JP4595553B2 - Control device for variable valve mechanism - Google Patents

Control device for variable valve mechanism Download PDF

Info

Publication number
JP4595553B2
JP4595553B2 JP2005011276A JP2005011276A JP4595553B2 JP 4595553 B2 JP4595553 B2 JP 4595553B2 JP 2005011276 A JP2005011276 A JP 2005011276A JP 2005011276 A JP2005011276 A JP 2005011276A JP 4595553 B2 JP4595553 B2 JP 4595553B2
Authority
JP
Japan
Prior art keywords
valve mechanism
variable valve
control
operating angle
cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005011276A
Other languages
Japanese (ja)
Other versions
JP2006200403A (en
Inventor
金子  豊
和孝 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005011276A priority Critical patent/JP4595553B2/en
Publication of JP2006200403A publication Critical patent/JP2006200403A/en
Application granted granted Critical
Publication of JP4595553B2 publication Critical patent/JP4595553B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、内燃機関の吸・排気弁のリフト特性(作動角、リフト量)を連続的に可変制御可能な可変動弁機構、その他アクチュエータの制御装置に関する。   The present invention relates to a variable valve mechanism that can continuously and variably control lift characteristics (operation angle and lift amount) of intake and exhaust valves of an internal combustion engine, and a control device for other actuators.

周知のように、機関低速低負荷時における燃費の改善や安定した運転性並びに高速高負荷時における吸気の充填効率の向上による十分な出力を確保する等のために、吸・排気弁のリフト特性を機関運転状態に応じて変えることができる可変動弁機構が提案されている。
この種の可変動弁機構として、特許文献1に示されるものでは、バルブスプリングの反力によって可変動弁機構の制御軸に作用する非線形特性の反力トルクを外乱として推定して制御を行っている。
特開2001−3773号公報
As is well known, the lift characteristics of intake and exhaust valves are used to improve fuel economy at low engine speed and low load, to ensure stable operation, and to ensure sufficient output by improving intake charging efficiency at high speed and high load. There has been proposed a variable valve mechanism that can change the engine according to the engine operating state.
As this type of variable valve mechanism, the one disclosed in Patent Document 1 performs control by estimating a non-linear characteristic reaction torque acting on the control shaft of the variable valve mechanism as a disturbance by the reaction force of the valve spring. Yes.
JP 2001-3773 A

上記特許文献1では、フィードバック制御系の安定性と反力トルクとの関係が明らかにできず、また、フィードバック制御系に対するバラツキ、経年変化の影響を容易に扱えない。
また、安定性解析では、制御対象の伝達関数とフィードバック補償器の伝達関数とを掛け合わせた一巡伝達関数が必要であるが、上記特許文献1では、反力トルクを外乱として推定し、制御対象(可変動弁機構)のモデルに反力トルク作用を組み込んでいないので、正しくモデル化されていない制御対象の伝達関数を用いて上記のように一巡伝達関数を求めても、安定性解析を正しく行うことができない。
In Patent Document 1, the relationship between the stability of the feedback control system and the reaction torque cannot be clarified, and variations in the feedback control system and the influence of secular change cannot be easily handled.
Further, in the stability analysis, a round transfer function obtained by multiplying the transfer function of the control object and the transfer function of the feedback compensator is required. However, in Patent Document 1, the reaction force torque is estimated as a disturbance, and the control object is controlled. Since the reaction force torque action is not incorporated in the (variable valve mechanism) model, even if the transfer function of the controlled object that is not correctly modeled is used to obtain the one-round transfer function as described above, the stability analysis is correctly performed. I can't do it.

本発明は、このような従来の課題に着目してなされたもので、可変動弁機構をモデル化して高精度な制御を行えるようにすることを目的とする。   The present invention has been made paying attention to such a conventional problem, and an object of the present invention is to model a variable valve mechanism so that high-precision control can be performed.

上記の課題を解決するため、本発明は、該リフト特性の変位と駆動力との関係が非線形な特性を有する可変動弁機構の動作特性モデルを、制御軸の作動角毎に前記アクチュエータの駆動力/前記制御軸の作動角として算出したバネ定数を用いて推定し、該モデルを用いて前記制御軸の作動角の目標値を入力値として、該モデルを用いて前記制御軸の作動角が前記目標値に追従するよう前記アクチュエータを制御する構成とした。 In order to solve the above-described problems, the present invention provides an operation characteristic model of a variable valve mechanism having a nonlinear relationship between the displacement of the lift characteristic and the driving force, for each actuator operating angle. Force / estimated using the spring constant calculated as the operating angle of the control axis, and using the model as a target value of the operating angle of the control axis, the operating angle of the control axis is determined using the model. The actuator is controlled to follow the target value.

かかる構成とすれば、可変動弁機構を、上記のようにリフト特性毎に算出したバネ定数を用いてモデル化することにより、バルブ特性の可変範囲の全域に亘って、バルブスプリングからの反力に応じた特性を正確に表したモデルを設計することができるので、パラメータ変動や外乱の影響を受けにくく、かつ、設計者が希望するリフト特性の応答が得られる。   With such a configuration, by modeling the variable valve mechanism using the spring constant calculated for each lift characteristic as described above, the reaction force from the valve spring over the entire variable range of the valve characteristic. Therefore, it is possible to design a model that accurately represents the characteristics corresponding to the above, so that it is difficult to be influenced by parameter fluctuations and disturbances, and a response of the lift characteristics desired by the designer can be obtained.

図1〜図3は、本発明に係る内燃機関の可変動弁機構を、吸気弁側に適用した実施形態を示している。なお、図1では排気弁側(図1の下側)の構成を図示省略している。
シリンダヘッド10の上部には、全気筒にわたって連続した駆動軸11が設けられている。この駆動軸11は、図外の一端にスプロケットが取り付けられ、タイミングチェーン等を介して機関のクランクシャフトに連動して回転する。
1 to 3 show an embodiment in which a variable valve mechanism for an internal combustion engine according to the present invention is applied to the intake valve side. In FIG. 1, the configuration on the exhaust valve side (lower side in FIG. 1) is not shown.
A drive shaft 11 that is continuous over all the cylinders is provided on the upper portion of the cylinder head 10. The drive shaft 11 has a sprocket attached to one end (not shown) and rotates in conjunction with the crankshaft of the engine via a timing chain or the like.

この駆動軸11の外周には、吸気弁(又は排気弁)19を駆動する揺動カム18の円筒状の軸受部18aが相対回転可能に外嵌している。この揺動カム18は、先端部(カムノーズ)18bを有する薄板状をなし、その外周に、吸気弁19の上端に設けられた伝達部材としてのバルブリフタ19aの上面19bに摺接するカム面18cが形成されている。
また、駆動軸11の外周にはリング状の偏心カム12が圧入等により固定されている。この偏心カム12の中心(軸心)C2は、駆動軸11の中心(軸心)C1に対して所定量偏心している。この偏心カム12の外周には、リング状リンク13の基部13aがベアリング等を介して相対回転可能に外嵌している。なお、揺動カム18の揺動中心(軸心)は、駆動軸11の中心C1と一致している。
A cylindrical bearing portion 18a of a swing cam 18 that drives an intake valve (or exhaust valve) 19 is fitted on the outer periphery of the drive shaft 11 so as to be relatively rotatable. The swing cam 18 has a thin plate shape having a tip (cam nose) 18b, and a cam surface 18c is formed on the outer periphery of the swing cam 18 so as to be in sliding contact with an upper surface 19b of a valve lifter 19a as a transmission member provided at an upper end of the intake valve 19. Has been.
A ring-shaped eccentric cam 12 is fixed to the outer periphery of the drive shaft 11 by press fitting or the like. The center (axial center) C2 of the eccentric cam 12 is eccentric by a predetermined amount with respect to the center (axial center) C1 of the drive shaft 11. A base portion 13a of a ring-shaped link 13 is fitted on the outer periphery of the eccentric cam 12 so as to be relatively rotatable via a bearing or the like. Note that the swing center (axial center) of the swing cam 18 coincides with the center C1 of the drive shaft 11.

駆動軸11の斜め上方には、制御軸14が駆動軸11と略平行に気筒列方向に延設されている。この制御軸14は、後述する駆動部20により機関の運転状態に応じて所定の回転範囲で回転,保持される。
制御軸14の外周には、リング状の制御カム15が圧入等により固定されている。制御カム15の中心(軸心)C4は、制御軸14の中心(軸心)C3に対して所定量偏心している。この制御カム15の外周には、ロッカアーム16の円筒状の中央基部が相対回転可能に外嵌している。このロッカアーム16の一端部16aと、リング状リンク13の小径な先端部13bとは、両者16a,13bを挿通する第1ピン29aを介して相対回転可能に連結されている。
A control shaft 14 extends in the cylinder row direction substantially parallel to the drive shaft 11 obliquely above the drive shaft 11. The control shaft 14 is rotated and held in a predetermined rotation range according to the operating state of the engine by a drive unit 20 described later.
A ring-shaped control cam 15 is fixed to the outer periphery of the control shaft 14 by press fitting or the like. The center (axial center) C4 of the control cam 15 is eccentric by a predetermined amount with respect to the center (axial center) C3 of the control shaft 14. A cylindrical central base of the rocker arm 16 is fitted on the outer periphery of the control cam 15 so as to be relatively rotatable. One end portion 16a of the rocker arm 16 and the small-diameter tip portion 13b of the ring-shaped link 13 are coupled to each other via a first pin 29a that passes through both the 16a and 13b.

また、ロッカアーム16の他端部16bと揺動カム18とは、ロッド状リンク17によって連携されている。より具体的には、ロッカアーム16の他端部16bと、ロッド状リンク17の一端部17aとは、両者16b,17aを挿通する第2ピン29bを介して相対回転可能に連結されている。また、ロッド状リンク17の他端部17bと揺動カム18とは、両者17b,18を挿通する第3ピン29cを介して相対回転可能に連結されている。   The other end 16 b of the rocker arm 16 and the swing cam 18 are linked by a rod-shaped link 17. More specifically, the other end portion 16b of the rocker arm 16 and the one end portion 17a of the rod-like link 17 are coupled to each other via a second pin 29b that passes through both the portions 16b and 17a so as to be relatively rotatable. The other end 17b of the rod-shaped link 17 and the swing cam 18 are connected to each other via a third pin 29c that passes through both the ends 17b and 18 so as to be relatively rotatable.

次に、制御軸14を回動,保持する駆動部20の構成を説明する。
図1に示すように、制御軸14は、シリンダヘッド10に固定されるケース22内まで延びており、その一端にウォームホイール21が固定されている。ケース22には、ECU(エンジンコントロールユニット)50からの制御信号により駆動される電動モータ26が取り付けられており、この電動モータ26の出力軸26aは、ローラベアリング25を介してケース22内に回転可能に延在している。この出力軸26aに、ウォームホイール21と噛合するウォームギヤ24が固定されている。なお、ウォームギヤ24とウォームホイール21の間でモータトルクを増大させるために、ギヤ比を適宜に大きく設定してある。また、ケース22には、制御軸14(ウォームホイール21)の回転角度を検出する回転角センサ23が取り付けられており、この回転角センサ23の出力は、前記ECU50に入力され、該回転角センサ23で検出された制御軸14の回転角、すなわち吸気弁19の作動角(リフト量)検出値に基づいて、電動モータ26がフィードバック制御される。
Next, the configuration of the drive unit 20 that rotates and holds the control shaft 14 will be described.
As shown in FIG. 1, the control shaft 14 extends into a case 22 fixed to the cylinder head 10, and a worm wheel 21 is fixed to one end thereof. An electric motor 26 driven by a control signal from an ECU (Engine Control Unit) 50 is attached to the case 22, and an output shaft 26 a of the electric motor 26 rotates into the case 22 via a roller bearing 25. It extends as possible. A worm gear 24 that meshes with the worm wheel 21 is fixed to the output shaft 26a. In order to increase the motor torque between the worm gear 24 and the worm wheel 21, the gear ratio is set appropriately large. Further, a rotation angle sensor 23 for detecting the rotation angle of the control shaft 14 (worm wheel 21) is attached to the case 22, and the output of the rotation angle sensor 23 is input to the ECU 50, and the rotation angle sensor The electric motor 26 is feedback-controlled based on the detected rotation angle of the control shaft 14, that is, the detected value of the operating angle (lift amount) of the intake valve 19.

このような構成により、機関の回転に連動して駆動軸11が回転すると、偏心カム12を介してリング状リンク13が並進移動し、これに応じてロッカアーム16が制御カム15の中心C4を揺動中心として揺動し、かつ、ロッド状リンク17を介して揺動カム18が揺動する。このとき、揺動カム18のカム面18cが、吸気弁19の上端に設けられた伝達部材としてのバルブリフタ19aの上面に摺接し、バルブリフタ19aを図外のバルブスプリングの反力に抗して押圧することにより、吸気弁19が機関の回転に連動して開閉作動する。   With such a configuration, when the drive shaft 11 rotates in conjunction with the rotation of the engine, the ring-shaped link 13 moves in translation via the eccentric cam 12, and the rocker arm 16 swings the center C4 of the control cam 15 accordingly. The swing cam 18 swings as a moving center, and the swing cam 18 swings through the rod-shaped link 17. At this time, the cam surface 18c of the swing cam 18 is in sliding contact with the upper surface of the valve lifter 19a as a transmission member provided at the upper end of the intake valve 19, and the valve lifter 19a is pressed against the reaction force of the valve spring (not shown). As a result, the intake valve 19 opens and closes in conjunction with the rotation of the engine.

また、機関の運転状態に応じて電動モータ26の出力軸26aが回転駆動されると、ウォームギヤ24,ウォームホイール21を介して制御軸14が回転して、ロッカアーム16の揺動中心となる制御カム15の中心C4の位置が変化し、吸気弁19のリフト特性が連続的に変化する。より具体的には、制御軸14の作動角が大側に回動され、制御カム15の中心C4と駆動軸11の中心C1との距離を近づけるほど、リフト特性の変位であるバルブリフト量及び作動角が大きくなる。   Further, when the output shaft 26a of the electric motor 26 is rotationally driven in accordance with the operating state of the engine, the control shaft 14 is rotated via the worm gear 24 and the worm wheel 21, and the control cam serving as the rocking center of the rocker arm 16 is rotated. The position of the center C4 of 15 changes, and the lift characteristic of the intake valve 19 changes continuously. More specifically, as the operating angle of the control shaft 14 is rotated to the larger side and the distance between the center C4 of the control cam 15 and the center C1 of the drive shaft 11 is closer, the valve lift amount, which is the displacement of the lift characteristics, and The operating angle increases.

次に、同上可変動弁機構の動作特性を、考察する。
図4,5を参照して、ロッカアーム16の他端部16bには、吸気弁19のバルブスプリング反力等によって生じる反力F1が、揺動カム18,ロッド状リンク17,第2ピン29b等を介して作用する。また、ロッカアーム16の一端部16aには、反作用として発生する反力F2が、偏心カム12,リング状リンク13,第1ピン29a等を介して作用する。従って、ロッカアーム16の揺動中心C4には、実質的に反力F1,F2の合成反力F3が作用する。
Next, the operating characteristics of the variable valve mechanism will be discussed.
4 and 5, the reaction force F1 generated by the valve spring reaction force or the like of the intake valve 19 is applied to the other end portion 16b of the rocker arm 16 such as the swing cam 18, the rod-shaped link 17, the second pin 29b, and the like. Acting through. Further, a reaction force F2 generated as a reaction acts on the one end 16a of the rocker arm 16 via the eccentric cam 12, the ring-shaped link 13, the first pin 29a, and the like. Accordingly, the combined reaction force F3 of the reaction forces F1 and F2 substantially acts on the rocking center C4 of the rocker arm 16.

これにより、制御軸14には、制御軸14の中心C3から合成反力F3の方向線までの腕長さr1と合成反力F3との積であるトルクT1が作用する。従って、駆動部20が制御軸14を所定の角度に保持するためには、少なくとも上記のトルクT1に釣り合う逆向きのトルクを必要とする。
制御軸14が所定の回転角度に保持された状態では、図4に示すように、揺動カム18が最も高リフト側へ押し下げられたとき、すなわち図4の反時計方向に最も揺動したときに、合成反力F3が最大となる。このときの合成反力F3の方向は、駆動軸11の中心C1と制御軸14の中心C3とを結ぶ第1の線L1と略平行となる。
As a result, a torque T1 that is the product of the arm length r1 from the center C3 of the control shaft 14 to the direction line of the combined reaction force F3 and the combined reaction force F3 acts on the control shaft 14. Therefore, in order for the drive unit 20 to hold the control shaft 14 at a predetermined angle, at least a reverse torque that matches the torque T1 is required.
In a state where the control shaft 14 is held at a predetermined rotation angle, as shown in FIG. 4, when the swing cam 18 is pushed down to the highest lift side, that is, when it swings most counterclockwise in FIG. Further, the combined reaction force F3 is maximized. The direction of the resultant reaction force F3 at this time is substantially parallel to the first line L1 connecting the center C1 of the drive shaft 11 and the center C3 of the control shaft 14.

ここで、図6に示すように、合成反力F3は、リフト量(作動角)の増大に応じて増大する[図(A):最小作動角、(B):中間位置、(C):最大作動角]が、腕長さr1は、偏心カム12の回転にしたがって、最小作動角から中間位置までは増大するが、その後は、減少する。したがって、合成反力F3と腕長さr1との積であるトルクT1は、作動角θに対して非線形な特性を有する。   Here, as shown in FIG. 6, the combined reaction force F3 increases with an increase in the lift amount (operating angle) [FIG. (A): minimum operating angle, (B): intermediate position, (C): The maximum operating angle] increases as the arm length r1 increases from the minimum operating angle to the intermediate position as the eccentric cam 12 rotates, but then decreases. Therefore, the torque T1, which is the product of the combined reaction force F3 and the arm length r1, has a nonlinear characteristic with respect to the operating angle θ.

図7は、制御軸の作動角θcs(吸気弁のリフト量、作動角と相関)と駆動電流ics(トルクT1に比例)との関係を示す。
ここで、本発明では、上記非線形な制御軸作動角θcs−駆動電流ics特性に対し、制御軸作動角θcs毎のバネ定数K(θcs)を下式のように定義して算出し、該バネ定数K(θcs)を用いて制御対象である可変動弁機構の動作特性をモデル化しつつ制御軸作動角θcsの位置決め制御を行う。
FIG. 7 shows the relationship between the operating angle θcs of the control shaft (corresponding to the lift amount of the intake valve and the operating angle) and the drive current ics (proportional to the torque T1).
Here, in the present invention, the spring constant K (θcs) for each control shaft operating angle θcs is defined and calculated with respect to the non-linear control shaft operating angle θcs−driving current ics characteristic, and the spring is calculated. Positioning control of the control shaft operating angle θcs is performed while modeling the operation characteristics of the variable valve mechanism to be controlled using the constant K (θcs).

A(θcs)=ics/θcs・・・(1)
K(θcs)=A(θcs)・KT・・・(2)
ただし、KT:DCモータのトルク定数
図7の特性から(1)式より制御軸作動角θcsに対する駆動電流icsの係数A(θcs)を算出し、該A(θcs)に基づいて(2)式によりバネ定数K(θcs)を算出する(図8参照)。該算出されたバネ定数K(θcs)を制御軸作動角θcs毎に割り付けて図9に示す作動角−バネ定数マップを作成する。上記のように、バネ定数を定義することで、非線形特性を有する制御軸作動角と駆動電流とを連続的かつ一義的な関数として設定でき、可変動弁機構を後述するようにモデル化することが可能となる。
A (θcs) = ics / θcs (1)
K (θcs) = A (θcs) · K T (2)
However, K T : DC motor torque constant The coefficient A (θcs) of the drive current ics with respect to the control shaft operating angle θcs is calculated from the characteristic shown in FIG. 7 using the equation (1), and based on the A (θcs), (2) The spring constant K (θcs) is calculated from the equation (see FIG. 8). The calculated spring constant K (θcs) is assigned to each control shaft operating angle θcs to create an operating angle-spring constant map shown in FIG. By defining the spring constant as described above, it is possible to set the control shaft operating angle and drive current having non-linear characteristics as a continuous and unique function, and to model the variable valve mechanism as described later Is possible.

本制御システムは、図10に示すように、大きく分けて動特性補償部101と、応答性補償部102と、制御対象である可変動弁機構103とから構成される。
可変動弁機構103の伝達特性GP(s)は、動特性と静特性の積として、次式に示すような0次/2次で表すことができる(下式右辺の左側の項が動特性、右側の項が静特性)。
As shown in FIG. 10, this control system is roughly composed of a dynamic characteristic compensator 101, a responsiveness compensator 102, and a variable valve mechanism 103 to be controlled.
The transmission characteristic G P (s) of the variable valve mechanism 103 can be expressed as a product of the dynamic characteristic and the static characteristic in the 0th order / second order as shown in the following expression (the term on the left side of the right side of the following expression is the dynamic value). Characteristics, right term is static characteristics).

Figure 0004595553
Figure 0004595553

ただし、J:可変動弁機構の慣性モーメント
D:同上機構の粘性抵抗
以上のことを踏まえて、図10に示した本制御システムの各要素について説明する。
まず、動特性補償部101について説明すると、動特性補償部101はいわゆるフィードフォワード補償器である。
Where J: Moment of inertia of variable valve mechanism
D: Viscous resistance of mechanism as above Based on the above, each element of the present control system shown in FIG. 10 will be described.
First, the dynamic characteristic compensation unit 101 will be described. The dynamic characteristic compensation unit 101 is a so-called feedforward compensator.

ここで、設計者が希望する作動角の応答(減衰比ζ、振動数ω)が次式に示す目標作動角演算器102aの伝達特性GT(s)で与えられるとする。
Here, it is assumed that the operating angle response (damping ratio ζ, frequency ω) desired by the designer is given by the transfer characteristic GT (s) of the target operating angle calculator 102a shown in the following equation.

Figure 0004595553
Figure 0004595553

入力値かつ最終目標値である到達作動角θCSTに対し、実制御軸作動角θCSが前記動特性GT(s)で追従するように、GFF(s)=GT(s)/GP(s)の関係から求めた動特性補償部101の伝達関数GFF(s)により、次式(5)により、駆動電流のフィードフォワード分である動特性補償出力iCSFFを算出する。つまり、動特性補償部101は、2次/2次フィルタで構成される。
G FF (s) = G T (s) / G so that the actual control shaft operating angle θ CS follows the input characteristic and final target value θ CST as the dynamic characteristic G T (s). Based on the transfer function G FF (s) of the dynamic characteristic compensator 101 obtained from the relationship of G P (s), the dynamic characteristic compensation output i CSFF that is the feed forward amount of the drive current is calculated by the following equation (5). That is, the dynamic characteristic compensator 101 is composed of a secondary / secondary filter.

Figure 0004595553
Figure 0004595553

次に、応答性補償部102について説明する。この応答性補償部102は、目標作動角演算器102aと動特性出力補償器102bとから構成される。
目標作動補償器102aは到達作動角θCSTを入力とし、設計者が希望する作動角の応答である目標制御軸作動角θCSMを(6)式に基づき演算する。目標制御軸作動角θCSMは、制御軸作動角θCSが最終的な到達作動角θCSTに至るまでの過渡的な作動角である。
Next, the response compensation unit 102 will be described. The response compensation unit 102 includes a target operating angle calculator 102a and a dynamic characteristic output compensator 102b.
The target operation compensator 102a receives the arrival operation angle θ CST as an input, and calculates a target control shaft operation angle θ CSM that is a response of the operation angle desired by the designer based on the equation (6). The target control shaft operating angle θ CSM is a transient operating angle until the control shaft operating angle θ CS reaches the final reached operating angle θ CST .

Figure 0004595553
Figure 0004595553

(6)式のζとωは設計者が希望する作動角応答に応じて設定する。
動特性出力補償器102bでは、積分特性を有し、制御対象のパラメータ変化に対して安定性が補償されているフィルタを用いて動特性補償出力補正値iCSFBを、(7)式の偏差量θERRから算出する。
θERR=θCSM−θCS・・・(7)
積分特性を有するフィルタの例として(8)式があげられる。比例ゲインPおよび積分ゲインIは安定性が補償されているゲインである。この場合、動特性出力補償値iCSFBは(9)式から算出する。
Ζ and ω in equation (6) are set according to the operating angle response desired by the designer.
In the dynamic characteristic output compensator 102b, a dynamic characteristic compensated output correction value i CSFB is calculated by using a filter having an integral characteristic and whose stability is compensated with respect to a parameter change to be controlled. Calculated from θ ERR .
θ ERR = θ CSM −θ CS (7)
As an example of a filter having integral characteristics, equation (8) can be given. The proportional gain P and the integral gain I are gains whose stability is compensated. In this case, the dynamic characteristic output compensation value i CSFB is calculated from the equation (9).

FB(s)=(Ps+I)/s・・・(8)
CSFB=(Ps+I)/s・θERR・・・(9)
動特性出力補償補正値iCFSBに基づき、動特性補償出力iCSFFを用いて、電流指令値iCSCは、(10)式より算出される。
CSC=iCSFB+iCSFF・・・(10)
このように作動角毎に算出したバネ定数を用いて可変動弁機構のモデルを推定し、該モデルを用いて電流指令値iCSCを算出して制御することにより、パラメータ変動や外乱の影響を受けにくく、かつ、設計者が希望する作動角応答が得られる。
G FB (s) = (Ps + I) / s (8)
i CSFB = (Ps + I) / s · θ ERR (9)
Based on the dynamic characteristic output compensation correction value i CFSB , the current command value i CSC is calculated from the equation (10) using the dynamic characteristic compensation output i CSFF .
i CSC = i CSFB + i CSFF (10)
By estimating the variable valve mechanism model using the spring constant calculated for each operating angle in this way, and calculating and controlling the current command value i CSC using the model, the effects of parameter fluctuations and disturbances can be reduced. It is difficult to receive, and the operating angle response desired by the designer can be obtained.

なお、例えば、本発明のように定義したバネ定数を用いず、図7で示される非線形特性に対し、作動角の小さな線形性を有した領域と、それ以上の非線形性を有した領域をさらに駆動電流が最大点を含んで増減する領域、それ以降の曲線状に減少する領域など複数に分割してそれぞれ異なるモデルを設計してモデルを切り換えながら制御することなども考えられるが、極めて複雑化するだけで、切り換え点での連続性を持たせることも難しく、精度も上がらないことは明らかである。   In addition, for example, without using the spring constant defined as in the present invention, a region having a linearity with a small operating angle and a region having a nonlinearity higher than the nonlinearity shown in FIG. Although it is possible to divide the drive current into multiple areas, such as a region where the drive current increases and decreases including the maximum point, and a region where the drive current decreases after that, design different models and control while switching models, but it is extremely complicated Obviously, it is difficult to achieve continuity at the switching point, and the accuracy does not increase.

また、図11に示すように、可変動弁機構の作動角が動き始めるのに必要な電流は、エンジン回転速度Ne毎に異なる。そこで、第2の実施形態では、エンジン回転速度Neを基に図12に示すマップからオフセット電流ofset_iを表引き演算し、次式(11)のように、電流指令値iCSCに加える。これにより、制御精度がより向上する。
CSC=iCSFB+iCSFF+ofset_i・・・(11)
また、可変動弁機構の制御軸作動角θCSと駆動電流iCSの関係は、摩擦等により、図13に示すように、制御軸作動角θCSが増大するときは、減少するときより同一制御軸作動角θCSの駆動電流iCSが大きくなるヒステリシスを有し、かつ、エンジン回転速度Neが大きいほどヒス幅が増大する特性を有することが実験的に確認された。
Further, as shown in FIG. 11, the current required for the operating angle of the variable valve mechanism to start to move differs for each engine speed Ne. Therefore, in the second embodiment, the offset current ofset_i is calculated from the map shown in FIG. 12 based on the engine rotational speed Ne, and is added to the current command value i CSC as shown in the following equation (11). Thereby, the control accuracy is further improved.
i CSC = i CSFB + i CSFF + ofset_i (11)
Further, the relationship between the control shaft operating angle θ CS and the drive current i CS of the variable valve mechanism is the same when the control shaft operating angle θ CS increases due to friction or the like, as shown in FIG. It has been experimentally confirmed that there is a hysteresis in which the drive current i CS of the control shaft operating angle θ CS increases, and that the hysteresis width increases as the engine speed Ne increases.

そこで、第3の実施形態ではバネ定数K(θCS)を制御軸作動角θCS、エンジン回転速度Ne、作動角変化方向毎に(2)式を用いて算出し、図14に示すような作動角−バネ定数マップを作成し、該マップを参照してバネ定数K(θCS)を表引き演算する。本実施形態では、(10)式より、電流指令値iCSCを算出する。このようにすれば、作動角変化方向によらず、高精度な制御を行える。
図15、図16は、本発明の制御システムを用いて、到達作動角θCSTをステップ的に変化させたときの制御軸作動角θCSの応答を示す。
図15では、規範応答と作動角が一致しており良好な応答である。図16は、外乱に対しオーバーシュートすることなく目標値に収束している。
また、上記可変動弁機構の他、バネに連繋したリンク機構を、前記バネの付勢力に抗して駆動し、かつ、変位と駆動力との関係が非線形な特性を有するアクチュエータの制御装置に対しても、可変動弁機構と同様のモデル化を行って制御することができる。すなわち、前記非線形特性を有するアクチュエータの動作特性モデルを、変位毎に駆動力/変位として算出したバネ定数を用いて推定し、該モデルを用いてアクチュエータを制御することができ、可変動弁機構に適用した場合と同様の効果が得られる。
Therefore, in the third embodiment, the spring constant K (θ CS ) is calculated for each of the control shaft operating angle θ CS , the engine rotational speed Ne, and the operating angle change direction using the formula (2), as shown in FIG. An operating angle-spring constant map is created, and the spring constant K (θ CS ) is calculated by referring to the map. In the present embodiment, the current command value i CSC is calculated from Equation (10). In this way, highly accurate control can be performed regardless of the operating angle change direction.
15 and 16 show the response of the control shaft operating angle θ CS when the ultimate operating angle θ CST is changed stepwise using the control system of the present invention.
In FIG. 15, the normative response and the operating angle coincide with each other, which is a good response. FIG. 16 converges to the target value without overshooting the disturbance.
In addition to the variable valve mechanism, a link mechanism connected to a spring is driven against the biasing force of the spring, and the actuator control apparatus has a nonlinear characteristic between the displacement and the driving force. On the other hand, the same modeling as the variable valve mechanism can be performed and controlled. That is, an actuator operating characteristic model having nonlinear characteristics can be estimated using a spring constant calculated as driving force / displacement for each displacement, and the actuator can be controlled using the model. The same effect as when applied is obtained.

本発明に係る可変動弁機構の平面図。The top view of the variable valve mechanism based on this invention. 同上可変動弁機構の要部断面図。Sectional drawing of the principal part of a variable valve mechanism same as the above. 上記可変動弁機構の駆動部を示す構成図。The block diagram which shows the drive part of the said variable valve mechanism. 上記可変動弁機構の作用を説明するための図。The figure for demonstrating the effect | action of the said variable valve mechanism. 上記可変動弁機構の制御軸及び制御カムを示す構成図。The block diagram which shows the control shaft and control cam of the said variable valve mechanism. 上記制御軸の各回転角における作用を説明するための図。The figure for demonstrating the effect | action in each rotation angle of the said control shaft. 上記可変動弁機構の作動角と駆動電流の関係を示す図。The figure which shows the relationship between the operating angle of the said variable valve mechanism, and a drive current. 上記可変動弁機構のバネ定数の算出を説明するための図。The figure for demonstrating calculation of the spring constant of the said variable valve mechanism. バネ定数の基本的な特性マップ。Basic characteristic map of spring constant. 上記可変動弁機構の制御装置における制御ブロック図。The control block diagram in the control apparatus of the said variable valve mechanism. 上記可変動弁機構におけるエンジン回転速度変化によるオフセット電流の相違を示す図。The figure which shows the difference in the offset electric current by the engine speed change in the said variable valve mechanism. 第2実施形態で用いるオフセット電流の特性マップ。The characteristic map of the offset current used in 2nd Embodiment. 上記可変動弁機構の作動角、エンジン回転速度、作動角変化方向と駆動電流の関係を示す図。The figure which shows the relationship between the operating angle of the said variable valve mechanism, an engine rotational speed, an operating angle change direction, and a drive current. 第3実施形態で用いるバネ定数の特性マップ。本発明の実施形態における可変動弁機構のシステム構成図。The characteristic map of the spring constant used in 3rd Embodiment. The system block diagram of the variable valve mechanism in embodiment of this invention. 本発明に係る制御装置を用いたときのステップ応答を示す図。The figure which shows the step response when the control apparatus which concerns on this invention is used. 同じく、本発明に係る制御装置を用いたときの外乱を生じたときのステップ応答を示す図。Similarly, the figure which shows the step response when the disturbance when the control device which relates to this invention is used occurs.

符号の説明Explanation of symbols

11 駆動軸、
12 偏心カム
13 リング状リンク
14 制御軸
15 制御カム
16 ロッカアーム
17 ロッド状リンク
18 揺動カム
19 吸気弁
20 駆動部
50 ECU
101 動特性補償部
102 応答性補正部
103 可変動弁機構
11 Drive shaft,
DESCRIPTION OF SYMBOLS 12 Eccentric cam 13 Ring-shaped link 14 Control shaft 15 Control cam 16 Rocker arm 17 Rod-shaped link 18 Oscillation cam 19 Intake valve 20 Drive part 50 ECU
101 dynamic characteristic compensation unit 102 responsiveness correction unit 103 variable valve mechanism

Claims (4)

機関の回転に連動して回転する駆動軸と、
前記駆動軸の外周に相対回転可能に外嵌し、前記機関バルブを開閉駆動する揺動カムと、
前記駆動軸の外周に偏心して固定された偏心カムと、
前記偏心カムの外周に相対回転可能に外嵌するリング状リンクと、
前記駆動軸と略平行に延びる制御軸と、
前記制御軸の外周に偏心して固定された制御カムと、
前記制御カムの外周に相対回転可能に外嵌し、その一端で前記リング状リンクと連携されたロッカアームと、
前記ロッカアームの他端と前記揺動カムとを連携するロッド状リンクと、を有し、
前記アクチュエータが前記制御軸を回転させて作動角を変化させることにより、前記ロッカアームの揺動中心位置が変化して前記リフト特性が変化すると共に、前記機関バルブが前記揺動カムの駆動によって開閉される際にバルブスプリングからの反力は前記リフト特性に対して非線形な特性を有する内燃機関の可変動弁機構の制御装置において、
前記可変動弁機構の動作特性モデルを、前記制御軸の作動角毎に前記アクチュエータの駆動力/前記制御軸の作動角として算出したバネ定数を用いて装置作動中に随時推定し、
該モデルを用いて前記制御軸の作動角の目標値を入力値として、該モデルを用いて前記制御軸の作動角が前記目標値に追従するよう前記アクチュエータを制御することを特徴とする可変動弁機構の制御装置。
A drive shaft that rotates in conjunction with the rotation of the engine,
A swing cam that is fitted on the outer periphery of the drive shaft so as to be relatively rotatable, and drives the engine valve to open and close;
An eccentric cam fixed eccentrically on the outer periphery of the drive shaft;
A ring-shaped link that is fitted on the outer periphery of the eccentric cam so as to be relatively rotatable;
A control shaft extending substantially parallel to the drive shaft;
A control cam eccentrically fixed to the outer periphery of the control shaft;
A rocker arm that is fitted on the outer periphery of the control cam so as to be relatively rotatable, and is linked to the ring-shaped link at one end thereof;
A rod-shaped link that links the other end of the rocker arm and the swing cam;
When the actuator rotates the control shaft to change the operating angle, the rocking center position of the rocker arm changes, the lift characteristic changes, and the engine valve is opened and closed by driving the rocking cam. In the control device for the variable valve mechanism of the internal combustion engine, the reaction force from the valve spring has a non-linear characteristic with respect to the lift characteristic.
The operation characteristic model of the variable valve mechanism, and any time estimated in the device operates with a spring constant calculated as the working angle of the driving force / the control shaft of the actuator for each operating angle of control shaft,
Using the model, the target value of the operating angle of the control shaft is used as an input value, and the actuator is controlled using the model so that the operating angle of the control shaft follows the target value. Control device for valve mechanism.
前記可変動弁機構の動作特性モデルを、下式として推定したことを特徴とする請求項1に記載の可変動弁機構の制御装置。
Figure 0004595553

ただし、J:可変動弁機構の慣性モーメント
D:同上装置の粘性抵抗
T:アクチュエータのトルク定数
K(θcs):バネ定数
θcs:可変動弁機構で制御される機関バルブの作動角の代表値
The control apparatus for a variable valve mechanism according to claim 1, wherein an operation characteristic model of the variable valve mechanism is estimated as the following equation.
Figure 0004595553

Where, J: Moment of inertia of variable valve mechanism D: Viscosity resistance of the device as above K T : Torque constant K (θcs) of actuator: Spring constant θcs: Typical operating angle of engine valve controlled by variable valve mechanism
前記バネ定数は、リフト特性であるバルブリフト量を増加させる場合と、減少させる場合とで異なることを特徴とする請求項1または2に記載の可変動弁機構の制御装置。 3. The control device for a variable valve mechanism according to claim 1, wherein the spring constant differs depending on whether the valve lift amount, which is a lift characteristic, is increased or decreased. 前記アクチュエータは、電動モータであり、前記駆動力を該電動モータの通電電流によって制御することを特徴とする請求項1〜請求項3のいずれか1つに記載の可変動弁機構の制御装置。 The control device for a variable valve mechanism according to any one of claims 1 to 3, wherein the actuator is an electric motor, and the driving force is controlled by an energization current of the electric motor.
JP2005011276A 2005-01-19 2005-01-19 Control device for variable valve mechanism Expired - Fee Related JP4595553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005011276A JP4595553B2 (en) 2005-01-19 2005-01-19 Control device for variable valve mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005011276A JP4595553B2 (en) 2005-01-19 2005-01-19 Control device for variable valve mechanism

Publications (2)

Publication Number Publication Date
JP2006200403A JP2006200403A (en) 2006-08-03
JP4595553B2 true JP4595553B2 (en) 2010-12-08

Family

ID=36958627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005011276A Expired - Fee Related JP4595553B2 (en) 2005-01-19 2005-01-19 Control device for variable valve mechanism

Country Status (1)

Country Link
JP (1) JP4595553B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003773A (en) * 1999-06-22 2001-01-09 Unisia Jecs Corp Variable valve system of internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003773A (en) * 1999-06-22 2001-01-09 Unisia Jecs Corp Variable valve system of internal combustion engine

Also Published As

Publication number Publication date
JP2006200403A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
US7292927B2 (en) Control system
JP2005273634A (en) Controller
JP2006002591A (en) Control device of internal combustion engine
JP2006200398A (en) Controller of variable valve mechanism
JP4486901B2 (en) Control device
JP4027536B2 (en) Variable valve operating device for internal combustion engine
JP2006312943A (en) Variable valve gear of internal combustion engine
JP4486910B2 (en) Control device
JP4595553B2 (en) Control device for variable valve mechanism
US6782853B2 (en) Control apparatus and method for valve actuating system of internal combustion engine
US7921832B2 (en) Control system for plant
JP4572794B2 (en) Control device for variable valve mechanism
JP4660532B2 (en) Control device for internal combustion engine
JP2007100594A (en) Controller of variable valve gear mechanism
JP4830998B2 (en) Valve characteristic control device and valve characteristic control system
JP2006107280A (en) Control device of plant
JP2006200402A (en) Variable valve system for internal combustion engine
JP5024030B2 (en) Control device of electric control device
JP2006200401A (en) Control device for variable valve system
JP2007100593A (en) Controller of variable valve gear mechanism
MXPA06001536A (en) Controller.
JP2008309110A (en) Control device for variable valve train
JP3976002B2 (en) Intake valve drive control device for internal combustion engine
JP2006177310A (en) Variable valve gear
JP6854048B2 (en) Vehicle drive mechanism control device and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees