JP4595325B2 - Ceramic electronic components - Google Patents

Ceramic electronic components Download PDF

Info

Publication number
JP4595325B2
JP4595325B2 JP2004000157A JP2004000157A JP4595325B2 JP 4595325 B2 JP4595325 B2 JP 4595325B2 JP 2004000157 A JP2004000157 A JP 2004000157A JP 2004000157 A JP2004000157 A JP 2004000157A JP 4595325 B2 JP4595325 B2 JP 4595325B2
Authority
JP
Japan
Prior art keywords
resin
conductive paste
metal
silver
resinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004000157A
Other languages
Japanese (ja)
Other versions
JP2005197021A (en
Inventor
克明 東
章彦 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2004000157A priority Critical patent/JP4595325B2/en
Publication of JP2005197021A publication Critical patent/JP2005197021A/en
Application granted granted Critical
Publication of JP4595325B2 publication Critical patent/JP4595325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本願発明はセラミック電子部品に関し、特にたとえば積層コンデンサ、積層インダクタ、積層サーミスタ等のセラミック電子部品の外部電極樹脂硬化型導電性ペーストを用いて形成されたセラミック電子部品に関する。 The present invention relates to a ceramic electronic component, in particular for example multilayer capacitor, a laminated inductor, a ceramic electronic component external electrodes of ceramic electronic components such as laminated thermistor is formed by using a resin curing conductive paste.

従来、セラミック電子部品の外部電極等を形成するために、有機溶剤に銀等の導電性金属粉末と、樹脂からなる有機バインダとを分散して配合してなる導電性ペーストが用いられている。特に、導電性ペーストは、環境問題への意識の高まる中、世界的に規制が進んでいる鉛のような有害物質を含まないはんだ代替の導電性材料として注目を浴びている。中でも、特許文献1に開示されているような150℃〜200℃といった低温で硬化する樹脂硬化型導電性ペーストは、約500℃〜800℃といった高温が必要な焼成型導電性ペーストに比べて、他の材料に与える熱ダメージが小さい、硬化時に使用するエネルギーが少なく省エネルギーにつながる、そして、硬化物が柔軟で耐クラック性に優れる等の特長を持っている(特許文献1参照)。   Conventionally, in order to form an external electrode of a ceramic electronic component, a conductive paste obtained by dispersing a conductive metal powder such as silver and an organic binder made of a resin in an organic solvent is used. In particular, conductive pastes are attracting attention as conductive materials that substitute for solders that do not contain harmful substances such as lead, which are becoming increasingly regulated worldwide, as awareness of environmental issues increases. Among them, the resin curable conductive paste that is cured at a low temperature such as 150 ° C. to 200 ° C. as disclosed in Patent Document 1 is higher than the fired conductive paste that requires a high temperature of about 500 ° C. to 800 ° C. The heat damage to other materials is small, less energy is used at the time of curing, leading to energy saving, and the cured product is flexible and excellent in crack resistance (see Patent Document 1).

特開2002−367427JP 2002-367427 A

焼成型導電性ペーストは、主に導電成分(銀、ニッケル等の金属粉末)と有機バインダと有機溶剤とを含んだペーストであって、熱を加えることによって、樹脂成分(有機溶剤や有機バインダの一部)の大部分は飛散してしまい、樹脂は形状としては残らない。すなわち、焼成型導電性ペーストは、残った導電成分が焼結することによって導電性を保持するペーストである。
それに対して、樹脂硬化型導電性ペーストは、主に導電成分(銀、ニッケル等の金属粉末)と熱硬化性樹脂とを含み、これに熱を加えることによって樹脂を飛散させず導電成分とともに硬化させて、樹脂を介して導電成分同士の接触を保持するので、樹脂は飛散せずにそのまま残存する。
このような樹脂硬化型導電性ペーストでは、硬化後の硬化物中に絶縁体である樹脂が残存するため、焼成型導電性ペーストのような銀等の導電成分同士の焼結が起こりにくい。このため、樹脂硬化型導電性ペーストの導電性は、専ら銀等の導電成分の接触に依存することになり、焼成型導電性ペーストのような低い抵抗率(比抵抗)が得られないという問題があった。
そこで、樹脂硬化型導電性ペーストの抵抗率を低下させる手段として、導電成分としての銀の配合量を増加することが考えられる。
しかし、銀をある限度量以上配合した場合、熱硬化性樹脂の含有量の低下とともに導電性ペーストの基材に対する密着力が低下するという問題が生じる。
Firing-type conductive paste is a paste mainly containing a conductive component (metal powder such as silver or nickel), an organic binder, and an organic solvent. By applying heat, a resin component (of an organic solvent or an organic binder) is used. Most of them are scattered and the resin does not remain in shape. That is, the fired conductive paste is a paste that retains conductivity when the remaining conductive component is sintered.
On the other hand, resin-curable conductive paste mainly contains a conductive component (metal powder such as silver and nickel) and a thermosetting resin, and by applying heat to this, it cures together with the conductive component without scattering the resin. Thus, since the contact between the conductive components is maintained via the resin, the resin remains as it is without being scattered.
In such a resin curable conductive paste, since the resin as an insulator remains in the cured product after curing, the conductive components such as silver are unlikely to sinter like the fired conductive paste. For this reason, the conductivity of the resin curable conductive paste depends exclusively on the contact of conductive components such as silver, and the problem is that a low resistivity (specific resistance) cannot be obtained as in the case of a baked conductive paste. was there.
Therefore, as a means for reducing the resistivity of the resin curable conductive paste, it is conceivable to increase the amount of silver as a conductive component.
However, when silver is blended in a certain amount or more, there arises a problem that the adhesive strength of the conductive paste to the substrate decreases with a decrease in the content of the thermosetting resin.

それゆえに、本願発明の主たる目的は、導電成分としての銀等の金属粉末の配合量にかかわらず、抵抗率を低くすることが可能で、かつ、基材に対する密着力の良好な樹脂硬化型導電性ペーストを用いて外部電極が形成されたセラミック電子部品を提供することである。 Therefore, the main object of the present invention is to provide a resin curable conductive material that can reduce the resistivity and has good adhesion to the substrate regardless of the amount of metal powder such as silver as the conductive component. to provide a ceramic electronic component has an external electrode formed using the sexual paste.

本願発明にかかるセラミック電子部品は、セラミック素体と外部電極とを有するセラミック電子部品であって、外部電極は樹脂硬化型導電性ペーストを用いて形成され、樹脂硬化型導電性ペーストとして、熱硬化性樹脂と、金属粉末と、金属レジネートとを含有し、金属レジネートは、金属粉末に対し0.3wt%以上10wt以下の範囲で添加され、金属粉末は、樹脂硬化型導電性ペースト硬化物中に55wt%以上95wt%以下含有されることを特徴とする、セラミック電子部品である。
本願発明にかかるセラミック電子部品の外部電極に用いられる樹脂硬化型導電性ペーストにおいて、上記のような金属粉末の配合量の範囲で金属レジネートを添加すると、導電性ペースト中の金属粉末の配合量を増加しなくても、抵抗率を低くできる。すなわち、金属粉末の配合量が一定であっても、金属レジネートを添加すれば、抵抗率を小さくでき、導電性を向上させることができる。
本願発明にかかるセラミック電子部品の外部電極に用いられる樹脂硬化型導電性ペーストにおける金属レジネートの作用は明らかではないが、樹脂と金属粉末との濡れ性を改善したり、樹脂の体積抵抗を低下させたりする働きがあり、そのために抵抗率が小さくなるものと思われる。
また、上記の範囲であれば、実用レベルでの抵抗率を低くすることができ、かつ、密着性も維持することができる。すなわち、従来、樹脂硬化型導電性ペーストにおいて、特に銀等の導電成分の含有量を多くすると、樹脂の含有量が低下するため、硬化物の強度や基材に対する密着性が低下しがちであったが、本願発明を用いれば、密着性と導電性の両立が可能であり、実用的なレベルで好ましい密着性および導電性を得ることができる。
なお、従来、焼成型導電性ペーストに金属レジネートを添加することは知られている。しかし、この金属レジネートは、焼結助剤としての作用を生じるものである。
それに対して、本願発明は、焼結しない樹脂硬化型導電性ペーストに金属レジネートを添加することによって、抵抗率を低くすることができることを見出してなされたものである。
The ceramic electronic component according to the present invention is a ceramic electronic component having a ceramic body and an external electrode, and the external electrode is formed using a resin curable conductive paste, and is cured as a resin curable conductive paste. Resin, a metal powder, and a metal resinate, and the metal resinate is added in a range of 0.3 wt% to 10 wt % with respect to the metal powder, and the metal powder is contained in the cured resin-cured conductive paste. The ceramic electronic component is characterized by being contained in an amount of 55 wt% to 95 wt%.
In the resin curable conductive paste used for the external electrode of the ceramic electronic component according to the present invention, when the metal resinate is added in the range of the amount of the metal powder as described above, the amount of the metal powder in the conductive paste is changed. Even if it does not increase, the resistivity can be lowered. That is, even if the blending amount of the metal powder is constant, if the metal resinate is added, the resistivity can be reduced and the conductivity can be improved.
Although the action of the metal resinate in the resin curable conductive paste used for the external electrode of the ceramic electronic component according to the present invention is not clear, it improves the wettability between the resin and the metal powder, or reduces the volume resistance of the resin. It seems that the resistivity is reduced because of this.
Moreover, if it is said range, the resistivity in a practical level can be made low and adhesiveness can also be maintained. That is, conventionally, in a resin curable conductive paste, when the content of a conductive component such as silver is increased, the content of the resin is decreased, and thus the strength of the cured product and the adhesion to the substrate tend to be decreased. However, if the invention of the present application is used, it is possible to achieve both adhesion and conductivity, and preferable adhesion and conductivity can be obtained at a practical level.
Conventionally, it is known to add a metal resinate to a fired conductive paste. However, this metal resinate acts as a sintering aid.
On the other hand, the present invention has been made by finding that the resistivity can be lowered by adding a metal resinate to a resin curable conductive paste that is not sintered.

本願発明にかかるセラミック電子部品の外部電極に用いられる樹脂硬化型導電性ペーストでは、金属レジネートが、銀、銅およびニッケルの少なくともいずれかを含む化合物であることが好ましい。
このような導電性の得やすい銀、銅、ニッケルを含む化合物である金属レジネートを添加することによって、特に本願発明の効果が顕著となる。
In the resin curable conductive paste used for the external electrode of the ceramic electronic component according to the present invention, the metal resinate is preferably a compound containing at least one of silver, copper and nickel.
By adding such a metal resinate, which is a compound containing silver, copper, and nickel, which easily obtains conductivity, the effect of the present invention is particularly remarkable.

本願発明によれば、導電成分としての銀等の金属粉末の配合量にかかわらず、抵抗率を低くすることが可能な樹脂硬化型導電性ペーストを用いて外部電極が形成されたセラミック電子部品が得られる。
また、本願発明によれば、密着強度等の機械的特性を損なわずに、セラミック電子部品の外部電極を形成する樹脂硬化型導電性ペーストの抵抗率を大幅に低下することが可能となる。
According to the present invention, there is provided a ceramic electronic component in which an external electrode is formed using a resin-curing conductive paste capable of reducing the resistivity regardless of the amount of metal powder such as silver as a conductive component. can get.
In addition, according to the present invention, the resistivity of the resin-cured conductive paste that forms the external electrodes of the ceramic electronic component can be greatly reduced without impairing mechanical properties such as adhesion strength.

本願発明の上述の目的、その他の目的、特徴および利点は、以下の発明を実施するための最良の形態の説明から一層明らかとなろう。   The above object, other objects, features, and advantages of the present invention will become more apparent from the following description of the best mode for carrying out the invention.

本願発明で使用される金属レジネートとは、次の(1)式で表される化合物である。
M−X−R ・・・ (1)
(1)式において、Mは金属を示し、Xは酸素、窒素または硫黄を示し、Rはアルキル基を示している。中でも、銀、銅、ニッケルを含有した金属レジネートは、抵抗率の低下に顕著な効果が認められる。これらの化合物として、たとえば、オクチル酸銀、ナフテン酸銀、硫化バルサム銀、ジヘキシルサルファイド銀、オクチル酸銅、ナフテン酸銅、オレイン酸銅、オクチル酸ニッケル、ナフテン酸ニッケル、オレイン酸ニッケル等が用いられる。
また、金属レジネートの添加量は、金属粉末に対し、0.3wt%〜10wt%の範囲内で使用されることが好ましい。金属レジネートの添加量が0.3wt%未満の場合、導電性ペースト中の金属レジネートが少なすぎるため、効果が認められないか、認められたとしてもごくわずかである。一方、金属レジネートの添加量が10wt%より多くなった場合には、抵抗率の低下効果は認められるものの、ペースト硬化物の密着性等の機械的特性が著しく損なわれるため、実用的には使用困難である。
The metal resinate used in the present invention is a compound represented by the following formula (1).
MX-R (1)
In the formula (1), M represents a metal, X represents oxygen, nitrogen or sulfur, and R represents an alkyl group. Among these, a metal resinate containing silver, copper, and nickel has a remarkable effect in reducing the resistivity. As these compounds, for example, silver octylate, silver naphthenate, silver sulfide balsam, silver dihexyl sulfide, copper octylate, copper naphthenate, copper oleate, nickel octylate, nickel naphthenate, nickel oleate, etc. are used. .
Moreover, it is preferable that the addition amount of a metal resinate is used within the range of 0.3 wt%-10 wt% with respect to metal powder. When the addition amount of the metal resinate is less than 0.3 wt%, there is too little metal resinate in the conductive paste, so that the effect is not recognized, or even if it is recognized, it is negligible. On the other hand, when the addition amount of the metal resinate is more than 10 wt%, although the resistivity lowering effect is recognized, the mechanical properties such as the adhesiveness of the paste cured product are remarkably impaired. Have difficulty.

本願発明で使用される熱硬化性樹脂は、加熱により硬化するものであればいかなるものでも差し支えない。たとえば、エポキシ樹脂、ウレタン樹脂、ビニルエステル樹脂、シリコーン樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ポリイミド樹脂等が用いられる。   The thermosetting resin used in the present invention may be any one as long as it is cured by heating. For example, epoxy resin, urethane resin, vinyl ester resin, silicone resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, diallyl phthalate resin, polyimide resin and the like are used.

また、本願発明で使用される金属粉末としては、銀、パラジウム、銅、ニッケル、金、白金、アルミニウム、亜鉛、すず等、任意の金属材料を使用することが可能であるが、導電性、コスト、信頼性等を考えた場合、銀が最適である。ここで、金属粉末の配合量は、導電性ペースト硬化物中に55wt%以上95wt%以下が好ましく、任意に決定することができるが、導電性ペースト硬化物中に55wt%以上93wt%以下であることがより好ましい。導電性ペースト硬化物中の銀等の金属粉末の含有量が55wt%未満では硬化後にも銀等の金属粉末同士の接触が起こりにくく実用レベルの導電性は期待できないことがある。一方、硬化物中の銀等の金属粉末の含有量が95wt%より多くなると、樹脂の凝集力が低下して抵抗率が増加したり、ペースト硬化物の強度、密着性等の機械的特性が低下する。 Moreover, as a metal powder used by this invention, although arbitrary metal materials, such as silver, palladium, copper, nickel, gold | metal | money, platinum, aluminum, zinc, and tin, can be used, electroconductivity, cost In view of reliability, silver is optimal. Here, the blending amount of the metal powder is preferably 55 wt % or more and 95 wt % or less in the cured conductive paste, and can be arbitrarily determined, but it is 55 wt % or more and 93 wt % or less in the cured conductive paste. More preferably. If the content of the metal powder such as silver in the cured conductive paste is less than 55 wt%, the metal powder such as silver is hardly contacted even after curing, and a practical level of conductivity may not be expected. On the other hand, when the content of the metal powder such as silver in the cured product is more than 95 wt%, the cohesive strength of the resin is decreased and the resistivity is increased, and the mechanical properties such as strength and adhesion of the paste cured product are increased. descend.

さらに、本願発明にかかるセラミック電子部品の外部電極に用いられる樹脂硬化型導電性ペーストには、これらの材料の他にも、チクソトロピック性や密着性等、導電性ペーストに特別な機能を付与する目的で、任意の有機系あるいは無機系材料を混合してもよい。さらに、粘着調整等のため、任意の有機溶剤を使用することができる。 Furthermore, in addition to these materials, the resin-curable conductive paste used for the external electrode of the ceramic electronic component according to the present invention imparts special functions to the conductive paste such as thixotropic properties and adhesion. Any organic or inorganic material may be mixed for the purpose. Furthermore, any organic solvent can be used for adhesion adjustment and the like.

本願発明にかかるセラミック電子部品の外部電極に用いられる樹脂硬化型導電性ペーストは、積層コンデンサ、積層インダクタ、積層サーミスタ等の半導体電子部品等の外部電極として用いることができる。 The resin curable conductive paste used for the external electrode of the ceramic electronic component according to the present invention can be used as an external electrode of a semiconductor electronic component such as a multilayer capacitor, a multilayer inductor, or a multilayer thermistor.

以下、実施例を用いて本願発明を詳細に説明する。
なお、実施例において、「イソシアネート」はIPDI系ブロック型イソシアネートであり、「ポリオール」はポリエーテル系ポリオールであり、「銀粉」はD50=4μmのフレーク状銀粉であり、「有機溶剤」はアルコール系溶剤である。また、「金属レジネート」として以下のレジネートを使用した。
レジネートA:銀系レジネート
レジネートB:銅系レジネート
レジネートC:ニッケル系レジネート
また、DSC測定により、これらの金属レジネートは、本実施例の硬化温度では分解しないことを確認しており、金属レジネートはすべて樹脂成分とみなした。
また、金属レジネートは、基本的に樹脂成分と反応する官能基を持っておらず、上記に記載のとおり、硬化温度では分解反応も生じない。よって、そのままの状態で樹脂硬化物の分子鎖の隙間に取り込まれているか、銀粉の表面に吸着していると思われる。
Hereinafter, the present invention will be described in detail using examples.
In the examples, “isocyanate” is an IPDI block type isocyanate, “polyol” is a polyether polyol, “silver powder” is flaky silver powder with D 50 = 4 μm, and “organic solvent” is alcohol. It is a system solvent. Further, the following resinates were used as “metal resinates”.
Resin A: Silver-based resinate Resinate B: Copper-based resinate Resinate C: Nickel-based resinate Also, it was confirmed by DSC measurement that these metal resinates do not decompose at the curing temperature of this example. It was regarded as a resin component.
In addition, the metal resinate basically has no functional group that reacts with the resin component, and as described above, no decomposition reaction occurs at the curing temperature. Therefore, it seems that it is taken into the gap between the molecular chains of the cured resin as it is or adsorbed on the surface of the silver powder.

[導電性ペーストの作製]
表1〜表3の組成で素材をプラネタリーミキサーに調合し、60分間混合した。さらに、3本ロールに1回通して銀粉を均一分散させ、導電性ペーストを作製した。
[Preparation of conductive paste]
The raw materials having the compositions shown in Tables 1 to 3 were prepared in a planetary mixer and mixed for 60 minutes. Furthermore, the silver powder was uniformly dispersed by passing once through three rolls to prepare a conductive paste.

[抵抗率測定用テストピース作製]
作製した導電性ペーストを200メッシュのステンレス製印刷パターンを用いて、くし型電極パターンをスライドガラス上に印刷した。次に、印刷した導電性ペーストをオーブンに投入し、200℃で1時間加熱し、硬化させて、硬化物を得た。
[Preparation of test piece for resistivity measurement]
The produced conductive paste was printed on a slide glass using a 200-mesh stainless steel printing pattern. Next, the printed conductive paste was put into an oven, heated at 200 ° C. for 1 hour, and cured to obtain a cured product.

[抵抗率測定]
硬化物の抵抗値を抵抗測定器で測定した。次に、硬化物の断面積を膜厚計で測定し、得られたチャートから画像処理装置を用いて断面積を算出した。さらに、硬化物の抵抗値と断面積の値から、(2)式により各導電性ペーストの抵抗率σ(Ω・cm)を算出し、抵抗率をμΩ・cmに換算した。
σ=R×(A/D) ・・・ (2)
ここで、Rは抵抗(Ω)を示し、Aは断面積(cm2 )を示し、Dは電極間距離(cm)を示す。
[Resistivity measurement]
The resistance value of the cured product was measured with a resistance measuring instrument. Next, the cross-sectional area of the cured product was measured with a film thickness meter, and the cross-sectional area was calculated from the obtained chart using an image processing apparatus. Furthermore, from the resistance value and the cross-sectional area value of the cured product, the resistivity σ (Ω · cm) of each conductive paste was calculated by the equation (2), and the resistivity was converted to μΩ · cm.
σ = R × (A / D) (2)
Here, R represents resistance (Ω), A represents cross-sectional area (cm 2 ), and D represents distance between electrodes (cm).

[碁盤目テープ試験用テストピースの作製]
鋼板上に導電性ペーストを約50μmの厚さで20mm×20mmの範囲に均一に塗布した。次に、塗布した導電性ペーストをオーブンに投入し、200℃で1時間加熱して硬化させて、硬化物を得た。
[Production of test piece for cross-cut tape test]
The conductive paste was uniformly applied in a range of 20 mm × 20 mm with a thickness of about 50 μm on the steel plate. Next, the applied conductive paste was put into an oven and cured by heating at 200 ° C. for 1 hour to obtain a cured product.

[碁盤目テープ試験]
硬化物上にカッターガイド(すきま間隔2mm、ます目25)を置き、カッターナイフを用いて碁盤目状の切り傷を付けた。次に、切り傷の上にセロハン粘着テープを貼り付け、消しゴムでこすって密着させた後、瞬間的にテープを引き剥がした。試験結果は目視観察で行い、硬化物の表面のはがれ面積が0〜10%を「○」、10〜30%を「△」とし、はがれ面積が30%より大きくなると実用的に使用が困難と考えられることから「×」とした。
[Crosscut tape test]
A cutter guide (gap spacing 2 mm, square 25) was placed on the cured product, and a grid-like cut was made using a cutter knife. Next, a cellophane adhesive tape was affixed on the cut and rubbed with an eraser to make it adhere, and then the tape was peeled off instantaneously. The test results are visually observed. The peeled surface area of the cured product is 0 to 10% as “◯”, 10 to 30% as “△”, and when the peeled area is larger than 30%, it is practically difficult to use. Since it was considered, it was set as “x”.

[評価結果]

Figure 0004595325
Figure 0004595325
Figure 0004595325
[Evaluation results]
Figure 0004595325
Figure 0004595325
Figure 0004595325

表1から明らかなように、銀の含有量が90wt%であり、樹脂成分であるイソシアネートおよびポリオールの配合量が同じで、金属レジネートが添加されている試料1〜4は、金属レジネートを添加していない試料5と比較して、抵抗率が低下していることがわかる。すなわち、樹脂硬化型導電性ペースト中に高い金属粉末の配合量を有していても、金属レジネートを添加することによって抵抗率を低くすることができる。   As is apparent from Table 1, Samples 1 to 4 in which the silver content is 90 wt%, the compounding amounts of isocyanate and polyol as the resin components are the same, and the metal resinate is added, the metal resinate is added. It can be seen that the resistivity is lower than that of the sample 5 that is not. That is, even if the resin-cured conductive paste has a high metal powder content, the resistivity can be lowered by adding a metal resinate.

同様に、表2から明らかなように、試料7と試料8とを、試料9と試料10とを、試料11と試料12とを、試料13と試料14とを、試料15と試料16とをそれぞれ比較してみても、金属レジネートを添加している実施例は金属レジネートを添加していない比較例に対して抵抗率を低くすることができることがわかった。
ただし、実用的な抵抗率は5桁未満であり、試料6は抵抗率が高く、実際に樹脂硬化型導電性ペーストとして用いたら十分な導電性が得られないことが分かった。
また、試料17については、熱硬化性樹脂含有量の低下とともに樹脂の密着力が低下し、所望の密着強度を得ることができなかった。
Similarly, as is clear from Table 2, sample 7 and sample 8, sample 9 and sample 10, sample 11 and sample 12, sample 13 and sample 14, sample 15 and sample 16 are combined. Even if it compares each, it turned out that the Example which added the metal resinate can make a resistivity low compared with the comparative example which does not add a metal resinate.
However, the practical resistivity is less than 5 digits, and the resistivity of Sample 6 is high, and it was found that sufficient conductivity could not be obtained when actually used as a resin-cured conductive paste.
Moreover, about the sample 17, the adhesive force of resin fell with the fall of thermosetting resin content, and desired adhesive strength was not able to be obtained.

また、表3から明らかなように、特に金属粉末の配合量が55wt%〜95wt%であり、金属レジネートの添加量が0.3wt%〜10wt%である試料19〜24、26、27については、碁盤目テープ試験における密着性も十分に得られており、電子部品の電極として適当である3000(μm・cm)以下の抵抗率が十分に得られていることが分かった。
一方、金属レジネートの添加量が15wt%である試料25は、抵抗率は金属レジネートを添加しない場合に比べて低くすることができるが、密着性が得られないことが分かった。
また、金属粉末が95wt%よりも多い試料28は、まだ低い抵抗率が得られる範囲であるが、樹脂含有量が少なすぎて密着性が十分に得られないことが分かった。
さらに、金属粉末が55wt%よりも少ない試料18は、金属粉末の含有量が少なすぎて十分に小さい抵抗率が得られないことが分かった。
Further, as apparent from Table 3, the samples 19 to 24, 26 and 27 in which the blending amount of the metal powder is 55 wt% to 95 wt% and the addition amount of the metal resinate is 0.3 wt% to 10 wt% are shown. Also, it was found that adhesion in a cross cut tape test was sufficiently obtained, and a resistivity of 3000 (μm · cm) or less, which is suitable as an electrode of an electronic component, was sufficiently obtained.
On the other hand, it was found that the sample 25 in which the addition amount of the metal resinate is 15 wt% can have a lower resistivity than the case where the metal resinate is not added, but the adhesion cannot be obtained.
Further, it was found that the sample 28 containing more than 95 wt% of metal powder is still in a range where a low resistivity can be obtained, but the resin content is too small and sufficient adhesion cannot be obtained.
Furthermore, it was found that Sample 18 having less than 55 wt% metal powder has a metal powder content that is too small to obtain a sufficiently low resistivity.

本願発明にかかるセラミック電子部品の外部電極に用いられる樹脂硬化型導電性ペーストは、たとえば積層コンデンサ等のセラミック電子部品の外部電極という用途に適用できる。 The resin curable conductive paste used for the external electrode of the ceramic electronic component according to the present invention can be applied to an application of the external electrode of the ceramic electronic component such as a multilayer capacitor.

Claims (2)

セラミック素体と外部電極とを有するセラミック電子部品であって、
前記外部電極は樹脂硬化型導電性ペーストを用いて形成され、
前記樹脂硬化型導電性ペーストとして、
熱硬化性樹脂と、金属粉末と、金属レジネートとを含有し、
前記金属レジネートは、前記金属粉末に対し0.3wt%以上10wt以下の範囲で添加され、
前記金属粉末は、樹脂硬化型導電性ペースト硬化物中に55wt%以上95wt%以下含有されることを特徴とする、セラミック電子部品。
A ceramic electronic component having a ceramic body and external electrodes,
The external electrode is formed using a resin curable conductive paste,
As the resin curable conductive paste,
Containing a thermosetting resin, a metal powder, and a metal resinate;
The metal resinate is added in a range of 0.3 wt% to 10 wt % with respect to the metal powder,
The metal powder is contained in a cured resin curable conductive paste in an amount of 55 wt% to 95 wt%.
前記金属レジネートは、銀、銅およびニッケルの少なくともいずれかを含む化合物であることを特徴とする、請求項1に記載のセラミック電子部品The ceramic electronic component according to claim 1, wherein the metal resinate is a compound including at least one of silver, copper, and nickel.
JP2004000157A 2004-01-05 2004-01-05 Ceramic electronic components Expired - Fee Related JP4595325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004000157A JP4595325B2 (en) 2004-01-05 2004-01-05 Ceramic electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004000157A JP4595325B2 (en) 2004-01-05 2004-01-05 Ceramic electronic components

Publications (2)

Publication Number Publication Date
JP2005197021A JP2005197021A (en) 2005-07-21
JP4595325B2 true JP4595325B2 (en) 2010-12-08

Family

ID=34816084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004000157A Expired - Fee Related JP4595325B2 (en) 2004-01-05 2004-01-05 Ceramic electronic components

Country Status (1)

Country Link
JP (1) JP4595325B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5693253B2 (en) * 2011-01-17 2015-04-01 ナミックス株式会社 Conductive composition and conductive film
WO2012133767A1 (en) * 2011-03-31 2012-10-04 ナミックス株式会社 Thermally conductive composition and thermal conductor
CN103165217B (en) * 2011-12-14 2016-04-06 上海宝银电子材料有限公司 A kind of electric conduction silver paste for mica plate capacitor and preparation method thereof
WO2018016480A1 (en) * 2016-07-21 2018-01-25 株式会社村田製作所 Photosensitive conductive paste, method for producing multilayer electronic component, and multilayer electronic component
JP2020198300A (en) * 2019-05-29 2020-12-10 三ツ星ベルト株式会社 Conductive composition and metallized substrate and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316166A (en) * 1996-05-31 1997-12-09 Sumitomo Bakelite Co Ltd Resin paste for bonding semiconductor element, and semiconductor device
JPH10312712A (en) * 1997-05-14 1998-11-24 Asahi Chem Ind Co Ltd Solderable conductive paste
JP2002246258A (en) * 2001-02-20 2002-08-30 Daiken Kagaku Kogyo Kk Ceramic electronic component and its manufacturing method
JP2004039379A (en) * 2002-07-02 2004-02-05 Sumitomo Electric Ind Ltd Conductive paste, conductive membrane, and manufacturing method of conductive membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316166A (en) * 1996-05-31 1997-12-09 Sumitomo Bakelite Co Ltd Resin paste for bonding semiconductor element, and semiconductor device
JPH10312712A (en) * 1997-05-14 1998-11-24 Asahi Chem Ind Co Ltd Solderable conductive paste
JP2002246258A (en) * 2001-02-20 2002-08-30 Daiken Kagaku Kogyo Kk Ceramic electronic component and its manufacturing method
JP2004039379A (en) * 2002-07-02 2004-02-05 Sumitomo Electric Ind Ltd Conductive paste, conductive membrane, and manufacturing method of conductive membrane

Also Published As

Publication number Publication date
JP2005197021A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
KR100681113B1 (en) Conductive paste
JP4482930B2 (en) Conductive paste
CA1043465A (en) Air firable base metal conductors
JP2013251256A (en) Low silver content paste composition, and method of making conductive film from said low silver content paste composition
KR101747621B1 (en) Thick film resistor and production method for same
EP1770721A2 (en) Resistor composition and thick film resistor
EP2315215A1 (en) Conductive adhesive and led substrate using the same
CN101268524A (en) Chip-shaped electronic component
JP4507750B2 (en) Conductive paste
KR101738326B1 (en) Resistive composition
KR20110121572A (en) Conductive paste for external electrode, and laminated ceramic electronic component having the external electrode formed using the same
JP4595325B2 (en) Ceramic electronic components
JP2010083952A (en) Conductive ink composition and solar cell module formed using the same
CN110199362B (en) Chip-shaped electronic component
JP2007277384A (en) Electroconductive adhesive
JP2010090264A (en) Functional electroconductive coating and method for production of printed circuit board using the same
KR20180008390A (en) Cu paste composition for thick film conductor formation and thick film conductor
JPH0931402A (en) Production of carbon-based conductive paste
JP2009070650A (en) Functional conductive coating, its manufacturing method, and printed wiring board
KR100750331B1 (en) Thermosetting carbon resistance paste composition
KR20180031531A (en) Paste composition and its manufacturing method with a conductive , thermally conductive , corrosion-resistant properties
CN103722864B (en) Polymer thick film conductor compositions used in electronic device
JP6048166B2 (en) Conductive adhesive composition and electronic device using the same
JP2020194786A (en) Jointing conductor paste
JP3318299B2 (en) Pb-free low-temperature firing type conductive paint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Ref document number: 4595325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees