JP4595282B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4595282B2
JP4595282B2 JP2003007884A JP2003007884A JP4595282B2 JP 4595282 B2 JP4595282 B2 JP 4595282B2 JP 2003007884 A JP2003007884 A JP 2003007884A JP 2003007884 A JP2003007884 A JP 2003007884A JP 4595282 B2 JP4595282 B2 JP 4595282B2
Authority
JP
Japan
Prior art keywords
flow path
channel
flow
main
meandering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003007884A
Other languages
Japanese (ja)
Other versions
JP2004220950A (en
Inventor
義晶 榎並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003007884A priority Critical patent/JP4595282B2/en
Publication of JP2004220950A publication Critical patent/JP2004220950A/en
Application granted granted Critical
Publication of JP4595282B2 publication Critical patent/JP4595282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子形燃料電池、特にその単電池を挟持するセパレータに備えられる反応物質の流路の構成に関する。
【0002】
【従来の技術】
固体高分子形燃料電池では、電解質の両面に触媒層を接合して形成した単電池を両面から挟むようにガス不透過性材料からなるセパレータが配置され、このセパレータの単電池に対向する表面には、単電池に供給する反応物質の流路の役割をはたす溝が形成されている。反応物質には、燃料ガスとして水素を主成分とする気体、酸化剤ガスとして空気が用いられる。
各種の燃料電池の中でも比較的低温で運転される固体高分子形燃料電池では、発電反応に伴って生じる生成水が液体の状態で流路に滞留し、反応物質の流れを阻害する恐れがあるため、生じた生成水が反応物質の流れによって排出されるように、入口から出口まで流路断面がほぼ一定の流路をセパレータ上に蛇行させて配置し、反応物質の流れに滞留部分が生じない流路としている。また、電極面積が小さい固体高分子形燃料電池の場合には、上記の蛇行形状の流路を1本配置するだけで電極全体を覆うことが可能であるが、電極面積が大きくなると1本の流路のみでは圧力損失が大きくなり、反応物質の供給圧力が高くなりすぎるので、複数の流路を並列に組み合わせて反応物質の流路を形成し、圧力損失を適正な範囲に抑えている。
【0003】
図4は、固体高分子形燃料電池の反応物質の流路の従来例を示すセパレータの正面図で、燃料極に対向して配されるセパレータの正面図である。図において、3〜8で表示されている部分は、いずれもセパレータを貫通する孔であり、積層して構成される固体高分子形燃料電池において、3は燃料ガス供給マニホールド、4は燃料ガス排出マニホールド、5は酸化剤ガス供給マニホールド、6は酸化剤ガス排出マニホールドである。また、7,8は、冷媒供給用マニホールドおよび冷媒排出用マニホールドである。また、図に符号1で表示された溝は反応物質である燃料ガスを通流させる主流路であり、3本のほぼ一定の流路断面を有する蛇行形状の流路が燃料ガス供給マニホールド3と燃料ガス排出マニホールド4との間に形成されている。燃料ガス供給マニホールド3より供給された燃料ガスは、3本の主流路1に分流され、図中の横方向に伸びる直線状流路と縦方向に伸びる折り返し流路とを順次蛇行して流れ、燃料ガス排出マニホールド4より外部に排出される。
【0004】
【発明が解決しようとする課題】
上記のごとく、従来の固体高分子形燃料電池では、セパレータに図4に示したごとき並列に配された複数の主流路からなる反応物質の流路を備え、反応物質を通流して単電池に供給しているが、本構成においても、なお、以下のごとき問題点がある。
すなわち、図4に示した流路構成においては、複数の主流路1が並列に配置されており、かつ、それぞれの主流路1が横方向に伸びる直線状流路と縦方向に伸びる折り返し流路とを順次蛇行して流れているため、例えば図中に符号10で示した部位のごとく、反応物質が互いに逆方向に流れる流路が近接する部位においては、近接する流路の間に大きな圧力差が存在することとなる。一方、反応物質の流路と単電池の触媒層との間には、反応物質を透過させるための拡散層と呼ばれる多孔質体が配されているため、近接する流路間の圧力差が大きくなると、この多孔質体を介して近接する流路間に反応物質の透過が生じる。したがって、近接する流路を持つ主流路と近接する流路を持たない主流路の間では流量に差を生じることとなる。また、電極面内で発電電流密度にばらつきがあれば各流路の反応物質の流量が不均一になる可能性があり、流路の製作精度が悪い場合にも流路ごとの反応物質の流量が不均一になる可能性がある。
【0005】
特に、図4に示したごとき蛇行形状の流路では流路の独立性が高いので、上流でばらつきを生じると下流までその影響が残るので、このように反応物質の流量が各流路で不均一になると、下流部分に反応物質の供給量が不足する部分が生じて電池特性が劣化することとなる。
本発明は、上記のごとき従来技術の問題点を考慮してなされたもので、本発明の目的は、単電池を挟持する方形のセパレータを、生成水の滞留がなく、かつ、供給圧力が適正範囲に抑えられ、かつ、反応物質がほぼ均一に通流する流路を備えるものとして、優れた電池特性で運転できる固体高分子形燃料電池を提供することにある。
【0006】
上記の目的を達成するために、本願発明においては、
電解質膜の両面に触媒層を接合して形成された平板状の単電池と、該単電池を挟持する方形のセパレータとを備え、かつ、前記のセパレータが単電池に対向する面に外部より供給される反応物質を通流させる流路を有する固体高分子形燃料電池において、
(1)前記流路が、複数の流路断面が一定の蛇行形状の主流路を並列に接続した並列流路と、並列流路の各主流路の間を規定流量通流時に同一圧力となる位置において連通した少なくとも一つ以上の連通流路とにより構成され、
(2)前記並列流路を構成する複数の蛇行形状の主流路が、同一の流路長を有し、かつ、対向する単電池の電極面に対応して一端から他端へと直線状に伸びる直線状流路と、端部に配された前記の直線状流路と直交する方向に伸びる折り返し流路とを交互に配して連結した蛇行流路よりなり、
(3)前記連通流路が、主流路の始端からの距離が同一の地点において各主流路の間を連通し、かつ、蛇行流路の両端の直線流路および前記両端の直線流路の間に位置する複数の直線流路のうち、少なくとも一つ置きに配されているものとする。
【0007】
または、上記構成の前記(3)に代えて、
(3’)連通流路が、主流路の始端からの距離が同一の地点において各主流路の間を連通し、かつ、蛇行流路の少なくとも一つ置きの折り返し流路に配されているものとする。
【0008】
固体高分子形燃料電池において、セパレータに備える反応物質の流路を、上記(1)および(2)のごとく構成すれば、流路内に滞留部分が存在しないので、仮に生成水の水滴が生じても反応物質の流れによって押し流されることとなり、水滴の滞留に起因する特性低下は回避される。また、主流路を複数並列に配して構成されているので、流路の圧力損失を適正範囲に抑えて設定することが可能となり、反応物質の供給圧力を低く抑えることができる。
また、並列流路の各主流路の間には規定流量通流時に同一圧力となる位置、すなわち、同一の流路長を有する各主流路の始端からの距離が同一となる地点に少なくとも一つ以上の連通流路が配されているので、運転時に発電電流密度のばらつき等、何らかの要因によって各主流路の反応物質の流量にばらつきが生じることがあっても、この連通流路によって各主流路間の圧力差が解消され、流量のばらつきが緩和されて所定の電池特性が得られることとなる。
【0009】
さらに、上記の(3)または(3’)のごとく、直線状流路と折り返し流路とを交互に配して連結した蛇行流路よりなる各主流路を並列に配して反応物質の流路を形成し、少なくとも一つ置きの直線状流路、あるいは、少なくとも一つ置きの折り返し流路に連通流路を配することとすれば、各連通流路で各主流路を流れる反応物質の圧力が同一圧力に調整されるので、各主流路の反応物質の流量にばらつきが生じても早期に解消され、流量調整が効果的に行われることとなる。
【0010】
【発明の実施の形態】
以下、本発明の固体高分子形燃料電池の実施の形態を図面を用いて説明する。
<実施例1>
図1は、本発明の固体高分子形燃料電池の第1の実施例の反応物質の流路を示すセパレータの正面図で、図4と同様に、燃料極側に対向して配されるセパレータの正面図である。なお、図4の構成要素と同一機能を有する構成要素には図4に用いた符号と同一の符号を付して重複する説明は省略する。
本実施例のセパレータは、厚さ1.5 mmのガス不透過性の樹脂含浸カーボンに、各種のマニホールド3〜8となる貫通孔を設け、深さ0.75 mmの溝を加工して燃料ガスを通流する流路を形成したものである。形成された燃料ガスの流路は、図中で水平方向に流れる直線状流路と端部で垂直方向に流れる折り返し流路とを交互に連結した蛇行流路よりなる3本の主流路1を平行に配列した並列流路と、3本の主流路1を連通する連通流路2とから構成されている。また、この主流路1はそれぞれ一定の流路断面を持つ流路として形成され、3本の主流路1の燃料ガス供給マニホールド3から燃料ガス排出マニホールド4までの流路長が同一となるよう配列されている。
【0011】
また、連通流路2は、蛇行流路の直線状流路の燃料ガス供給マニホールド3からの距離が同一の地点において、流路に直交して3本の主流路1を連通するよう配置されている。本実施例の蛇行流路では、燃料ガス供給マニホールド3から直ちに直線状流路へと燃料ガスが導かれるように流路が形成されているので、図1に見られるごとく、燃料ガス供給マニホールド3から算定して奇数回目の直線状流路に連通流路2を配置すれば、主流路1に直交させることができる。
なお、本実施例では主流路1の奇数回目の直線状流路の中央部に各1本の連通流路2を配置することとしているが、連通流路2は各直線状流路のいづれの位置に配置してもよく、また同一の直線状流路に2本以上配置することとしてもよい。また、奇数回目の直線状流路のうち、例えば、最下流の直線状流路に配置されている連通流路2は略することとしてもよい。
【0012】
<実施例2>
図2は、本発明の固体高分子形燃料電池の第2の実施例の反応物質の流路を示すセパレータの正面図で、第1の実施例に示した図1と同様に、燃料極側に対向して配されるセパレータの正面図である。本図においても図4、図1に示された構成要素と同一機能を有する構成要素には同一符号が付されている。
本実施例のセパレータに備えられた燃料ガスの流路は、図中で垂直方向に流れる直線状流路と端部で水平方向に流れる折り返し流路とを交互に連結した蛇行流路よりなる3本の主流路1を平行して配列した並列流路と、3本の主流路1を折り返し流路において連通する連通流路2とから構成されている。なお、本実施例においても、主流路1はそれぞれ一定の流路断面を持つ流路として形成され、3本の主流路1の燃料ガス供給マニホールド3から燃料ガス排出マニホールド4までの流路長が同一となるよう配列されている。本実施例の蛇行流路では、燃料ガス供給マニホールド3から供給された燃料ガスは直ちに直角に屈曲して直線状流路へと導かれるように流路が形成されているので、図2に見られるごとく上部および下部の折り返し流路に、流れに直交するよう連通流路2を配置すれば、3本の主流路1は燃料ガス供給マニホールド3からの距離が同一の地点において連通することとなる。このように連通流路2を配置すれば、3本の主流路1を流れる燃料ガスの圧力が適宜均一化され、流量が適正に調整されることとなる。
【0013】
<実施例3>
図3は、本発明の固体高分子形燃料電池の第3の実施例の反応物質の流路を示すセパレータの正面図で、図1、図2と同様に、燃料極側に対向して配されるセパレータの正面図である。
本実施例のセパレータにおいても、図2に示した第2の実施例と同様に、図中で垂直方向に流れる直線状流路と端部で水平方向に流れる折り返し流路とを交互に連結した蛇行流路よりなる3本の主流路1を平行して配列した並列流路を燃料ガスの主たる通流路としている。本実施例の第2の実施例との相違点は、3本の主流路1を連通する連通流路2の設置場所にあり、本実施例ではそれぞれの直線状流路のほぼ中央部に配されている。燃料ガス供給マニホールド3からの距離が同一の地点において3本の主流路1を連通させるために、連通流路2は3本の主流路1に斜行して配されている。
【0014】
なお、上記の実施例1〜3においては、いずれの場合も、燃料極側に対向して配されるセパレータに形成された燃料ガスの流路のみを図示して説明したが、空気極側に対向して配されるセパレータに形成される酸化剤ガスの流路も同様の設計思想に則って形成すれば、連通流路によって各主流路を流れる酸化剤ガスの圧力が同一圧力に調整され、各主流路の酸化剤ガスの流量調整が効果的に行われるので安定した発電運転が可能となる。
【0015】
【発明の効果】
以上述べたように、本発明によれば、電解質膜の両面に触媒層を接合して形成された平板状の単電池と、この単電池を挟持する方形のセパレータとを備え、かつ、上記のセパレータが単電池に対向する面に外部より供給される反応物質を通流させる流路を有する固体高分子形燃料電池において、上記の流路を、請求項1あるいは請求項2のごとく構成することとしたので、反応物質の流路への生成水の滞留がなく、低圧力で反応物質を供給でき、かつ流路間の圧力調整が効果的に行われて反応物質をほぼ均一に通流させる流路を備えることとなったので、優れた電池特性での運転が可能な固体高分子形燃料電池が得られることとなった。
【図面の簡単な説明】
【図1】本発明の固体高分子形燃料電池の第1の実施例の反応物質の流路を示すセパレータの正面図
【図2】本発明の固体高分子形燃料電池の第2の実施例の反応物質の流路を示すセパレータの正面図
【図3】本発明の固体高分子形燃料電池の第3の実施例の反応物質の流路を示すセパレータの正面図
【図4】固体高分子形燃料電池の反応物質の流路の従来例を示すセパレータの正面図
【符号の説明】
1 主流路
2 連通流路
3 燃料ガス供給マニホールド
4 燃料ガス排出マニホールド
5 酸化剤ガス供給マニホールド
6 酸化剤ガス排出マニホールド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a flow path of a reactant provided in a solid polymer fuel cell, particularly a separator sandwiching the unit cell.
[0002]
[Prior art]
In a polymer electrolyte fuel cell, a separator made of a gas-impermeable material is disposed so that a unit cell formed by joining a catalyst layer on both sides of an electrolyte is sandwiched from both sides, and the separator is opposed to the unit cell. Is formed with a groove that serves as a flow path for the reactant supplied to the unit cell. As the reactant, a gas mainly containing hydrogen as a fuel gas and air as an oxidant gas are used.
In a polymer electrolyte fuel cell that is operated at a relatively low temperature among various types of fuel cells, the generated water that accompanies the power generation reaction may stay in the flow path in a liquid state, possibly hindering the flow of reactants. Therefore, a flow path with a substantially constant flow path cross section from the inlet to the outlet is meandered on the separator so that the generated product water is discharged by the flow of the reactive substance, and a stagnant portion is generated in the flow of the reactive substance. There are no flow paths. Further, in the case of a polymer electrolyte fuel cell having a small electrode area, it is possible to cover the entire electrode by arranging only one meandering flow path as described above. Since the pressure loss is increased only by the flow path and the supply pressure of the reactant is too high, the flow path of the reactant is formed by combining a plurality of flow paths in parallel, and the pressure loss is suppressed to an appropriate range.
[0003]
FIG. 4 is a front view of a separator showing a conventional example of a reactant flow path of a polymer electrolyte fuel cell, and is a front view of a separator disposed to face a fuel electrode. In the figure, the portions indicated by 3 to 8 are all holes that penetrate the separator. In the polymer electrolyte fuel cell constituted by stacking, 3 is a fuel gas supply manifold, 4 is a fuel gas discharge Manifold 5 is an oxidizing gas supply manifold, and 6 is an oxidizing gas discharge manifold. Reference numerals 7 and 8 denote a refrigerant supply manifold and a refrigerant discharge manifold. Further, a groove denoted by reference numeral 1 in the figure is a main flow path through which fuel gas as a reactant flows, and three meandering flow paths having a substantially constant flow path cross section are connected to the fuel gas supply manifold 3. It is formed between the fuel gas discharge manifold 4. The fuel gas supplied from the fuel gas supply manifold 3 is divided into three main flow paths 1 and flows in a meandering manner in a linear flow path extending in the horizontal direction and a folded flow path extending in the vertical direction in the figure. It is discharged from the fuel gas discharge manifold 4 to the outside.
[0004]
[Problems to be solved by the invention]
As described above, in the conventional polymer electrolyte fuel cell, the separator is provided with a reactant flow path composed of a plurality of main flow paths arranged in parallel as shown in FIG. Although it is supplied, this configuration still has the following problems.
That is, in the flow channel configuration shown in FIG. 4, a plurality of main flow channels 1 are arranged in parallel, and each main flow channel 1 is a straight flow channel extending in the horizontal direction and a folded flow channel extending in the vertical direction. In a region where the flow paths in which the reactants flow in opposite directions are close to each other, such as a portion indicated by reference numeral 10 in the figure, a large pressure is applied between the adjacent flow paths. There will be a difference. On the other hand, since a porous body called a diffusion layer for allowing the reactant to permeate is disposed between the reactant flow path and the catalyst layer of the unit cell, the pressure difference between adjacent flow paths is large. Then, permeation of the reactant occurs between the adjacent flow channels through the porous body. Accordingly, there is a difference in flow rate between the main channel having the adjacent channel and the main channel not having the adjacent channel. In addition, if the generated current density varies within the electrode surface, the flow rate of the reactants in each channel may be non-uniform, and even if the flow channel manufacturing accuracy is poor, the reactant flow rate per channel May become non-uniform.
[0005]
In particular, the meandering flow path as shown in FIG. 4 has high independence of the flow path. Therefore, if variations occur upstream, the influence remains downstream, and thus the flow rate of the reactants is not improved in each flow path. If it becomes uniform, a portion where the supply amount of the reactant is insufficient is generated in the downstream portion, and the battery characteristics are deteriorated.
The present invention has been made in consideration of the problems of the prior art as described above, and an object of the present invention is to provide a rectangular separator that sandwiches the unit cell without any retention of generated water and an appropriate supply pressure. An object of the present invention is to provide a polymer electrolyte fuel cell that can be operated with excellent cell characteristics as a flow path that is limited to a range and that allows reactants to flow substantially uniformly.
[0006]
In order to achieve the above object, in the present invention,
A flat unit cell formed by joining a catalyst layer on both surfaces of an electrolyte membrane, and a rectangular separator sandwiching the unit cell, and the separator is supplied from the outside to the surface facing the unit cell In a polymer electrolyte fuel cell having a flow path for allowing a reactant to flow,
(1) The flow path has the same pressure when a prescribed flow rate is passed between a parallel flow path in which a plurality of meandering main flow paths having a constant flow path cross section are connected in parallel and the main flow paths of the parallel flow paths. It is composed of at least one communication channel that communicates at a position,
(2) The plurality of meandering main flow paths constituting the parallel flow paths have the same flow path length and are linear from one end to the other end corresponding to the electrode surfaces of the opposing unit cells. It consists of meandering channels in which the linear channels extending and the folded channels extending in the direction perpendicular to the linear channels arranged at the ends are alternately connected,
(3) The communication channel communicates between the main channels at the same distance from the starting end of the main channel, and between the linear channels at both ends of the meandering channel and the linear channels at both ends. It is assumed that at least every other one of the plurality of straight flow paths positioned at the position is arranged.
[0007]
Alternatively, in place of the above configuration (3),
(3 ′) The communication flow path communicates between the main flow paths at the same distance from the start end of the main flow path, and is arranged in at least every other folded flow path of the meandering flow path And
[0008]
In the polymer electrolyte fuel cell, if the flow path of the reactant provided in the separator is configured as described in (1) and (2) above, there is no staying portion in the flow path, so that water droplets of product water are generated. However, it will be swept away by the flow of reactants, avoiding the degradation of characteristics due to the retention of water droplets. In addition, since the plurality of main flow paths are arranged in parallel, the pressure loss of the flow paths can be set within an appropriate range, and the supply pressure of the reactant can be kept low.
In addition, at least one position between the main flow paths of the parallel flow paths is at a position where the same pressure is reached when the specified flow rate flows, that is, at a point where the distance from the start end of each main flow path having the same flow path length is the same. Since the above communication flow paths are arranged, even if there is a variation in the flow rate of the reactant in each main flow path due to some factors such as variations in generated current density during operation, each main flow path is caused by this communication flow path. The pressure difference between the two is eliminated, the variation in flow rate is relaxed, and predetermined battery characteristics are obtained.
[0009]
Further, as described in the above (3) or (3 ′), each main flow path composed of meandering flow paths in which straight flow paths and turn-back flow paths are alternately arranged and connected is arranged in parallel to allow the flow of the reactant. If a communication channel is arranged in at least every other linear channel, or at least every other folded channel, the reactants flowing through the main channels in each communication channel are formed. Since the pressure is adjusted to the same pressure, even if there is a variation in the flow rate of the reactant in each main flow path, it is eliminated at an early stage, and the flow rate is adjusted effectively.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the polymer electrolyte fuel cell of the present invention will be described with reference to the drawings.
<Example 1>
FIG. 1 is a front view of a separator showing a flow path of a reactant in a first embodiment of a polymer electrolyte fuel cell according to the present invention. Like FIG. 4, a separator disposed facing a fuel electrode side. FIG. Components having the same functions as those in FIG. 4 are denoted by the same reference numerals as those used in FIG.
In the separator of this example, 1.5 mm thick gas-impermeable resin-impregnated carbon is provided with through holes to form various manifolds 3 to 8, and a groove having a depth of 0.75 mm is processed to allow fuel gas to flow. The flow path to be formed is formed. The formed fuel gas flow path is composed of three main flow paths 1 each consisting of a meandering flow path in which a straight flow path flowing in the horizontal direction and a folded flow path flowing in the vertical direction at the end portion are alternately connected in the drawing. A parallel flow path arranged in parallel and a communication flow path 2 communicating the three main flow paths 1 are configured. The main flow paths 1 are each formed as a flow path having a constant flow cross section, and are arranged so that the flow lengths from the fuel gas supply manifold 3 to the fuel gas discharge manifold 4 of the three main flow paths 1 are the same. Has been.
[0011]
The communication flow path 2 is arranged so as to communicate the three main flow paths 1 at right angles to the flow paths at the same distance from the fuel gas supply manifold 3 of the linear flow path of the meandering flow path. Yes. In the meandering flow path of the present embodiment, the flow path is formed so that the fuel gas is immediately guided from the fuel gas supply manifold 3 to the linear flow path. Therefore, as shown in FIG. If the communication flow path 2 is arranged in the odd-numbered linear flow paths calculated from the above, it can be orthogonal to the main flow path 1.
In the present embodiment, one communication channel 2 is arranged at the center of the odd-numbered linear channel of the main channel 1, but the communication channel 2 is any of the linear channels. It may be arranged at a position, or two or more may be arranged in the same linear flow path. In addition, among the odd-numbered linear channels, for example, the communication channel 2 arranged in the most downstream linear channel may be omitted.
[0012]
<Example 2>
FIG. 2 is a front view of the separator showing the flow path of the reactant in the second embodiment of the polymer electrolyte fuel cell of the present invention. Like FIG. 1 shown in the first embodiment, FIG. It is a front view of the separator arrange | positioned facing. Also in this figure, components having the same functions as those shown in FIGS. 4 and 1 are denoted by the same reference numerals.
The fuel gas flow path provided in the separator of the present embodiment is composed of a meandering flow path in which a straight flow path that flows in the vertical direction and a folded flow path that flows in the horizontal direction at the ends are alternately connected in the figure. The main flow path 1 includes a parallel flow path in which the main flow paths 1 are arranged in parallel, and a communication flow path 2 that connects the three main flow paths 1 in the folded flow path. Also in this embodiment, the main flow path 1 is formed as a flow path having a constant flow path cross section, and the flow length from the fuel gas supply manifold 3 to the fuel gas discharge manifold 4 of the three main flow paths 1 is the same. They are arranged to be identical. In the meandering flow path of this embodiment, the flow path is formed so that the fuel gas supplied from the fuel gas supply manifold 3 is bent at right angles and led to the straight flow path. If the communicating flow path 2 is arranged in the upper and lower folded flow paths so as to be orthogonal to the flow as much as possible, the three main flow paths 1 communicate with each other at the same distance from the fuel gas supply manifold 3. . If the communication flow path 2 is arranged in this way, the pressure of the fuel gas flowing through the three main flow paths 1 is made uniform as appropriate, and the flow rate is adjusted appropriately.
[0013]
<Example 3>
FIG. 3 is a front view of the separator showing the flow path of the reactant in the third embodiment of the polymer electrolyte fuel cell of the present invention, and is arranged facing the fuel electrode side as in FIGS. It is a front view of a separator.
Also in the separator of this example, like the second example shown in FIG. 2, the linear flow channel flowing in the vertical direction and the folded flow channel flowing in the horizontal direction at the end portion are alternately connected in the drawing. A parallel flow path in which three main flow paths 1 composed of meandering flow paths are arranged in parallel is used as a main flow path for fuel gas. The difference of this embodiment from the second embodiment is the installation location of the communication flow path 2 that connects the three main flow paths 1, and in this embodiment, it is arranged at substantially the center of each linear flow path. Has been. In order to connect the three main flow paths 1 at the same distance from the fuel gas supply manifold 3, the communication flow path 2 is arranged obliquely to the three main flow paths 1.
[0014]
In each of the first to third embodiments described above, only the fuel gas flow path formed in the separator disposed opposite to the fuel electrode side is illustrated and described. If the flow path of the oxidant gas formed in the separator disposed opposite is also formed in accordance with the same design concept, the pressure of the oxidant gas flowing through each main flow path is adjusted to the same pressure by the communication flow path, Since the flow rate of the oxidant gas in each main channel is effectively adjusted, stable power generation operation is possible.
[0015]
【The invention's effect】
As described above, according to the present invention, a flat unit cell formed by joining a catalyst layer on both surfaces of an electrolyte membrane, and a rectangular separator that sandwiches the unit cell, and the above-mentioned In the polymer electrolyte fuel cell having a flow path for allowing a separator to flow a reactant supplied from the outside to a surface facing the unit cell, the flow path is configured as in claim 1 or claim 2. Therefore, there is no stagnation of product water in the flow path of the reactants, the reactants can be supplied at a low pressure, and the pressure between the channels is effectively adjusted to allow the reactants to flow almost uniformly. Since the flow path was provided, a polymer electrolyte fuel cell capable of operating with excellent battery characteristics was obtained.
[Brief description of the drawings]
FIG. 1 is a front view of a separator showing a flow path of a reactant in a first embodiment of a polymer electrolyte fuel cell of the present invention. FIG. 2 is a second embodiment of a polymer electrolyte fuel cell of the present invention. FIG. 3 is a front view of the separator showing the flow path of the reactant in the third embodiment of the polymer electrolyte fuel cell of the present invention. FIG. 4 is a front view of the separator showing the flow path of the reactant. Front view of a separator showing a conventional example of a reactant flow path of a fuel cell [Description of symbols]
DESCRIPTION OF SYMBOLS 1 Main flow path 2 Communication flow path 3 Fuel gas supply manifold 4 Fuel gas discharge manifold 5 Oxidant gas supply manifold 6 Oxidant gas discharge manifold

Claims (2)

電解質膜の両面に触媒層を接合して形成された平板状の単電池と、該単電池を挟持する方形のセパレータとを備え、かつ、前記のセパレータが単電池に対向する面に外部より供給される反応物質を通流させる流路を有する固体高分子形燃料電池において、
前記流路が、複数の流路断面が一定の蛇行形状の主流路を並列に接続した並列流路と、並列流路の各主流路の間を規定流量通流時に同一圧力となる位置において連通した少なくとも一つ以上の連通流路とにより構成され、
前記並列流路を構成する複数の蛇行形状の主流路が、同一の流路長を有し、かつ、対向する単電池の電極面に対応して一端から他端へと直線状に伸びる直線状流路と、端部に配された前記の直線状流路と直交する方向に伸びる折り返し流路とを交互に配して連結した蛇行流路よりなり、
前記連通流路が、主流路の始端からの距離が同一の地点において各主流路の間を連通し、かつ、蛇行流路の両端の直線流路および前記両端の直線流路の間に位置する複数の直線流路のうち、少なくとも一つ置きに配されていることを特徴とする固体高分子形燃料電池。
A flat unit cell formed by joining a catalyst layer on both surfaces of an electrolyte membrane, and a rectangular separator sandwiching the unit cell, and the separator is supplied from the outside to the surface facing the unit cell In the polymer electrolyte fuel cell having a flow path for allowing the reactant to flow,
The flow path is a parallel flow path in which a plurality of channel cross section connects the main channel of a certain serpentine in parallel, at a position where the same pressure between at specified flow rate through flow of the main flow path of the parallel flow paths It is composed of at least one communication channel that communicates,
A plurality of meandering main flow paths constituting the parallel flow paths have the same flow path length and linearly extend from one end to the other corresponding to the electrode surfaces of the opposing unit cells. A meandering channel formed by alternately arranging and connecting a channel and a folded channel extending in a direction perpendicular to the linear channel disposed at the end,
The communication channel communicates between the main channels at the same distance from the starting end of the main channel, and is positioned between the linear channels at both ends of the meandering channel and the linear channels at both ends. A polymer electrolyte fuel cell , wherein at least every other one of a plurality of straight flow paths is arranged.
電解質膜の両面に触媒層を接合して形成された平板状の単電池と、該単電池を挟持する方形のセパレータとを備え、かつ、前記のセパレータが単電池に対向する面に外部より供給される反応物質を通流させる流路を有する固体高分子形燃料電池において、
前記流路が、複数の流路断面が一定の蛇行形状の主流路を並列に接続した並列流路と、並列流路の各主流路の間を規定流量通流時に同一圧力となる位置において連通した少なくとも一つ以上の連通流路とにより構成され、
前記並列流路を構成する複数の蛇行形状の主流路が、同一の流路長を有し、かつ、対向する単電池の電極面に対応して一端から他端へと直線状に伸びる直線状流路と、端部に配された前記の直線状流路と直交する方向に伸びる折り返し流路とを交互に配して連結した蛇行流路よりなり、
前記連通流路が、主流路の始端からの距離が同一の地点において各主流路の間を連通し、かつ、蛇行流路の少なくとも一つ置きの折り返し流路に配されていることを特徴とする固体高分子形燃料電池。
A flat unit cell formed by joining a catalyst layer on both surfaces of an electrolyte membrane, and a rectangular separator sandwiching the unit cell, and the separator is supplied from the outside to the surface facing the unit cell In the polymer electrolyte fuel cell having a flow path for allowing the reactant to flow,
The flow path is a parallel flow path in which a plurality of channel cross section connects the main channel of a certain serpentine in parallel, at a position where the same pressure between at specified flow rate through flow of the main flow path of the parallel flow paths It is composed of at least one communication channel that communicates,
A plurality of meandering main flow paths constituting the parallel flow paths have the same flow path length and linearly extend from one end to the other corresponding to the electrode surfaces of the opposing unit cells. A meandering channel formed by alternately arranging and connecting a channel and a folded channel extending in a direction perpendicular to the linear channel disposed at the end,
The communication channel is characterized in that it communicates between the main channels at the same distance from the starting end of the main channel, and is arranged in at least every other folded channel of the meandering channel. Solid polymer fuel cell.
JP2003007884A 2003-01-16 2003-01-16 Polymer electrolyte fuel cell Expired - Fee Related JP4595282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007884A JP4595282B2 (en) 2003-01-16 2003-01-16 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007884A JP4595282B2 (en) 2003-01-16 2003-01-16 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2004220950A JP2004220950A (en) 2004-08-05
JP4595282B2 true JP4595282B2 (en) 2010-12-08

Family

ID=32897847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007884A Expired - Fee Related JP4595282B2 (en) 2003-01-16 2003-01-16 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4595282B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216418A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Inside current collector used for membrane electrode composite for fuel cell, and membrane electrode composite for fuel cell
JP2007005235A (en) * 2005-06-27 2007-01-11 Honda Motor Co Ltd Fuel cell
WO2007088832A1 (en) * 2006-02-02 2007-08-09 Matsushita Electric Industrial Co., Ltd. Separator plate and fuel cell
JP7480216B2 (en) 2022-03-31 2024-05-09 本田技研工業株式会社 Fuel cell separator and power generation cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021422A (en) * 1998-06-30 2000-01-21 Toshiba Corp Manufacture of separator for fuel cell, and the separator for fuel cell
JP2001052723A (en) * 1999-08-13 2001-02-23 Honda Motor Co Ltd Fuel cell stack
JP2002260688A (en) * 2001-02-28 2002-09-13 Mitsubishi Heavy Ind Ltd Separator of fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021422A (en) * 1998-06-30 2000-01-21 Toshiba Corp Manufacture of separator for fuel cell, and the separator for fuel cell
JP2001052723A (en) * 1999-08-13 2001-02-23 Honda Motor Co Ltd Fuel cell stack
JP2002260688A (en) * 2001-02-28 2002-09-13 Mitsubishi Heavy Ind Ltd Separator of fuel cell

Also Published As

Publication number Publication date
JP2004220950A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US9905880B2 (en) Fuel cell stack
JP4516229B2 (en) Solid polymer cell assembly
JP3495698B2 (en) Flow channels for fuel cells
JP4668211B2 (en) Bipolar plate with cross-connected channels
JP5500254B2 (en) Fuel cell
JP4598287B2 (en) FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK
US9190680B2 (en) Fuel battery
KR100798451B1 (en) Fuel cell separator and fuel cell stack and reactant gas control method thereof
JP4549617B2 (en) Fuel cell
JP2004235063A (en) Fuel cell
TWI474548B (en) Polar plate and polar plate unit using the same
JP2010251329A (en) Fuel cell
KR101420682B1 (en) Bipolar plate and fuel cell stack including the same
JPH08213044A (en) Fuel cell
US20060040143A1 (en) Fuel cell
JP4595282B2 (en) Polymer electrolyte fuel cell
JP5082313B2 (en) Fuel cell separator structure
JPH0950819A (en) Solid polymer electrolyte fuel cell
JP5119620B2 (en) Fuel cell
JP4403706B2 (en) Polymer electrolyte fuel cell
JP4572252B2 (en) Fuel cell stack
JP7192759B2 (en) Fuel cell separator
CN214505549U (en) Single cell for fuel cell and fuel cell
CN113161567B (en) Single cell for fuel cell and fuel cell
US20050014048A1 (en) Flow field pattern for fuel cell stack separator plates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees