JP3890476B2 - Intake valve drive control device for internal combustion engine - Google Patents

Intake valve drive control device for internal combustion engine Download PDF

Info

Publication number
JP3890476B2
JP3890476B2 JP2003136729A JP2003136729A JP3890476B2 JP 3890476 B2 JP3890476 B2 JP 3890476B2 JP 2003136729 A JP2003136729 A JP 2003136729A JP 2003136729 A JP2003136729 A JP 2003136729A JP 3890476 B2 JP3890476 B2 JP 3890476B2
Authority
JP
Japan
Prior art keywords
lift
phase
angle
correction value
learning correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003136729A
Other languages
Japanese (ja)
Other versions
JP2004340013A (en
Inventor
常靖 野原
健一 堀
和人 友金
和孝 礒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003136729A priority Critical patent/JP3890476B2/en
Publication of JP2004340013A publication Critical patent/JP2004340013A/en
Application granted granted Critical
Publication of JP3890476B2 publication Critical patent/JP3890476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、吸気弁の可変動弁機構として、吸気弁のリフト・作動角を連続的に拡大,縮小制御可能なリフト・作動角可変機構と、吸気弁のリフト中心角の位相を遅進させる位相可変機構と、を備えた内燃機関の吸気弁駆動制御装置に関する。
【0002】
【従来の技術】
機関運転条件に最適なバルブリフト特性を得るために、吸気弁のリフト・作動角を連続的に拡大,縮小制御可能なリフト・作動角可変機構と、吸気弁のリフト中心角の位相を遅進させる位相可変機構と、を組み合わせた可変動弁機構が、例えば本出願人により出願された特許文献1や特許文献2によって既に公知となっている。
【0003】
特に、特許文献2には、このような吸気弁のバルブリフト特性の可変制御によって、基本的にスロットル弁に依存せずに、内燃機関の吸入空気量を制御することが開示されている。
【0004】
【特許文献1】
特開2001−280167号公報
【0005】
【特許文献2】
特開2002−256905号公報
【0006】
【発明が解決しようとする課題】
上記のような2つの可変機構を組み合わせた構成では、ある一つのバルブリフト特性は、リフト・作動角可変機構により制御されるリフト・作動角と、位相可変機構により制御される位相と、の双方によって実現されることになり、そのバルブリフト特性によって、実際にシリンダ内に流入する吸入空気量が定まるので、各部の部品精度あるいは組付精度などに起因して、吸入空気量のばらつき、換言すれば製品個々の個体差が生じやすい。つまり、実際の吸入空気量が、運転条件に対応した目標値からずれてしまい、例えば空燃比変化や出力変化となって現れる。
【0007】
また、V型内燃機関や水平対向型内燃機関などのように複数のバンクを有する内燃機関においては、バンク毎にリフト・作動角可変機構と位相可変機構とが設けられるため、やはり組付誤差等により、各々のバンクで吸入空気量が異なることがある。この場合、例えば左右バンクで空燃比が異なってしまったり、出力が不均衡となって回転変動が発生する。
【0008】
【課題を解決するための手段】
本発明の内燃機関の吸気弁駆動制御装置は、可変動弁機構として、吸気弁のリフト・作動角を同時にかつ連続的に拡大,縮小制御可能なリフト・作動角可変機構と、吸気弁のリフト中心角の位相を遅進させる位相可変機構と、を備えており、機関運転条件に応じて設定される目標リフト・作動角および目標位相に沿って上記リフト・作動角可変機構および上記位相可変機構が制御され、両者によって、機関運転条件に対応したバルブリフト特性が得られるようになっている。
【0009】
ここで本発明では、組付誤差や部品のばらつきなどに対応するために、リフト・作動角学習補正値および位相学習補正値を記憶する手段と、上記リフト・作動角学習補正値および上記位相学習補正値を用いてリフト・作動角可変機構および位相可変機構をそれぞれ補正する手段と、を備えている。そして、シリンダに流入した吸入空気量の過不足を直接もしくは間接に検出する手段を備えており、機関運転条件がリフト・作動角の小さな低速低負荷側の領域にあるときに、吸入空気量の過不足が無くなるように上記リフト・作動角学習補正値を学習し、機関運転条件がリフト・作動角の大きな高速高負荷側の領域にあるときに、吸入空気量の過不足が無くなるように上記位相学習補正値を学習するようになっている。
【0010】
また請求項5に記載の第2の発明は、V型内燃機関のように複数のバンクを備え、リフト・作動角可変機構と位相可変機構とを各バンク毎に備えた内燃機関において、各バンクの特性のばらつきを抑制するものであり、少なくとも一つのバンクについて、リフト・作動角学習補正値および位相学習補正値を記憶する手段を備え、上記リフト・作動角学習補正値および上記位相学習補正値を用いてリフト・作動角可変機構および位相可変機構をそれぞれ補正するようになっている。そして、各バンクの吸入空気量が異なることを直接もしくは間接に検出する手段を備えており、機関運転条件がリフト・作動角の小さな低速低負荷側の領域にあるときに、当該バンクの吸入空気量が他のバンクと等しくなるように上記リフト・作動角学習補正値を学習し、機関運転条件がリフト・作動角の大きな高速高負荷側の領域にあるときに、当該バンクの吸入空気量が他のバンクと等しくなるように上記位相学習補正値を学習するようになっている。
【0011】
リフト・作動角が小さなバルブリフト特性では、主に、リフトの大小つまりリフト・作動角の大きさによって、シリンダに流入する吸入空気量が定まる。従って、リフト・作動角可変機構の特性が組付誤差等により本来の特性からずれると、リフト・作動角の小さな領域で、吸入空気量に大きな誤差が生じる。これに対し、リフト・作動角の小さな領域では、リフト中心角の位相の影響は相対的に小さく、位相を変化させても、吸入空気量はあまり変化しない。
【0012】
一方、リフト・作動角が十分に大きなバルブリフト特性では、リフトの誤差はシリンダに流入する吸入空気量にあまり影響せず、吸入空気量は、主に、吸気弁閉時期によって定まる。つまり、リフト・作動角の大きな領域では、吸気弁閉時期が本来の特性からずれると、吸入空気量に大きな誤差が生じる。この吸気弁閉時期は、作動角およびリフト中心角の双方に依存するので、リフト・作動角を補正しても、リフト中心角の位相を補正しても、いずれも吸入空気量の誤差を相殺することが可能であるが、本発明のように、リフト中心角の位相によって補正を行うようにすれば、上述したリフト・作動角の小さな領域での補正に影響を与えることがない。
【0013】
従って、本発明では、機関運転条件がリフト・作動角の小さな低速低負荷側の領域にあるときに、適正な吸入空気量となるようにリフト・作動角学習補正値を学習し、機関運転条件がリフト・作動角の大きな高速高負荷側の領域にあるときに、適正な吸入空気量となるように位相学習補正値を学習する。これにより、運転領域全体に亘って、組付誤差等による吸入空気量のばらつきが抑制される。
【0014】
【発明の効果】
この発明によれば、リフト・作動角可変機構や位相可変機構の組付誤差等による吸入空気量のばらつきを効果的に抑制することができ、機関の出力や空燃比などにおける誤差をより小さくすることができる。
【0015】
また、V型内燃機関のような複数のバンクを有する場合のバンク間の吸入空気量の不均衡をより小さくすることができる。
【0016】
【発明の実施の形態】
以下、この発明の好ましい実施の形態を図面に基づいて詳細に説明する。
【0017】
図1は、この発明をV型6気筒のガソリン機関1に適用した実施例を示しており、左右バンクの吸気弁3側に、後述する可変動弁機構2がそれぞれ設けられている。排気弁4側の動弁機構は、排気カムシャフト5により排気弁4を駆動する直動型のものであり、そのバルブリフト特性は、常に一定である。
【0018】
左右バンクの排気マニホルド6は、触媒コンバータ7に接続され、かつこの触媒コンバータ7の上流位置に、排気空燃比を検出する空燃比センサ8が設けられている。左右バンクの排気通路9は、触媒コンバータ7の下流側で合流し、さらに下流に、第2の触媒コンバータ10および消音器11を備えている。
【0019】
各気筒の吸気ポートにはブランチ通路15が接続され、かつこの6本のブランチ通路15の上流端が、コレクタ16にそれぞれ接続されている。上記コレクタ16の一端には、吸気入口通路17が接続されており、この吸気入口通路17に、電子制御スロットル弁18が設けられている。この電子制御スロットル弁18は、電気モータからなるアクチュエータを備え、エンジンコントロールユニット19から与えられる制御信号によって、その開度が制御される。なお、スロットル弁18の実際の開度を検出する図示せぬセンサを一体に備えており、その検出信号に基づいて、スロットル弁開度が目標開度にクローズドループ制御される。また、スロットル弁18の上流に、吸入空気流量を検出するエアフロメータ25が配置され、さらに上流にエアクリーナ20が設けられている。
【0020】
また、機関回転速度およびクランク角位置を検出するために、クランクシャフトに対してクランク角センサ21が設けられており、さらに、運転者により操作されるアクセルペダル開度(踏込量)を検出するアクセル開度センサ22を備えている。これらの検出信号は、上記のエアフロメータ25や空燃比センサ8の検出信号とともに、エンジンコントロールユニット19に入力されている。エンジンコントロールユニット19では、これらの検出信号に基づいて、燃料噴射弁23の噴射量や噴射時期、点火プラグ24による点火時期、可変動弁機構2によるバルブリフト特性、スロットル弁18の開度、などを制御する。
【0021】
次に、図2に基づいて吸気弁3側の可変動弁機構2の構成を説明する。この可変動弁機構2は、吸気弁のリフト・作動角を変化させるリフト・作動角可変機構51と、そのリフトの中心角の位相(図示せぬクランクシャフトに対する位相)を進角もしくは遅角させる位相可変機構71と、が組み合わされて構成されている。
【0022】
まず、リフト・作動角可変機構51を説明する。なお、このリフト・作動角可変機構1は、本出願人が先に提案したものであるが、例えば上記の特開2001−280167号公報や特開2002−256905号公報等によって公知となっているので、その概要のみを説明する。
【0023】
リフト・作動角可変機構51は、シリンダヘッドに摺動自在に設けられた上記の吸気弁3と、シリンダヘッド上部のカムブラケット(図示せず)に回転自在に支持された駆動軸52と、この駆動軸52に、圧入等により固定された偏心カム53と、上記駆動軸52の上方位置に同じカムブラケットによって回転自在に支持されるとともに駆動軸52と平行に配置された制御軸62と、この制御軸62の偏心カム部68に揺動自在に支持されたロッカアーム56と、各吸気弁3の上端部に配置されたタペット60に当接する揺動カム59と、を備えている。上記偏心カム53とロッカアーム56とはリンクアーム54によって連係されており、ロッカアーム56と揺動カム59とは、リンク部材58によって連係されている。
【0024】
上記駆動軸52は、後述するように、タイミングチェーンないしはタイミングベルトを介して機関のクランクシャフトによって駆動されるものである。
【0025】
上記偏心カム53は、円形外周面を有し、該外周面の中心が駆動軸52の軸心から所定量だけオフセットしているとともに、この外周面に、リンクアーム54の環状部が回転可能に嵌合している。
【0026】
上記ロッカアーム56は、略中央部が上記偏心カム部68によって揺動可能に支持されており、その一端部に、連結ピン55を介して上記リンクアーム54のアーム部が連係しているとともに、他端部に、連結ピン57を介して上記リンク部材58の上端部が連係している。上記偏心カム部68は、制御軸62の軸心から偏心しており、従って、制御軸62の角度位置に応じてロッカアーム56の揺動中心は変化する。
【0027】
上記揺動カム59は、駆動軸52の外周に嵌合して回転自在に支持されており、側方へ延びた端部に、連結ピン67を介して上記リンク部材58の下端部が連係している。この揺動カム59の下面には、駆動軸52と同心状の円弧をなす基円面と、該基円面から所定の曲線を描いて延びるカム面と、が連続して形成されており、これらの基円面ならびにカム面が、揺動カム59の揺動位置に応じてタペット60の上面に当接するようになっている。
【0028】
すなわち、上記基円面はベースサークル区間として、リフト量が0となる区間であり、揺動カム59が揺動してカム面がタペット60に接触すると、徐々にリフトしていくことになる。なお、ベースサークル区間とリフト区間との間には若干のランプ区間が設けられている。
【0029】
上記制御軸62は、図示するように、一端部に設けられたリフト・作動角制御用アクチュエータ63によって所定角度範囲内で回転するように構成されている。このリフト・作動角制御用アクチュエータ63は、例えばウォームギア65を介して制御軸62を駆動するサーボモータ等からなり、エンジンコントロールユニット19からの制御信号によって制御されている。なお、制御軸62の回転角度は、制御軸センサ64によって検出される。
【0030】
このリフト・作動角可変機構51の作用を説明すると、駆動軸52が回転すると、偏心カム53のカム作用によってリンクアーム54が上下動し、これに伴ってロッカアーム56が揺動する。このロッカアーム56の揺動は、リンク部材58を介して揺動カム59へ伝達され、該揺動カム59が揺動する。この揺動カム59のカム作用によって、タペット60が押圧され、吸気弁3がリフトする。
【0031】
ここで、リフト・作動角制御用アクチュエータ63を介して制御軸62の角度が変化すると、ロッカアーム56の初期位置が変化し、ひいては揺動カム59の初期揺動位置が変化する。
【0032】
例えば偏心カム部68が図の上方へ位置しているとすると、ロッカアーム56は全体として上方へ位置し、揺動カム59の連結ピン67側の端部が相対的に上方へ引き上げられた状態となる。つまり、揺動カム59の初期位置は、そのカム面がタペット60から離れる方向に傾く。従って、駆動軸52の回転に伴って揺動カム59が揺動した際に、基円面が長くタペット60に接触し続け、カム面がタペット60に接触する期間は短い。従って、リフト量が全体として小さくなり、かつその開時期から閉時期までの角度範囲つまり作動角も縮小する。
【0033】
逆に、偏心カム部68が図の下方へ位置しているとすると、ロッカアーム56は全体として下方へ位置し、揺動カム59の連結ピン67側の端部が相対的に下方へ押し下げられた状態となる。つまり、揺動カム59の初期位置は、そのカム面がタペット60に近付く方向に傾く。従って、駆動軸52の回転に伴って揺動カム59が揺動した際に、タペット60と接触する部位が基円面からカム面へと直ちに移行する。従って、リフト量が全体として大きくなり、かつその作動角も拡大する。
【0034】
上記の偏心カム部68の初期位置は連続的に変化させ得るので、これに伴って、バルブリフト特性は、連続的に変化する。つまり、リフトならびに作動角を、両者同時に、連続的に拡大,縮小させることができる。各部のレイアウトによるが、例えば、リフト・作動角の大小変化に伴い、吸気弁3の開時期と閉時期とがほぼ対称に変化する。
【0035】
次に、位相可変機構71は、図2に示すように、上記駆動軸52の前端部に設けられたスプロケット72と、このスプロケット72と上記駆動軸52とを、所定の角度範囲内において相対的に回転させる位相制御用アクチュエータ73と、から構成されている。上記スプロケット72は、図示せぬタイミングチェーンもしくはタイミングベルトを介して、クランクシャフトに連動している。上記位相制御用アクチュエータ73は、例えば油圧式、電磁式などの回転型アクチュエータからなり、エンジンコントロールユニット19からの制御信号によって制御されている。この位相制御用アクチュエータ73の作用によって、スプロケット72と駆動軸52とが相対的に回転し、バルブリフトにおけるリフト中心角が遅進する。つまり、リフト特性の曲線自体は変わらずに、全体が進角もしくは遅角する。また、この変化も、連続的に得ることができる。この位相可変機構71の制御状態は、駆動軸52の回転位置に応答する駆動軸センサ66によって検出される。
【0036】
上記のように、可変動弁機構2として、リフト・作動角可変機構51と位相可変機構71とを備えることで、両者の制御の組み合わせにより、吸気弁3のバルブリフト特性、特に吸気弁開時期(IVO)と吸気弁閉時期(IVC)とを、大幅にかつ連続的に可変制御することが可能となる。図3は、バルブタイミングの一例を示しており、作動角θとリフト中心角φの位相とによって、吸気弁開時期および吸気弁閉時期が定まる。上記作動角θの目標値は、機関運転条件として機関回転速度と要求トルクとをパラメータとする作動角制御マップ(図4)に予め割り付けられており、この作動角制御マップから対応する値を読み出すことによって、リフト・作動角可変機構51が制御される。上記位相の目標値も、同様に、機関運転条件として機関回転速度と要求トルクとをパラメータとする位相制御マップ(図5)に予め割り付けられており、この位相制御マップから対応する値を読み出すことによって、位相可変機構71が制御される。つまり、基本的に、それぞれの機構が目標値へ向かって個々に制御されるのである。なお、リフトと作動角とは互いに一体に増減変化するので、ここでは、作動角θが、リフト・作動角を代表している。
【0037】
上記のような構成の可変動弁機構2においては、例えば、制御軸62の回転角度を検出する制御軸センサ64の取付位置に誤差があると、リフト・作動角(作動角θ)が本来の特性からずれたものとなる。同様に、例えば駆動軸センサ66の取付位置に誤差があると、リフト中心角φの位相が本来の特性からずれたものとなる。従って、これらの誤差ないしはばらつきが組み合わさったものとして、吸入空気量が本来の特性からずれてしまうことがある。
【0038】
本発明では、このような吸入空気量の初期のばらつきに対し、その誤差に対応した学習補正値を付加することによって、誤差を相殺するようにしている。具体的には、作動角学習補正値(リフト・作動角学習補正値)と位相学習補正値とが各バンク毎に記憶されており、制御マップからそれぞれ読み出される作動角θの目標値および位相の目標値に、それぞれ作動角学習補正値および位相学習補正値を加算することで、左右バンクで等しい吸入空気量が得られるようにバルブリフト特性が補正される。
【0039】
ここで、上記作動角学習補正値の学習更新は、機関の運転条件が、リフト・作動角の小さな低速低負荷側の所定の領域内にあるときに実行され、位相学習補正値の学習更新は、機関の運転条件が、これよりも高速高負荷側の領域内にあるときに実行される。具体的には、図4に示すように、作動角θが所定値θ1よりも小さな領域Aにおいて、作動角学習補正値が学習更新され、所定値θ1以上の領域Bにおいて、位相学習補正値が学習更新される。
【0040】
図6は、上記の領域Aにおけるバルブリフト特性の一例について、作動角θおよびリフト中心角φの変化が、吸入空気量(図ではこれを充填効率ηvで示す)へ与える影響を示したもので、例えば、機関回転速度が1200rpmで、作動角θが100°、リフト中心角φが上死点後50°に制御される場合を例にしている。つまり、図中のa点がそれぞれの制御目標であり、このとき、目標とする充填効率ηvが得られる。ここで、図(a)は、リフト中心角φを目標値(上死点後50°)に保ったまま作動角θを変化させた場合の充填効率ηvの変化を示し、図(b)は、逆に、作動角θを目標値(100°)に保ったままリフト中心角φを変化させた場合の充填効率ηvの変化を示している。このようにリフト・作動角が小さな状態では、吸気弁3のリフトつまり弁開口部の隙間が小さく、ここで吸気流が制限されるので、主にリフトの大小によって吸入空気量が定まる。すなわち、図(a)のように、作動角θ(リフト・作動角)が変化すると、これに応じて、充填効率ηvが変化する。そして、図(b)のように、リフト中心角φが変化しても、充填効率ηvは殆ど変化しない。従って、例えば、一方のバンクの吸入空気量が他方のバンクの吸入空気量と異なる場合に、作動角θを増減補正することで、両者の吸入空気量を互いに一致させることができる。
【0041】
V型内燃機関において、左右バンクの吸入空気量の不均衡は、クランク角センサ21を介してクランクシャフトの回転変動として検出することが可能であり、回転変動がなくなるまでに必要な作動角θの補正量を求め、これを作動角学習補正値として記憶する。この作動角学習補正値は、装置の初期ばらつきを補正するものとして、上述したように、常に目標作動角に加算される。
【0042】
一方、図7は、上記の領域Bにおける作動角θおよびリフト中心角φの変化の影響を示したもので、例えば、機関回転速度が1600rpmで、作動角θが160°、リフト中心角φが上死点後40°に制御される場合を例にしている。つまり、図中のb点がそれぞれの制御目標であり、このとき、目標とする充填効率ηvが得られる。図(a)は、リフト中心角φを目標値(上死点後40°)に保ったまま作動角θを変化させた場合の充填効率ηvの変化を示し、図(b)は、逆に、作動角θを目標値(160°)に保ったままリフト中心角φを変化させた場合の充填効率ηvの変化を示している。このようにリフトが十分に大きな状態では、吸入空気量は、主に、吸気弁3の閉時期によって吸入空気量が定まる。吸気弁閉時期は、作動角θおよびリフト中心角φの双方に依存するので、図(a)のように、作動角θが変化すると、これに応じて、充填効率ηvが変化し、また、図(b)のように、リフト中心角φが変化しても、これに応じて、充填効率ηvが変化する。従って、例えば、一方のバンクの吸入空気量が他方のバンクの吸入空気量と異なる場合に、作動角学習補正値は変更せずに、位相学習補正値によりリフト中心角を増減補正することで、両者の吸入空気量を互いに一致させることができる。
【0043】
ここで、仮に、作動角学習補正値を変更してしまうと、再度、領域A内で運転された場合に、吸入空気量のばらつきが再び大きく発生してしまう。しかしながら、上記のように位相学習補正値の学習更新によって領域Bでの吸入空気量のばらつきを相殺するようにすれば、前述したように、リフト中心角φの変化は、領域A内では吸入空気量に殆ど影響しないので、再度、領域A内で運転された場合に生じる吸入空気量のばらつきは非常に小さい。
【0044】
一方、領域A内で吸入空気量を一致させるように学習した作動角学習補正値は、領域B内での運転にも反映するが、領域B内における上述の位相学習補正値の学習は、このような作動角学習補正値が与えられた状態でなされることになるので、領域A,Bの双方で、吸入空気量のばらつきを抑制することが可能である。
【0045】
なお、図6、図7は、非常に広い角度範囲について充填効率ηvの変化を示しているが、実際には、a点およびb点の近傍の比較的狭い範囲で、組付誤差等に起因するばらつきが発生するので、これに対する学習補正値も比較的狭い範囲で与えれば足りる。
【0046】
また、上記のV型内燃機関の実施例では、左右バンクの吸入空気量の不均衡を是正するためには、いずれか一方のバンクの可変動弁機構2を補正すればよいが、内燃機関全体としての吸入空気量の特性を所望の特性と一致させるためには、双方のバンクの可変動弁機構2をそれぞれ補正することが望ましい。
【0047】
本発明は、上記のように、複数のバンクを有する内燃機関において各バンクの吸入空気量の不均衡を防止するために用いることができるが、必ずしもこれに限定されるものではなく、例えば直列多気筒内燃機関のように、全気筒に共通の可変動弁機構2を備えている構成においても、その初期ばらつきの是正を行うために利用することが可能である。
【0048】
例えば、上記の例では、アクセル開度センサ22により検出されるアクセルペダル開度と機関回転速度とに基づいて、本来、吸入されるべき吸入空気量の目標値が一義的に定まるので、エアフロメータ25により検出された実際の吸入空気量と対比することで、バルブリフト特性の誤差に伴う実際の吸入空気量の過不足を検出することができる。従って、実際の吸入空気量が目標の吸入空気量と一致するように、作動角学習補正値および位相学習補正値を求めることで、その初期ばらつきを相殺することが可能である。
【0049】
また同様に、コレクタ16内の吸入負圧の目標値も、運転条件(アクセルペダル開度と機関回転速度)に基づいて推定でき、これを実際に検出した吸入負圧の値と対比することで、吸入空気量の過不足を検出することができる。従って、実際の吸入負圧が目標の吸入負圧と一致するように、作動角学習補正値および位相学習補正値を求めることで、可変動弁機構の初期ばらつきを補正できる。
【0050】
図8は、作動角学習補正値および位相学習補正値の学習更新の処理の流れを示したフローチャートであり、まず定常運転であるか否かを判定(ステップ1)し、定常運転であれば、目標(目標吸入空気量あるいは目標吸入負圧など)に対するずれが発生しているか否かを判定(ステップ2)する。なお、前述したように左右バンクの吸入空気量を均衡化する場合には、ここで、左右バンクの吸入空気量が異なっているか否かを判定することになる。目標からずれている場合には、ステップ3へ進み、作動角θが領域A,Bを区切る所定の閾値θ1よりも小さいか否か(つまり領域A内であるか否か)を判定する。作動角θが閾値θ1よりも小さければ、ステップ4へ進んで、作動角学習補正値を適正な値に学習更新する。また閾値θ1以上であれば、ステップ5へ進んで、位相学習補正値を適正な値に学習更新する。
【0051】
上記の閾値θ1は、上述の説明から理解されるように、主に吸気弁3のリフトの大小によって吸入空気量が定まる領域と、主に吸気弁閉時期によって吸入空気量が定まる領域と、の境界に対応するように設定される。
【図面の簡単な説明】
【図1】この発明に係る吸気弁駆動制御装置を備えた内燃機関の構成説明図。
【図2】可変動弁機構の構成を示す斜視図。
【図3】バルブタイミングの一例を示す特性図。
【図4】作動角制御マップの一例を示す特性図。
【図5】位相制御マップの一例を示す特性図。
【図6】領域Aにおける作動角θと充填効率ηvとの関係(A)およびリフト中心角φと充填効率ηvとの関係(B)を示す特性図。
【図7】領域Bにおける作動角θと充填効率ηvとの関係(A)およびリフト中心角φと充填効率ηvとの関係(B)を示す特性図。
【図8】作動角学習補正値および位相学習補正値の学習更新の処理を示すフローチャート。
【符号の説明】
2…可変動弁機構
19…エンジンコントロールユニット
51…リフト・作動角可変機構
71…位相可変機構
[0001]
BACKGROUND OF THE INVENTION
This invention, as a variable valve mechanism for an intake valve, retards the phase of the lift / working angle variable mechanism capable of continuously expanding and reducing the lift / working angle of the intake valve and the lift center angle of the intake valve. The present invention relates to an intake valve drive control device for an internal combustion engine including a phase variable mechanism.
[0002]
[Prior art]
In order to obtain the optimal valve lift characteristics for engine operating conditions, the lift / working angle variable mechanism that can continuously increase and decrease the lift / working angle of the intake valve and the phase of the lift center angle of the intake valve are delayed. For example, Patent Document 1 and Patent Document 2 filed by the present applicant have already been known.
[0003]
In particular, Patent Document 2 discloses that the intake air amount of the internal combustion engine is basically controlled without depending on the throttle valve by such variable control of the valve lift characteristic of the intake valve.
[0004]
[Patent Document 1]
JP-A-2001-280167
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-256905 [0006]
[Problems to be solved by the invention]
In the configuration combining the two variable mechanisms as described above, one valve lift characteristic includes both a lift / operation angle controlled by the lift / operation angle variable mechanism and a phase controlled by the phase variable mechanism. The amount of intake air that actually flows into the cylinder is determined by the valve lift characteristics, so that variations in intake air amount due to component accuracy or assembly accuracy of each part, in other words, Individual product differences are likely to occur. That is, the actual intake air amount deviates from the target value corresponding to the operating condition, and appears as, for example, an air-fuel ratio change or an output change.
[0007]
In addition, in an internal combustion engine having a plurality of banks such as a V-type internal combustion engine and a horizontally opposed internal combustion engine, a lift / working angle variable mechanism and a phase variable mechanism are provided for each bank. As a result, the amount of intake air may be different in each bank. In this case, for example, the air-fuel ratio differs between the left and right banks, or the output becomes unbalanced, resulting in rotational fluctuation.
[0008]
[Means for Solving the Problems]
The intake valve drive control device for an internal combustion engine according to the present invention includes, as a variable valve mechanism, a lift / working angle variable mechanism capable of simultaneously and continuously expanding and reducing the lift / working angle of the intake valve, and a lift of the intake valve. A phase variable mechanism for delaying the phase of the central angle, and the lift / operating angle variable mechanism and the phase variable mechanism along the target lift / operating angle and target phase set according to engine operating conditions The valve lift characteristics corresponding to the engine operating conditions can be obtained by both.
[0009]
Here, in the present invention, in order to cope with assembly errors, component variations, etc., means for storing the lift / working angle learning correction value and the phase learning correction value, the lift / working angle learning correction value, and the phase learning are stored. Means for correcting each of the lift / operating angle variable mechanism and the phase variable mechanism using the correction value. A means for directly or indirectly detecting excess or deficiency of the amount of intake air flowing into the cylinder is provided, and when the engine operating condition is in the low speed and low load side region where the lift / working angle is small, the intake air amount is reduced. The lift / operating angle learning correction value is learned so that there is no excess / deficiency, and when the engine operating conditions are in the high speed / high load area where the lift / operation angle is large, the intake air amount is not excessive / deficient. The phase learning correction value is learned.
[0010]
According to a second aspect of the present invention, there is provided an internal combustion engine comprising a plurality of banks as in a V-type internal combustion engine, and a lift / operating angle variable mechanism and a phase variable mechanism for each bank. The at least one bank includes means for storing a lift / working angle learning correction value and a phase learning correction value, and the lift / working angle learning correction value and the phase learning correction value are stored. Are used to correct the lift / operating angle variable mechanism and the phase variable mechanism, respectively. Means for directly or indirectly detecting that the amount of intake air in each bank is different is provided, and when the engine operating condition is in the region on the low speed and low load side where the lift and operating angle are small, the intake air of the bank The above-mentioned lift / working angle learning correction value is learned so that the amount is equal to that of other banks, and when the engine operating condition is in the high speed / high load side region where the lift / working angle is large, the intake air amount of the bank is The phase learning correction value is learned so as to be equal to other banks.
[0011]
In the valve lift characteristic with a small lift / operating angle, the amount of intake air flowing into the cylinder is mainly determined by the size of the lift, that is, the size of the lift / operating angle. Therefore, if the characteristics of the lift / operating angle variable mechanism deviate from the original characteristics due to assembly errors or the like, a large error occurs in the intake air amount in a region where the lift / operating angle is small. On the other hand, in the region where the lift / working angle is small, the influence of the phase of the lift center angle is relatively small, and the amount of intake air does not change much even if the phase is changed.
[0012]
On the other hand, in a valve lift characteristic with a sufficiently large lift / operating angle, the lift error does not significantly affect the amount of intake air flowing into the cylinder, and the amount of intake air is determined mainly by the intake valve closing timing. In other words, in the region where the lift / operating angle is large, if the intake valve closing timing deviates from the original characteristic, a large error occurs in the intake air amount. Since the intake valve closing timing depends on both the operating angle and the lift center angle, both the lift / operating angle and the phase of the lift center angle cancel out the intake air amount error. However, if the correction is performed based on the phase of the lift center angle as in the present invention, the correction in the above-described region where the lift / operation angle is small is not affected.
[0013]
Therefore, in the present invention, when the engine operating condition is in the low speed and low load side region where the lift / operating angle is small, the lift / operating angle learning correction value is learned so as to obtain an appropriate intake air amount. Is in the region on the high speed and high load side where the lift and operating angle are large, the phase learning correction value is learned so as to obtain an appropriate intake air amount. Thereby, the dispersion | variation in the amount of intake air by an assembly | attachment error etc. is suppressed over the whole driving | operation area | region.
[0014]
【The invention's effect】
According to the present invention, it is possible to effectively suppress variations in the intake air amount due to assembly errors of the lift / operating angle variable mechanism and phase variable mechanism, and to reduce errors in engine output, air-fuel ratio, and the like. be able to.
[0015]
Further, it is possible to further reduce the imbalance in the intake air amount between banks when a plurality of banks such as a V-type internal combustion engine are provided.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
FIG. 1 shows an embodiment in which the present invention is applied to a V-type 6-cylinder gasoline engine 1, and variable valve mechanisms 2 (to be described later) are provided on the intake valve 3 side of the left and right banks, respectively. The valve operating mechanism on the exhaust valve 4 side is a direct acting type that drives the exhaust valve 4 by the exhaust camshaft 5, and its valve lift characteristic is always constant.
[0018]
The exhaust manifolds 6 in the left and right banks are connected to a catalytic converter 7, and an air-fuel ratio sensor 8 that detects an exhaust air-fuel ratio is provided at an upstream position of the catalytic converter 7. The exhaust passages 9 of the left and right banks merge on the downstream side of the catalytic converter 7, and further include a second catalytic converter 10 and a silencer 11 on the downstream side.
[0019]
A branch passage 15 is connected to the intake port of each cylinder, and the upstream ends of the six branch passages 15 are connected to the collectors 16 respectively. An intake inlet passage 17 is connected to one end of the collector 16, and an electronically controlled throttle valve 18 is provided in the intake inlet passage 17. The electronically controlled throttle valve 18 includes an actuator composed of an electric motor, and its opening degree is controlled by a control signal supplied from an engine control unit 19. Note that a sensor (not shown) that detects the actual opening of the throttle valve 18 is integrally provided, and the throttle valve opening is closed-loop controlled to the target opening based on the detection signal. An air flow meter 25 for detecting the intake air flow rate is disposed upstream of the throttle valve 18, and an air cleaner 20 is provided further upstream.
[0020]
In order to detect the engine speed and the crank angle position, a crank angle sensor 21 is provided for the crankshaft, and an accelerator for detecting an accelerator pedal opening (depression amount) operated by the driver. An opening sensor 22 is provided. These detection signals are input to the engine control unit 19 together with the detection signals of the air flow meter 25 and the air-fuel ratio sensor 8 described above. In the engine control unit 19, based on these detection signals, the injection amount and injection timing of the fuel injection valve 23, the ignition timing by the ignition plug 24, the valve lift characteristics by the variable valve mechanism 2, the opening of the throttle valve 18, etc. To control.
[0021]
Next, the configuration of the variable valve mechanism 2 on the intake valve 3 side will be described with reference to FIG. This variable valve mechanism 2 advances or retards the lift / operation angle variable mechanism 51 for changing the lift / operation angle of the intake valve and the phase of the center angle of the lift (phase with respect to a crankshaft (not shown)). The phase variable mechanism 71 is combined.
[0022]
First, the lift / operating angle variable mechanism 51 will be described. The lift / operating angle variable mechanism 1 has been previously proposed by the present applicant, and is known, for example, from the above-mentioned Japanese Patent Application Laid-Open Nos. 2001-280167 and 2002-256905. Therefore, only the outline will be described.
[0023]
The lift / operating angle variable mechanism 51 includes the intake valve 3 slidably provided on the cylinder head, a drive shaft 52 rotatably supported by a cam bracket (not shown) on the cylinder head, An eccentric cam 53 fixed to the drive shaft 52 by press-fitting or the like, a control shaft 62 rotatably supported by the same cam bracket above the drive shaft 52 and disposed in parallel with the drive shaft 52, and The rocker arm 56 is swingably supported by the eccentric cam portion 68 of the control shaft 62, and the swing cam 59 is in contact with the tappet 60 disposed at the upper end portion of each intake valve 3. The eccentric cam 53 and the rocker arm 56 are linked by a link arm 54, and the rocker arm 56 and the swing cam 59 are linked by a link member 58.
[0024]
As will be described later, the drive shaft 52 is driven by a crankshaft of an engine via a timing chain or a timing belt.
[0025]
The eccentric cam 53 has a circular outer peripheral surface, the center of the outer peripheral surface is offset from the shaft center of the drive shaft 52 by a predetermined amount, and the annular portion of the link arm 54 is rotatable on the outer peripheral surface. It is mated.
[0026]
The rocker arm 56 is supported at its substantially central portion so as to be swingable by the eccentric cam portion 68, and the arm portion of the link arm 54 is linked to one end thereof via a connecting pin 55. The upper end portion of the link member 58 is linked to the end portion via a connecting pin 57. The eccentric cam portion 68 is eccentric from the axis of the control shaft 62, and accordingly, the rocking center of the rocker arm 56 changes according to the angular position of the control shaft 62.
[0027]
The swing cam 59 is rotatably supported by being fitted to the outer periphery of the drive shaft 52, and the lower end portion of the link member 58 is linked to the end portion extending laterally via a connecting pin 67. ing. On the lower surface of the swing cam 59, a base circle surface concentric with the drive shaft 52 and a cam surface extending in a predetermined curve from the base circle surface are continuously formed. These base circle surface and cam surface come into contact with the upper surface of the tappet 60 according to the swing position of the swing cam 59.
[0028]
That is, the base circle surface is a section where the lift amount becomes 0 as a base circle section, and when the swing cam 59 swings and the cam surface contacts the tappet 60, the base circle section lifts gradually. A slight ramp section is provided between the base circle section and the lift section.
[0029]
As shown in the figure, the control shaft 62 is configured to rotate within a predetermined angle range by a lift / operation angle control actuator 63 provided at one end. The lift / operating angle control actuator 63 includes, for example, a servo motor that drives the control shaft 62 via the worm gear 65, and is controlled by a control signal from the engine control unit 19. The rotation angle of the control shaft 62 is detected by the control shaft sensor 64.
[0030]
The operation of the lift / operating angle variable mechanism 51 will be described. When the drive shaft 52 rotates, the link arm 54 moves up and down by the cam action of the eccentric cam 53, and the rocker arm 56 swings accordingly. The swing of the rocker arm 56 is transmitted to the swing cam 59 via the link member 58, and the swing cam 59 swings. The tappet 60 is pressed by the cam action of the swing cam 59, and the intake valve 3 is lifted.
[0031]
Here, when the angle of the control shaft 62 changes via the lift / operating angle control actuator 63, the initial position of the rocker arm 56 changes, and consequently, the initial swing position of the swing cam 59 changes.
[0032]
For example, if the eccentric cam portion 68 is positioned upward in the figure, the rocker arm 56 is positioned upward as a whole, and the end of the swing cam 59 on the side of the connecting pin 67 is relatively lifted upward. Become. That is, the initial position of the swing cam 59 is inclined in a direction in which the cam surface is separated from the tappet 60. Therefore, when the swing cam 59 swings with the rotation of the drive shaft 52, the base circle surface is kept in contact with the tappet 60 for a long time, and the period during which the cam surface is in contact with the tappet 60 is short. Therefore, the lift amount is reduced as a whole, and the angle range from the opening timing to the closing timing, that is, the operating angle is also reduced.
[0033]
On the contrary, if the eccentric cam portion 68 is positioned downward in the figure, the rocker arm 56 is positioned downward as a whole, and the end portion on the connecting pin 67 side of the swing cam 59 is pushed downward relatively. It becomes a state. That is, the initial position of the swing cam 59 is inclined in a direction in which the cam surface approaches the tappet 60. Therefore, when the swing cam 59 swings with the rotation of the drive shaft 52, the portion that contacts the tappet 60 immediately shifts from the base circle surface to the cam surface. Therefore, the lift amount is increased as a whole, and the operating angle is increased.
[0034]
Since the initial position of the eccentric cam portion 68 can be continuously changed, the valve lift characteristic is continuously changed accordingly. That is, the lift and the operating angle can be continuously expanded and contracted simultaneously. Depending on the layout of each part, for example, the opening timing and closing timing of the intake valve 3 change substantially symmetrically as the lift and operating angle change.
[0035]
Next, as shown in FIG. 2, the phase varying mechanism 71 has a sprocket 72 provided at the front end of the drive shaft 52, and the sprocket 72 and the drive shaft 52 are relatively moved within a predetermined angle range. And a phase control actuator 73 to be rotated. The sprocket 72 is linked to the crankshaft via a timing chain or a timing belt (not shown). The phase control actuator 73 is composed of, for example, a hydraulic or electromagnetic rotary actuator, and is controlled by a control signal from the engine control unit 19. Due to the action of the phase control actuator 73, the sprocket 72 and the drive shaft 52 rotate relatively, and the lift center angle in the valve lift is retarded. That is, the lift characteristic curve itself does not change, and the whole advances or retards. This change can also be obtained continuously. The control state of the phase variable mechanism 71 is detected by a drive shaft sensor 66 that responds to the rotational position of the drive shaft 52.
[0036]
As described above, the variable valve mechanism 2 is provided with the lift / operating angle variable mechanism 51 and the phase variable mechanism 71, so that the valve lift characteristics of the intake valve 3, particularly the intake valve opening timing, can be obtained by a combination of both controls. (IVO) and intake valve closing timing (IVC) can be variably and continuously controlled. FIG. 3 shows an example of the valve timing, and the intake valve opening timing and the intake valve closing timing are determined by the phase of the operating angle θ and the lift center angle φ. The target value of the operating angle θ is assigned in advance to an operating angle control map (FIG. 4) using the engine speed and the required torque as parameters as engine operating conditions, and a corresponding value is read from the operating angle control map. Thus, the lift / operating angle variable mechanism 51 is controlled. Similarly, the target value of the phase is pre-assigned to a phase control map (FIG. 5) using the engine speed and the required torque as parameters as engine operating conditions, and the corresponding value is read from this phase control map. Thus, the phase variable mechanism 71 is controlled. That is, basically, each mechanism is individually controlled toward the target value. Since the lift and the operating angle are integrally increased or decreased, the operating angle θ here represents the lift / operating angle.
[0037]
In the variable valve mechanism 2 configured as described above, for example, if there is an error in the mounting position of the control shaft sensor 64 that detects the rotation angle of the control shaft 62, the lift / operation angle (operation angle θ) is the original value. Deviated from the characteristics. Similarly, if there is an error in the mounting position of the drive shaft sensor 66, for example, the phase of the lift center angle φ will deviate from the original characteristics. Therefore, the intake air amount may deviate from the original characteristics as a combination of these errors or variations.
[0038]
In the present invention, an error is offset by adding a learning correction value corresponding to the error to the initial variation of the intake air amount. Specifically, the operating angle learning correction value (lift / operating angle learning correction value) and the phase learning correction value are stored for each bank, and the target value and phase of the operating angle θ read from the control map are stored. By adding the operating angle learning correction value and the phase learning correction value to the target value, the valve lift characteristics are corrected so that equal intake air amounts can be obtained in the left and right banks.
[0039]
Here, the learning update of the operating angle learning correction value is executed when the engine operating condition is within a predetermined region on the low speed and low load side with a small lift and operating angle, and the learning update of the phase learning correction value is performed. This is executed when the operating condition of the engine is within the region on the high speed and high load side. Specifically, as shown in FIG. 4, in the region A where the operating angle θ is smaller than the predetermined value θ1, the operating angle learning correction value is learned and updated, and in the region B where the operating angle θ is equal to or larger than the predetermined value θ1, the phase learning correction value is Learning is updated.
[0040]
FIG. 6 shows the influence of changes in the operating angle θ and the lift center angle φ on the intake air amount (indicated by the charging efficiency ηv in the figure) for an example of the valve lift characteristics in the region A described above. For example, a case where the engine rotational speed is 1200 rpm, the operating angle θ is controlled to 100 °, and the lift center angle φ is controlled to 50 ° after top dead center is taken as an example. That is, point a in the figure is each control target, and at this time, the target charging efficiency ηv is obtained. Here, FIG. (A) shows the change in the charging efficiency ηv when the operating angle θ is changed while the lift center angle φ is maintained at the target value (50 ° after the top dead center), and FIG. On the contrary, the change in the charging efficiency ηv when the lift center angle φ is changed while the operating angle θ is maintained at the target value (100 °) is shown. In this way, when the lift / operating angle is small, the lift of the intake valve 3, that is, the gap between the valve openings is small, and the intake flow is restricted here. That is, as shown in FIG. 5A, when the operating angle θ (lift / operating angle) changes, the charging efficiency ηv changes accordingly. As shown in FIG. 2B, even if the lift center angle φ changes, the charging efficiency ηv hardly changes. Therefore, for example, when the intake air amount of one bank is different from the intake air amount of the other bank, the intake air amount of both can be made to coincide with each other by correcting the operating angle θ.
[0041]
In the V-type internal combustion engine, an imbalance in the intake air amount between the left and right banks can be detected as a crank shaft rotation variation via the crank angle sensor 21, and the operating angle θ required until the rotation variation is eliminated. A correction amount is obtained and stored as a working angle learning correction value. This operating angle learning correction value is always added to the target operating angle, as described above, for correcting initial variations in the apparatus.
[0042]
On the other hand, FIG. 7 shows the influence of changes in the operating angle θ and the lift center angle φ in the region B. For example, the engine rotational speed is 1600 rpm, the operating angle θ is 160 °, and the lift center angle φ is The case where it is controlled to 40 ° after top dead center is taken as an example. That is, point b in the figure is each control target, and at this time, the target charging efficiency ηv is obtained. FIG. (A) shows the change in charging efficiency ηv when the operating angle θ is changed while the lift center angle φ is kept at the target value (40 ° after top dead center), and FIG. The change in the charging efficiency ηv when the lift center angle φ is changed while the operating angle θ is kept at the target value (160 °) is shown. Thus, in a state where the lift is sufficiently large, the intake air amount is determined mainly by the closing timing of the intake valve 3. Since the intake valve closing timing depends on both the operating angle θ and the lift center angle φ, when the operating angle θ changes as shown in FIG. 5 (a), the charging efficiency ηv changes accordingly. As shown in the figure (b), even if the lift center angle φ changes, the charging efficiency ηv changes accordingly. Therefore, for example, when the intake air amount of one bank is different from the intake air amount of the other bank, the operating angle learning correction value is not changed, and the lift center angle is corrected by increasing or decreasing the phase learning correction value. Both intake air amounts can be made to coincide with each other.
[0043]
Here, if the operating angle learning correction value is changed, when the vehicle is operated again within the region A, a large variation in the intake air amount occurs again. However, if the variation in the intake air amount in the region B is canceled by the learning update of the phase learning correction value as described above, the change in the lift center angle φ is caused by the intake air in the region A as described above. Since there is almost no influence on the amount, the variation in the intake air amount that occurs when the vehicle is operated in the region A again is very small.
[0044]
On the other hand, the operating angle learning correction value learned so as to match the intake air amount in the region A is also reflected in the operation in the region B, but the learning of the above-described phase learning correction value in the region B Since the operation angle learning correction value is given, it is possible to suppress variations in the intake air amount in both areas A and B.
[0045]
6 and 7 show the change in the charging efficiency ηv over a very wide angle range. Actually, however, it is caused by an assembly error in a relatively narrow range near the points a and b. Therefore, it is sufficient to provide a learning correction value for this within a relatively narrow range.
[0046]
In the embodiment of the V-type internal combustion engine described above, in order to correct the imbalance in the intake air amount between the left and right banks, the variable valve mechanism 2 in either bank may be corrected. It is desirable to correct the variable valve mechanisms 2 in both banks in order to make the characteristics of the intake air amount coincide with the desired characteristics.
[0047]
As described above, the present invention can be used in an internal combustion engine having a plurality of banks to prevent an imbalance in the intake air amount of each bank, but is not necessarily limited thereto. Even in the configuration including the variable valve mechanism 2 common to all cylinders, such as a cylinder internal combustion engine, it can be used to correct the initial variation.
[0048]
For example, in the above example, since the target value of the intake air amount that should be inhaled originally is uniquely determined based on the accelerator pedal opening detected by the accelerator opening sensor 22 and the engine speed, the air flow meter By comparing with the actual intake air amount detected by 25, it is possible to detect an excess or deficiency of the actual intake air amount due to an error in the valve lift characteristics. Therefore, by obtaining the operating angle learning correction value and the phase learning correction value so that the actual intake air amount matches the target intake air amount, it is possible to cancel the initial variation.
[0049]
Similarly, the target value of the suction negative pressure in the collector 16 can be estimated based on the operating conditions (the accelerator pedal opening and the engine speed), and this can be compared with the actually detected suction negative pressure value. It is possible to detect the excess or deficiency of the intake air amount. Accordingly, the initial variation of the variable valve mechanism can be corrected by obtaining the operating angle learning correction value and the phase learning correction value so that the actual suction negative pressure matches the target suction negative pressure.
[0050]
FIG. 8 is a flowchart showing a flow of processing for updating the learning of the operating angle learning correction value and the phase learning correction value. First, it is determined whether or not the operation is a steady operation (step 1). It is determined whether or not there is a deviation from the target (target intake air amount or target intake negative pressure, etc.) (step 2). As described above, when the intake air amounts of the left and right banks are balanced, it is determined here whether or not the intake air amounts of the left and right banks are different. When it deviates from a target, it progresses to Step 3, and it is judged whether operating angle theta is smaller than predetermined threshold theta 1 which divides fields A and B (namely, it is in field A). If the operating angle θ is smaller than the threshold value θ1, the process proceeds to step 4 where the operating angle learning correction value is learned and updated to an appropriate value. If it is equal to or greater than the threshold value θ1, the process proceeds to step 5 where the phase learning correction value is learned and updated to an appropriate value.
[0051]
As understood from the above description, the threshold value θ1 includes a region where the intake air amount is determined mainly by the magnitude of the lift of the intake valve 3 and a region where the intake air amount is determined mainly by the intake valve closing timing. Set to correspond to the boundary.
[Brief description of the drawings]
FIG. 1 is a configuration explanatory view of an internal combustion engine provided with an intake valve drive control device according to the present invention.
FIG. 2 is a perspective view showing a configuration of a variable valve mechanism.
FIG. 3 is a characteristic diagram showing an example of valve timing.
FIG. 4 is a characteristic diagram showing an example of an operating angle control map.
FIG. 5 is a characteristic diagram showing an example of a phase control map.
FIG. 6 is a characteristic diagram showing the relationship (A) between the operating angle θ and the charging efficiency ηv in the region A and the relationship (B) between the lift center angle φ and the charging efficiency ηv.
FIG. 7 is a characteristic diagram showing the relationship (A) between the operating angle θ and the charging efficiency ηv and the relationship (B) between the lift center angle φ and the charging efficiency ηv in the region B.
FIG. 8 is a flowchart showing learning update processing of an operating angle learning correction value and a phase learning correction value.
[Explanation of symbols]
2 ... Variable valve mechanism 19 ... Engine control unit 51 ... Lift / operating angle variable mechanism 71 ... Phase variable mechanism

Claims (7)

吸気弁のリフト・作動角を同時にかつ連続的に拡大,縮小制御可能なリフト・作動角可変機構と、吸気弁のリフト中心角の位相を遅進させる位相可変機構と、を備え、機関運転条件に応じて設定される目標リフト・作動角および目標位相に沿って上記リフト・作動角可変機構および上記位相可変機構が制御される内燃機関の吸気弁駆動制御装置において、
リフト・作動角学習補正値および位相学習補正値を記憶する手段と、
上記リフト・作動角学習補正値および上記位相学習補正値を用いてリフト・作動角可変機構および位相可変機構をそれぞれ補正する手段と、
シリンダに流入した吸入空気量の過不足を直接もしくは間接に検出する手段と、
を備え、
機関運転条件がリフト・作動角の小さな低速低負荷側の領域にあるときに、吸入空気量の過不足が無くなるように上記リフト・作動角学習補正値を学習し、機関運転条件がリフト・作動角の大きな高速高負荷側の領域にあるときに、吸入空気量の過不足が無くなるように上記位相学習補正値を学習することを特徴とする内燃機関の吸気弁駆動制御装置。
The engine operating conditions include a lift / working angle variable mechanism that can simultaneously and continuously expand and reduce the lift / working angle of the intake valve and a phase variable mechanism that delays the phase of the lift center angle of the intake valve. In the intake valve drive control device for an internal combustion engine in which the lift / operating angle variable mechanism and the phase variable mechanism are controlled along a target lift / operating angle and a target phase set according to
Means for storing a lift / working angle learning correction value and a phase learning correction value;
Means for correcting the lift / working angle variable mechanism and the phase variable mechanism, respectively, using the lift / working angle learning correction value and the phase learning correction value;
Means for directly or indirectly detecting excess or deficiency of the amount of intake air flowing into the cylinder;
With
When the engine operating conditions are in the low-speed, low-load region with a small lift / operating angle, the above-mentioned lift / operating angle learning correction values are learned so that the intake air amount is not excessive or insufficient, and the engine operating conditions are lifted / operated. An intake valve drive control device for an internal combustion engine, wherein the phase learning correction value is learned so that the intake air amount does not become excessive or insufficient when it is in a high-speed and high-load region with a large angle.
リフト・作動角が所定値より小さな領域では上記リフト・作動角学習補正値を学習し、所定値以上の領域では上記位相学習補正値を学習することを特徴とする請求項1に記載の内燃機関の吸気弁駆動制御装置。2. The internal combustion engine according to claim 1, wherein the lift / working angle learning correction value is learned in a region where the lift / working angle is smaller than a predetermined value, and the phase learning correction value is learned in a region of a predetermined value or more. Intake valve drive control device. 機関運転条件として入力されるアクセル開度と機関回転速度とに基づいて吸入空気量の目標値を求め、実際に検出された吸入空気量と比較して、その過不足を検出することを特徴とする請求項1または2に記載の内燃機関の吸気弁駆動制御装置。The target value of the intake air amount is obtained based on the accelerator opening and the engine speed input as engine operating conditions, and the excess or deficiency is detected by comparing with the actually detected intake air amount. An intake valve drive control device for an internal combustion engine according to claim 1 or 2. 機関運転条件として入力されるアクセル開度と機関回転速度とに基づいて吸入負圧の目標値を求め、実際に検出された吸入負圧と比較して、吸入空気量の過不足を検出することを特徴とする請求項1または2に記載の内燃機関の吸気弁駆動制御装置。The target value of intake negative pressure is obtained based on the accelerator opening and engine speed input as engine operating conditions, and compared with the actually detected intake negative pressure, the excess or deficiency of the intake air amount is detected. The intake valve drive control device for an internal combustion engine according to claim 1 or 2, characterized by the above-mentioned. 複数のバンクを備えるとともに、吸気弁のリフト・作動角を同時にかつ連続的に拡大,縮小制御可能なリフト・作動角可変機構と、吸気弁のリフト中心角の位相を遅進させる位相可変機構と、を各バンク毎に備え、機関運転条件に応じて設定される目標リフト・作動角および目標位相に沿って上記リフト・作動角可変機構および上記位相可変機構が制御される内燃機関の吸気弁駆動制御装置において、
少なくとも一つのバンクについて、リフト・作動角学習補正値および位相学習補正値を記憶する手段と、
上記リフト・作動角学習補正値および上記位相学習補正値を用いてリフト・作動角可変機構および位相可変機構をそれぞれ補正する手段と、
各バンクの吸入空気量が異なることを直接もしくは間接に検出する手段と、
を備え、
機関運転条件がリフト・作動角の小さな低速低負荷側の領域にあるときに、当該バンクの吸入空気量が他のバンクと等しくなるように上記リフト・作動角学習補正値を学習し、機関運転条件がリフト・作動角の大きな高速高負荷側の領域にあるときに、当該バンクの吸入空気量が他のバンクと等しくなるように上記位相学習補正値を学習することを特徴とする内燃機関の吸気弁駆動制御装置。
A lift / operating angle variable mechanism having a plurality of banks and capable of simultaneously and continuously expanding and reducing the lift / operating angle of the intake valve, and a phase variable mechanism for delaying the phase of the lift central angle of the intake valve For each bank, and the intake valve drive of the internal combustion engine in which the lift / working angle variable mechanism and the phase variable mechanism are controlled along the target lift / working angle and target phase set according to the engine operating conditions In the control device,
Means for storing a lift / working angle learning correction value and a phase learning correction value for at least one bank;
Means for correcting the lift / working angle variable mechanism and the phase variable mechanism, respectively, using the lift / working angle learning correction value and the phase learning correction value;
Means for directly or indirectly detecting that the amount of intake air in each bank is different;
With
When the engine operating conditions are in the low-speed, low-load region where the lift / working angle is small, the above-mentioned lift / working angle learning correction value is learned so that the intake air amount of the bank is equal to the other banks, and the engine operation is The internal combustion engine is characterized in that the phase learning correction value is learned so that the intake air amount of the bank is equal to that of the other bank when the condition is in the high speed and high load side region where the lift / operating angle is large. Intake valve drive control device.
リフト・作動角が所定値より小さな領域では上記リフト・作動角学習補正値を学習し、所定値以上の領域では上記位相学習補正値を学習することを特徴とする請求項5に記載の内燃機関の吸気弁駆動制御装置。6. The internal combustion engine according to claim 5, wherein the lift / working angle learning correction value is learned in a region where the lift / working angle is smaller than a predetermined value, and the phase learning correction value is learned in a region greater than the predetermined value. Intake valve drive control device. クランクシャフトの回転変動に基づいて各バンクの吸入空気量が異なることを検出することを特徴とする請求項5または6に記載の内燃機関の吸気弁駆動制御装置。The intake valve drive control device for an internal combustion engine according to claim 5 or 6, wherein the intake air amount of each bank is detected to be different based on a rotational fluctuation of the crankshaft.
JP2003136729A 2003-05-15 2003-05-15 Intake valve drive control device for internal combustion engine Expired - Fee Related JP3890476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136729A JP3890476B2 (en) 2003-05-15 2003-05-15 Intake valve drive control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136729A JP3890476B2 (en) 2003-05-15 2003-05-15 Intake valve drive control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004340013A JP2004340013A (en) 2004-12-02
JP3890476B2 true JP3890476B2 (en) 2007-03-07

Family

ID=33526577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136729A Expired - Fee Related JP3890476B2 (en) 2003-05-15 2003-05-15 Intake valve drive control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3890476B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517853B2 (en) * 2004-12-22 2010-08-04 日産自動車株式会社 V-type internal combustion engine intake collector
US7458348B2 (en) * 2005-03-28 2008-12-02 Hitachi, Ltd. Method and apparatus for controlling variable valve actuation device in internal combustion engine
JP4207961B2 (en) 2006-01-12 2009-01-14 トヨタ自動車株式会社 Control device for internal combustion engine
JP4221001B2 (en) 2006-01-20 2009-02-12 トヨタ自動車株式会社 Control device for internal combustion engine
JP4666372B2 (en) 2006-01-26 2011-04-06 日立オートモティブシステムズ株式会社 Control device for variable valve mechanism
JP4600326B2 (en) * 2006-03-27 2010-12-15 トヨタ自動車株式会社 Variable valve timing device
JP4786390B2 (en) 2006-03-30 2011-10-05 トヨタ自動車株式会社 Variable valve timing device
JP4267638B2 (en) 2006-03-30 2009-05-27 トヨタ自動車株式会社 Variable valve timing device
JP4594264B2 (en) 2006-03-31 2010-12-08 トヨタ自動車株式会社 Variable valve timing device
JP4583362B2 (en) 2006-12-21 2010-11-17 日立オートモティブシステムズ株式会社 Valve control device for internal combustion engine
JP4827801B2 (en) * 2007-06-29 2011-11-30 日産自動車株式会社 Valve control device for internal combustion engine
JP5015710B2 (en) * 2007-09-28 2012-08-29 日立オートモティブシステムズ株式会社 Intake air amount control device for internal combustion engine
JP5310395B2 (en) * 2009-08-31 2013-10-09 トヨタ自動車株式会社 Control device for internal combustion engine
DE102015221203A1 (en) * 2015-10-29 2017-05-04 Robert Bosch Gmbh Method and device for adapting a valve control variable for an intake and / or an exhaust valve of an internal combustion engine
KR101796255B1 (en) 2016-06-30 2017-11-10 주식회사 현대케피코 Continuously variable valve duration system and operating method thereof

Also Published As

Publication number Publication date
JP2004340013A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP4168872B2 (en) Control device for internal combustion engine
JP3783589B2 (en) Variable valve operating device for internal combustion engine
US7077085B2 (en) Variable valve control system and method for multi-cylinder internal combustion engine
JP3890476B2 (en) Intake valve drive control device for internal combustion engine
JP4186613B2 (en) Intake control device for internal combustion engine
JP4103819B2 (en) Variable valve operating device for internal combustion engine
JP3873834B2 (en) Intake valve drive control device for internal combustion engine
US7328673B2 (en) Valve timing correction control apparatus and method for an internal combustion engine
JP4036057B2 (en) Intake valve drive control device for internal combustion engine
JP4003567B2 (en) Intake control device for internal combustion engine
JP4380499B2 (en) Control device for internal combustion engine
JP4254130B2 (en) Variable valve operating device for internal combustion engine
JP4020065B2 (en) Control device for internal combustion engine
JP4655444B2 (en) Intake control device for internal combustion engine
JP4103821B2 (en) Intake control device for internal combustion engine
JP3815332B2 (en) Variable valve operating device for internal combustion engine
JP4063194B2 (en) Idle speed control device for internal combustion engine
JP3933007B2 (en) Intake control device for internal combustion engine
JP4165259B2 (en) Air-fuel ratio control device for internal combustion engine
JP4329627B2 (en) Control device for variable valve mechanism
JP2004100547A (en) Control device for internal combustion engine
JP4100192B2 (en) Variable valve operating device for internal combustion engine
JP4400402B2 (en) Control device for internal combustion engine
JP4066977B2 (en) Lift characteristic correcting device for internal combustion engine
JP2005291186A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees