JP3976002B2 - Intake valve drive control device for internal combustion engine - Google Patents

Intake valve drive control device for internal combustion engine Download PDF

Info

Publication number
JP3976002B2
JP3976002B2 JP2003394838A JP2003394838A JP3976002B2 JP 3976002 B2 JP3976002 B2 JP 3976002B2 JP 2003394838 A JP2003394838 A JP 2003394838A JP 2003394838 A JP2003394838 A JP 2003394838A JP 3976002 B2 JP3976002 B2 JP 3976002B2
Authority
JP
Japan
Prior art keywords
operating angle
valve
engine
lift
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003394838A
Other languages
Japanese (ja)
Other versions
JP2005155431A (en
Inventor
大 加賀谷
健児 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003394838A priority Critical patent/JP3976002B2/en
Publication of JP2005155431A publication Critical patent/JP2005155431A/en
Application granted granted Critical
Publication of JP3976002B2 publication Critical patent/JP3976002B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

この発明は、吸気弁のバルブリフト量(最大リフト量)及び作動角を変更可能なリフト作動角可変機構を備えた内燃機関の吸気弁駆動制御装置に関する。   The present invention relates to an intake valve drive control device for an internal combustion engine provided with a variable lift operating angle mechanism capable of changing a valve lift amount (maximum lift amount) and an operating angle of an intake valve.

特許文献1等には、本出願人が以前に提案したリフト作動角可変機構が開示されている。このリフト作動角可変機構は、制御偏心軸部を有する制御軸と、この制御偏心軸部に揺動可能に装着されたロッカアームと、クランクシャフトに連動して回転し、駆動偏心軸部を有する駆動軸と、この駆動軸に揺動可能に支持された動弁カムとしての揺動カムと、駆動偏心軸部とロッカアームの一端とを連係する第1リンクと、ロッカアームの他端と揺動カムとを連係する第2リンクと、を備えている。駆動軸の回転に伴って揺動する揺動カムにより吸気弁が開閉駆動される。そして、アクチュエータにより制御軸(制御偏心軸部)を回転駆動することにより、揺動カムの初期姿勢・揺動範囲が変化して、吸気弁のバルブリフト特性であるリフトカーブ、すなわち吸気弁のバルブリフト量と作動角とが同時かつ連続的に増減変化するように構成されている。このようなリフト作動角可変機構を利用して吸入空気量を調整することにより、例えばガソリンエンジンにおけるスロットル損失を著しく軽減することが可能となる。
特開2003−106176号公報
Patent Document 1 and the like disclose a lift operating angle variable mechanism previously proposed by the present applicant. The lift operating angle variable mechanism includes a control shaft having a control eccentric shaft portion, a rocker arm swingably mounted on the control eccentric shaft portion, a drive having a drive eccentric shaft portion that rotates in conjunction with the crankshaft. A shaft, a swing cam as a valve-operating cam supported swingably on the drive shaft, a first link linking the drive eccentric shaft portion and one end of the rocker arm, the other end of the rocker arm, and a swing cam The 2nd link which links | links. The intake valve is driven to open and close by a swing cam that swings as the drive shaft rotates. Then, by rotating and driving the control shaft (control eccentric shaft portion) by the actuator, the initial posture and swing range of the swing cam change, and the lift curve that is the valve lift characteristic of the intake valve, that is, the valve of the intake valve The lift amount and the operating angle are configured to increase and decrease simultaneously and continuously. By adjusting the intake air amount using such a lift operating angle variable mechanism, for example, it is possible to remarkably reduce throttle loss in a gasoline engine.
JP 2003-106176 A

このようなリフト作動角可変機構では、機構的には、制御軸の角度が同じであれば、つまり作動角(の目標値)が同じであれば、機関回転数や機関温度等にかかわらず、そのバルブリフト特性すなわちリフトカーブは同一形状となり、最大リフト量を含めたバルブリフト量が一義的に定まるはずである。つまり、制御軸の角度に応じて所定のリフト特性となるように揺動カムのカムプロフィール等が設計されている。しかしながら、実際には、各リンク部品の撓み変形やリンク間クリアランス等に起因して、同じ制御軸角度(作動角目標値)であっても、機関回転数に応じてリフトカーブが不可避的に異なるものとなる。例えば、吸気弁の作動角が同じであっても、高回転域では主としてバルブジャンプによりバルブリフト量が相対的に大きくなり、低回転域では主としてリンクの撓みによりバルブリフト量が相対的に小さくなる。このようなリフトカーブのばらつきにより、特に要求(負荷)トルクに応じて吸入空気量を制御するガソリンエンジンでは、リフト作動角可変機構を利用した吸入空気量の制御が安定せず、要求トルクに対する出力トルクの偏差・ばらつきが大きくなるといった問題を生じるおそれがある。なお、上記の機関回転数と同様、機関油温や機関水温等の機関温度によっても、無視できないようなリフト特性のばらつきを生じることがある。本発明は、このように独自に知見した課題に鑑みてなされたものである。   In such a lift operating angle variable mechanism, mechanically, if the angle of the control shaft is the same, that is, if the operating angle (target value) is the same, regardless of the engine speed, the engine temperature, etc. The valve lift characteristic, that is, the lift curve has the same shape, and the valve lift amount including the maximum lift amount should be uniquely determined. That is, the cam profile of the swing cam is designed so as to have a predetermined lift characteristic according to the angle of the control shaft. In practice, however, the lift curves are unavoidably different depending on the engine speed even at the same control shaft angle (operating angle target value) due to bending deformation of each link component, clearance between links, and the like. It will be a thing. For example, even if the operating angle of the intake valve is the same, the valve lift amount becomes relatively large mainly due to valve jump in the high rotation range, and the valve lift amount becomes relatively small mainly due to the deflection of the link in the low rotation range. . Due to such variations in the lift curve, especially in a gasoline engine that controls the intake air amount according to the required (load) torque, the control of the intake air amount using the lift operating angle variable mechanism is not stable, and the output for the required torque is not achieved. There is a possibility that a problem such as a large torque deviation / variation may occur. As with the engine speed, the lift characteristics may vary depending on the engine temperature such as the engine oil temperature and the engine water temperature. The present invention has been made in view of the problems uniquely found in this way.

吸気弁のバルブリフト量及び作動角を変更可能なリフト作動角可変機構と、作動角指令値に基づいて上記リフト作動角可変機構を駆動する駆動手段と、を備える。目標吸入空気量に基づいて、吸気弁の作動角目標値を算出する。機関回転数を検出する回転数検出手段と、機関温度を検出する機関温度検出手段と、を備え、上記作動角指令値を算出する際に、上記機関回転数と機関温度とに基づいて、上記作動角目標値を補正する。ここで、高温領域では、機関温度が高くなるほど作動角目標値を低下側へ補正し、低温領域では、機関温度が低くなるほど作動角目標値を低下側へ補正する。 And a lift operating angle variable mechanism that can change a valve lift amount and an operating angle of the intake valve, and a drive unit that drives the lift operating angle variable mechanism based on an operating angle command value. Based on the target intake air amount, a target operating angle value of the intake valve is calculated. An engine speed detecting means for detecting the engine speed, and an engine temperature detecting means for detecting the engine temperature, and when calculating the operating angle command value, based on the engine speed and the engine temperature , Correct the operating angle target value. Here, in the high temperature region, the operating angle target value is corrected to the lower side as the engine temperature becomes higher. In the low temperature region, the operating angle target value is corrected to the lower side as the engine temperature becomes lower.

本発明によれば、吸気弁のバルブリフト量及び作動角の双方を変更可能なリフト作動角可変機構に特有の課題である、機関回転数及び機関温度に応じたリフトカーブのばらつきを見越して、機関回転数及び機関温度に基づいて作動角目標値を補正している。従って、機関回転数及び機関温度に応じたリフトカーブのばらつきにかかわらず、リフト作動角可変機構による吸入空気量の制御精度を著しく向上することができる。 According to the present invention, in anticipation of variations in the lift curve according to the engine speed and the engine temperature , which is a problem specific to the lift operating angle variable mechanism that can change both the valve lift amount and the operating angle of the intake valve, The operating angle target value is corrected based on the engine speed and the engine temperature . Therefore, the control accuracy of the intake air amount by the variable lift operating angle mechanism can be remarkably improved regardless of variations in the lift curve according to the engine speed and the engine temperature .

以下、この発明を、自動車用火花点火式ガソリン機関に適用した一実施例について説明する。図1は、内燃機関の吸気弁に対する可変動弁機構の構成を示す構成説明図である。この可変動弁機構は、吸気弁のバルブリフト量(最大リフト量)及び作動角の双方を同時かつ連続的に変化させるリフト作動角可変機構1と、そのリフトの中心角の位相(図示せぬクランクシャフトに対する位相)を進角もしくは遅角させる位相可変機構21と、が組み合わされて構成されている。これらの機構1,21は、上記の特開2003−106176号公報にも開示されているように公知となっているので、ここでは概要のみを説明する。   Hereinafter, an embodiment in which the present invention is applied to a spark ignition gasoline engine for an automobile will be described. FIG. 1 is a configuration explanatory view showing a configuration of a variable valve mechanism for an intake valve of an internal combustion engine. The variable valve mechanism includes a lift operating angle variable mechanism 1 that changes both the valve lift amount (maximum lift amount) and the operating angle of the intake valve simultaneously and continuously, and a phase (not shown) of the center angle of the lift. And a phase variable mechanism 21 for advancing or retarding the phase) relative to the crankshaft. Since these mechanisms 1 and 21 are known as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2003-106176, only the outline will be described here.

リフト作動角可変機構1は、クランクシャフトに連動して回転駆動される駆動軸2と、この駆動軸2に偏心して設けられた駆動偏心軸部3と、駆動軸2と平行に気筒列方向に延在する制御軸12と、この制御軸12に偏心して設けられた制御偏心軸部18と、この制御偏心軸部18に揺動自在に支持されたロッカアーム6と、駆動軸2に揺動可能に取り付けられた動弁カムとしての揺動カム9と、を備えている。駆動偏心軸部3とロッカアーム6の一端とは第1リンク4によって連係されており、ロッカアーム6の他端と揺動カム9とは第2リンク8によって連係されている。第1リンク4とロッカアーム6とは連結ピン5により接続されており、第2リンク8は連結ピン7,17によりロッカアーム6及び揺動カム9にそれぞれ接続されている。駆動軸2が回転すると、駆動偏心軸部3のカム作用によって第1リンク4の姿勢が変化し、これに伴ってロッカアーム6が揺動する。このロッカアーム6の揺動運動が第2リンク8を介して揺動カム9へ伝達され、この揺動カム9が揺動する。この揺動カム9のカム作用によって、タペット10が押圧され、吸気弁11が開閉作動する。   The lift operating angle variable mechanism 1 includes a drive shaft 2 that is rotationally driven in conjunction with a crankshaft, a drive eccentric shaft portion 3 that is eccentrically provided on the drive shaft 2, and parallel to the drive shaft 2 in the cylinder row direction. The control shaft 12 that extends, the control eccentric shaft portion 18 provided eccentric to the control shaft 12, the rocker arm 6 that is swingably supported by the control eccentric shaft portion 18, and the drive shaft 2 can swing. And a swing cam 9 as a valve-operating cam attached thereto. The drive eccentric shaft portion 3 and one end of the rocker arm 6 are linked by the first link 4, and the other end of the rocker arm 6 and the swing cam 9 are linked by the second link 8. The first link 4 and the rocker arm 6 are connected by a connecting pin 5, and the second link 8 is connected to the rocker arm 6 and the swing cam 9 by connecting pins 7 and 17, respectively. When the drive shaft 2 rotates, the attitude of the first link 4 changes due to the cam action of the drive eccentric shaft portion 3, and the rocker arm 6 swings accordingly. The rocking motion of the rocker arm 6 is transmitted to the rocking cam 9 via the second link 8, and the rocking cam 9 rocks. The tappet 10 is pressed by the cam action of the swing cam 9, and the intake valve 11 is opened and closed.

制御軸12の一端には、ウォームギア15を介して駆動手段としてのリフト作動角制御用アクチュエータ13が接続されている。このリフト作動角制御用アクチュエータ13は、制御軸12を回転駆動するサーボモータ等からなり、エンジンコントロールユニット19からの制御信号によって制御される。なお、制御軸12の回転角度は、制御軸センサ14によって検出される。このリフト作動角制御用アクチュエータ13を介して制御軸12の角度位置を変更すると、ロッカアーム6の揺動支点となる制御偏心軸部18の初期位置が変化し、ひいては揺動カム9の揺動範囲・姿勢が変化する。制御偏心軸部18の初期位置は連続的に変化させ得るので、これに伴って、吸気弁のバルブリフト特性は、連続的に変化する。つまり、吸気弁のバルブリフト量ならびに作動角を、同時かつ連続的に拡大,縮小させることができる。各部のレイアウトによるが、例えば、リフト作動角の大小変化に伴い、吸気弁11の開時期と閉時期とがほぼ対称に変化する。   One end of the control shaft 12 is connected to a lift operating angle control actuator 13 as a driving means via a worm gear 15. The lift operating angle control actuator 13 is composed of a servo motor for rotating the control shaft 12 and is controlled by a control signal from the engine control unit 19. The rotation angle of the control shaft 12 is detected by the control shaft sensor 14. When the angular position of the control shaft 12 is changed via the lift operating angle control actuator 13, the initial position of the control eccentric shaft portion 18 which becomes the rocking fulcrum of the rocker arm 6 changes, and consequently the rocking range of the rocking cam 9.・ The posture changes. Since the initial position of the control eccentric shaft portion 18 can be continuously changed, the valve lift characteristic of the intake valve continuously changes accordingly. That is, the valve lift amount and the operating angle of the intake valve can be increased and decreased simultaneously and continuously. Depending on the layout of each part, for example, the opening timing and closing timing of the intake valve 11 change substantially symmetrically with the change in the lift operating angle.

このようなリフト作動角可変機構1は、構成部品が駆動軸2の周囲に集約して配置されているため、コンパクトで機関搭載性に優れており、かつ、駆動軸2及び揺動カム9が直動型動弁系のカムシャフト及び固定カムの位置に対応しているため、既存の直動型動弁系の内燃機関への適用が容易である。また、リンク構成部品の連結部位の大半が面接触となっており、かつ、リターンスプリング等の付勢手段を敢えて必要としないため、潤滑が容易で耐久性・信頼性に優れている。   Such a lift operating angle variable mechanism 1 is compact and excellent in engine mountability because the components are concentrated around the drive shaft 2, and the drive shaft 2 and the swing cam 9 are provided. Since it corresponds to the positions of the camshaft and fixed cam of the direct acting valve system, it is easy to apply the existing direct acting valve system to the internal combustion engine. Further, since most of the connecting parts of the link component parts are in surface contact and no urging means such as a return spring is required, lubrication is easy and the durability and reliability are excellent.

位相可変機構21は、上記の駆動軸2の前端部に設けられたスプロケット22と、このスプロケット22と駆動軸2とを所定の角度範囲内において相対的に回転させる位相制御用アクチュエータ23と、から構成されている。上記スプロケット22は、図示せぬタイミングチェーンもしくはタイミングベルトを介して、クランクシャフトに連動しており、クランクシャフトに同期して回転する。上記位相制御用アクチュエータ23は、例えば油圧式、電磁式などの回転型アクチュエータからなり、エンジンコントロールユニット19からの制御信号によって制御される。この位相制御用アクチュエータ23の作用によって、スプロケット22と駆動軸2とが相対的に回転し、バルブリフトにおけるリフト中心角が遅進する。つまり、リフト特性のリフトカーブ自体は変わらずに、全体が進角もしくは遅角する。また、この変化も、連続的に得ることができる。この位相可変機構21の制御状態は、駆動軸2の回転位置に応答する駆動軸センサ16によって検出される。   The phase variable mechanism 21 includes a sprocket 22 provided at the front end portion of the drive shaft 2 and a phase control actuator 23 that relatively rotates the sprocket 22 and the drive shaft 2 within a predetermined angle range. It is configured. The sprocket 22 is linked to the crankshaft via a timing chain or timing belt (not shown) and rotates in synchronization with the crankshaft. The phase control actuator 23 is composed of, for example, a hydraulic or electromagnetic rotary actuator, and is controlled by a control signal from the engine control unit 19. The action of the phase control actuator 23 causes the sprocket 22 and the drive shaft 2 to rotate relative to each other, thereby delaying the lift center angle in the valve lift. That is, the lift curve itself of the lift characteristic does not change, and the whole advances or retards. This change can also be obtained continuously. The control state of the phase variable mechanism 21 is detected by the drive shaft sensor 16 that responds to the rotational position of the drive shaft 2.

なお、リフト作動角可変機構1ならびに位相可変機構21の制御としては、各センサ14,16の検出信号に基づくクローズドループ制御に限らず、運転条件に応じて単にオープンループ制御するようにしても良い。   The control of the lift operating angle variable mechanism 1 and the phase variable mechanism 21 is not limited to closed loop control based on the detection signals of the sensors 14 and 16, and may be simply open loop controlled according to the operating conditions. .

このような可変動弁機構を吸気弁側に備えた内燃機関は、スロットル弁のみに依存することなく、吸気弁11の可変制御によっても吸気量を制御することができる。但し、実用機関では、アイドルのように吸気量が極めて少ない状況でも吸気量制御を安定して行うことができるように、あるいはブローバイガスの還流等のために吸気系に若干の負圧を付与するために、吸気通路の上流側には、後述するように、電制式のスロットル弁55(図2参照)が設けられている。   An internal combustion engine equipped with such a variable valve mechanism on the intake valve side can control the intake air amount by variable control of the intake valve 11 without depending on only the throttle valve. However, in a practical engine, a slight negative pressure is applied to the intake system so that the intake air amount control can be stably performed even in a situation where the intake air amount is extremely small like an idle, or for the return of blow-by gas, etc. Therefore, an electric throttle valve 55 (see FIG. 2) is provided upstream of the intake passage, as will be described later.

図2は、この内燃機関における吸気系および排気系の全体的な構成を示している。図示するように、この内燃機関は、例えば直列4気筒機関であって、各シリンダ51の吸気ポートにそれぞれブランチ通路52が接続され、かつこの4本のブランチ通路52の上流端が、コレクタ53にそれぞれ接続されている。上記コレクタ53の上流側の端部に吸気入口通路54が設けられている。この吸気入口通路54に、電制式のスロットル弁55が配設されている。このスロットル弁55は、DCモータあるいはダイヤフラム型アクチュエータなどのアクチュエータ56によって開閉するバタフライバルブ型の弁体を備え、アクセルペダル開度とは独立して、その開度が制御される。   FIG. 2 shows the overall configuration of the intake system and the exhaust system in this internal combustion engine. As shown in the figure, this internal combustion engine is, for example, an in-line four-cylinder engine, and branch passages 52 are connected to intake ports of the respective cylinders 51, and upstream ends of the four branch passages 52 are connected to collectors 53. Each is connected. An intake inlet passage 54 is provided at the upstream end of the collector 53. An electrically controlled throttle valve 55 is disposed in the intake inlet passage 54. The throttle valve 55 includes a butterfly valve type valve body that is opened and closed by an actuator 56 such as a DC motor or a diaphragm type actuator, and its opening degree is controlled independently of the accelerator pedal opening degree.

上記コレクタ53には、コレクタ53内部の圧力を検出する圧力センサ57と、吸気温度を検出する温度センサ58と、が設けられており、排気マニホルド59には、排気空燃比を検出する空燃比センサ(リニア型空燃比センサあるいは酸素センサ)60が設けられている。また、機関回転速度ならびにクランク角位置を検出する回転数検出手段としてのクランク角センサ61,運転者により操作されるアクセルペダル開度(踏込量)を検出するアクセル開度センサ62,及び吸入空気量を検出する吸入空気量検出手段としてのエアフローメータ63、機関温度としての機関油温を検出する機関温度検出手段としての油温センサ64等が設けられている。これらの検出信号は、前述したエンジンコントロールユニット19にそれぞれ入力される。エンジンコントロールユニット19は、これらの検出信号に基づいて、前述したリフト作動角可変機構1および位相可変機構21の制御ならびにスロットル弁55の制御を実行する。   The collector 53 is provided with a pressure sensor 57 for detecting the pressure inside the collector 53 and a temperature sensor 58 for detecting the intake air temperature. The exhaust manifold 59 is provided with an air / fuel ratio sensor for detecting the exhaust air / fuel ratio. A (linear air-fuel ratio sensor or oxygen sensor) 60 is provided. In addition, a crank angle sensor 61 serving as a rotational speed detecting means for detecting engine rotational speed and crank angle position, an accelerator opening sensor 62 for detecting an accelerator pedal opening (depression amount) operated by a driver, and an intake air amount An air flow meter 63 as an intake air amount detection means for detecting the oil temperature, an oil temperature sensor 64 as an engine temperature detection means for detecting the engine oil temperature as the engine temperature, and the like are provided. These detection signals are respectively input to the engine control unit 19 described above. Based on these detection signals, the engine control unit 19 executes the control of the lift operating angle variable mechanism 1 and the phase variable mechanism 21 and the control of the throttle valve 55 described above.

図3は、リフト作動角可変機構1の制御の流れを示すフローチャートである。先ず、S(ステップ)11では、主としてアクセル開度センサ62の検出信号に基づいて要求トルクを算出する。S12では、上記の要求トルクとクランク角センサ61から得られる機関回転数(機関回転速度)に基づいて、目標吸入空気量を算出する。S13では、目標吸入空気量に基づいて、リフト作動角可変機構1による吸気弁の作動角の目標値を算出する。   FIG. 3 is a flowchart showing a control flow of the lift operating angle variable mechanism 1. First, in S (step) 11, the required torque is calculated mainly based on the detection signal of the accelerator opening sensor 62. In S12, the target intake air amount is calculated based on the required torque and the engine speed (engine speed) obtained from the crank angle sensor 61. In S13, the target value of the operating angle of the intake valve by the variable lift operating angle mechanism 1 is calculated based on the target intake air amount.

S14のサブルーチンでは、S13で算出された作動角目標値に対して、後述する補正処理を行い、作動角指令値を算出する。S15では、上記の作動角指令値をリフト作動角アクチュエータ13へ出力する。これにより、リフト作動角可変機構1が指令値へ向けて駆動制御される。なお、ここでは説明していないが、スロットル弁55の開度の指令値や位相可変機構21の吸気バルブタイミングの指令値も上記の目標吸入空気量に基づいて算出される。   In the subroutine of S14, a correction process described later is performed on the operating angle target value calculated in S13 to calculate an operating angle command value. In S <b> 15, the operating angle command value is output to the lift operating angle actuator 13. Thereby, the lift operating angle variable mechanism 1 is drive-controlled toward the command value. Although not described here, the command value for the opening degree of the throttle valve 55 and the command value for the intake valve timing of the phase variable mechanism 21 are also calculated based on the target intake air amount.

次に、本実施例の要部をなすS14の処理内容について、図4〜7を参照して詳述する。吸気弁のバルブリフト特性であるリフトカーブは、機構的・構造的には、揺動カム9の揺動範囲、つまり作動角目標値に相当する制御軸12の角度位置により一義的に定まるはずである。しかしながら、実際には、図5に示すように、制御軸12の角度位置、つまり作動角目標値が同じであっても、機関回転数によってリフトカーブL1〜L3が異なるものとなる。具体的には、機関回転数が高くなるほど、慣性力が大きくなってバルブジャンプ等を生じるために、バルブリフト量が相対的に大きくなり、機関回転数が低くなるほど、主としてリンクの撓みによりバルブリフト量が相対的に小さくなる傾向にある。つまり、機関回転数に応じて、吸気弁の有効開口面積(リフトカーブ内の面積に相当)のばらつきを生じ、リフト作動角可変機構1による吸入空気量の制御精度が低下するおそれがある。   Next, the processing content of S14 which is the main part of the present embodiment will be described in detail with reference to FIGS. The lift curve, which is the valve lift characteristic of the intake valve, should be unambiguously determined mechanically and structurally by the swing range of the swing cam 9, that is, the angular position of the control shaft 12 corresponding to the operating angle target value. is there. However, actually, as shown in FIG. 5, even if the angular position of the control shaft 12, that is, the operating angle target value is the same, the lift curves L1 to L3 differ depending on the engine speed. Specifically, the higher the engine speed, the greater the inertial force and causing valve jumps, etc., so the valve lift amount is relatively large, and the lower the engine speed, the more the valve lift is mainly caused by the deflection of the link. The amount tends to be relatively small. That is, the effective opening area of the intake valve (corresponding to the area in the lift curve) varies depending on the engine speed, and the control accuracy of the intake air amount by the variable lift operating angle mechanism 1 may be reduced.

そこで、S22では、S21で読み込まれた機関回転数に基づいて、作動角目標値を補正する(補正手段)。具体的には、図6に示すように、作動角目標値に対応する所期の吸気弁有効開口面積となるように、予め設定された制御マップやテーブル(図示省略)等を利用して、機関回転数が高くなるほど作動角目標値を低下側へ補正し、機関回転数が低くなるほど作動角目標値を増加側へ補正する。   Therefore, in S22, the operating angle target value is corrected based on the engine speed read in S21 (correcting means). Specifically, as shown in FIG. 6, using a control map or a table (not shown) set in advance so that the desired intake valve effective opening area corresponding to the operating angle target value is obtained, The operating angle target value is corrected to the lower side as the engine speed increases, and the operating angle target value is corrected to the higher side as the engine speed decreases.

同様に、油温センサ64により検出される機関油温のような機関温度に応じて、各リンク構成部品のフリクションが増減するので、同じ作動角目標値であっても、機関温度に応じてバルブリフト量を含めたバルブリフト特性すなわち吸気弁有効開口面積が増減する。具体的には図7に示すように、機関温度が所定の基準値よりも高い高温領域では、機関温度の増加に伴って有効開口面積が増加し、機関温度が低い低温領域では、機関温度の低下に伴って有効開口面積が増加する傾向にある。従って、このような機関温度による吸気弁有効開口面積の増減を相殺・吸収するように、S24では、S23で読み込まれた機関温度に応じて作動角目標値を補正する(補正手段)。つまり、予め設定された制御マップやテーブル(図示省略)等を利用して、高温領域では、機関温度が高くなるほど作動角目標値を低下側へ補正し、低温領域では、機関温度が低くなるほど作動角目標値を低下側へ補正する。このようなS22及びS24等の補正処理を経て、作動角指令値が算出される。   Similarly, since the friction of each link component increases or decreases according to the engine temperature such as the engine oil temperature detected by the oil temperature sensor 64, even if the same operating angle target value, the valve according to the engine temperature. The valve lift characteristic including the lift amount, that is, the intake valve effective opening area increases or decreases. Specifically, as shown in FIG. 7, in a high temperature region where the engine temperature is higher than a predetermined reference value, the effective opening area increases as the engine temperature increases, and in a low temperature region where the engine temperature is low, the engine temperature The effective opening area tends to increase with the decrease. Therefore, in S24, the operating angle target value is corrected in accordance with the engine temperature read in S23 (correction means) so as to cancel and absorb such an increase / decrease in the intake valve effective opening area due to the engine temperature. In other words, by using a preset control map or table (not shown), the target operating angle is corrected to decrease as the engine temperature increases in the high temperature region, and operates as the engine temperature decreases in the low temperature region. The angle target value is corrected to the lower side. The operating angle command value is calculated through such correction processing as S22 and S24.

作動角目標値自体の大きさによっても、有効開口面積のばらつきを生じるおそれがある。従って、好ましくは、作動角目標値の大きさに応じて、S22及びS24での補正処理による補正量を変更する(補正量変更手段)。例えば、図6及び図7に示すように、作動角目標値の大きさに応じて複数の非線形マップ(又はテーブル)を予め設定・記憶しておき、作動角目標値の大きさに応じて適切な非線形マップを選択し、この選択されたマップを参照して、機関回転数や機関温度に基づく補正処理を行えば良い。   Depending on the size of the operating angle target value itself, the effective opening area may vary. Therefore, preferably, the correction amount by the correction processing in S22 and S24 is changed (correction amount changing means) according to the magnitude of the operating angle target value. For example, as shown in FIGS. 6 and 7, a plurality of nonlinear maps (or tables) are set and stored in advance according to the magnitude of the operating angle target value, and are appropriately set according to the magnitude of the operating angle target value. A non-linear map may be selected, and correction processing based on the engine speed and the engine temperature may be performed with reference to the selected map.

S25では、上記のエアフローメータ63により検出される吸入空気量を読み込む。S26では、このように検出された実際の吸入空気量に基づいて、S22及びS24での補正処理に対する学習制御処理を行う(学習制御手段)。学習制御自体は周知であるので簡単に説明すると、例えば、S12で算出された目標吸入空気量と、S23で検出・読み込まれた吸入空気量と、の偏差を算出し、この偏差から学習値を算出し、この学習値を次回以降のS22及びS24での補正処理に反映させれば良い。このような学習制御を行うことにより、動弁構成部品の経時的な劣化等に起因するリフトカーブのばらつきにも対応可能であり、長期的に安定した制御を行うことができる。   In S25, the intake air amount detected by the air flow meter 63 is read. In S26, learning control processing for the correction processing in S22 and S24 is performed based on the actual intake air amount detected in this way (learning control means). The learning control itself is well known and will be briefly described. For example, the deviation between the target intake air amount calculated in S12 and the intake air amount detected / read in S23 is calculated, and the learning value is calculated from the deviation. The learning value may be calculated and reflected in the correction processing in S22 and S24 after the next time. By performing such learning control, it is possible to cope with variations in lift curves caused by deterioration of valve operating components over time, and stable control can be performed over a long period of time.

以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変形・変更を含むものである。例えば、有効開口面積のばらつきが大きく現れやすい機関高回転域でのみ、S22による機関回転数に基づく作動角目標値の補正処理を行うようにしても良い。   As described above, the present invention has been described based on the specific embodiments. However, the present invention is not limited to the above-described embodiments, and includes various modifications and changes without departing from the spirit of the present invention. . For example, the operating angle target value correction process based on the engine speed in S22 may be performed only in a high engine speed range where variations in the effective opening area tend to appear greatly.

本発明の一実施例に係る内燃機関の吸気弁駆動制御装置におけるリフト作動角可変機構を示す斜視図。The perspective view which shows the lift operating angle variable mechanism in the intake valve drive control device of the internal combustion engine which concerns on one Example of this invention. 上記内燃機関の吸気系及び排気系の全体的な構成を示す構成説明図。FIG. 2 is an explanatory diagram illustrating the overall configuration of an intake system and an exhaust system of the internal combustion engine. 本実施例に係るリフト作動角可変機構の制御の流れを示すフローチャート。The flowchart which shows the flow of control of the lift operating angle variable mechanism which concerns on a present Example. 図3のS14における作動角指令値算出処理を示すサブルーチン。The subroutine which shows the operating angle command value calculation process in S14 of FIG. 機関回転数によるリフトカーブのばらつきを示す説明図。Explanatory drawing which shows the dispersion | variation in the lift curve by engine speed. 機関回転数及び作動角による吸気弁有効開口面積のばらつきを示す説明図。Explanatory drawing which shows the dispersion | variation in the intake valve effective opening area by an engine speed and an operating angle. 機関温度及び作動角による吸気弁有効開口面積のばらつきを示す説明図。Explanatory drawing which shows the dispersion | variation in the intake valve effective opening area by engine temperature and an operating angle.

符号の説明Explanation of symbols

1…リフト作動角可変機構
2…駆動軸
9…揺動カム(動弁カム)
19…エンジンコントロールユニット
61…クランク角センサ(回転数検出手段)
63…エアフローメータ(吸入空気量検出手段)
64…油温センサ(機関温度検出手段)
DESCRIPTION OF SYMBOLS 1 ... Lift working angle variable mechanism 2 ... Drive shaft 9 ... Swing cam (valve cam)
19 ... Engine control unit 61 ... Crank angle sensor (rotational speed detection means)
63 ... Air flow meter (intake air amount detection means)
64. Oil temperature sensor (engine temperature detecting means)

Claims (5)

吸気弁のバルブリフト量及び作動角を変更可能なリフト作動角可変機構と、
作動角指令値に基づいて上記リフト作動角可変機構を駆動する駆動手段と、
目標吸入空気量に基づいて、吸気弁の作動角目標値を算出する目標値算出手段と、
機関回転数を検出する回転数検出手段と、
機関温度を検出する機関温度検出手段と、
上記作動角指令値を算出する際に、上記機関回転数と機関温度とに基づいて、上記作動角目標値を補正する補正手段と、を有し、
この補正手段は、高温領域では、機関温度が高くなるほど作動角目標値を低下側へ補正し、低温領域では、機関温度が低くなるほど作動角目標値を低下側へ補正する内燃機関の吸気弁駆動制御装置。
A lift operating angle variable mechanism capable of changing the valve lift amount and operating angle of the intake valve;
Drive means for driving the lift operating angle variable mechanism based on an operating angle command value;
A target value calculating means for calculating a working angle target value of the intake valve based on the target intake air amount;
A rotational speed detection means for detecting the engine rotational speed;
Engine temperature detecting means for detecting the engine temperature;
When calculating the working angle command value, based on the above engine speed and engine temperature, have a, a correction means for correcting the operation angle target value,
This correction means corrects the operating angle target value to the lower side as the engine temperature increases in the high temperature region, and corrects the operating angle target value to the lower side as the engine temperature decreases in the low temperature region. Control device.
上記補正手段は、機関回転数が高いときに作動角目標値を低下側へ補正し、機関回転数が低いときに作動角目標値を増加側へ補正する請求項1に記載の内燃機関の吸気弁駆動制御装置。   The intake of the internal combustion engine according to claim 1, wherein the correction means corrects the target operating angle to a lower side when the engine speed is high and corrects the target operating angle to an increase side when the engine speed is low. Valve drive control device. 上記作動角目標値に基づいて、この補正手段による補正量を変更する補正量変更手段を有する請求項1又は2に記載の内燃機関の吸気弁駆動制御装置。 The intake valve drive control device for an internal combustion engine according to claim 1 or 2 , further comprising a correction amount changing means for changing a correction amount by the correction means based on the operating angle target value. 吸入空気量を検出する吸入空気量検出手段と、
この吸入空気量検出手段により検出される吸入空気量と上記目標吸入空気量との偏差に基づいて、上記補正手段による補正の学習制御を行う学習制御手段と、を有する請求項1〜のいずれかに記載の内燃機関の吸気弁駆動制御装置。
An intake air amount detection means for detecting an intake air amount;
Based on a deviation between the intake air amount and the target intake air amount detected by the intake air amount detecting means, any claim 1-3 having a learning control means for learning control of the correction by the correction means An intake valve drive control device for an internal combustion engine according to claim 1.
上記可変動弁機構が、吸気弁を作動させる動弁カムと、クランクシャフトと連動して回転する駆動軸と、これら動弁カムと駆動軸とを連係する複数のリンクと、を備え、吸気弁のバルブリフト量及び作動角の双方を同時かつ連続的に変更する請求項1〜のいずれかに記載の内燃機関の吸気弁駆動制御装置。 The variable valve mechanism includes a valve cam for operating an intake valve, a drive shaft that rotates in conjunction with a crankshaft, and a plurality of links that link the valve cam and the drive shaft. The intake valve drive control device for an internal combustion engine according to any one of claims 1 to 4 , wherein both the valve lift amount and the operating angle of the engine are changed simultaneously and continuously.
JP2003394838A 2003-11-26 2003-11-26 Intake valve drive control device for internal combustion engine Expired - Lifetime JP3976002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003394838A JP3976002B2 (en) 2003-11-26 2003-11-26 Intake valve drive control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003394838A JP3976002B2 (en) 2003-11-26 2003-11-26 Intake valve drive control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005155431A JP2005155431A (en) 2005-06-16
JP3976002B2 true JP3976002B2 (en) 2007-09-12

Family

ID=34720754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394838A Expired - Lifetime JP3976002B2 (en) 2003-11-26 2003-11-26 Intake valve drive control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3976002B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101427964B1 (en) * 2012-12-28 2014-08-08 현대자동차 주식회사 Control systme and method for continuous variable valve lift apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792952B2 (en) * 2005-12-06 2011-10-12 トヨタ自動車株式会社 Control device for internal combustion engine
JP4877217B2 (en) * 2007-12-12 2012-02-15 トヨタ自動車株式会社 Control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101427964B1 (en) * 2012-12-28 2014-08-08 현대자동차 주식회사 Control systme and method for continuous variable valve lift apparatus

Also Published As

Publication number Publication date
JP2005155431A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
US6615775B2 (en) Variable valve operating system of internal combustion engine enabling variation of valve-lift characteristic and phase
KR100663215B1 (en) Variable valve mechanism control device and control method
JP4075846B2 (en) Variable valve operating system for multi-cylinder internal combustion engine
US7594487B2 (en) Apparatus for and method of controlling motion mechanism
US6990937B2 (en) Variable valve control system and method for an internal combustion engine
US6739296B2 (en) Apparatus and method for controlling variable valve operating mechanism
JP4103819B2 (en) Variable valve operating device for internal combustion engine
JP4151602B2 (en) Reference position learning device for variable valve mechanism
JP3835448B2 (en) Variable valve operating device for internal combustion engine
JP3890476B2 (en) Intake valve drive control device for internal combustion engine
JP4036057B2 (en) Intake valve drive control device for internal combustion engine
JP3976002B2 (en) Intake valve drive control device for internal combustion engine
JP4200975B2 (en) Variable valve operating device for internal combustion engine
JP3893205B2 (en) Variable valve operating device for internal combustion engine
JP4380499B2 (en) Control device for internal combustion engine
JP4518010B2 (en) Variable valve operating device for internal combustion engine
JP4165433B2 (en) Control device for internal combustion engine
JP4063194B2 (en) Idle speed control device for internal combustion engine
JP2827768B2 (en) Variable valve train for internal combustion engines
JP4165432B2 (en) Control device for internal combustion engine
JP3933007B2 (en) Intake control device for internal combustion engine
JP5151901B2 (en) Variable valve operating device for internal combustion engine
JP3996763B2 (en) Variable valve gear for V-type internal combustion engine
JP4432746B2 (en) Intake control device for internal combustion engine
JP4367317B2 (en) Variable valve operating device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150