JP2004220950A - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2004220950A
JP2004220950A JP2003007884A JP2003007884A JP2004220950A JP 2004220950 A JP2004220950 A JP 2004220950A JP 2003007884 A JP2003007884 A JP 2003007884A JP 2003007884 A JP2003007884 A JP 2003007884A JP 2004220950 A JP2004220950 A JP 2004220950A
Authority
JP
Japan
Prior art keywords
flow path
fuel cell
meandering
polymer electrolyte
electrolyte fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003007884A
Other languages
Japanese (ja)
Other versions
JP4595282B2 (en
Inventor
Yoshiaki Enami
義晶 榎並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003007884A priority Critical patent/JP4595282B2/en
Publication of JP2004220950A publication Critical patent/JP2004220950A/en
Application granted granted Critical
Publication of JP4595282B2 publication Critical patent/JP4595282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a passage in a separator wherein there is no retention of generated water, supply pressure is controlled in a proper range, and a reaction material is almost uniformly distributed. <P>SOLUTION: Three main meandering passages wherein straight passages horizontally flowing and return passages perpendicularly flowing at an end are connected by turns are arranged in parallel. Furthermore, communication passages 2 are arranged in positions from which distances to a fuel gas supply manifold 3 are uniform, and the three main passages are to communicated to equalize the pressure. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子形燃料電池、特にその単電池を挟持するセパレータに備えられる反応物質の流路の構成に関する。
【0002】
【従来の技術】
固体高分子形燃料電池では、電解質の両面に触媒層を接合して形成した単電池を両面から挟むようにガス不透過性材料からなるセパレータが配置され、このセパレータの単電池に対向する表面には、単電池に供給する反応物質の流路の役割をはたす溝が形成されている。反応物質には、燃料ガスとして水素を主成分とする気体、酸化剤ガスとして空気が用いられる。
各種の燃料電池の中でも比較的低温で運転される固体高分子形燃料電池では、発電反応に伴って生じる生成水が液体の状態で流路に滞留し、反応物質の流れを阻害する恐れがあるため、生じた生成水が反応物質の流れによって排出されるように、入口から出口まで流路断面がほぼ一定の流路をセパレータ上に蛇行させて配置し、反応物質の流れに滞留部分が生じない流路としている。また、電極面積が小さい固体高分子形燃料電池の場合には、上記の蛇行形状の流路を1本配置するだけで電極全体を覆うことが可能であるが、電極面積が大きくなると1本の流路のみでは圧力損失が大きくなり、反応物質の供給圧力が高くなりすぎるので、複数の流路を並列に組み合わせて反応物質の流路を形成し、圧力損失を適正な範囲に抑えている。
【0003】
図4は、固体高分子形燃料電池の反応物質の流路の従来例を示すセパレータの正面図で、燃料極に対向して配されるセパレータの正面図である。図において、3〜8で表示されている部分は、いずれもセパレータを貫通する孔であり、積層して構成される固体高分子形燃料電池において、3は燃料ガス供給マニホールド、4は燃料ガス排出マニホールド、5は酸化剤ガス供給マニホールド、6は酸化剤ガス排出マニホールドである。また、7,8は、冷媒供給用マニホールドおよび冷媒排出用マニホールドである。また、図に符号1で表示された溝は反応物質である燃料ガスを通流させる主流路であり、3本のほぼ一定の流路断面を有する蛇行形状の流路が燃料ガス供給マニホールド3と燃料ガス排出マニホールド4との間に形成されている。燃料ガス供給マニホールド3より供給された燃料ガスは、3本の主流路1に分流され、図中の横方向に伸びる直線状流路と縦方向に伸びる折り返し流路とを順次蛇行して流れ、燃料ガス排出マニホールド4より外部に排出される。
【0004】
【発明が解決しようとする課題】
上記のごとく、従来の固体高分子形燃料電池では、セパレータに図4に示したごとき並列に配された複数の主流路からなる反応物質の流路を備え、反応物質を通流して単電池に供給しているが、本構成においても、なお、以下のごとき問題点がある。
すなわち、図4に示した流路構成においては、複数の主流路1が並列に配置されており、かつ、それぞれの主流路1が横方向に伸びる直線状流路と縦方向に伸びる折り返し流路とを順次蛇行して流れているため、例えば図中に符号10で示した部位のごとく、反応物質が互いに逆方向に流れる流路が近接する部位においては、近接する流路の間に大きな圧力差が存在することとなる。一方、反応物質の流路と単電池の触媒層との間には、反応物質を透過させるための拡散層と呼ばれる多孔質体が配されているため、近接する流路間の圧力差が大きくなると、この多孔質体を介して近接する流路間に反応物質の透過が生じる。したがって、近接する流路を持つ主流路と近接する流路を持たない主流路の間では流量に差を生じることとなる。また、電極面内で発電電流密度にばらつきがあれば各流路の反応物質の流量が不均一になる可能性があり、流路の製作精度が悪い場合にも流路ごとの反応物質の流量が不均一になる可能性がある。
【0005】
特に、図4に示したごとき蛇行形状の流路では流路の独立性が高いので、上流でばらつきを生じると下流までその影響が残るので、このように反応物質の流量が各流路で不均一になると、下流部分に反応物質の供給量が不足する部分が生じて電池特性が劣化することとなる。
本発明は、上記のごとき従来技術の問題点を考慮してなされたもので、本発明の目的は、単電池を挟持する方形のセパレータを、生成水の滞留がなく、かつ、供給圧力が適正範囲に抑えられ、かつ、反応物質がほぼ均一に通流する流路を備えるものとして、優れた電池特性で運転できる固体高分子形燃料電池を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明においては、
電解質膜の両面に触媒層を接合して形成された平板状の単電池と、この単電池を挟持する方形のセパレータとを備え、かつ、上記のセパレータが単電池に対向する面に外部より供給される反応物質を通流させる流路を有する固体高分子形燃料電池において、
(1)前記の流路を、流路断面がほぼ一定の蛇行形状の主流路を複数本並列に接続した並列流路と、並列流路の各主流路の間を規定流量通流時に同一圧力となる位置において連通した少なくとも一つ以上の連通流路とにより構成することとする。
【0007】
(2)また上記の(1)において、並列流路を構成する複数の蛇行形状の主流路を同一の流路長を有するものとし、上記の連通流路を、主流路の始端からの距離が同一の地点において各主流路の間を連通するものとする。
(3)また上記の(2)において、並列流路を構成する複数の蛇行形状の主流路を、対向する単電池の電極面に対応して一端から他端へと直線状に伸びる直線状流路と、端部に配された前記の直線状流路と直交する方向に伸びる折り返し流路とを交互に配して連結した蛇行流路よりなるものとし、上記の連通流路を、この蛇行流路の少なくとも一つ置きの直線状流路、あるいは、少なくとも一つ置きの折り返し流路に配することとする。
【0008】
固体高分子形燃料電池において、セパレータに備える反応物質の流路を、上記の(1)のごとく流路断面がほぼ一定の蛇行形状の主流路より構成すれば、流路内に滞留部分が存在しないので、仮に生成水の水滴が生じても反応物質の流れによって押し流されることとなり、水滴の滞留に起因する特性低下は回避される。また、この主流路を複数並列に配して構成されているので、流路の圧力損失を適正範囲に抑えて設定することが可能となり、反応物質の供給圧力を低く抑えることができる。また、並列流路の各主流路の間には規定流量通流時に同一圧力となる位置、例えば、上記の(2)のごとく、各主流路が同一の流路長を有するものにおいては主流路の始端からの距離が同一となる地点に少なくとも一つ以上の連通流路が配されているので、運転時に発電電流密度のばらつき等、何らかの要因によって各主流路の反応物質の流量にばらつきが生じることがあっても、この連通流路によって各主流路間の圧力差が解消され、流量のばらつきが緩和されて所定の電池特性が得られることとなる。
【0009】
特に、上記の(3)のごとく直線状流路と折り返し流路とを交互に配して連結した蛇行流路よりなる各主流路を並列に配して反応物質の流路を形成し、少なくとも一つ置きの直線状流路、あるいは、少なくとも一つ置きの折り返し流路に連通流路を配することとすれば、各連通流路で各主流路を流れる反応物質の圧力が同一圧力に調整されるので、各主流路の反応物質の流量にばらつきが生じても早期に解消され、流量調整が効果的に行われることとなる。
【0010】
【発明の実施の形態】
以下、本発明の固体高分子形燃料電池の実施の形態を図面を用いて説明する。
<実施例1>
図1は、本発明の固体高分子形燃料電池の第1の実施例の反応物質の流路を示すセパレータの正面図で、図4と同様に、燃料極側に対向して配されるセパレータの正面図である。なお、図4の構成要素と同一機能を有する構成要素には図4に用いた符号と同一の符号を付して重複する説明は省略する。
本実施例のセパレータは、厚さ1.5 mmのガス不透過性の樹脂含浸カーボンに、各種のマニホールド3〜8となる貫通孔を設け、深さ0.75 mmの溝を加工して燃料ガスを通流する流路を形成したものである。形成された燃料ガスの流路は、図中で水平方向に流れる直線状流路と端部で垂直方向に流れる折り返し流路とを交互に連結した蛇行流路よりなる3本の主流路1を平行に配列した並列流路と、3本の主流路1を連通する連通流路2とから構成されている。また、この主流路1はそれぞれ一定の流路断面を持つ流路として形成され、3本の主流路1の燃料ガス供給マニホールド3から燃料ガス排出マニホールド4までの流路長が同一となるよう配列されている。
【0011】
また、連通流路2は、蛇行流路の直線状流路の燃料ガス供給マニホールド3からの距離が同一の地点において、流路に直交して3本の主流路1を連通するよう配置されている。本実施例の蛇行流路では、燃料ガス供給マニホールド3から直ちに直線状流路へと燃料ガスが導かれるように流路が形成されているので、図1に見られるごとく、燃料ガス供給マニホールド3から算定して奇数回目の直線状流路に連通流路2を配置すれば、主流路1に直交させることができる。
なお、本実施例では主流路1の奇数回目の直線状流路の中央部に各1本の連通流路2を配置することとしているが、連通流路2は各直線状流路のいづれの位置に配置してもよく、また同一の直線状流路に2本以上配置することとしてもよい。また、奇数回目の直線状流路のうち、例えば、最下流の直線状流路に配置されている連通流路2は略することとしてもよい。
【0012】
<実施例2>
図2は、本発明の固体高分子形燃料電池の第2の実施例の反応物質の流路を示すセパレータの正面図で、第1の実施例に示した図1と同様に、燃料極側に対向して配されるセパレータの正面図である。本図においても図4、図1に示された構成要素と同一機能を有する構成要素には同一符号が付されている。
本実施例のセパレータに備えられた燃料ガスの流路は、図中で垂直方向に流れる直線状流路と端部で水平方向に流れる折り返し流路とを交互に連結した蛇行流路よりなる3本の主流路1を平行して配列した並列流路と、3本の主流路1を折り返し流路において連通する連通流路2とから構成されている。なお、本実施例においても、主流路1はそれぞれ一定の流路断面を持つ流路として形成され、3本の主流路1の燃料ガス供給マニホールド3から燃料ガス排出マニホールド4までの流路長が同一となるよう配列されている。本実施例の蛇行流路では、燃料ガス供給マニホールド3から供給された燃料ガスは直ちに直角に屈曲して直線状流路へと導かれるように流路が形成されているので、図2に見られるごとく上部および下部の折り返し流路に、流れに直交するよう連通流路2を配置すれば、3本の主流路1は燃料ガス供給マニホールド3からの距離が同一の地点において連通することとなる。このように連通流路2を配置すれば、3本の主流路1を流れる燃料ガスの圧力が適宜均一化され、流量が適正に調整されることとなる。
【0013】
<実施例3>
図3は、本発明の固体高分子形燃料電池の第3の実施例の反応物質の流路を示すセパレータの正面図で、図1、図2と同様に、燃料極側に対向して配されるセパレータの正面図である。
本実施例のセパレータにおいても、図2に示した第2の実施例と同様に、図中で垂直方向に流れる直線状流路と端部で水平方向に流れる折り返し流路とを交互に連結した蛇行流路よりなる3本の主流路1を平行して配列した並列流路を燃料ガスの主たる通流路としている。本実施例の第2の実施例との相違点は、3本の主流路1を連通する連通流路2の設置場所にあり、本実施例ではそれぞれの直線状流路のほぼ中央部に配されている。燃料ガス供給マニホールド3からの距離が同一の地点において3本の主流路1を連通させるために、連通流路2は3本の主流路1に斜行して配されている。
【0014】
なお、上記の実施例1〜3においては、いずれの場合も、燃料極側に対向して配されるセパレータに形成された燃料ガスの流路のみを図示して説明したが、空気極側に対向して配されるセパレータに形成される酸化剤ガスの流路も同様の設計思想に則って形成すれば、連通流路によって各主流路を流れる酸化剤ガスの圧力が同一圧力に調整され、各主流路の酸化剤ガスの流量調整が効果的に行われるので安定した発電運転が可能となる。
【0015】
【発明の効果】
以上述べたように、本発明によれば、
電解質膜の両面に触媒層を接合して形成された平板状の単電池と、この単電池を挟持する方形のセパレータとを備え、かつ、上記のセパレータが単電池に対向する面に外部より供給される反応物質を通流させる流路を有する固体高分子形燃料電池において、上記の流路を、請求項1あるいは請求項2に、さらには請求項3あるいは4に記載のごとく構成することとしたので、反応物質の流路への生成水の滞留がなく、低圧力で反応物質を供給でき、かつ流路間の圧力調整が効果的に行われて反応物質をほぼ均一に通流させる流路を備えることとなったので、優れた電池特性での運転が可能な固体高分子形燃料電池が得られることとなった。
【図面の簡単な説明】
【図1】本発明の固体高分子形燃料電池の第1の実施例の反応物質の流路を示すセパレータの正面図
【図2】本発明の固体高分子形燃料電池の第2の実施例の反応物質の流路を示すセパレータの正面図
【図3】本発明の固体高分子形燃料電池の第3の実施例の反応物質の流路を示すセパレータの正面図
【図4】固体高分子形燃料電池の反応物質の流路の従来例を示すセパレータの正面図
【符号の説明】
1 主流路
2 連通流路
3 燃料ガス供給マニホールド
4 燃料ガス排出マニホールド
5 酸化剤ガス供給マニホールド
6 酸化剤ガス排出マニホールド
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell, and more particularly to a configuration of a flow path of a reactant provided in a separator sandwiching the unit cell.
[0002]
[Prior art]
In a polymer electrolyte fuel cell, a separator made of a gas-impermeable material is arranged so as to sandwich a unit cell formed by bonding a catalyst layer to both surfaces of an electrolyte from both surfaces, and the separator is provided on a surface of the separator facing the unit cell. Is formed with a groove serving as a flow path for a reactant supplied to the unit cell. As a reactant, a gas mainly composed of hydrogen is used as a fuel gas, and air is used as an oxidant gas.
Among various types of fuel cells, in a polymer electrolyte fuel cell operated at a relatively low temperature, there is a possibility that generated water generated due to the power generation reaction stays in a liquid state in a flow path and hinders the flow of a reactant. Therefore, a flow path having a substantially constant flow path cross section from the inlet to the outlet is arranged in a meandering manner on the separator so that generated water is discharged by the flow of the reactant, and a stagnant portion is generated in the flow of the reactant. There is no channel. In the case of a polymer electrolyte fuel cell having a small electrode area, it is possible to cover the entire electrode only by arranging one of the above-mentioned meandering flow paths. Since the pressure loss is increased only by the flow path and the supply pressure of the reactant becomes too high, the flow path of the reactant is formed by combining a plurality of flow paths in parallel, and the pressure loss is suppressed to an appropriate range.
[0003]
FIG. 4 is a front view of a separator showing a conventional example of a flow path of a reactant of a polymer electrolyte fuel cell, and is a front view of a separator arranged to face a fuel electrode. In the figure, the portions indicated by 3 to 8 are holes penetrating through the separator, and in the solid polymer electrolyte fuel cell constituted by stacking, 3 is a fuel gas supply manifold, and 4 is a fuel gas discharge manifold. A manifold 5 is an oxidant gas supply manifold, and 6 is an oxidant gas discharge manifold. Reference numerals 7 and 8 denote a refrigerant supply manifold and a refrigerant discharge manifold. Further, a groove indicated by reference numeral 1 in the figure is a main flow path through which a fuel gas as a reactant flows, and three meandering flow paths having a substantially constant flow path cross section correspond to the fuel gas supply manifold 3. It is formed between the fuel gas discharge manifold 4. The fuel gas supplied from the fuel gas supply manifold 3 is divided into the three main flow paths 1 and successively meanders in a linear flow path extending in the horizontal direction and a return flow path extending in the vertical direction in the figure, The fuel gas is discharged from the discharge manifold 4 to the outside.
[0004]
[Problems to be solved by the invention]
As described above, in the conventional polymer electrolyte fuel cell, the separator is provided with a flow path of a reactant composed of a plurality of main flow paths arranged in parallel as shown in FIG. However, this configuration still has the following problems.
That is, in the flow path configuration shown in FIG. 4, a plurality of main flow paths 1 are arranged in parallel, and each main flow path 1 has a straight flow path extending in the horizontal direction and a folded flow path extending in the vertical direction. Are sequentially meandering, for example, at a portion where the flow paths in which the reactants flow in opposite directions are close to each other, such as a portion indicated by reference numeral 10 in the drawing, a large pressure is applied between the adjacent flow paths. There will be a difference. On the other hand, since a porous body called a diffusion layer for allowing the reactant to permeate is disposed between the reactant flow path and the catalyst layer of the unit cell, the pressure difference between adjacent flow paths is large. Then, permeation of the reactant occurs between adjacent flow paths via the porous body. Therefore, there is a difference in flow rate between a main flow path having an adjacent flow path and a main flow path having no adjacent flow path. In addition, if the generated current density varies in the electrode plane, the flow rate of the reactant in each flow path may become uneven, and even when the flow path manufacturing accuracy is poor, the flow rate of the reactant in each flow path may be reduced. May be uneven.
[0005]
In particular, in a meandering flow path as shown in FIG. 4, the flow path is highly independent, and if there is a variation in the upstream, the influence remains down to the downstream. If it is uniform, a portion where the supply amount of the reactant is insufficient occurs in the downstream portion, and the battery characteristics are degraded.
The present invention has been made in consideration of the problems of the prior art as described above, and an object of the present invention is to provide a rectangular separator that sandwiches a unit cell without causing stagnation of generated water and at an appropriate supply pressure. An object of the present invention is to provide a polymer electrolyte fuel cell which can be operated with excellent cell characteristics, having a flow path which is suppressed to a range and through which a reactant flows almost uniformly.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention,
A flat unit cell formed by bonding a catalyst layer to both sides of an electrolyte membrane, and a rectangular separator sandwiching the unit cell, and the separator is supplied from the outside to a surface facing the unit cell. In a polymer electrolyte fuel cell having a flow path through which a reactant is passed,
(1) The same pressure is applied between a parallel flow path in which a plurality of meandering main flow paths having substantially constant cross-sections are connected in parallel and the main flow path of the parallel flow path at a prescribed flow rate. And at least one or more communication flow paths that communicate with each other at the following positions.
[0007]
(2) In the above (1), the plurality of meandering main flow paths constituting the parallel flow path have the same flow path length, and the communication flow path has a distance from the start end of the main flow path. It is assumed that communication is made between the main flow paths at the same point.
(3) In the above (2), the plurality of meandering main flow paths constituting the parallel flow path may be formed into a straight flow extending linearly from one end to the other end corresponding to the electrode surface of the unit cell facing the flow path. Path, and a meandering path formed by alternately arranging and connecting folded paths extending in a direction orthogonal to the linear flow path arranged at the end, and the communication path is formed by the meandering path. It is arranged in at least every other straight channel or at least every other folded channel.
[0008]
In the polymer electrolyte fuel cell, if the flow path of the reactant provided in the separator is constituted by a main flow path having a meandering shape with a substantially constant flow path cross section as described in (1) above, a stagnant portion exists in the flow path. Therefore, even if water droplets of the generated water are generated, they are swept away by the flow of the reactant, and the deterioration of the characteristics due to the stagnation of the water droplets is avoided. In addition, since the plurality of main flow paths are arranged in parallel, it is possible to set the pressure loss in the flow paths within an appropriate range, and it is possible to keep the supply pressure of the reactant low. Further, between the main flow paths of the parallel flow path, at a position where the same pressure is obtained when the specified flow rate is passed, for example, as described in (2) above, when the main flow paths have the same flow path length, the main flow path At least one or more communication flow paths are arranged at the same distance from the starting end of the main flow path, so that the flow rate of the reactants in each main flow path varies due to some factors such as the fluctuation of the generated current density during operation. Even in some cases, the pressure difference between the main flow paths is eliminated by the communication flow path, the variation in the flow rate is reduced, and a predetermined battery characteristic is obtained.
[0009]
In particular, as described in (3) above, the main flow paths composed of the meandering flow paths in which the linear flow paths and the return flow paths are alternately arranged and connected are arranged in parallel to form a flow path of the reactant, and If the communication flow path is arranged in every other linear flow path or at least every other return flow path, the pressure of the reactant flowing through each main flow path in each communication flow path is adjusted to the same pressure Therefore, even if there is a variation in the flow rate of the reactant in each main flow path, it is eliminated at an early stage, and the flow rate can be adjusted effectively.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a polymer electrolyte fuel cell according to the present invention will be described with reference to the drawings.
<Example 1>
FIG. 1 is a front view of a separator showing a flow path of a reactant according to a first embodiment of the polymer electrolyte fuel cell of the present invention. As in FIG. FIG. Note that components having the same functions as the components in FIG. 4 are denoted by the same reference numerals as those used in FIG. 4, and redundant description will be omitted.
In the separator of this embodiment, a gas-impermeable resin-impregnated carbon having a thickness of 1.5 mm is provided with through-holes for various manifolds 3 to 8, and a groove having a depth of 0.75 mm is processed. A flow path through which gas flows is formed. The formed fuel gas flow path includes three main flow paths 1 each composed of a meandering flow path in which a straight flow path flowing in the horizontal direction in the figure and a folded flow path flowing vertically in the end portion are alternately connected. It comprises a parallel flow passage arranged in parallel and a communication flow passage 2 connecting the three main flow passages 1. The main flow paths 1 are each formed as a flow path having a constant flow path cross section, and are arranged so that the flow path lengths of the three main flow paths 1 from the fuel gas supply manifold 3 to the fuel gas discharge manifold 4 are the same. Have been.
[0011]
The communication flow path 2 is disposed so as to communicate with the three main flow paths 1 orthogonal to the flow path at a point where the distance from the fuel gas supply manifold 3 to the straight flow path of the meandering flow path is the same. I have. In the meandering flow path of the present embodiment, the flow path is formed such that the fuel gas is immediately led from the fuel gas supply manifold 3 to the linear flow path. Therefore, as shown in FIG. By arranging the communication flow path 2 in the odd-numbered linear flow path calculated from the above, the main flow path 1 can be made orthogonal.
In this embodiment, one communication channel 2 is arranged at the center of the odd-numbered linear flow channel of the main flow channel 1. However, the communication flow channel 2 may be any one of the linear flow channels. It may be arranged at a position, or two or more may be arranged in the same straight channel. Further, among the odd-numbered linear flow paths, for example, the communication flow path 2 disposed in the most downstream linear flow path may be omitted.
[0012]
<Example 2>
FIG. 2 is a front view of a separator showing a flow path of a reactant according to a second embodiment of the polymer electrolyte fuel cell of the present invention. As in FIG. 1 shown in the first embodiment, FIG. It is a front view of the separator arrange | positioned facing. In this figure, components having the same functions as those shown in FIGS. 4 and 1 are denoted by the same reference numerals.
The fuel gas flow path provided in the separator of the present embodiment is a meandering flow path in which a straight flow path flowing vertically in the figure and a folded flow path flowing horizontally at the end are alternately connected. The main flow path 1 includes a parallel flow path in which the main flow paths 1 are arranged in parallel, and a communication flow path 2 that connects the three main flow paths 1 in a folded flow path. Also in this embodiment, the main flow paths 1 are formed as flow paths each having a fixed flow path cross section, and the flow path length of the three main flow paths 1 from the fuel gas supply manifold 3 to the fuel gas discharge manifold 4 is reduced. They are arranged to be identical. In the meandering flow path of the present embodiment, the flow path is formed so that the fuel gas supplied from the fuel gas supply manifold 3 is immediately bent at a right angle and guided to a linear flow path. If the communication passages 2 are arranged in the upper and lower return passages so as to be orthogonal to the flow, the three main passages 1 communicate with each other at the same distance from the fuel gas supply manifold 3. . By arranging the communication flow path 2 in this manner, the pressure of the fuel gas flowing through the three main flow paths 1 is appropriately made uniform, and the flow rate is appropriately adjusted.
[0013]
<Example 3>
FIG. 3 is a front view of a separator showing a flow path of a reactant according to a third embodiment of the polymer electrolyte fuel cell of the present invention. As shown in FIGS. 1 is a front view of a separator to be used.
In the separator of this embodiment, as in the second embodiment shown in FIG. 2, a straight flow path flowing in the vertical direction in the figure and a folded flow path flowing in the horizontal direction at the end are alternately connected. A parallel flow path in which three main flow paths 1 composed of meandering flow paths are arranged in parallel is defined as a main flow path of the fuel gas. This embodiment is different from the second embodiment in the installation location of the communication flow path 2 that communicates the three main flow paths 1, and in the present embodiment, the communication path 2 is disposed at substantially the center of each straight flow path. Have been. In order to communicate the three main flow paths 1 at the same distance from the fuel gas supply manifold 3, the communication flow path 2 is arranged obliquely to the three main flow paths 1.
[0014]
In each of the first to third embodiments, only the flow path of the fuel gas formed in the separator arranged to face the fuel electrode side is described in all cases. If the flow path of the oxidizing gas formed in the separator arranged oppositely is formed in accordance with the same design concept, the pressure of the oxidizing gas flowing through each main flow path is adjusted to the same pressure by the communication flow path, Since the flow rate of the oxidizing gas in each main flow path is effectively adjusted, a stable power generation operation can be performed.
[0015]
【The invention's effect】
As described above, according to the present invention,
A flat unit cell formed by bonding a catalyst layer to both sides of an electrolyte membrane, and a rectangular separator sandwiching the unit cell, and the separator is supplied from the outside to a surface facing the unit cell. In a polymer electrolyte fuel cell having a flow channel through which a reactant is passed, the flow channel is configured as described in claim 1 or claim 2, and further according to claim 3 or 4. As a result, there is no stagnation of generated water in the flow path of the reactant, the reactant can be supplied at a low pressure, and the pressure between the flow paths is effectively adjusted so that the reactant flows almost uniformly. As a result, a polymer electrolyte fuel cell capable of operating with excellent cell characteristics was obtained.
[Brief description of the drawings]
FIG. 1 is a front view of a separator showing a flow path of a reactant of a first embodiment of a polymer electrolyte fuel cell of the present invention; FIG. 2 is a second embodiment of a polymer electrolyte fuel cell of the present invention; FIG. 3 is a front view of a separator showing a flow path of a reactant of the present invention. FIG. 3 is a front view of a separator showing a flow path of a reactant of a third embodiment of the polymer electrolyte fuel cell of the present invention. Front view of a separator showing a conventional example of a flow path of a reactant of a fuel cell [Description of reference numerals]
DESCRIPTION OF SYMBOLS 1 Main flow path 2 Communication flow path 3 Fuel gas supply manifold 4 Fuel gas discharge manifold 5 Oxidant gas supply manifold 6 Oxidant gas discharge manifold

Claims (4)

電解質膜の両面に触媒層を接合して形成された平板状の単電池と、該単電池を挟持する方形のセパレータとを備え、かつ、前記のセパレータが単電池に対向する面に外部より供給される反応物質を通流させる流路を有する固体高分子形燃料電池において、
前記流路が、複数の流路断面が略一定の蛇行形状の主流路を並列に接続した並列流路と、並列流路の各主流路の間を規定流量通流時に同一圧力となる位置において連通した少なくとも一つ以上の連通流路とにより構成されていることを特徴とする固体高分子形燃料電池。
A flat unit cell formed by bonding a catalyst layer to both surfaces of an electrolyte membrane, and a rectangular separator sandwiching the unit cell, and the separator is supplied from the outside to a surface facing the unit cell. In a polymer electrolyte fuel cell having a flow path through which a reactant is passed,
The flow path is a parallel flow path in which a plurality of flow path cross sections are connected in parallel in a meandering main flow path having a substantially constant meandering position, and at a position where the same pressure is applied between the main flow paths of the parallel flow path at a prescribed flow rate. A polymer electrolyte fuel cell, comprising: at least one or more communicating flow paths that communicate with each other.
請求項1に記載の固体高分子形燃料電池において、並列流路を構成する複数の蛇行形状の主流路が同一の流路長を有し、かつ、前記の連通流路が、主流路の始端からの距離が同一の地点において各主流路の間を連通していることを特徴とする固体高分子形燃料電池。2. The polymer electrolyte fuel cell according to claim 1, wherein the plurality of meandering main flow paths forming the parallel flow path have the same flow path length, and the communication flow path is a start end of the main flow path. A solid polymer fuel cell, wherein the main flow passages communicate with each other at the same distance from the main flow path. 請求項2に記載の固体高分子形燃料電池において、並列流路を構成する複数の蛇行形状の主流路が、対向する単電池の電極面に対応して一端から他端へと直線状に伸びる直線状流路と、端部に配された前記の直線状流路と直交する方向に伸びる折り返し流路とを交互に配して連結した蛇行流路よりなり、前記連通流路が、蛇行流路の少なくとも一つ置きの直線状流路に配されていることを特徴とする固体高分子形燃料電池。3. The polymer electrolyte fuel cell according to claim 2, wherein the plurality of meandering main flow paths constituting the parallel flow path extend linearly from one end to the other end corresponding to the electrode surfaces of the opposed unit cells. A linear flow path and a meandering flow path in which the return flow path extending in a direction orthogonal to the linear flow path provided at the end portion are alternately arranged and connected, and the communication flow path is a meandering flow. A polymer electrolyte fuel cell, wherein the polymer electrolyte fuel cells are arranged in at least one other linear flow path. 請求項2に記載の固体高分子形燃料電池において、並列流路を構成する複数の蛇行形状の主流路が、対向する単電池の電極面に対応して一端から他端へと直線状に伸びる直線状流路と、端部に配された前記の直線状流路と直交する方向に伸びる折り返し流路とを交互に配して連結した蛇行流路よりなり、前記連通流路が、蛇行流路の少なくとも一つ置きの折り返し流路に配されていることを特徴とする固体高分子形燃料電池。3. The polymer electrolyte fuel cell according to claim 2, wherein the plurality of meandering main flow paths constituting the parallel flow path extend linearly from one end to the other end corresponding to the electrode surfaces of the opposed unit cells. A linear flow path and a meandering flow path in which the return flow path extending in a direction orthogonal to the linear flow path provided at the end portion are alternately arranged and connected, and the communication flow path is a meandering flow. A polymer electrolyte fuel cell, wherein the fuel cell is disposed in at least one of the folded paths.
JP2003007884A 2003-01-16 2003-01-16 Polymer electrolyte fuel cell Expired - Fee Related JP4595282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007884A JP4595282B2 (en) 2003-01-16 2003-01-16 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007884A JP4595282B2 (en) 2003-01-16 2003-01-16 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2004220950A true JP2004220950A (en) 2004-08-05
JP4595282B2 JP4595282B2 (en) 2010-12-08

Family

ID=32897847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007884A Expired - Fee Related JP4595282B2 (en) 2003-01-16 2003-01-16 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4595282B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216418A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Inside current collector used for membrane electrode composite for fuel cell, and membrane electrode composite for fuel cell
JP2007005235A (en) * 2005-06-27 2007-01-11 Honda Motor Co Ltd Fuel cell
WO2007088832A1 (en) * 2006-02-02 2007-08-09 Matsushita Electric Industrial Co., Ltd. Separator plate and fuel cell
JP7480216B2 (en) 2022-03-31 2024-05-09 本田技研工業株式会社 Fuel cell separator and power generation cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021422A (en) * 1998-06-30 2000-01-21 Toshiba Corp Manufacture of separator for fuel cell, and the separator for fuel cell
JP2001052723A (en) * 1999-08-13 2001-02-23 Honda Motor Co Ltd Fuel cell stack
JP2002260688A (en) * 2001-02-28 2002-09-13 Mitsubishi Heavy Ind Ltd Separator of fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021422A (en) * 1998-06-30 2000-01-21 Toshiba Corp Manufacture of separator for fuel cell, and the separator for fuel cell
JP2001052723A (en) * 1999-08-13 2001-02-23 Honda Motor Co Ltd Fuel cell stack
JP2002260688A (en) * 2001-02-28 2002-09-13 Mitsubishi Heavy Ind Ltd Separator of fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216418A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Inside current collector used for membrane electrode composite for fuel cell, and membrane electrode composite for fuel cell
JP2007005235A (en) * 2005-06-27 2007-01-11 Honda Motor Co Ltd Fuel cell
WO2007088832A1 (en) * 2006-02-02 2007-08-09 Matsushita Electric Industrial Co., Ltd. Separator plate and fuel cell
US7790324B2 (en) 2006-02-02 2010-09-07 Panasonic Corporation Separator plate and fuel cell
JP5354908B2 (en) * 2006-02-02 2013-11-27 パナソニック株式会社 Separator plate and fuel cell
JP7480216B2 (en) 2022-03-31 2024-05-09 本田技研工業株式会社 Fuel cell separator and power generation cell

Also Published As

Publication number Publication date
JP4595282B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP4516229B2 (en) Solid polymer cell assembly
US9905880B2 (en) Fuel cell stack
JP4598287B2 (en) FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK
JP4344484B2 (en) Solid polymer cell assembly
JP5027695B2 (en) Bifurcated bifurcation of a flow path in a bipolar plate flow field
US20080280177A1 (en) Gas Separator for Fuel Cells and Fuel Cell Equipped With Gas Separator
WO2012007998A1 (en) Fuel cell
US8268503B2 (en) Fuel cell stack
JP5302263B2 (en) Fuel cell
JP5082312B2 (en) Fuel cell separator structure
KR101420682B1 (en) Bipolar plate and fuel cell stack including the same
US20060040143A1 (en) Fuel cell
JPH08213044A (en) Fuel cell
JP5082313B2 (en) Fuel cell separator structure
JP4419483B2 (en) Fuel cell
JP2001250568A (en) Collector panel for solid polymer fuel cell
JP2004220950A (en) Polymer electrolyte fuel cell
JP4572252B2 (en) Fuel cell stack
JP4516630B2 (en) Solid polymer cell assembly
JP4403706B2 (en) Polymer electrolyte fuel cell
JP2002100380A (en) Fuel cell and fuel cell stack
JP5123824B2 (en) FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK
JP2008293745A (en) Fuel cell
JP7192759B2 (en) Fuel cell separator
JP2004185936A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees