30 nm, and the twentieth convex amount is P20, (P1 -P20) When the MR head is used, the contact with the MR head is improved when the MR head is used, and the reproduction output when the MR head is used is preferable. For the purpose of improving electrical conductivity and surface lubricity, the magnetic layer preferably contains conventionally known carbon black.

下塗り層は、必須の構成要素ではないが、耐久性の向上を目的として、非磁性支持体と磁性層との間に設けられる。下塗り層の厚さは0.1〜3.0μmであるのが好ましく、0.15〜2.5μmであるのがより好ましい。下塗り層の厚さが0.1μm未満では、磁気テープの耐久性が悪くなる場合がある。また、下塗り層の厚さが3.0μmを超えると、磁気テープの耐久性の向上効果が飽和し、またテープ全厚が厚くなり、1巻当りのテープ長さが短くなり、記憶容量が小さくなる。

The undercoat layer is not an essential component, but is provided between the nonmagnetic support and the magnetic layer for the purpose of improving durability. The thickness of the undercoat layer is preferably 0.1 to 3.0 μm, more preferably 0.15 to 2.5 μm. If the thickness of the undercoat layer is less than 0.1 μm, the durability of the magnetic tape may deteriorate. If the thickness of the undercoat layer exceeds 3.0 μm, the effect of improving the durability of the magnetic tape is saturated, the total thickness of the tape is increased, the tape length per roll is shortened, and the storage capacity is reduced. Become.

下塗り層、磁性層に使用する結合剤としては、塩化ビニル樹脂、塩化ビニル−酢酸ビニル共重合樹脂、塩化ビニル−ビニルアルコール共重合樹脂、塩化ビニル−酢酸ビニル−ビニルアルコール共重合樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸共重合樹脂、塩化ビニル−水酸基含有アルキルアクリレート共重合樹脂等の塩化ビニル系樹脂、ニトロセルロース、エポキシ樹脂等の中から選ばれる少なくとも1種と、ポリウレタン樹脂との組み合わせがある。特に、塩化ビニル系樹脂とポリウレタン樹脂とを併用するのが好ましい。その中でも、塩化ビニル−水酸基含有アルキルアクリレート共重合樹脂とポリウレタン樹脂とを併用するのが最も好ましい。

As binders used for the undercoat layer and the magnetic layer, vinyl chloride resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride-vinyl alcohol copolymer resin, vinyl chloride-vinyl acetate-vinyl alcohol copolymer resin, vinyl chloride- There is a combination of a polyurethane resin and at least one selected from vinyl chloride-based resins such as vinyl acetate-maleic anhydride copolymer resin, vinyl chloride-hydroxyl group-containing alkyl acrylate copolymer resin, nitrocellulose, epoxy resin, etc. . In particular, it is preferable to use a vinyl chloride resin and a polyurethane resin in combination. Among these, it is most preferable to use a vinyl chloride-hydroxyl group-containing alkyl acrylate copolymer resin and a polyurethane resin in combination.

これらの結合剤は、磁性粉末や非磁性粉末等の固体粉末100重量部に対し、7〜50重量部、好ましくは10〜35重量部の範囲で用いられる。特に、結合剤として、塩化ビニル系樹脂5〜30重量部と、ポリウレタン樹脂2〜20重量部とを、複合して用いるのが好ましい。また、これらの結合剤とともに、結合剤中に含まれる官能基等と結合させて架橋する熱硬化性の架橋剤を併用するのが望ましい。

These binders are used in an amount of 7 to 50 parts by weight, preferably 10 to 35 parts by weight, based on 100 parts by weight of solid powder such as magnetic powder and nonmagnetic powder. In particular, it is preferable to use a composite of 5 to 30 parts by weight of a vinyl chloride resin and 2 to 20 parts by weight of a polyurethane resin as a binder. In addition to these binders, it is desirable to use in combination with a thermosetting crosslinking agent that crosslinks by binding to a functional group or the like contained in the binder.

下塗り層、磁性層に含ませる潤滑剤には、従来公知の脂肪酸、脂肪酸エステル、脂肪酸アミド等がいずれも用いられる。その中でも、炭素数10以上、好ましくは12〜30の脂肪酸と、融点35℃以下、好ましくは10℃以下の脂肪酸エステルとを併用するのが、特に好ましい。下塗り層を設けた磁気テープの場合、下塗り層と磁性層からなる塗布層に役割の異なる潤滑剤を含有させるのが望ましい。

磁性層には、磁性粉末に対して、0.2〜3重量%の脂肪酸アミド(例えば、パルミチン酸、ステアリン酸等の高級脂肪酸のアミド)を含有させ、0.2〜3重量%の高級脂肪酸エステルを含有させると、磁気テープと走行系のガイドやMRヘッドのスライダ等との摩擦係数が小さくなり、好ましい。

Conventionally known fatty acids, fatty acid esters, fatty acid amides and the like are used for the lubricant contained in the undercoat layer and the magnetic layer. Among them, it is particularly preferable to use a fatty acid having 10 or more carbon atoms, preferably 12 to 30 carbon atoms, and a fatty acid ester having a melting point of 35 ° C. or lower, preferably 10 ° C. or lower. In the case of a magnetic tape provided with an undercoat layer, it is desirable to contain lubricants having different roles in the coating layer composed of the undercoat layer and the magnetic layer.

The magnetic layer contains 0.2 to 3% by weight of fatty acid amide (for example, amides of higher fatty acids such as palmitic acid and stearic acid) with respect to the magnetic powder, and 0.2 to 3% by weight of higher fatty acid. The inclusion of an ester is preferable because the friction coefficient between the magnetic tape and the guide of the traveling system, the slider of the MR head, and the like becomes small.

本発明の磁気記録媒体が磁気テープの場合、非磁性支持体の磁性層形成面の反対面にバックコート層を形成するのが望ましい。ただし、このバックコート層は、必須の構成要素ではない。バックコート層の厚さは0.2〜0.8μmが好ましく、0.3〜0.8μmがより好ましく、0.3〜0.6μmがさらに好ましい。バックコート層の厚さが0.2μm未満では、走行性の向上効果が不十分であり、また0.8μmを超えると、テープ全厚が厚くなり、1巻当たりの記憶容量が小さくなる。

また、バックコート層の中心線表面粗さRaは、3〜15nmであるのが好ましく、4〜10nmであるのがより好ましい。

When the magnetic recording medium of the present invention is a magnetic tape, it is desirable to form a backcoat layer on the surface opposite to the magnetic layer forming surface of the nonmagnetic support. However, this back coat layer is not an essential component. The thickness of the back coat layer is preferably 0.2 to 0.8 μm, more preferably 0.3 to 0.8 μm, and still more preferably 0.3 to 0.6 μm. If the thickness of the backcoat layer is less than 0.2 μm, the effect of improving the running property is insufficient, and if it exceeds 0.8 μm, the total thickness of the tape is increased and the storage capacity per roll is reduced.

Further, the center line surface roughness Ra of the backcoat layer is preferably 3 to 15 nm, and more preferably 4 to 10 nm.

磁性塗料、下塗り塗料、バックコート塗料の調製にあたり、溶剤には従来から使用されている有機溶剤をすべて使用できる。例えば、ベンゼン、トルエン、キシレン等の芳香族系溶剤、アセトン、シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、ジメチルカーボネート、ジエチルカーボネート等の炭酸エステル系溶剤、エタノール、イソプロパノール等のアルコール系溶剤等を使用できる。その他、ヘキサン、テトラヒドロフラン、ジメチルホルムアミド等の各種の有機溶剤が用いられる。

In the preparation of magnetic paints, undercoat paints, and back coat paints, all conventionally used organic solvents can be used as the solvent. For example, aromatic solvents such as benzene, toluene and xylene, ketone solvents such as acetone, cyclohexanone, methyl ethyl ketone and methyl isobutyl ketone, ester solvents such as ethyl acetate and butyl acetate, carbonate esters such as dimethyl carbonate and diethyl carbonate Solvents and alcohol solvents such as ethanol and isopropanol can be used. In addition, various organic solvents such as hexane, tetrahydrofuran and dimethylformamide are used.

また、磁性塗料、下塗り塗料、バックコート塗料の調製にあたり、従来から公知の塗料製造工程を使用できる。特に、ニーダ等による混練工程や一次分散工程を併用するのが好ましい。一次分散工程では、サンドミルを使用すると、磁性粉末等の分散性の改善とともに、表面性状を制御できるので、望ましい。

Moreover, conventionally well-known paint manufacturing processes can be used for the preparation of magnetic paints, undercoat paints, and backcoat paints. In particular, a kneading step using a kneader or the like and a primary dispersion step are preferably used in combination. In the primary dispersion step, it is desirable to use a sand mill because the surface properties can be controlled while improving the dispersibility of the magnetic powder and the like.

さらに、非磁性支持体上に、磁性塗料、下塗り塗料、バックコート塗料を塗布する際には、グラビア塗布、ロール塗布、ブレード塗布、エクストルージヨン塗布等の従来から公知の塗布方法が用いられる。

下塗り塗料および磁性塗料の塗布方法は、非磁性支持体上に下塗り塗料を塗布し乾燥したのちに磁性塗料を塗布する、逐次重層塗布方法か、下塗り塗料と磁性塗料とを同時に塗布する、同時重層塗布方法(ウェットオンウェット)かのいずれかを採用できる。塗布時の薄層磁性層のレベリングを考えると、下塗り塗料が湿潤状態のうちに磁性塗料を塗布する、同時重層塗布方式を採用するのが好ましい。

Furthermore, when applying a magnetic paint, an undercoat paint, or a backcoat paint on the nonmagnetic support, conventionally known coating methods such as gravure coating, roll coating, blade coating, and extrusion coating are used.

The undercoat paint and magnetic paint can be applied by applying the undercoat paint on the non-magnetic support and drying, then applying the magnetic paint, or by applying the successive overlay coating method or by applying the undercoat paint and the magnetic paint simultaneously. Any of the application methods (wet on wet) can be adopted. Considering the leveling of the thin magnetic layer at the time of coating, it is preferable to adopt a simultaneous multilayer coating method in which the magnetic coating is applied while the undercoat coating is wet.

以下に、本発明の実施例を記載して、より具体的に説明する。なお、以下において、部とあるのは重量部を意味するものとする。

Examples of the present invention will be described below in more detail. In the following, “parts” means parts by weight.

(A)窒化鉄系磁性粉末の製造
1,500ccの水に、形状がほぼ球状に近い平均粒子サイズが15nmのマグネタイト粒子100gを、超音波分散機を用いて、30分間分散させた。また、5gの硝酸イットリウムを水200ccに溶解し、これを上記の分散液に滴下して、30分間撹拌した。これとは別に、1.6gの水酸化ナトリウムを500ccの水に溶解した。この水酸化ナトリウム水溶液を、上記の分散液に30分間かけて滴下し、さらに1時間攪拌した。この処理により、マグネタイト粒子表面にイットリウムの水酸化物を被着析出させた。

また、硝酸アルミニウム20gを200ccの水に溶解した。この硝酸アルミニウム溶液を、上記のイットリウム被着処理後の分散液に約30分かけて滴下し、滴下終了後、さらに1時間攪拌した。その後、水酸化ナトリウム2.5gを500cc水に溶解し、この溶液を約30分間かけて滴下し、さらに1時間攪拌した。この処理により、マグネタイト粒子表面にアルミン酸ナトリウムを被着析出させた。

これを水洗し、ろ過後、90℃で乾燥して、マグネタイト粒子の表面にイットリウムの水酸化物およびアルミニウムを被着形成した粉末を得た。

(A) Manufacture of iron nitride-based magnetic powder 100 g of magnetite particles having an average particle size of approximately 15 nm and a substantially spherical shape were dispersed in 1,500 cc of water for 30 minutes using an ultrasonic disperser. Further, 5 g of yttrium nitrate was dissolved in 200 cc of water, and this was dropped into the above dispersion and stirred for 30 minutes. Separately, 1.6 g of sodium hydroxide was dissolved in 500 cc of water. This aqueous sodium hydroxide solution was added dropwise to the above dispersion over 30 minutes, and the mixture was further stirred for 1 hour. By this treatment, yttrium hydroxide was deposited on the surface of the magnetite particles.

Moreover, 20 g of aluminum nitrate was dissolved in 200 cc of water. This aluminum nitrate solution was dropped into the dispersion after the yttrium deposition treatment over about 30 minutes, and after completion of the dropping, the solution was further stirred for 1 hour. Thereafter, 2.5 g of sodium hydroxide was dissolved in 500 cc water, and this solution was added dropwise over about 30 minutes, followed by further stirring for 1 hour. By this treatment, sodium aluminate was deposited on the surface of the magnetite particles.

This was washed with water, filtered, and dried at 90 ° C. to obtain a powder in which yttrium hydroxide and aluminum were deposited on the surface of the magnetite particles.

このようにしてマグネタイト粒子の表面にイットリウムとアルミニウムの水酸化物を被着形成した粉末を、水素気流中450℃で2時間加熱還元して、イットリウム−アルミニウムー鉄系磁性粉末を得た。つぎに、水素ガスを流した状態で、約1時間かけて、140℃まで降温した。140℃に到達した状態で、ガスをアンモニアガスに切り替え、温度を140℃に保った状態で、20時間窒化処理を行った。

その後、温度を維持したまま、アンモニアガスから酸素と窒素の混合ガスに切り替え、2時間安定化処理を行った。ついで、混合ガスを流した状態で、140℃から40℃まで降温し、40℃で約10時間保持したのち、空気中に取り出した。

Thus, the powder which adhered and formed the hydroxide of the yttrium and the aluminum on the surface of the magnetite particle | grain was heat-reduced for 2 hours at 450 degreeC in hydrogen stream, and the yttrium-aluminum-iron type magnetic powder was obtained. Next, the temperature was lowered to 140 ° C. over about 1 hour in a state where hydrogen gas was allowed to flow. When the temperature reached 140 ° C., the gas was switched to ammonia gas, and nitriding was performed for 20 hours while maintaining the temperature at 140 ° C.

Thereafter, while maintaining the temperature, the ammonia gas was switched to a mixed gas of oxygen and nitrogen, and a stabilization treatment was performed for 2 hours. Next, with the mixed gas flowing, the temperature was lowered from 140 ° C. to 40 ° C., held at 40 ° C. for about 10 hours, and then taken out into the air.

この磁性粉末100gを水中に再び分散させた。この分散液に、5gの硝酸イットリウムを水200ccで溶解した溶液を滴下し、30分間撹拌した。これとは別に、1.6gの水酸化ナトリウムを500ccの水に溶解した。この水酸化ナトリウム水溶液を、上記の分散液に、30分間かけて滴下し、さらに1時間攪拌した。この処理により、磁性粉末粒子表面にイットリウムの水酸化物を再被着析出させた。

再被着処理をした磁性粉末を、アルゴンガス気流中で100℃まで昇温し、1時間保持したのち、アルゴンガスを流したまま室温まで冷却し、空気中に取り出した。

100 g of this magnetic powder was dispersed again in water. A solution prepared by dissolving 5 g of yttrium nitrate in 200 cc of water was added dropwise to the dispersion and stirred for 30 minutes. Separately, 1.6 g of sodium hydroxide was dissolved in 500 cc of water. This aqueous sodium hydroxide solution was added dropwise to the above dispersion over 30 minutes, and the mixture was further stirred for 1 hour. By this treatment, yttrium hydroxide was re-deposited on the surface of the magnetic powder particles.

The magnetic powder subjected to the re-deposition treatment was heated to 100 ° C. in an argon gas stream, held for 1 hour, cooled to room temperature while flowing argon gas, and taken out into the air.

このようにして得られた窒化鉄系磁性粉末は、そのイットリウム、アルミニウムおよび窒素の含有量を蛍光X線により測定したところ、それぞれ、Feに対して4.1原子%、5.1原子%および10.8原子%であった。また、高分解能分析透過電子顕微鏡で粒子形状を観察したところ、ほぼ球状の粒子で平均粒子サイズが16nmであることがわかった。さらに、BET法により求めた比表面積は、64.2m2 /gであった。

The iron nitride-based magnetic powder thus obtained was measured for its yttrium, aluminum and nitrogen contents by fluorescent X-ray, and found to be 4.1 atomic%, 5.1 atomic% and Fe respectively. It was 10.8 atomic%. Further, when the particle shape was observed with a high-resolution analytical transmission electron microscope, it was found that the particles were almost spherical and the average particle size was 16 nm. Furthermore, the specific surface area determined by the BET method was 64.2 m 2 / g.

また、この窒化鉄系磁性粉末について、1,270kA/m(16kOe)の磁界を印加して測定した飽和磁化は90.2Am2 /kg(90.2emu/g)であり、また、保磁力は230.9kA/m(2,900Oe)であり、さらに、角形比(Br/Bm)は0.53であった。

また、この窒化鉄系磁性粉末を60℃,90%RHで7日間保存した結果、飽和磁化減少率(Δσs1 )が9%、保磁力減少率(ΔHc1 )が6%であり、さらに、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が8%、保磁力減少率(ΔHc2 )が5%であった。

The iron nitride magnetic powder had a saturation magnetization of 90.2 Am 2 / kg (90.2 emu / g) measured by applying a magnetic field of 1,270 kA / m (16 kOe), and the coercive force was It was 230.9 kA / m (2,900 Oe), and the squareness ratio (Br / Bm) was 0.53.

Moreover, as a result of storing this iron nitride magnetic powder at 60 ° C. and 90% RH for 7 days, the saturation magnetization reduction rate (Δσs 1 ) was 9%, the coercive force reduction rate (ΔHc 1 ) was 6%, The saturation magnetization reduction rate (Δσs 2 ) was 8% and the coercivity reduction rate (ΔHc 2 ) was 5% when 7 days had passed since the 7th day as a reference.

(B)磁気テープの作製
下記の下塗り塗料成分を、ニーダで混練したのち、サンドミルで滞留時間を60分とした分散処理を行い、これにポリイソシアネート6部を加えて、撹拌した。その後、ろ過して、下塗り塗料を調製した。

これとは別に、下記の磁性塗料成分(1)を、ニーダで混練したのち、サンドミルで滞留時間を45分とした分散処理を行い、これに下記の磁性塗料成分(2)を加えて、混合した。その後、半径方向に着磁した円筒形の永久磁石を挿入した容器中で撹拌を行い、磁性塗料を調製した。

(B) Production of magnetic tape The following undercoat paint components were kneaded with a kneader, then subjected to a dispersion treatment with a residence time of 60 minutes with a sand mill, and 6 parts of polyisocyanate was added thereto and stirred. Thereafter, it was filtered to prepare an undercoat paint.

Separately, the following magnetic coating component (1) is kneaded with a kneader, and then dispersed in a sand mill with a residence time of 45 minutes. The following magnetic coating component (2) is added to this and mixed. did. After that, stirring was performed in a container in which a cylindrical permanent magnet magnetized in the radial direction was inserted to prepare a magnetic paint.

<下塗り塗料成分>
酸化鉄粉末(平均粒径:55nm) 70部

酸化アルミニウム粉末(平均粒径:80nm) 10部

カーボンブラツク(平均粒径:25nm) 20部

塩化ビニル−ヒドロキシプロピルメタクリレート共重合樹脂 10部
(含有−SO3 Na基:0.7×10-4当量/g)

ポリエステルポリウレタン樹脂 5部
(含有−SO3 Na基:1.0×10-4当量/g)

メチルエチルケトン 130部

トルエン 80部

ミリスチン酸 1部

ステアリン酸ブチル 1.5部

シクロヘキサノン 65部

<Undercoat paint component>
Iron oxide powder (average particle size: 55 nm) 70 parts

Aluminum oxide powder (average particle size: 80 nm) 10 parts

Carbon black (average particle size: 25 nm) 20 parts

10 parts of vinyl chloride-hydroxypropyl methacrylate copolymer resin (containing -SO 3 Na group: 0.7 × 10 -4 equivalent / g)

Polyester polyurethane resin 5 parts (containing -SO 3 Na group: 1.0 × 10 -4 equivalent / g)

Methyl ethyl ketone 130 parts

80 parts of toluene

Myristic acid 1 part

Butyl stearate 1.5 parts

65 parts of cyclohexanone

<磁性塗料成分(1)>
上記(A)で製造した窒化鉄系磁性粉末 100部

塩化ビニル−ヒドロキシプロピルアクリレート共重合樹脂 8部
(含有−SO3 Na基:0.7×10-4当量/g)

ポリエステルポリウレタン樹脂 4部
(含有−SO3 Na基:1.0×10-4当量/g)

α−アルミナ(平均粒径:80nm) 10部

カーボンブラツク(平均粒径:25nm) 1.5部

ミリスチン酸 1.5部

メチルエチルケトン 133部

トルエン 100部

<Magnetic paint component (1)>
100 parts of iron nitride magnetic powder produced in (A) above

8 parts of vinyl chloride-hydroxypropyl acrylate copolymer resin (containing-SO 3 Na group: 0.7 × 10 −4 equivalent / g)

Polyester polyurethane resin 4 parts (containing -SO 3 Na group: 1.0 × 10 -4 equivalent / g)

α-alumina (average particle size: 80 nm) 10 parts

Carbon black (average particle size: 25 nm) 1.5 parts

1.5 parts of myristic acid

133 parts of methyl ethyl ketone

100 parts of toluene

<磁性塗料成分(2)>
ステアリン酸 1.5部

ポリイソシアネート 4部
(日本ポリウレタン工業社製の「コロネートL」)

シクロヘキサノン 133部

トルエン 33部

<Magnetic paint component (2)>
Stearic acid 1.5 parts

4 parts of polyisocyanate ("Coronate L" manufactured by Nippon Polyurethane Industry Co., Ltd.)

133 parts of cyclohexanone

33 parts of toluene

上記の下塗り塗料を、非磁性支持体である厚さが6μmのポリエチレンナフタレートフイルム(105℃,30分の熱収縮率が縦方向で0.8%、横方向で0.6%)に、乾燥およびカレンダ処理後の下塗り層の厚さが2μmとなるように塗布し、この上にさらに、上記の磁性塗料を、磁場配向処理、乾燥およびカレンダ処理後の磁性層の厚さが120nmとなるように塗布し、乾燥した。

The above-mentioned undercoat paint is a non-magnetic support and a polyethylene naphthalate film having a thickness of 6 μm (105 ° C., 30 minutes heat shrinkage ratio of 0.8% in the vertical direction and 0.6% in the horizontal direction) The undercoat layer after drying and calendering is applied so that the thickness of the undercoat layer is 2 μm, and the magnetic coating is further coated thereon with a magnetic layer thickness of 120 nm after magnetic field orientation, drying and calendering. And then dried.

つぎに、この非磁性支持体の下塗り層および磁性層の形成面とは反対面側に、バツクコート塗料を、乾燥およびカレンダ処理後のバツクコート層の厚さが700nmとなるように塗布し、乾燥した。

なお、ここで使用したバツクコート塗料は、下記のバツクコート塗料成分を用い、サンドミルで滞留時間を45分とした分散処理を行い、これにポリイソシアネート8.5部を加えて、撹拌し、その後、ろ過して、調製したものである。

Next, the back coat paint was applied to the surface opposite to the surface on which the non-magnetic support undercoat layer and magnetic layer were formed so that the thickness of the back coat layer after drying and calendering was 700 nm and dried. .

The back coat paint used here is the following back coat paint component, subjected to a dispersion treatment with a sand mill with a residence time of 45 minutes, added with 8.5 parts of polyisocyanate, stirred, and then filtered. And prepared.

<バツクコート塗料成分>
カーボンブラツク(平均粒径:25nm) 40.5部

カーボンブラツク(平均粒径:370nm) 0.5部

硫酸バリウム 4.05部

ニトロセルロース 28部

ポリウレタン樹脂(SO3 Na基含有) 20部

シクロヘキサノン 100部

トルエン 100部

メチルエチルケトン 100部

<Back coat paint component>
Carbon black (average particle size: 25 nm) 40.5 parts

Carbon black (average particle size: 370 nm) 0.5 part

4.05 parts barium sulfate

Nitrocellulose 28 parts

20 parts of polyurethane resin (containing SO 3 Na group)

100 parts of cyclohexanone

100 parts of toluene

100 parts of methyl ethyl ketone

このようにして得た磁気シートを、5段カレンダ(温度70℃、線圧150Kg/cm)で鏡面化処理し、これをシートコアに巻いた状態で、60℃,40%RH下、48時間エージングした。その後、1/2インチ幅に裁断し、これを100m/分で走行させながら、磁性層表面をセラミツクホイール(回転速度+150%、巻付け角30°)で研磨して、長さ609mの磁気テープを作製した。

つぎに、この磁気テ―プを、常法により、カートリツジに組み込むことにより、コンピユータ用テープを作製した。

The magnetic sheet thus obtained was mirror-finished with a five-stage calendar (temperature: 70 ° C., linear pressure: 150 kg / cm), and this was wound on a sheet core at 60 ° C. under 40% RH for 48 hours. Aged. Thereafter, the magnetic layer surface is polished with a ceramic wheel (rotation speed + 150%, winding angle 30 °) while being cut at a width of 1/2 inch and running at 100 m / min, and a magnetic tape having a length of 609 m. Was made.

Next, a tape for a computer was produced by incorporating this magnetic tape into a cartridge by a conventional method.

上記の磁気テープは、長手方向の保磁力が286.6kA/m(3,600Oe)であり、また、長手方向の角形比(Br/Bm)は0.89であった。さらに、そのSFDは0.50であった。

また、上記の磁性テープを60℃,90%RHで7日間保存した結果、飽和磁化減少率(Δσs1 )が4%、保磁力減少率(ΔHc1 )が3%であり、さらに、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が3%、保磁力減少率(ΔHc2 )が2%であった。

The magnetic tape had a longitudinal coercive force of 286.6 kA / m (3,600 Oe) and a longitudinal squareness ratio (Br / Bm) of 0.89. Furthermore, the SFD was 0.50.

Further, the magnetic tape was stored at 60 ° C. and 90% RH for 7 days. As a result, the saturation magnetization reduction rate (Δσs 1 ) was 4%, the coercive force reduction rate (ΔHc 1 ) was 3%, and 7 days. The saturation magnetization reduction rate (Δσs 2 ) was 3% and the coercivity reduction rate (ΔHc 2 ) was 2% when 7 days had passed since then.

再被着処理時に、磁性粉末100gを水中に再び分散させた分散液に対して、乳酸5gを水45gに溶解させた溶液を滴下して、1時間撹拌処理した。この被着処理により、磁性粉末の粒子表面に乳酸を被着させた。

このように再被着処理時にイットリウムの代わりに有機カルボン酸である乳酸を用いた以外は、実施例1と同様にして、窒化鉄系磁性粉末の製造を行った。また、この窒化鉄系磁性粉末を使用して、実施例1と同様にして、磁気テープの作製およびコンピユータ用テープの作製を行った。

During the re-deposition treatment, a solution obtained by dissolving 5 g of lactic acid in 45 g of water was added dropwise to a dispersion obtained by re-dispersing 100 g of magnetic powder in water, followed by stirring for 1 hour. By this deposition treatment, lactic acid was deposited on the particle surface of the magnetic powder.

In this manner, iron nitride magnetic powder was produced in the same manner as in Example 1 except that lactic acid, which is an organic carboxylic acid, was used instead of yttrium during the re-deposition treatment. Further, using this iron nitride magnetic powder, a magnetic tape and a computer tape were produced in the same manner as in Example 1.

このようにして得られた窒化鉄系磁性粉末は、そのイットリウム、アルミニウムおよび窒素の含有量を蛍光X線により測定したところ、それぞれ、Feに対して2.2原子%、4.8原子%および11.3原子%であった。また、高分解能分析透過電子顕微鏡で粒子形状を観察したところ、ほぼ球状の粒子で平均粒子サイズが16nmであることがわかった。さらに、BET法により求めた比表面積は、63.8m2 /gであった。

The iron nitride-based magnetic powder thus obtained was measured for its yttrium, aluminum, and nitrogen content by fluorescent X-ray, and found to be 2.2 atomic%, 4.8 atomic%, and Fe, respectively. It was 11.3 atomic%. Further, when the particle shape was observed with a high-resolution analytical transmission electron microscope, it was found that the particles were almost spherical and the average particle size was 16 nm. Furthermore, the specific surface area determined by the BET method was 63.8 m 2 / g.

また、この窒化鉄系磁性粉末について、1,270kA/m(16kOe)の磁界を印加して測定した飽和磁化は91.3Am2 /kg(91.3emu/g)であり、また、保磁力は228.5kA/m(2,870Oe)であり、さらに、角形比(Br/Bm)は0.53であった。

また、この窒化鉄系磁性粉末を60℃,90%RHで7日間保存した結果、飽和磁化減少率(Δσs1 )が10%、保磁力減少率(ΔHc1 )が6%であり、さらに、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が9%、保磁力減少率(ΔHc2 )が5%であった。

Further, with respect to this iron nitride magnetic powder, the saturation magnetization measured by applying a magnetic field of 1,270 kA / m (16 kOe) is 91.3 Am 2 / kg (91.3 emu / g), and the coercive force is It was 228.5 kA / m (2,870 Oe), and the squareness ratio (Br / Bm) was 0.53.

Moreover, as a result of storing this iron nitride magnetic powder at 60 ° C. and 90% RH for 7 days, the saturation magnetization reduction rate (Δσs 1 ) is 10%, the coercive force reduction rate (ΔHc 1 ) is 6%, The saturation magnetization reduction rate (Δσs 2 ) was 9% and the coercivity reduction rate (ΔHc 2 ) was 5% when 7 days had passed since the 7th day as a reference.

さらに、上記の磁気テープは、長手方向の保磁力が283.4kA/m(3,560Oe)であり、また、長手方向の角形比(Br/Bm)が0.88であった。さらに、そのSFDは0.52であった。

また、この磁性テープを60℃,90%RHで7日間保存した結果、飽和磁化減少率(Δσs1 )が4%、保磁力減少率(ΔHc1 )が4%であり、さらに、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が3%、保磁力減少率(ΔHc2 )が3%であった。

Further, the magnetic tape had a longitudinal coercivity of 283.4 kA / m (3,560 Oe) and a longitudinal squareness ratio (Br / Bm) of 0.88. Furthermore, the SFD was 0.52.

The magnetic tape was stored at 60 ° C. and 90% RH for 7 days. As a result, the saturation magnetization reduction rate (Δσs 1 ) was 4%, the coercive force reduction rate (ΔHc 1 ) was 4%, and the seventh day. The saturation magnetization reduction rate (Δσs 2 ) was 3% and the coercive force reduction rate (ΔHc 2 ) was 3% after 7 days had passed.

再被着処理時に、磁性粉末100gを水中に再び分散させた分散液に対して、5gの硝酸イットリウムを水200ccで溶解した溶液を滴下し、30分間撹拌した。これとは別に、1.6gの水酸化ナトリウムを500ccの水に溶解した。この水酸化ナトリウム水溶液を、上記の分散液に30分間かけて滴下し、さらに1時間攪拌した。この処理により磁性粉末の粒子表面にイットリウムの水酸化物を再被着析出させた。その後、乳酸5gを水45gに溶解した溶液を、上記磁性粉末の分散液に対し、さらに滴下し、1時間撹拌した。この処理により磁性粉末の粒子表面に乳酸を被着させた。

このように再被着処理時にイットリウムとともに有機カルボン酸である乳酸を用いた以外は、実施例1と同様にして、窒化鉄系磁性粉末の製造を行った。また、この窒化鉄系磁性粉末を使用して、実施例1と同様にして、磁気テープの作製およびコンピユータ用テープの作製を行った。

During the re-deposition treatment, a solution prepared by dissolving 5 g of yttrium nitrate in 200 cc of water was added dropwise to a dispersion in which 100 g of magnetic powder was dispersed again in water, followed by stirring for 30 minutes. Separately, 1.6 g of sodium hydroxide was dissolved in 500 cc of water. This aqueous sodium hydroxide solution was added dropwise to the above dispersion over 30 minutes, and the mixture was further stirred for 1 hour. By this treatment, yttrium hydroxide was re-deposited on the surface of the magnetic powder particles. Thereafter, a solution obtained by dissolving 5 g of lactic acid in 45 g of water was further added dropwise to the dispersion of the magnetic powder, and the mixture was stirred for 1 hour. By this treatment, lactic acid was deposited on the surface of the magnetic powder particles.

Thus, an iron nitride magnetic powder was produced in the same manner as in Example 1 except that lactic acid, which is an organic carboxylic acid, was used together with yttrium during the re-deposition treatment. Further, using this iron nitride magnetic powder, a magnetic tape and a computer tape were produced in the same manner as in Example 1.

このようにして得られた窒化鉄系磁性粉末は、そのイットリウム、アルミニウムおよび窒素の含有量を蛍光X線により測定したところ、それぞれ、Feに対して4.5原子%、4.7原子%および10.6原子%であった。また、高分解能分析透過電子顕微鏡で粒子形状を観察したところ、ほぼ球状の粒子で平均粒子サイズが16nmであることがわかった。さらに、BET法により求めた比表面積は、65.1m2 /gであった。

The iron nitride-based magnetic powder thus obtained was measured for its yttrium, aluminum, and nitrogen contents by fluorescent X-ray, and found to be 4.5 atomic%, 4.7 atomic%, and Fe, respectively. It was 10.6 atomic%. Further, when the particle shape was observed with a high-resolution analytical transmission electron microscope, it was found that the particles were almost spherical and the average particle size was 16 nm. Furthermore, the specific surface area determined by the BET method was 65.1 m 2 / g.

また、この窒化鉄系磁性粉末について、1,270kA/m(16kOe)の磁界を印加して測定した飽和磁化は88.3Am2 /kg(88.3emu/g)であり、また、保磁力は226.9kA/m(2,850Oe)であり、さらに、角形比(Br/Bm)は0.52であった。

また、この窒化鉄系磁性粉末を60℃,90%RHで7日間保存した結果、飽和磁化減少率(Δσs1 )が10%、保磁力減少率(ΔHc1 )が6%であり、さらに、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が8%、保磁力減少率(ΔHc2 )が5%であった。

Further, with respect to this iron nitride magnetic powder, the saturation magnetization measured by applying a magnetic field of 1,270 kA / m (16 kOe) is 88.3 Am 2 / kg (88.3 emu / g), and the coercive force is It was 226.9 kA / m (2,850 Oe), and the squareness ratio (Br / Bm) was 0.52.

Moreover, as a result of storing this iron nitride magnetic powder at 60 ° C. and 90% RH for 7 days, the saturation magnetization reduction rate (Δσs 1 ) is 10%, the coercive force reduction rate (ΔHc 1 ) is 6%, The saturation magnetization reduction rate (Δσs 2 ) was 8% and the coercivity reduction rate (ΔHc 2 ) was 5% when 7 days had passed since the 7th day as a reference.

さらに、上記の磁気テープは、長手方向の保磁力が282.5kA/m(3,550Oe)であり、また、長手方向の角形比(Br/Bm)が0.88であった。さらに、そのSFDは0.52であった。

また、この磁性テープを60℃,90%RHで7日間保存した結果、飽和磁化減少率(Δσs1 )が4%、保磁力減少率(ΔHc1 )が4%であり、さらに、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が3%、保磁力減少率(ΔHc2 )が3%であった。

Furthermore, the magnetic tape had a longitudinal coercive force of 282.5 kA / m (3,550 Oe) and a longitudinal squareness ratio (Br / Bm) of 0.88. Furthermore, the SFD was 0.52.

The magnetic tape was stored at 60 ° C. and 90% RH for 7 days. As a result, the saturation magnetization reduction rate (Δσs 1 ) was 4%, the coercive force reduction rate (ΔHc 1 ) was 4%, and the seventh day. The saturation magnetization reduction rate (Δσs 2 ) was 3% and the coercive force reduction rate (ΔHc 2 ) was 3% after 7 days had passed.

再被着処理後に、熱処理(アルゴンガス気流中100℃で1時間保持)を行わなかった以外は、実施例1と同様にして、窒化鉄系磁性粉末の製造を行った。また、この窒化鉄系磁性粉末を使用して、実施例1と同様にして、磁気テープの作製およびコンピユータ用テープの作製を行った。

An iron nitride-based magnetic powder was produced in the same manner as in Example 1 except that no heat treatment (held at 100 ° C. in an argon gas stream for 1 hour) was performed after the re-deposition treatment. Further, using this iron nitride magnetic powder, a magnetic tape and a computer tape were produced in the same manner as in Example 1.

このようにして得られた窒化鉄系磁性粉末は、そのイットリウム、アルミニウムおよび窒素の含有量を蛍光X線により測定したところ、それぞれ、Feに対して4.3原子%、4.9原子%および11.1原子%であった。また、高分解能分析透過電子顕微鏡で粒子形状を観察したところ、ほぼ球状の粒子で平均粒子サイズが16nmであることがわかった。さらに、BET法により求めた比表面積は、64.4m2 /gであった。

The iron nitride-based magnetic powder thus obtained was measured for its yttrium, aluminum and nitrogen contents by fluorescent X-ray, and found to be 4.3 atomic%, 4.9 atomic% and Fe, respectively. 11.1 atomic%. Further, when the particle shape was observed with a high-resolution analytical transmission electron microscope, it was found that the particles were almost spherical and the average particle size was 16 nm. Furthermore, the specific surface area determined by the BET method was 64.4 m 2 / g.

また、この窒化鉄系磁性粉末について、1,270kA/m(16kOe)の磁界を印加して測定した飽和磁化は98.3Am2 /kg(98.3emu/g)であり、また、保磁力は222.9kA/m(2,800Oe)であり、さらに、角形比(Br/Bm)は0.52であった。

また、この窒化鉄系磁性粉末を60℃,90%RHで7日間保存した結果、飽和磁化減少率(Δσs1 )が11%、保磁力減少率(ΔHc1 )が10%であり、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が10%、保磁力減少率(ΔHc2 )が9%であった。

The iron nitride magnetic powder has a saturation magnetization of 98.3 Am 2 / kg (98.3 emu / g) measured by applying a magnetic field of 1,270 kA / m (16 kOe), and the coercive force is It was 222.9 kA / m (2,800 Oe), and the squareness ratio (Br / Bm) was 0.52.

Further, when this iron nitride magnetic powder was stored at 60 ° C. and 90% RH for 7 days, the saturation magnetization reduction rate (Δσs 1 ) was 11% and the coercive force reduction rate (ΔHc 1 ) was 10%. The saturation magnetization reduction rate (Δσs 2 ) was 10% and the coercive force reduction rate (ΔHc 2 ) was 9% when 7 days had passed since then.

さらに、上記の磁気テープは、長手方向の保磁力が280.2kA/m(3,520Oe)であり、また、長手方向の角形比(Br/Bm)が0.86であった。さらに、そのSFDは0.52であった。

また、この磁性テープを60℃,90%RHで7日間保存した結果、飽和磁化減少率(Δσs1 )が8%、保磁力減少率(ΔHc1 )が5%であり、さらに、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が6%、保磁力減少率(ΔHc2 )が4%であった。

Further, the magnetic tape had a longitudinal coercive force of 280.2 kA / m (3,520 Oe) and a longitudinal squareness ratio (Br / Bm) of 0.86. Furthermore, the SFD was 0.52.

Further, the magnetic tape was stored at 60 ° C. and 90% RH for 7 days. As a result, the saturation magnetization reduction rate (Δσs 1 ) was 8%, the coercive force reduction rate (ΔHc 1 ) was 5%, and the seventh day. The saturation magnetization reduction rate (Δσs 2 ) was 6% and the coercive force reduction rate (ΔHc 2 ) was 4% after 7 days had passed.

比較例1
再被着処理を行わなかった以外は、実施例1と同様にして、窒化鉄系磁性粉末の製造を行った。また、この窒化鉄系磁性粉末を使用して、実施例1と同様にして、磁気テープの作製およびコンピユータ用テープの作製を行った。

Comparative Example 1
An iron nitride magnetic powder was produced in the same manner as in Example 1 except that the re-deposition treatment was not performed. Further, using this iron nitride magnetic powder, a magnetic tape and a computer tape were produced in the same manner as in Example 1.

このようにして得られた窒化鉄系磁性粉末は、そのイットリウム、アルミニウムおよび窒素の含有量を蛍光X線により測定したところ、それぞれ、Feに対して2.0原子%、5.1原子%および10.6原子%であった。また、透過電子顕微鏡で粒子形状を観察したところ、ほぼ球状の粒子で平均粒子サイズが16nmであることがわかった。さらに、BET法により求めた比表面積は、63.1m2 /gであった。

The iron nitride magnetic powder thus obtained was measured for its yttrium, aluminum, and nitrogen contents by fluorescent X-ray, and found to be 2.0 atomic%, 5.1 atomic%, and Fe, respectively. It was 10.6 atomic%. Further, when the particle shape was observed with a transmission electron microscope, it was found that the particles were substantially spherical and the average particle size was 16 nm. Furthermore, the specific surface area determined by the BET method was 63.1 m 2 / g.

また、この窒化鉄系磁性粉末について、1,270kA/m(16kOe)の磁界を印加して測定した飽和磁化は112.3Am2 /kg(112.3emu/g)であり、また、保磁力は226.9kA/m(2,850Oe)であり、さらに、角形比(Br/Bm)は0.53であった。

また、この磁性粉末を60℃,90%RHで7日間保存した結果、飽和磁化減少率(Δσs1 )が13%、保磁力減少率(ΔHc1 )が12%であり、さらに、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が11%、保磁力減少率(ΔHc2 )が10%であった。

Further, with respect to this iron nitride magnetic powder, the saturation magnetization measured by applying a magnetic field of 1,270 kA / m (16 kOe) is 112.3 Am 2 / kg (112.3 emu / g), and the coercive force is It was 226.9 kA / m (2,850 Oe), and the squareness ratio (Br / Bm) was 0.53.

Further, as a result of storing this magnetic powder at 60 ° C. and 90% RH for 7 days, the saturation magnetization reduction rate (Δσs 1 ) was 13%, the coercive force reduction rate (ΔHc 1 ) was 12%, and the seventh day The saturation magnetization reduction rate (Δσs 2 ) was 11% and the coercive force reduction rate (ΔHc 2 ) was 10% after 7 days had passed.

さらに、上記の磁気テープは、長手方向の保磁力が250.8kA/m(3,150Oe)であり、また、長手方向の角形比(Br/Bm)が0.86であった。さらに、そのSFDは0.54であった。

また、この磁性テープを60℃,90%RHで7日間保存した結果、飽和磁化減少率(Δσs1 )が8%、保磁力減少率(ΔHc1 )が8%であり、さらに、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が7%、保磁力減少率(ΔHc2 )が7%であった。

Furthermore, the magnetic tape had a longitudinal coercivity of 250.8 kA / m (3,150 Oe) and a longitudinal squareness ratio (Br / Bm) of 0.86. Furthermore, the SFD was 0.54.

The magnetic tape was stored at 60 ° C. and 90% RH for 7 days. As a result, the saturation magnetization reduction rate (Δσs 1 ) was 8%, the coercive force reduction rate (ΔHc 1 ) was 8%, and the seventh day. The saturation magnetization reduction rate (Δσs 2 ) was 7% and the coercive force reduction rate (ΔHc 2 ) was 7% after 7 days had passed.

比較例2
窒化処理後にイットリウムの水酸化物の再被着処理を行わず、これと同じ処理を加熱還元前に行う、つまりイットリウムの水酸化物の被着処理を加熱還元前に2度にわたって行うようにした以外は、実施例1と同様にして、窒化鉄系磁性粉末の製造を行った。また、この窒化鉄系磁性粉末を使用して、実施例1と同様にして、磁気テープの作製およびコンピユータ用テープの作製を行った。

Comparative Example 2
After the nitriding treatment, the yttrium hydroxide was not re-deposited, and the same treatment was performed before the heat reduction, that is, the yttrium hydroxide was deposited twice before the heat reduction. Except for the above, iron nitride magnetic powder was produced in the same manner as in Example 1. Further, using this iron nitride magnetic powder, a magnetic tape and a computer tape were produced in the same manner as in Example 1.

このようにして得られた窒化鉄系磁性粉末は、そのイットリウム、アルミニウムおよび窒素の含有量を蛍光X線により測定したところ、それぞれ、Feに対して4.5原子%、4.9原子%および0.3原子%であった。また、透過電子顕微鏡で粒子形状を観察したところ、ほぼ球状の粒子で平均粒子サイズが16nmであった。さらに、BET法により求めた比表面積は、65.6m2 /gであった。

The iron nitride-based magnetic powder thus obtained was measured for its yttrium, aluminum and nitrogen contents by fluorescent X-ray, and found to be 4.5 atomic%, 4.9 atomic% and Fe, respectively. It was 0.3 atomic%. Further, when the particle shape was observed with a transmission electron microscope, it was a substantially spherical particle and the average particle size was 16 nm. Furthermore, the specific surface area determined by the BET method was 65.6 m 2 / g.

また、この窒化鉄系磁性粉末について、1,270kA/m(16kOe)の磁界を印加して測定した飽和磁化は132.5Am2 /kg(132.5emu/g)であり、また、保磁力は44.6kA/m(560Oe)であり、さらに、角形比(Br/Bm)は0.38であった。

また、この窒化鉄系磁性粉末を60℃,90%RHで7日間保存した結果、飽和磁化減少率(Δσs1 )が10%、保磁力減少率(ΔHc1 )が2%であり、さらに、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が9%、保磁力減少率(ΔHc2 )が1%であった。

Further, with respect to the iron nitride magnetic powder, the saturation magnetization measured by applying a magnetic field of 1,270 kA / m (16 kOe) is 132.5 Am 2 / kg (132.5 emu / g), and the coercive force is It was 44.6 kA / m (560 Oe), and the squareness ratio (Br / Bm) was 0.38.

Further, as a result of storing this iron nitride magnetic powder at 60 ° C. and 90% RH for 7 days, the saturation magnetization reduction rate (Δσs 1 ) is 10%, the coercive force reduction rate (ΔHc 1 ) is 2%, The saturation magnetization reduction rate (Δσs 2 ) was 9% and the coercivity reduction rate (ΔHc 2 ) was 1% when 7 days had passed since the 7th day as a reference.

さらに、この磁気テープは、長手方向の保磁力が51.7kA/m(650Oe)であり、また、長手方向の角形比(Br/Bm)が0.51であった。さらに、そのSFDは0.81であった。

また、この磁性テープを60℃,90%RHで7日間保存した結果、飽和磁化減少率(Δσs1 )が6%、保磁力減少率(ΔHc1 )が1%であり、さらに、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が4%、保磁力減少率(ΔHc2 )が0.5%であった。

Furthermore, this magnetic tape had a coercive force in the longitudinal direction of 51.7 kA / m (650 Oe) and a squareness ratio (Br / Bm) in the longitudinal direction of 0.51. Furthermore, the SFD was 0.81.

Further, the magnetic tape was stored at 60 ° C. and 90% RH for 7 days. As a result, the saturation magnetization reduction rate (Δσs 1 ) was 6%, the coercive force reduction rate (ΔHc 1 ) was 1%. And the saturation magnetization reduction rate (Δσs 2 ) after 7 days had passed, and the coercive force reduction rate (ΔHc 2 ) was 0.5%.

参考例1
再被着処理後の熱処理温度を200℃に変更した以外は、実施例1と同様にして、窒化鉄系磁性粉末の製造を行った。また、この窒化鉄系磁性粉末を使用して、実施例1と同様にして、磁気テープの作製およびコンピユータ用テープの作製を行った。

Reference example 1
An iron nitride magnetic powder was produced in the same manner as in Example 1 except that the heat treatment temperature after the re-deposition treatment was changed to 200 ° C. Further, using this iron nitride magnetic powder, a magnetic tape and a computer tape were produced in the same manner as in Example 1.

このようにして得られた窒化鉄系磁性粉末は、そのイットリウム、アルミニウムおよび窒素の含有量を蛍光X線により測定したところ、それぞれ、Feに対して4.1原子%、5.4原子%および10.4原子%であった。また、高分解能分析透過電子顕微鏡で粒子形状を観察したところ、ほぼ球状の粒子で平均粒子サイズが16nmであることがわかった。さらに、BET法により求めた比表面積は、62.3m2 /gであった。

The iron nitride magnetic powder thus obtained was measured for its yttrium, aluminum and nitrogen contents by fluorescent X-ray, and found to be 4.1 atomic%, 5.4 atomic% and Fe, respectively. It was 10.4 atomic%. Further, when the particle shape was observed with a high-resolution analytical transmission electron microscope, it was found that the particles were almost spherical and the average particle size was 16 nm. Furthermore, the specific surface area determined by the BET method was 62.3 m 2 / g.

また、この窒化鉄系磁性粉末について、1,270kA/m(16kOe)の磁界を印加して測定した飽和磁化は55.0Am2 /kg(55.0emu/g)であり、また、保磁力は96.2kA/m(1,230Oe)であり、さらに、角形比(Br/Bm)は0.38であった。

また、この窒化鉄系磁性粉末を60℃,90%RHで7日間保存した結果、飽和磁化減少率(Δσs1 )が5%、保磁力減少率(ΔHc1 )が7%であり、さらに、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が4%、保磁力減少率(ΔHc2 )が5%であった。

The iron nitride magnetic powder has a saturation magnetization of 55.0 Am 2 / kg (55.0 emu / g) measured by applying a magnetic field of 1,270 kA / m (16 kOe), and the coercive force is It was 96.2 kA / m (1,230 Oe), and the squareness ratio (Br / Bm) was 0.38.

Moreover, as a result of storing this iron nitride magnetic powder at 60 ° C. and 90% RH for 7 days, the saturation magnetization reduction rate (Δσs 1 ) was 5%, the coercive force reduction rate (ΔHc 1 ) was 7%, The saturation magnetization reduction rate (Δσs 2 ) was 4% and the coercivity reduction rate (ΔHc 2 ) was 5% when 7 days had passed since the 7th day as a reference.

さらに、この磁気テープは、長手方向の保磁力が129.1kA/m(1,650Oe)であり、また、長手方向の角形比(Br/Bm)が0.48であった。さらに、そのSFDは0.53であった。

また、この磁性テープを60℃,90%RHで7日間保存した結果、飽和磁化減少率(Δσs1 )が3%、保磁力減少率(ΔHc1 )が4%であり、さらに、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が2%、保磁力減少率(ΔHc2 )が4%であった。

Further, this magnetic tape had a coercive force in the longitudinal direction of 129.1 kA / m (1,650 Oe) and a squareness ratio in the longitudinal direction (Br / Bm) of 0.48. Furthermore, the SFD was 0.53.

The magnetic tape was stored at 60 ° C. and 90% RH for 7 days. As a result, the saturation magnetization reduction rate (Δσs 1 ) was 3%, the coercive force reduction rate (ΔHc 1 ) was 4%, and the seventh day. The saturation magnetization reduction rate (Δσs 2 ) was 2% and the coercive force reduction rate (ΔHc 2 ) was 4% after 7 days had passed.

上記の実施例1〜4、比較例1〜2および参考例1で得られた各窒化鉄系磁性粉末について、その特性値(平均粒子サイズ、BET比表面積、飽和磁化、保磁力、角形比、飽和磁化減少率および保磁力減少率)を、表1(実施例1〜4)および表2(比較例1〜2および参考例1)に、まとめて示した。



















About each iron nitride type magnetic powder obtained by said Examples 1-4, Comparative Examples 1-2, and Reference Example 1, the characteristic value (Average particle size, BET specific surface area, saturation magnetization, coercive force, squareness ratio, The saturation magnetization reduction rate and the coercive force reduction rate are collectively shown in Table 1 (Examples 1 to 4) and Table 2 (Comparative Examples 1 to 2 and Reference Example 1).




















表1

┌───────────┬─────┬─────┬─────┬─────┐
│ │ 実施例1│ 実施例2│ 実施例3│ 実施例4│
├───────────┼─────┼─────┼─────┼─────┤
│ │ │ │ │ │
│平均粒子サイズ(nm)│ 16 │ 16 │ 16 │ 16 │
│ │ │ │ │ │
│BET比表面積 │ 64.2│ 63.8│ 65.1│ 64.4│
│ (m2 /g)│ │ │ │ │
│ │ │ │ │ │
├───────────┼─────┼─────┼─────┼─────┤
│ │ │ │ │ │
│飽和磁化σs │ 90.2│ 91.3│ 88.3│ 98.3│
│ (Am2 /kg)│ │ │ │ │
│ │ │ │ │ │
│保磁力Hc(kA/m)│230.9│228.5│226.9│222.9│
│ │ │ │ │ │
│角形比〔Br/Bm〕 │ 0.53│ 0.53│ 0.52│ 0.52│
│ │ │ │ │ │
├───────────┼─────┼─────┼─────┼─────┤
│ │ │ │ │ │
│飽和磁化減少率 │ │ │ │ │
│ Δσs1 (%) │ 9 │ 10 │ 10 │ 11 │
│ │ │ │ │ │
│ Δσs2 (%) │ 8 │ 9 │ 8 │ 10 │
│ │ │ │ │ │
├───────────┼─────┼─────┼─────┼─────┤
│ │ │ │ │ │
│保磁力減少率 │ │ │ │ │
│ ΔHc1 (%) │ 6 │ 6 │ 6 │ 10 │
│ │ │ │ │ │
│ ΔHc2 (%) │ 5 │ 5 │ 5 │ 9 │
│ │ │ │ │ │
└───────────┴─────┴─────┴─────┴─────┘













Table 1

┌───────────┬─────┬─────┬┬─────┬─────┐
│ │ Example 1 | Example 2 | Example 3 | Example 4 |
├───────────┼─────┼─────┼┼─────┼─────┤
│ │ │ │ │ │
│Average particle size (nm) │ 16 │ 16 │ 16 │ 16 │
│ │ │ │ │ │
│BET specific surface area │ 64.2│ 63.8│ 65.1│ 64.4│
│ (m 2 / g) │ │ │ │ │
│ │ │ │ │ │
├───────────┼─────┼─────┼┼─────┼─────┤
│ │ │ │ │ │
│saturation magnetization σs │ 90.2│ 91.3│ 88.3│ 98.3│
│ (Am 2 / kg) │ │ │ │ │
│ │ │ │ │ │
│Coercive force Hc (kA / m) │230.9│228.5│226.9│222.9│
│ │ │ │ │ │
│Square ratio [Br / Bm] │ 0.53│ 0.53│ 0.52│ 0.52│
│ │ │ │ │ │
├───────────┼─────┼─────┼┼─────┼─────┤
│ │ │ │ │ │
│ Saturation decrease rate │ │ │ │ │
│ Δσs 1 (%) │ 9 │ 10 │ 10 │ 11 │
│ │ │ │ │ │
│ Δσs 2 (%) │ 8 │ 9 │ 8 │ 10 │
│ │ │ │ │ │
├───────────┼─────┼─────┼┼─────┼─────┤
│ │ │ │ │ │
│ Coercivity reduction rate │ │ │ │ │
│ ΔHc 1 (%) │ 6 │ 6 │ 6 │ 10 │
│ │ │ │ │ │
│ ΔHc 2 (%) │ 5 │ 5 │ 5 │ 9 │
│ │ │ │ │ │
└───────────┴─────┴─────┴┴─────┴─────┘













表2

┌───────────┬─────┬─────┬─────┐
│ │ 比較例1│ 比較例2│ 参考例1│
├───────────┼─────┼─────┼─────┤
│ │ │ │ │
│平均粒子サイズ(nm)│ 16 │ 16 │ 16 │
│ │ │ │ │
│BET比表面積 │ 63.1│ 65.6│ 62.3│
│ (m2 /g)│ │ │ │
│ │ │ │ │
├───────────┼─────┼─────┼─────┤
│ │ │ │ │
│飽和磁化σs │112.3│132.5│ 55.0│
│ (Am2 /kg)│ │ │ │
│ │ │ │ │
│保磁力Hc(kA/m)│226.9│ 44.6│ 96.2│
│ │ │ │ │
│角形比〔Br/Bm〕 │ 0.53│ 0.38│ 0.38│
│ │ │ │ │
├───────────┼─────┼─────┼─────┤
│ │ │ │ │
│飽和磁化減少率 │ │ │ │
│ Δσs1 (%) │ 13 │ 10 │ 5 │
│ │ │ │ │
│ Δσs2 (%) │ 11 │ 9 │ 4 │
│ │ │ │ │
├───────────┼─────┼─────┼─────┤
│ │ │ │ │
│保磁力減少率 │ │ │ │
│ ΔHc1 (%) │ 12 │ 2 │ 7 │
│ │ │ │ │
│ ΔHc2 (%) │ 10 │ 1 │ 5 │
│ │ │ │ │
└───────────┴─────┴─────┴─────┘


Table 2

┌───────────┬─────┬─────┬─────┐
│ │ Comparative Example 1 | Comparative Example 2 | Reference Example 1 |
├───────────┼─────┼─────┼─────┤
│ │ │ │ │
│Average particle size (nm) │ 16 │ 16 │ 16 │
│ │ │ │ │
│BET specific surface area │ 63.1│ 65.6│ 62.3│
│ (m 2 / g) │ │ │ │
│ │ │ │ │
├───────────┼─────┼─────┼─────┤
│ │ │ │ │
│saturation magnetization σs │112.3│132.5│ 55.0│
│ (Am 2 / kg) │ │ │ │
│ │ │ │ │
│Coercivity Hc (kA / m) │226.9│ 44.6│ 96.2│
│ │ │ │ │
│Square ratio [Br / Bm] │ 0.53│ 0.38│ 0.38│
│ │ │ │ │
├───────────┼─────┼─────┼─────┤
│ │ │ │ │
│ Saturation reduction rate │ │ │ │
│ Δσs 1 (%) │ 13 │ 10 │ 5 │
│ │ │ │ │
│ Δσs 2 (%) │ 11 │ 9 │ 4 │
│ │ │ │ │
├───────────┼─────┼─────┼─────┤
│ │ │ │ │
│ Coercivity reduction rate │ │ │ │
│ ΔHc 1 (%) │ 12 │ 2 │ 7 │
│ │ │ │ │
│ ΔHc 2 (%) │ 10 │ 1 │ 5 │
│ │ │ │ │
└───────────┴─────┴─────┴─────┘

上記の表1の結果から、実施例1〜4の各窒化鉄系磁性粉末は、すぐれた磁気的性質を持ち、さらにすぐれた保存安定性(耐食性)を持つものであることがわかる。

これに対して、上記の表2の結果から、比較例1のようにFe162 相の生成後に再被着処理を行わないと、特に保存安定性が悪くなる。また、比較例2のように窒化処理後の再被着処理を窒化処理前に行うと、窒化が進まず窒素含有量が低くなり、結果として保磁力が低くなることがわかる。さらに、参考例1のように再被着処理後の熱処理温度を高くしすぎると、特に初期の磁気特性に劣ることがわかる。

From the results shown in Table 1, it can be seen that each of the iron nitride magnetic powders of Examples 1 to 4 has excellent magnetic properties and excellent storage stability (corrosion resistance).

On the other hand, from the results of Table 2 above, unless the re-deposition treatment is performed after the formation of the Fe 16 N 2 phase as in Comparative Example 1, the storage stability is particularly deteriorated. Further, it can be seen that when the re-deposition treatment after the nitriding treatment is performed before the nitriding treatment as in Comparative Example 2, the nitriding does not proceed and the nitrogen content is lowered, resulting in a lower coercive force. Furthermore, it can be seen that if the heat treatment temperature after re-deposition treatment is too high as in Reference Example 1, the initial magnetic properties are particularly inferior.

つぎに、上記の実施例1〜4、比較例1〜2および参考例1で得られた各磁気テープについて、その特性値(保磁力、角形比、SFD、飽和磁化減少率および保磁力減少率)を表3(実施例1〜4)および表4(比較例1〜2および参考例1)にまとめて示した。

Next, about each magnetic tape obtained in said Examples 1-4, Comparative Examples 1-2, and Reference Example 1, the characteristic value (Coercive force, squareness ratio, SFD, saturation magnetization reduction rate, and coercivity reduction rate) ) Are summarized in Table 3 (Examples 1 to 4) and Table 4 (Comparative Examples 1 and 2 and Reference Example 1).


表3

┌───────────┬─────┬─────┬─────┬─────┐
│ │ 実施例1│ 実施例2│ 実施例3│ 実施例4│
├───────────┼─────┼─────┼─────┼─────┤
│ │ │ │ │ │
│保磁力Hc(kA/m)│286.6│283.4│282.5│280.2│
│ │ │ │ │ │
│角形比〔Br/Bm〕 │ 0.89│ 0.88│ 0.88│ 0.86│
│ │ │ │ │ │
│SFD │ 0.50│ 0.52│ 0.52│ 0.52│
│ │ │ │ │ │
├───────────┼─────┼─────┼─────┼─────┤
│ │ │ │ │ │
│飽和磁化減少率 │ │ │ │ │
│ Δσs1 (%) │ 4 │ 4 │ 4 │ 8 │
│ │ │ │ │ │
│ Δσs2 (%) │ 3 │ 3 │ 3 │ 6 │
│ │ │ │ │ │
├───────────┼─────┼─────┼─────┼─────┤
│ │ │ │ │ │
│保磁力減少率 │ │ │ │ │
│ ΔHc1 (%) │ 3 │ 4 │ 4 │ 5 │
│ │ │ │ │ │
│ ΔHc2 (%) │ 2 │ 2 │ 3 │ 4 │
│ │ │ │ │ │
└───────────┴─────┴─────┴─────┴─────┘















Table 3

┌───────────┬─────┬─────┬┬─────┬─────┐
│ │ Example 1 | Example 2 | Example 3 | Example 4 |
├───────────┼─────┼─────┼┼─────┼─────┤
│ │ │ │ │ │
│Coercivity Hc (kA / m) │286.6│283.4│282.5│280.2│
│ │ │ │ │ │
│Square ratio [Br / Bm] │ 0.89│ 0.88│ 0.88│ 0.86│
│ │ │ │ │ │
│SFD │ 0.50│ 0.52│ 0.52│ 0.52│
│ │ │ │ │ │
├───────────┼─────┼─────┼┼─────┼─────┤
│ │ │ │ │ │
│ Saturation decrease rate │ │ │ │ │
│ Δσs 1 (%) │ 4 │ 4 │ 4 │ 8 │
│ │ │ │ │ │
│ Δσs 2 (%) │ 3 │ 3 │ 3 │ 6 │
│ │ │ │ │ │
├───────────┼─────┼─────┼┼─────┼─────┤
│ │ │ │ │ │
│ Coercivity reduction rate │ │ │ │ │
│ ΔHc 1 (%) │ 3 │ 4 │ 4 │ 5 │
│ │ │ │ │ │
│ ΔHc 2 (%) │ 2 │ 2 │ 3 │ 4 │
│ │ │ │ │ │
└───────────┴─────┴─────┴┴─────┴─────┘















表4

┌───────────┬─────┬─────┬─────┐
│ │ 比較例1│ 比較例2│ 参考例1│
├───────────┼─────┼─────┼─────┤
│ │ │ │ │
│保磁力Hc(kA/m)│250.8│ 51.7│129.1│
│ │ │ │ │
│角形比〔Br/Bm〕 │ 0.86│ 0.51│ 0.48│
│ │ │ │ │
│SFD │ 0.54│ 0.81│ 0.53│
│ │ │ │ │
├───────────┼─────┼─────┼─────┤
│ │ │ │ │
│飽和磁化減少率 │ │ │ │
│ Δσs1 (%) │ 8 │ 6 │ 3 │
│ │ │ │ │
│ Δσs2 (%) │ 7 │ 4 │ 2 │
│ │ │ │ │
├───────────┼─────┼─────┼─────┤
│ │ │ │ │
│保磁力減少率 │ │ │ │
│ ΔHc1 (%) │ 8 │ 1 │ 4 │
│ │ │ │ │
│ ΔHc2 (%) │ 7 │ 0.5 │ 4 │
│ │ │ │ │
└───────────┴─────┴─────┴─────┘


Table 4

┌───────────┬─────┬─────┬─────┐
│ │ Comparative Example 1 | Comparative Example 2 | Reference Example 1 |
├───────────┼─────┼─────┼─────┤
│ │ │ │ │
│Coercive force Hc (kA / m) │250.8│51.7│129.1│
│ │ │ │ │
│Square ratio [Br / Bm] │ 0.86│ 0.51│ 0.48│
│ │ │ │ │
│SFD │ 0.54│ 0.81│ 0.53│
│ │ │ │ │
├───────────┼─────┼─────┼─────┤
│ │ │ │ │
│ Saturation reduction rate │ │ │ │
│ Δσs 1 (%) │ 8 │ 6 │ 3 │
│ │ │ │ │
│ Δσs 2 (%) │ 7 │ 4 │ 2 │
│ │ │ │ │
├───────────┼─────┼─────┼─────┤
│ │ │ │ │
│ Coercivity reduction rate │ │ │ │
│ ΔHc 1 (%) │ 8 │ 1 │ 4 │
│ │ │ │ │
│ ΔHc 2 (%) │ 7 │ 0.5 │ 4 │
│ │ │ │ │
└───────────┴─────┴─────┴─────┘

上記の表3の結果から、実施例1〜4の各磁気テープは、すぐれた磁気的性質を持ち、さらにすぐれた保存安定性(耐食性)を持つものであることがわかる。

これに対し、上記の表4の結果から、比較例1のようにFe162 相の生成後に再被着処理を行わないと、特に保存安定性が悪くなる。また、比較例2のように窒化処理後の再被着処理を窒化処理前に行うと、初期の磁気特性に劣る。さらに、参考例1のように再被着処理後の熱処理温度が高くなりすぎると、特に初期の磁気特性に劣ることがわかる。
From the results in Table 3 above, it can be seen that each of the magnetic tapes of Examples 1 to 4 has excellent magnetic properties and excellent storage stability (corrosion resistance).

On the other hand, from the results of Table 4 above, unless the re-deposition treatment is performed after the formation of the Fe 16 N 2 phase as in Comparative Example 1, the storage stability is particularly deteriorated. Moreover, when the re-deposition process after the nitriding process is performed before the nitriding process as in Comparative Example 2, the initial magnetic characteristics are inferior. Furthermore, it can be seen that when the heat treatment temperature after the re-deposition treatment becomes too high as in Reference Example 1, the initial magnetic properties are particularly inferior.

Claims (6)

鉄と窒素を少なくとも構成元素とし、希土類金属元素、アルミニウムうちの少なくともひとつの元素を含有し、かつFe162 相を少なくとも含み、鉄に対する窒素の含有量が1.0〜20.0原子%であり、粒子の平均サイズが5〜20nmの範囲の粒状ないし楕円状である窒化鉄系磁性粉末の製造にあたり、Fe162 相の生成後に、希土類金属元素、アルミニウムうちの少なくともひとつの元素を含む無機化合物または/および有機カルボン酸、有機スルホン酸、有機リン酸、これらの酸のエステル化物もしくはアミド化物からなる有機化合物を粒子表面に被着させる被着処理を行うことを特徴とする窒化鉄系磁性粉末の製造方法。

Iron and nitrogen at least as constituent elements, containing at least one element of rare earth metal elements and aluminum , and at least an Fe 16 N 2 phase, the nitrogen content with respect to iron being 1.0 to 20.0 atoms % and is, in the production of granular or iron nitride-based magnetic powder as the elliptical range of the average size of the particles is 5 to 20 nm, after the generation of the Fe 16 N 2 phase, rare earth metal element, of aluminum of at least one An inorganic compound containing an element or / and an organic carboxylic acid, an organic sulfonic acid, an organic phosphoric acid, or an organic compound comprising an esterified product or an amidated product of these acids is applied to the particle surface. Manufacturing method of iron nitride magnetic powder.

無機化合物または/および有機化合物を粒子表面に被着させる被着処理を行ったのち、不活性ガス中または酸素ガスと不活性ガスとの混合ガス中で、30〜150℃で熱処理を行う請求項1に記載の窒化鉄系磁性粉末の製造方法。

The heat treatment is performed at 30 to 150 ° C in an inert gas or a mixed gas of an oxygen gas and an inert gas after performing an adhesion treatment for depositing an inorganic compound and / or an organic compound on the particle surface. 2. A method for producing an iron nitride magnetic powder according to 1.

請求項1または2に記載の製造方法により得られた、鉄と窒素を少なくとも構成元素とし、希土類金属元素、アルミニウムうちの少なくともひとつの元素を含有し、かつFe162 相を少なくとも含み、鉄に対する窒素の含有量が1.0〜20.0原子%であり、粒子の平均サイズが5〜20nmの範囲の粒状ないし楕円状である窒化鉄系磁性粉末。

Claim 1 or 2 obtained by the method according to the iron and nitrogen and at least an element, rare earth element contains at least one element selected from aluminum, and comprises at least a Fe 16 N 2 phase, An iron nitride magnetic powder having a granular or elliptical shape in which the content of nitrogen with respect to iron is 1.0 to 20.0 atomic% and the average particle size is in the range of 5 to 20 nm.

飽和磁化が80〜120Am2 /kg(80〜120emu/g)、保磁力が160〜280kA/m(2,000〜3,500Oe)であり、60℃,90%RHの雰囲気下に7日間保持したのちの飽和磁化減少率(Δσs1 )が0.1〜11%、同保磁力減少率(ΔHc1 )が0.1〜10%、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が0.1〜10%、同保磁力減少率(ΔHc2 )が0.1〜9%である請求項3に記載の窒化鉄系磁性粉末。

The saturation magnetization is 80 to 120 Am 2 / kg (80 to 120 emu / g), the coercive force is 160 to 280 kA / m (2,000 to 3,500 Oe), and it is kept for 7 days in an atmosphere of 60 ° C. and 90% RH. After that, the saturation magnetization reduction rate (Δσs 1 ) is 0.1 to 11%, the coercive force reduction rate (ΔHc 1 ) is 0.1 to 10%, and when 7 days have passed since the seventh day as a reference. The iron nitride magnetic powder according to claim 3, wherein the saturation magnetization reduction rate (Δσs 2 ) is 0.1 to 10% and the coercive force reduction rate (ΔHc 2 ) is 0.1 to 9%.

請求項3または4に記載の窒化鉄系磁性粉末を用いた磁気記録媒体。

A magnetic recording medium using the iron nitride magnetic powder according to claim 3.

保磁力が180〜300kA/m(2,300〜3,800Oe)で、60℃,90%RHの雰囲気下に7日間保持したのちの飽和磁化減少率(Δσs1 )が0.01〜10%、同保磁力減少率(ΔHc1 )が0.01〜5%、7日目を基準としそれからさらに7日間経過した際の飽和磁化減少率(Δσs2 )が0.01〜8%、同保磁力減少率(ΔHc2 )が0.01〜4%である請求項5に記載の磁気記録媒体。
The coercive force is 180 to 300 kA / m (2,300 to 3,800 Oe), and the saturation magnetization reduction rate (Δσs 1 ) after being held in an atmosphere of 60 ° C. and 90% RH for 7 days is 0.01 to 10%. The coercive force reduction rate (ΔHc 1 ) is 0.01 to 5%, and the saturation magnetization reduction rate (Δσs 2 ) is 0.01 to 8% when 7 days have passed since the seventh day as a reference. The magnetic recording medium according to claim 5, wherein the magnetic force reduction rate (ΔHc 2 ) is 0.01 to 4%.
JP2005036020A 2005-02-14 2005-02-14 Iron nitride magnetic powder, method for producing the same, and magnetic recording medium Expired - Fee Related JP4057593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005036020A JP4057593B2 (en) 2005-02-14 2005-02-14 Iron nitride magnetic powder, method for producing the same, and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005036020A JP4057593B2 (en) 2005-02-14 2005-02-14 Iron nitride magnetic powder, method for producing the same, and magnetic recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007189119A Division JP2007311820A (en) 2007-07-20 2007-07-20 Method for manufacturing iron nitride-based magnetic powder and magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2006222357A JP2006222357A (en) 2006-08-24
JP4057593B2 true JP4057593B2 (en) 2008-03-05

Family

ID=36984436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005036020A Expired - Fee Related JP4057593B2 (en) 2005-02-14 2005-02-14 Iron nitride magnetic powder, method for producing the same, and magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4057593B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011098A (en) * 2012-11-29 2013-04-03 湖南省宏元稀有金属材料有限公司 Production method for increasing content of nitrogen in vanadium-nitrogen alloy

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084419A (en) * 2006-09-27 2008-04-10 Hitachi Maxell Ltd Magnetic recording medium
JP2008108943A (en) * 2006-10-26 2008-05-08 Hitachi Maxell Ltd Magnetic powder and magnetic recording medium using it
US8703282B2 (en) 2007-03-09 2014-04-22 Kabushiki Kaisha Toshiba Core-shell type magnetic particle and high-frequency magnetic material
JP5781276B2 (en) * 2010-05-12 2015-09-16 ジ・アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・ザ・ユニバーシティ・オブ・アリゾナThe Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing metal magnetic powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011098A (en) * 2012-11-29 2013-04-03 湖南省宏元稀有金属材料有限公司 Production method for increasing content of nitrogen in vanadium-nitrogen alloy

Also Published As

Publication number Publication date
JP2006222357A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
US6964811B2 (en) Magnetic powder, method for producing the same and magnetic recording medium comprising the same
US7700204B2 (en) Magnetic recording medium containing particles with a core containing a FE16N2 phase
JP3886968B2 (en) Magnetic recording medium and magnetic recording cartridge
JP4791513B2 (en) Iron nitride magnetic powder and magnetic recording medium using the same
JP2006092672A (en) Magnetic tape
JP2008159259A (en) Magnetic recording medium
JP4057593B2 (en) Iron nitride magnetic powder, method for producing the same, and magnetic recording medium
JP2008108943A (en) Magnetic powder and magnetic recording medium using it
JP2006155894A (en) Magnetic recording cartridge
JP3892837B2 (en) Magnetic recording medium
JP2008084419A (en) Magnetic recording medium
JP4146769B2 (en) Magnetic recording medium
JP2009223970A (en) Magnetic recording medium and manufacturing method therefor
JP4673945B2 (en) Magnetic powder, method for producing the same, and magnetic recording medium
JP2009009646A (en) Magnetic recording medium
JP2007311820A (en) Method for manufacturing iron nitride-based magnetic powder and magnetic recording medium
JP4162536B2 (en) Magnetic recording medium
JP2006344379A (en) Magnetic recording medium and magnetic recording cartridge
JP2009224611A (en) Iron nitride-based magnetic powder and magnetic recording medium using the same
JP2005310857A (en) Nitride iron base magnetic powder, producing method therefor, and magnetic recording medium
JP4242402B2 (en) Magnetic recording medium
JP4268628B2 (en) Magnetic recording medium and magnetic recording cartridge
JP2008071425A (en) Magnetic recording medium
JP2011129172A (en) Iron nitride-based magnetic powder and magnetic recording medium using the same
Sasaki et al. Magnetic recording medium containing particles with a core containing a FE 16 N 2 phase

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070411

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071213

R150 Certificate of patent or registration of utility model

Ref document number: 4057593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees