JP4594643B2 - Raw wood centering processing method and raw wood centering processing apparatus - Google Patents

Raw wood centering processing method and raw wood centering processing apparatus Download PDF

Info

Publication number
JP4594643B2
JP4594643B2 JP2004122404A JP2004122404A JP4594643B2 JP 4594643 B2 JP4594643 B2 JP 4594643B2 JP 2004122404 A JP2004122404 A JP 2004122404A JP 2004122404 A JP2004122404 A JP 2004122404A JP 4594643 B2 JP4594643 B2 JP 4594643B2
Authority
JP
Japan
Prior art keywords
raw wood
log
contour
centering
turning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004122404A
Other languages
Japanese (ja)
Other versions
JP2004338391A (en
Inventor
展行 森山
和仁 馬渡
文泰 水谷
幸伸 久野
勝哉 松本
優 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meinan Machinery Works Inc
Original Assignee
Meinan Machinery Works Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meinan Machinery Works Inc filed Critical Meinan Machinery Works Inc
Priority to JP2004122404A priority Critical patent/JP4594643B2/en
Publication of JP2004338391A publication Critical patent/JP2004338391A/en
Application granted granted Critical
Publication of JP4594643B2 publication Critical patent/JP4594643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Wood Veneers (AREA)

Description

本発明は、原木の芯出し処理方法及び原木の芯出し処理装置に関する。   The present invention relates to a raw wood centering processing method and a raw wood centering processing apparatus.

ベニヤレースを用いて原木を旋削する際に、連続状単板の収得率の向上や単板歩留りの良化を図るには、旋削軸芯の位置を適確に定める必要があり、適確に定める為の手段としては、仮の軸芯を中心に原木を回転させ、好ましくは、少なくとも原木の両端部付近の輪郭、より好ましくは、それと共に原木の中央部付近の輪郭、更に長さが2mを越える長尺の原木など、必要に応じては、更に加えて原木の両端部付近と中央部付近との中間部(左右に各1箇所)の輪郭を計測し、得た各輪郭データ(形状、相対位置関係等)に基づいて、所望の旋削軸芯を算定する手段が、有効で実用的であるとされている。   When turning a log using veneer lace, it is necessary to accurately determine the position of the turning shaft core in order to improve the yield of continuous veneer and improve the veneer yield. As a means for determining, the log is rotated around a temporary axis, preferably at least the contours near both ends of the log, more preferably the contours near the central part of the log, and a length of 2 m. If necessary, measure the contour of the middle part (one place each on the left and right) between both ends of the log and the center of the log. The means for calculating the desired turning axis based on the relative positional relationship, etc.) is considered to be effective and practical.

また更に、原木と鉋台との衝突を回避しつつ、原木空転時間の短縮化を図るには、原木の最大回転半径を求めて、都度、予め適合する位置に鉋台を待機させる必要があるから、前記旋削軸芯の位置を定める際に、原木の最大回転半径も併せて求められれば至便であるが、原木の最大回転半径は、旋削軸芯が定まらなければ求められない従属的な相関関係を有すると共に、原木の軸芯方向に於ける輪郭の計測不足(計測空白域)があると、原木と鉋台とが衝突する不都合が発生するので、輪郭の計測不足は許容されない点に留意が肝要である。   Furthermore, in order to reduce the log rotation time while avoiding the collision between the log and the stand, it is necessary to obtain the maximum turning radius of the log and make the stand stand in a suitable position in advance each time. When determining the position of the turning axis, it is convenient if the maximum turning radius of the raw wood is also obtained, but the maximum turning radius of the raw wood has a subordinate correlation that cannot be obtained unless the turning axis is determined. In addition, it is important to note that insufficient measurement of the contour is not allowed because there is an inconvenience of collision between the log and the base if there is insufficient measurement of the contour in the axial direction of the log (measurement blank area). is there.

詳述すると、図6(イ)・(ロ)に例示する如く、全く同じ輪郭(いずれも、直径=Dであり、外周の一部に凹部A2を有する)の原木Aを対象とする場合に、例えば図6(イ)に符合aで示した位置に旋削軸芯を定めると、符合A3で示した部分から、最も多く連続状単板を得ることができる反面、符合A4で示した部分から、使用に適さない幅(繊維直交方向の幅)の狭い単板が多く削成されるので、単板歩留りが低下するのに対して、図6(ロ)に符合bで示した位置に旋削軸芯を定めると、符合A5で示した部分から得られる連続状単板の量は、(イ)の例に比べて少なくなる反面、符合A6で示した部分から、幅の狭い単板が多く削成されることがないので、単板歩留りは、(イ)の例に比べて良化することになり、或は図示は省略したが、前記両例の中間の位置に旋削軸芯を定めると、連続状単板の収得率や単板歩留りも、前記両例の中程になるなど、全く同じ輪郭の原木であっても、旋削軸芯の位置によって、削成される単板の性状が異なる。   More specifically, as illustrated in FIGS. 6A and 6B, when the target is a log A having the same outline (both having a diameter = D and having a recess A2 in a part of the outer periphery). For example, if the turning axis is defined at the position indicated by reference symbol a in FIG. 6 (a), the largest continuous single plate can be obtained from the portion indicated by reference symbol A3, but from the portion indicated by reference symbol A4. Since many single veneers with a narrow width (width in the direction perpendicular to the fiber) that are not suitable for use are cut, the single plate yield is lowered, whereas turning is performed at the position indicated by the symbol b in FIG. When the axis is defined, the amount of the continuous single plate obtained from the portion indicated by reference numeral A5 is smaller than that of the example of (A), but from the portion indicated by reference symbol A6, there are many single plates having a narrow width. Since it is not cut, the single plate yield will be improved compared to the example in (a), or the illustration is omitted. However, if the turning axis is determined at the middle position between the two examples, the yield of single veneer and the single plate yield will be in the middle of the two examples. Depending on the position of the turning axis, the properties of the single plate to be machined differ.

従って、旋削軸芯の位置は、計測した各輪郭の大きさと相対的な位置関係とに基づき、所望する単板の性状に対応するように算定することが望まれ、一般的には、図6(イ)の例の如く、最も多く連続状単板を得ることができる位置に旋削軸芯を定める手法が多用されてはいるが、図6(ロ)の例の位置に旋削軸芯を定める手法や、両例の中間の位置に旋削軸芯を定める手法も実用化されており、たとえ同じ輪郭の原木であっても、好ましい旋削軸芯の位置は、必ずしも常に一定であるとは限らない。   Therefore, it is desirable to calculate the position of the turning axis based on the measured size of each contour and the relative positional relationship so as to correspond to the desired properties of the single plate. Although the method of determining the turning axis at the position where the most continuous single plate can be obtained as in the example of (a) is often used, the turning axis is determined at the position of the example of FIG. A method and a method for determining a turning axis at an intermediate position between the two examples have also been put into practical use, and even if the log has the same contour, the preferred turning axis position is not always constant. .

而して、図6の例に於て、例えば仮に(ロ)の例の位置に旋削軸芯を定めたとすると、この場合に於ては、原木の最大回転半径=D/2となるのに対して、仮に(イ)の例の位置に旋削軸芯を定めれば、原木の最大回転半径>D/2となることからも明らかな如く、原木の最大回転半径は、旋削軸芯が定まらなければ求められない従属的な相関関係を有する。   Thus, in the example of FIG. 6, for example, if the turning axis is determined at the position of the example (b), in this case, the maximum turning radius of the raw wood = D / 2. On the other hand, if the turning axis is determined at the position of the example in (a), the maximum turning radius of the raw wood is not determined by the maximum turning radius of the raw wood, as is clear from the fact that the maximum turning radius of the raw wood is greater than D / 2. It has a subordinate correlation that cannot be obtained without it.

また一方、例えば図7に例示する如き原木Bの旋削軸芯の算定には、仮の軸芯(仮に定めた軸芯)cを中心に原木Bを回転させ、原木Bの両端部付近の二箇所に備えた、適宜の計測機器C1・C2によって、原木Bの輪郭を計測すれば、最低必要限度の条件を充足することができ、現実に提案・実施もされてはいるが、斯様な輪郭の計測態様によっては、各計測機器C1・C2の間に有る枝条・瘤等の凸部B1の輪郭を計測することができないから、原木Bの最大回転半径を併せて求めることは不可能であり、仮に計測機器C1・C2の計測に対応する位置に、鉋台を待機させたとすると、前記凸部B1と鉋台とが衝突する不都合を誘発することになる。換言すると、原木の最大回転半径を求める為には、原木の軸芯方向に於ける輪郭の計測不足は許容されないことになる。因に、現実には、前記不都合を回避する為に、都度鉋台を余分に後退させて待機させる措置が採られていることに起因して、ベニヤレースの稼働率が低下する弊害が惹起されている。   On the other hand, for example, in calculating the turning axis of the log B as illustrated in FIG. 7, the log B is rotated around a temporary axis (c) (temporarily determined axis) c, and two near the both ends of the log B are obtained. If the contour of the log B is measured with appropriate measuring devices C1 and C2 provided at the location, the minimum necessary condition can be satisfied, and it has been proposed and implemented in practice. Depending on the measurement mode of the contour, it is impossible to measure the contour of the convex portion B1 such as a branch or aneurysm between the measuring devices C1 and C2, and therefore it is impossible to obtain the maximum turning radius of the log B together. Yes, if the stand is made to stand by at a position corresponding to the measurement of the measuring devices C1 and C2, there will be an inconvenience that the projection B1 and the stand collide. In other words, in order to obtain the maximum turning radius of the raw wood, insufficient measurement of the contour in the axial direction of the raw wood is not allowed. In fact, in order to avoid the inconvenience, in reality, measures have been taken to reverse the stand and make it stand by each time. Yes.

尚、前記計測態様の場合、各計測機器の間に有る凸部の輪郭と併せて、凹部の輪郭も計測することができないが、最大回転半径のみの算定に限っていえば、凹部の輪郭データは一切無用であって、特に問題は発生しない。即ち、仮に原木のいずれかの部分に凹部があるとしても、該凹部が、ベニヤレースの鉋台に衝突することはありえないから、たとえ該凹部の輪郭データが計測できないとしても、最大回転半径を算定するには全く支障なく、斯様に原木のいずれかの部分にある凹部の輪郭データが得られなくても、最大回転半径のみの算定には差支えない点に関しては、後述する本発明に係る原木の芯出し処理方法及び原木の芯出し処理装置の場合を含めて、あらゆる形式の計測態様に共通する限定的な例外事項であるといえる。但し、いずれにしても、原木の旋削に適する旋削軸芯の算定には、凹部を含めた適切な輪郭データの計測が望まれることにかわりはない。   In addition, in the case of the measurement mode, it is not possible to measure the contour of the concave portion together with the contour of the convex portion between the measuring devices, but if the calculation is limited to only the maximum turning radius, the contour data of the concave portion is It is useless at all, and no particular problem occurs. In other words, even if there is a recess in any part of the raw wood, the recess cannot collide with the veneer rack, so even if the contour data of the recess cannot be measured, the maximum turning radius is calculated. There is no problem at all, and even if the contour data of the recesses in any part of the raw wood is not obtained, there is no problem in calculating only the maximum turning radius. It can be said that this is a limited exception common to all types of measurement modes including the case of the centering processing method and the raw wood centering processing apparatus. However, in any case, for the calculation of the turning axis suitable for the turning of the raw wood, there is no change that the measurement of appropriate contour data including the concave portion is desired.

そこで、原木の旋削に適する旋削軸芯と最大回転半径とを併せて算定することを可能にする原木の芯出し処理方法が、既に「原木の芯出し方法、芯出し供給方法およびそれらの装置」(特開平6−293002号公報)に於て提案されており、具体的には、「仮軸芯のまわりに一回転させられる原木の長手方向にほぼ密接して複数の輪郭検知器を設け、該輪郭検知器の二個以上のものの輪郭データに基づいて、原木の旋削に適する旋削軸芯を算定すると共に、前記複数の輪郭検知器の全ての輪郭データに基づいて、先に算定した旋削軸芯に対する原木の最大回転半径を求める。」という構成を採る原木の芯出し処理方法である。
特開平6−293002号公報
Therefore, the raw wood centering method, which enables calculation of the turning axis suitable for turning of the raw wood and the maximum turning radius, has already been "the raw wood centering method, the centering supply method and their devices" (Japanese Patent Laid-Open No. Hei 6-293002), specifically, “providing a plurality of contour detectors in close contact with the longitudinal direction of the raw wood that is rotated once around the temporary axis, Based on the contour data of two or more of the contour detectors, the turning axis suitable for turning the raw wood is calculated, and the previously calculated turning shaft based on all the contour data of the plurality of contour detectors This is a method of centering processing of a raw wood that adopts the configuration of “determining the maximum turning radius of the raw wood relative to the core”.
JP-A-6-293002

ところが、前記公報に開示された原木の芯出し処理方法は、共通する複数の輪郭検知器の輪郭データに基づいて、原木の旋削に適する旋削軸芯と最大回転半径とを算定するものであり、開示された輪郭検知器の構成は、いずれも欠陥・短所を有するものであることから、例えば得られる輪郭データの精度が劣悪となるなどの欠点を有し、甚だ実用性に欠けるものであった。   However, the raw wood centering processing method disclosed in the publication is based on the contour data of a plurality of common contour detectors, and calculates a turning axis suitable for turning the raw wood and a maximum turning radius. Since all of the disclosed contour detectors have defects and disadvantages, they have drawbacks such as inferior accuracy of the contour data obtained, and are extremely impractical. .

即ち、例えば前記公報に開示された輪郭検知器の実例の一つである接触式の輪郭検知器の構成の大要は、図8(イ)に例示する如く、先端側に円筒状の検知具51が付設され、基端側が支軸52を介して揺動可能に枢支される複数個の接触揺動式の検知部材50を、前記検知具51が原木Eの軸芯方向にほぼ密接状に連なるよう並設すると共に、前記各検知部材50の揺動量をリニヤエンコーダ53で検知して、原木Eの適宜角度毎(実例は便宜的に360度を36等分してあるので、10度毎であるが、特に限定はない)の点の集合としての輪郭データを得る構成である。   That is, for example, the outline of the configuration of the contact-type contour detector, which is one of the examples of the contour detector disclosed in the above publication, is as follows. As illustrated in FIG. 51, and a plurality of contact oscillating detection members 50 whose base end side is pivotably supported via a support shaft 52, and the detection tool 51 is in close contact with the axis direction of the log E. The linear encoder 53 detects the amount of rocking of each of the detection members 50, and the appropriate angle of the log E (360 degrees is divided into 36 equal parts for the sake of convenience. This is a configuration for obtaining contour data as a set of points.

前記構成によると、検知具の形状的な特性からして、円筒状の検知具51が、原木Eの凸部E1や凹部E2に忠実に倣って揺動しないので、得られる輪郭データは、図8(ロ)に実線fで示す如きものとなって、点線gで示した実際の輪郭とは異なる結果となる故に、斯様な輪郭データから、所望する最も適切な旋削軸芯を求めることはできない。因に、検知具の形状を、凹部の底に入り込むような形状に改めた場合には、検知具が凹部や凸部に引っ掛って、原木が円滑に回転できなくなり、検知自体が不能化することになる。、   According to the above configuration, because of the shape characteristics of the detection tool, the cylindrical detection tool 51 does not swing exactly following the convex part E1 and the concave part E2 of the log E. Since the result shown in FIG. 8 (b) is indicated by a solid line f and is different from the actual contour indicated by the dotted line g, it is possible to obtain the most appropriate turning axis desired from such contour data. Can not. By the way, when the shape of the detection tool is changed to a shape that enters the bottom of the recess, the detection tool gets caught in the recess or projection, and the log cannot be rotated smoothly, and the detection itself is disabled. It will be. ,

また、前記公報に開示された輪郭検知器の別の実例の一つである投光器・受光器組合せ式の輪郭検知器の構成の大要は、図9(イ)に例示する如く、適数個の投光器54と受光器55とを、原木Fの軸芯方向に対して平行状に設け、原木Fによる光線hの遮蔽を受光器55で検知して、原木Fの適宜角度毎(実例は、10度毎)の点の集合としての輪郭データを得る構成であるが、この構成の場合も、光線の特性からして、得られる輪郭データは、図9(ロ)に実線fで示す如きものとなって、点線gで示した実際の輪郭(凸部F1や凹部F2が存在する)とは異なる結果となる故に、所望する最も適切な旋削軸芯を求めることはできない。   Further, the outline of the configuration of the projector / receiver combined type contour detector, which is another example of the contour detector disclosed in the above-mentioned publication, is an appropriate number as shown in FIG. The light projector 54 and the light receiver 55 are provided in parallel to the axial direction of the log F, and the light receiver 55 detects the shielding of the light beam h by the log F. The contour data is obtained as a set of points (every 10 degrees), but in this configuration as well, the contour data obtained from the characteristics of light rays is as shown by the solid line f in FIG. Thus, since the result is different from the actual contour indicated by the dotted line g (the convex portion F1 and the concave portion F2 exist), the most appropriate turning axis desired cannot be obtained.

また一方、前記公報に開示された輪郭検知器の更に別の実例の一つである反射式の輪郭検知器の構成の大要は、図10に例示する如く、適数個の反射式の輪郭検知器56を、各輪郭検知器56の検知方角が、原木Gの求芯方向に向くように並設する構成である故に、各輪郭検知器56が投光・受光する光線hの個所に丁度都合良く凸部G1や凹部(図示省略)が位置する場合に限っては、原木Gの正確な輪郭データを得ることができる反面、たとえ図10に示す如く輪郭検知器56を隙間なく並べても、検知の空白域が生じることは避け難いから、先に図7の例で説明したのと同様に、局部的な検知洩れの問題が惹起されて、適切な最大回転半径が求められなくなる。因に、あえて言及すれば、たとえ何らかの手法によって、反射式の輪郭検知器による定点的な検知個所を、原木の軸芯方向へ実質的に隙間なく配列することができたと仮定しても、この場合には、得られる輪郭データの絶対数が極めて膨大な量になるので、データの処理が長期化する別の問題が発生し、ベニヤレースの稼働率を劣化させるなど、実用性に欠ける結果となる。   On the other hand, the outline of the configuration of the reflection type contour detector which is another example of the contour detector disclosed in the above publication is as shown in FIG. Since the detectors 56 are arranged side by side so that the detection directions of the contour detectors 56 are directed to the centripetal direction of the log G, the contour detectors 56 are exactly located at the locations of the light rays h that are projected and received. Only when the convex part G1 or the concave part (not shown) is conveniently located, accurate contour data of the log G can be obtained, but even if the contour detectors 56 are arranged without gaps as shown in FIG. Since it is unavoidable that a detection blank area is generated, a problem of local detection omission is caused in the same manner as described in the example of FIG. 7, and an appropriate maximum turning radius cannot be obtained. Incidentally, even if we dare mention, even if it is assumed that the fixed points detected by the reflection type contour detector can be arranged in the axial direction of the raw wood with substantially no gap by any method, In some cases, the absolute number of contour data obtained is extremely large, resulting in another problem that the data processing is prolonged, resulting in a lack of practicality, such as deteriorating the operating rate of the veneer race. Become.

また更に、前記公報には、図11に例示する如く、適数個の反射式の輪郭検知器56を、各輪郭検知器56の検知方角が、原木Hの求芯方向に向くように並設すると共に、投光器54と受光器55とを、原木Hの軸芯方向に向けて対向的に備え、前記輪郭検知器56の輪郭データに基いて、原木Hの旋削軸芯dを、また受光器55の輪郭データに基いて、原木Hの最大回転半径を夫々求める構成も開示されているが、たとえ斯様な構成を採っても、例えば仮の軸芯cと適切な旋削軸芯dとが異なっているなどの要因によって、凸部H1が光線hの陰に隠れる場合には検知することができないから、やはり、適切な最大回転半径が求められない問題が発生する。   Furthermore, in the above publication, as shown in FIG. 11, an appropriate number of reflection type contour detectors 56 are arranged in parallel so that the detection direction of each contour detector 56 faces the centripetal direction of the log H. In addition, a light projector 54 and a light receiver 55 are provided facing each other in the direction of the axis of the log H. Based on the contour data of the contour detector 56, the turning axis d of the log H is also received by the light receiver. Although the structure which calculates | requires each maximum turning radius of the log H based on the contour data of 55 is also disclosed, even if such a structure is taken, for example, the provisional axis c and the appropriate turning axis d are provided. If the convex portion H1 is hidden behind the light beam h due to factors such as being different, it cannot be detected, so that there is still a problem that an appropriate maximum turning radius cannot be obtained.

本発明は、前記従来の技術の欠点・難点を解消すべく開発したものであって、具体的には、仮の軸芯を中心に原木を回転させ、所望の回転角度毎に原木の輪郭を計測すると共に、計測した輪郭データに基づいて、原木の旋削に適する旋削軸芯と、旋削軸芯に対応する最大回転半径とを算定する原木の芯出し処理方法であって、旋削軸芯の算定に用いる輪郭と、最大回転半径の算定に用いる輪郭とを各々別途に計測することとし、旋削軸芯の算定に用いる輪郭は、原木の軸芯方向に適宜の間隔を隔てた所望の複数の計測点に限定して定点的に計測し、また最大回転半径の算定に用いる輪郭は、原木の軸芯方向にほぼ隙間なく区分した所望の複数の計測区域毎に一括して広域的に計測することを特徴とする原木の芯出し処理方法(請求項1)と、少なくとも原木の両端部付近の二箇所の計測点に於て、旋削軸芯の算定に用いる輪郭を計測する請求項1記載の原木の芯出し処理方法(請求項2)と、原木の中央部付近の一箇所の計測点に於ても、旋削軸芯の算定に用いる輪郭を計測する請求項2記載の原木の芯出し処理方法(請求項)3とを提案する。   The present invention has been developed to eliminate the disadvantages and difficulties of the prior art. Specifically, the raw wood is rotated around a temporary axis, and the contour of the raw wood is defined for each desired rotation angle. A raw wood centering processing method that calculates a turning axis suitable for turning of a raw wood and a maximum turning radius corresponding to the turning axial based on the measured contour data. The contour used for calculation and the contour used for calculating the maximum turning radius are separately measured, and the contour used for calculating the turning shaft center is measured at a plurality of desired intervals with appropriate intervals in the axial direction of the raw wood. Contour measurement is limited to a point, and the contour used to calculate the maximum turning radius is measured in a wide area for each desired measurement area divided almost without gaps in the axial direction of the log. A method for centering a log of raw wood (claim 1); 2. The raw wood centering method according to claim 1, wherein the contour used for calculating the turning axis is measured at at least two measurement points near both ends of the raw wood, and the central portion of the raw wood The raw wood centering method (claim) 3 according to claim 2, wherein a contour used for calculation of a turning shaft center is measured at one nearby measurement point.

また、前記方法の実施に用いる装置として、所定の仮芯場所に供給される原木の両端面の側方へ、相互に接近・離隔自在に、且つ少なくとも片側が回転駆動されるように備えられる左右一対の仮回転軸と、該仮回転軸の回転角度を検知する回転角検知器と、仮芯場所に供給される原木の外周の近傍であって、而も原木の軸芯方向に適宜の間隔を隔てた所望の複数の箇所へ、検出方角を原木求芯方向に向けて備えられる反射式の距離検出器と、原木の軸芯方向に対して所望の複数に区分された夫々の基端側が、仮芯場所に供給される原木の外周の近傍に位置する支軸を介して枢支されており、且つ各々の先端側に付設された検知具が、原木の軸芯方向にほぼ隙間なく並んで原木外周に接触するよう備えられる接触揺動式の検知部材と、各検知部材の揺動量を個別に検知する複数の揺動角検知器と、前記回転角検知器の検知信号及び距離検出器の輪郭データに基づいて、原木の旋削に適する旋削軸芯を算定し、且つ前記揺動角検知器の輪郭データを更に加えて、旋削軸芯に対応する最大回転半径を算定する芯出し演算機構とを備えたことを特徴とする原木の芯出し処理装置(請求項4)と、少なくとも原木の両端部付近の二箇所に、反射式の距離検出器を備えて成る請求項4記載の原木の芯出し処理装置(請求項5)と、原木の中央部付近の一箇所にも、反射式の距離検出器を備えて成る請求項5記載の原木の芯出し処理装置(請求項6)と、平板状の検知具を付設した検知部材を備えて成る請求項4又は請求項5又は請求項6記載の原木の芯出し処理装置(請求項7)と、円筒状の検知具を付設した検知部材を備えて成る請求項4又は請求項5又は請求項6記載の原木の芯出し処理装置(請求項8)とを提案する。   Further, as an apparatus used for carrying out the method, left and right provided to be laterally movable toward and away from both end surfaces of the raw wood supplied to a predetermined temporary core location, and at least one side is rotationally driven. A pair of temporary rotation shafts, a rotation angle detector for detecting the rotation angle of the temporary rotation shafts, and the vicinity of the outer periphery of the raw wood supplied to the temporary core location, and at appropriate intervals in the axial direction of the raw wood Reflective distance detectors that are provided with desired detection directions facing the log centering direction, and a plurality of base end sides that are divided into the desired plurality with respect to the axis direction of the log. The detectors that are pivotally supported by the support shafts located in the vicinity of the outer periphery of the raw wood that is supplied to the temporary core location, and the detectors attached to the respective distal ends are lined up substantially in the axial direction of the raw wood. Contact swing type detection member provided to come into contact with the outer circumference of the log and each detection unit Based on a plurality of swing angle detectors that individually detect the swing amount of the rotation angle, the detection signal of the rotation angle detector and the contour data of the distance detector, and calculating a turning axis suitable for turning the raw wood, and A raw wood centering processing device (Claim 4), further comprising a centering calculation mechanism for calculating a maximum turning radius corresponding to the turning shaft core by further adding contour data of the swing angle detector; 5. A raw wood centering apparatus (Claim 5) comprising reflection type distance detectors at least at two locations near both ends of the raw wood, and at one location near the central portion of the raw wood. 6. A raw wood centering apparatus (Claim 6) comprising a reflection type distance detector, and a detection member provided with a flat plate detector. Alternatively, the raw wood centering processing device according to claim 6 (claim 7) and the cylindrical inspection We propose a centering apparatus of wood fixings consisting comprises a detecting member which is attached to claim 4 or claim 5 or claim 6 wherein (claim 8).

本発明に係る原木の芯出し処理方法によると、旋削軸芯の算定に用いる輪郭は、原木の軸芯方向に適宜の間隔を隔てた所望の複数の計測点に限定して定点的に計測し、また最大回転半径の算定に用いる輪郭は、原木の軸芯方向にほぼ隙間なく区分した所望の複数の計測区域毎に一括して広域的に計測する構成を採る故に、従来の処理方法の如く、旋削軸芯の算定に用いる輪郭データが、実際の輪郭とは異なる結果となったり、或は原木の凸部の輪郭が、最大回転半径の算定に用いる輪郭データから洩れたりするなどの不都合が生じる虞がなく、総じて、従来に比べて一段と有効な心出し処理を行うことができる。また、本発明に係る原木の芯出し処理装置は、本発明に係る原木の芯出し処理方法を支障なく実施することができ、先端側に平板状の検知具を付設した検知部材を備える形式は、原木の回転が極めて円滑に行い得る効果を奏する。   According to the raw wood centering processing method according to the present invention, the contour used for the calculation of the turning axis is limited to a plurality of desired measurement points spaced at appropriate intervals in the direction of the axial center of the raw wood. In addition, the contour used for calculating the maximum turning radius is measured in a wide area for each of a plurality of desired measurement areas divided almost without gaps in the axial direction of the raw wood. The contour data used for the calculation of the turning axis results in a different result from the actual contour, or the contour of the convex part of the raw wood leaks out of the contour data used for the calculation of the maximum turning radius. There is no possibility that it will occur, and as a whole, a more effective centering process can be performed as compared with the prior art. Further, the raw wood centering processing apparatus according to the present invention can carry out the raw wood centering processing method according to the present invention without any trouble, and the type including a detection member provided with a flat plate-like detection tool on the tip side is provided. This has the effect that the rotation of the log can be performed very smoothly.

以下、本発明を図面に例示した実施の一例と共に更に詳述するが、説明を明確化する便宜上、既に従来技術の説明で引用した部材・用材と同様の部材・用材、或はそれに類似する部材・用材であっても、別の符号を付して、改めて説明する。   Hereinafter, the present invention will be described in further detail together with an example of the embodiment illustrated in the drawings. For the sake of clarity, the same members / materials as those already cited in the description of the prior art, or similar members. -Even if it is a material, it attaches another code | symbol and demonstrates anew.

図1は、本発明に係る原木の芯出し処理方法の実施に用いる原木の芯出し処理装置の正面説明図であり、図2は、図1に例示した原木の芯出し処理装置の部分正面説明図であり、図3は、図1に例示した原木の芯出し処理装置の部分側面説明図であり、図4は、図1に例示した原木の芯出し処理装置に於ける制御系関係の概要説明図である。   FIG. 1 is a front explanatory view of a raw wood centering processing apparatus used for carrying out the raw wood centering processing method according to the present invention, and FIG. 2 is a partial front view of the raw wood centering processing apparatus illustrated in FIG. FIG. 3 is a partial side view of the raw wood centering processing apparatus illustrated in FIG. 1, and FIG. 4 is an overview of control system relationships in the raw wood centering processing apparatus illustrated in FIG. It is explanatory drawing.

図中、1は、機枠等(図示省略)に付設された軸受箱2・2aを介して回転可能に枢支される、左右一対の仮回転軸であり、流体シリンダー等から成る作動機構3の作動を得て、図示矢印で示す如く相互に接近・離隔自在に、且つ、サーボモータ・減速機付電動機等から成る駆動源4の作動を得て、少なくとも片側(実施例は片側のみ)が、歯付ベルト・チェーン等から成る伝達部材5を介して、図示矢印で示す如く回転駆動されるように備えられており、図示矢印で示す如く昇降自在に備えられるVブロック状の原木供給具7を介して、仮芯場所に供給される原木Mを、左右両側から挟持すると共に、図示矢印で示す向きに回転させる。尚、後述する如く、前記軸受箱は、必要に応じて、原木移送機構の形式に対応すべく、左右各別に水平方向及び垂直方向に移動できるように備えても差支えない。   In the figure, reference numeral 1 denotes a pair of left and right temporary rotating shafts rotatably supported via bearing boxes 2 and 2a attached to a machine frame or the like (not shown), and an operating mechanism 3 comprising a fluid cylinder or the like. As shown by the arrows in the figure, the drive source 4 consisting of a servo motor, an electric motor with a speed reducer, etc. can be obtained so that they can move toward and away from each other. A V-block-shaped log supply tool 7 is provided so as to be driven to rotate as indicated by an arrow in the figure via a transmission member 5 comprising a toothed belt, chain, etc. The raw wood M supplied to the temporary core place is sandwiched from both the left and right sides and rotated in the direction indicated by the arrows in the drawing. As will be described later, the bearing box may be provided so that it can be moved in the horizontal and vertical directions separately to the left and right to accommodate the type of the log transport mechanism, as required.

6は、前記駆動源4に付設されたロータリーエンコーダなどから成る回転角検知器であり、前記仮回転軸1の回転角度を検知し、後述する芯出し演算機構21へ検知信号を発信する。   Reference numeral 6 denotes a rotation angle detector composed of a rotary encoder or the like attached to the drive source 4. The rotation angle detector 6 detects the rotation angle of the temporary rotating shaft 1 and transmits a detection signal to a centering calculation mechanism 21 described later.

8は、原木Mの両端部付近の二箇所と中央部付近の一箇所との都合三箇所に、検出方角を原木求芯方向に向けて位置するよう、支持腕9を介して支持枠10に備えられた反射式の距離検出器であり、仮回転軸1を介して回転させられる原木Mの都合三箇所の計測点に於ける輪郭を定点的に計測し、後述する芯出し演算機構21へ、原木Mの旋削軸芯の算定に用いる輪郭データを発信する。   8 is attached to the support frame 10 via the support arm 9 so that the detection direction is positioned in the log centering direction at three locations, two locations near both ends of the log M and one location near the center. A reflection-type distance detector provided to measure the contours at three measurement points on the log M rotated through the temporary rotation shaft 1 at a fixed point, and to a centering calculation mechanism 21 described later. The contour data used for calculating the turning axis of the log M is transmitted.

11は、原木Mの軸芯方向に対して複数(実施例は、5個)に区分された接触揺動式の検知部材であり、夫々の基端側が、支持枠10に固定された支持具12と、該支持具12に回動可能に嵌装された支軸13とを介して揺動可能に枢支され、且つ各々の先端側に付設された平板状の検知具14が、原木Mの軸芯方向にほぼ隙間なく並んで原木外周に接触し得るよう備えられている。尚、揺動を明確化させるなどの便宜上から、図1に於ては、検知部材11を上昇させた状態で、また、図2・図3に於ては、検知部材11を下降させた状態で夫々表示した。   Reference numeral 11 denotes a contact swing type detection member that is divided into a plurality (in the embodiment, five) with respect to the axial direction of the log M, and each base end side of the support member is fixed to the support frame 10. 12 and a plate-like detector 14 pivotally supported via a support shaft 13 that is rotatably fitted to the support 12 and attached to the tip of each of them is a log M. Are arranged so as to be in contact with the outer circumference of the log, with almost no gap therebetween. For the convenience of clarifying the swinging, the detection member 11 is raised in FIG. 1, and the detection member 11 is lowered in FIGS. Respectively.

15は、前記各支持具12の夫々に付設されたロータリーエンコーダなどから成る複数(実施例は、5個)の揺動角検知器であり、各支軸13を介して各検知部材11の揺動量を検知し(検知部材11の揺動角と揺動量は関数関係であって、揺動角が定まれば揺動量も定まる)、後述する芯出し演算機構21へ、原木Mの最大回転半径の算定に用いる輪郭データを発信する。   Reference numeral 15 denotes a plurality (five in the embodiment) of swing angle detectors, each composed of a rotary encoder attached to each of the supports 12, and the swing of each of the detection members 11 via each support shaft 13. The amount of movement is detected (the rocking angle and the rocking amount of the detection member 11 are functionally related, and if the rocking angle is determined, the rocking amount is also determined), and the maximum turning radius of the log M is sent to the centering calculation mechanism 21 described later. Contour data used to calculate

16は、流体シリンダー等から成る昇降機構であり、支持枠10に固定された保持具17と、該保持具17に回動可能に嵌装された保持軸18とを介して揺動可能に枢支されると共に、連結具19、連結ピン20などを介して、前記各検知部材11に連結されており、例えば仮芯場所に原木Mを供給する際など、必要に応じて、手動操作により又は制御機構等を介して自動的に、前記各検知部材11を上方へ揺動(上昇)させる。また、更に必要に応じては、前記各検知部材11(検知具14)を個別に原木Mへ強制的に押圧する機能を兼備させることも可能である。   Reference numeral 16 denotes an elevating mechanism composed of a fluid cylinder or the like. The elevating mechanism 16 pivots through a holding tool 17 fixed to the support frame 10 and a holding shaft 18 rotatably fitted to the holding tool 17. In addition to being supported and connected to each of the detection members 11 via a connecting tool 19, a connecting pin 20, etc., for example, when supplying the raw wood M to a temporary core place, by manual operation or as required Each detection member 11 is automatically swung upward (raised) via a control mechanism or the like. Further, if necessary, it is also possible to have a function of forcibly pressing each detection member 11 (detection tool 14) against the log M individually.

21は、芯出し演算機構であって、必要に応じて、輪郭の記憶機構を兼備して成り、前記回転角検知器6からの検知信号と、前記各距離検出器8からの輪郭データとに基いて、原木Mの旋削に適する旋削軸芯を算定し、且つ前記揺動角検知器15の輪郭データを更に加えて、旋削軸芯に対応する最大回転半径を算定する。そして、算定した旋削軸芯と最大回転半径のデータは、常法通り、例えば公知の鉋台移動機構23、原木移送機構24などの作動を制御する制御機構22に発信する。   Reference numeral 21 denotes a centering calculation mechanism which is also provided with a contour storage mechanism as necessary, and includes a detection signal from the rotation angle detector 6 and contour data from the distance detectors 8. Based on this, a turning axis suitable for turning the log M is calculated, and the contour data of the swing angle detector 15 is further added to calculate the maximum turning radius corresponding to the turning axis. Then, the calculated data of the turning axis and the maximum turning radius are transmitted to the control mechanism 22 that controls the operation of, for example, the known table moving mechanism 23 and the log transport mechanism 24 as usual.

本発明に係る原木の芯出し処理方法は、例えば前記の如く構成して成る原木の芯出し処理装置を用いて実施するものであり、原木供給具7を介して仮芯場所に供給した原木Mを、仮回転軸1を介して左右両側から挟持した後に、駆動源4を介して図示矢印の向きに回転させると、回転角検知器6が仮回転軸1の回転角度(つまり、原木Mの回転角度)を検知し、且つ各距離検出器8が原木Mの輪郭を計測するので、都合三箇所の計測点に於ける原木Mの輪郭データを得ることができ、更に加えて各揺動角検知器15が各検知部材11を介して原木Mの輪郭を計測するので、原木Mの軸芯方向の全域に亘る輪郭データも併せて得ることができる。   The raw wood centering processing method according to the present invention is carried out, for example, using the raw wood centering processing apparatus configured as described above, and the raw wood M supplied to the temporary core location via the raw wood supply tool 7. Is rotated from the left and right sides via the temporary rotation shaft 1 and then rotated in the direction indicated by the arrow through the drive source 4, the rotation angle detector 6 causes the rotation angle of the temporary rotation shaft 1 (that is, Rotation angle) and the distance detector 8 measures the contour of the log M, so that it is possible to obtain the log data of the log M at three convenient measurement points, and in addition, each swing angle. Since the detector 15 measures the contour of the log M through each of the detection members 11, the contour data over the entire area of the log M in the axial direction can also be obtained.

而して、前記都合三箇所の計測点に於ては、反射式の距離検出器の検出方角を原木求芯方向に向けることにより、各計測点の位置を、原木形状の影響を全く受けないよう不動状に安定化させて、定点的に計測する構成を採ることから、たとえ原木の凸部或は凹部が計測点の位置を通過したとしても、常に実際の輪郭に忠実な輪郭データを得ることが可能であり、該実際の輪郭に忠実な輪郭データに基づけば、従来よりも一段と適確に原木の旋削に適する旋削軸芯を算定することができる。そして更に、揺動角検知器(及び検知部材)による原木の輪郭の計測は、複数の計測区域毎に一括して広域的に行われ、原木の軸芯方向の全域に及ぶものであるから、原木のいずれの部分に凸部が存在していても、検知が洩れる虞はなく、所要通りの最大回転半径を適確に算定することができるので、総じて、従来に比べて一段と有効な心出し処理を行うことができる。   Thus, at the three measurement points, the position of each measurement point is not affected by the shape of the log at all by directing the detection direction of the reflection type distance detector in the direction of the log of the log. In this way, it is possible to obtain the contour data that is faithful to the actual contour even if the convex or concave portion of the log passes through the position of the measuring point. Therefore, based on contour data faithful to the actual contour, it is possible to calculate a turning axis suitable for turning a raw wood more accurately than in the past. And furthermore, the measurement of the contour of the log by the rocking angle detector (and the detection member) is performed in a wide area collectively for each of a plurality of measurement areas, and extends over the entire area in the axial direction of the log. Even if there is a convex part in any part of the raw wood, there is no risk of detection leaking, and the maximum turning radius as required can be accurately calculated. Processing can be performed.

因に、原木の輪郭をどの程度まで正確に計測するかは、回転角検知器による原木の回転角度の検知割合(検知頻度)を加減することによって、任意に調整することが可能であり、例えば検知割合を比較的細かく設定すれば、実際の輪郭により忠実な輪郭データを得ることができ、逆に検知割合を比較的粗く設定すれば、原木の凸部或は凹部を忠実に計測する確率が減少する傾向となる。勿論、必要に応じては、距離検出器によって旋削軸芯の算定に用いる輪郭データを計測する際の検知割合と、揺動角検知器(及び検知部材)によって最大回転半径の算定に用いる輪郭データを計測する際の計測割合とを、個別に異ならせても差支えない。   Incidentally, to what extent the contour of the log is accurately measured can be arbitrarily adjusted by adjusting the detection rate (detection frequency) of the rotation angle of the log by the rotation angle detector. If the detection rate is set relatively fine, faithful contour data can be obtained with the actual contour, and conversely, if the detection rate is set relatively coarse, the probability of faithfully measuring the convex part or concave part of the raw wood is increased. It tends to decrease. Of course, if necessary, the detection ratio when measuring the contour data used for calculating the turning axis by the distance detector and the contour data used for calculating the maximum turning radius by the swing angle detector (and the detection member). There is no problem even if the measurement ratio when measuring is individually varied.

尚、得られた輪郭データに基づいて、原木の旋削に適する旋削軸芯や最大回転半径を算定する算定方法については、一切制約はなく、従前よりこの種の処理方法に用いられている公知の算定方法、従来公知の数学的手法による算定方法など、如何様な算定方法を用いても差支えない。勿論、旋削軸芯を算定するに際しては、必ずしも計測した輪郭データの総てを、算定資料として算入する必要はなく、例えば局部的な凸部の輪郭データなど、一部の特例的な輪郭データを、必要に応じて、算定資料から除外して(形式的には、一旦は算定資料に入れ、必要に応じて、後で除外する)算定する算定方法であっても差支えないことは当然である。   There are no restrictions on the calculation method for calculating the turning axis suitable for turning raw wood and the maximum turning radius based on the obtained contour data, and there are no known methods used for this type of processing method. Any calculation method such as a calculation method or a calculation method using a conventionally known mathematical method may be used. Of course, when calculating the turning axis, it is not always necessary to include all of the measured contour data as the calculation data. For example, some special contour data such as the contour data of local protrusions is included. Of course, the calculation method can be excluded from the calculation materials if necessary (formally, it is once included in the calculation materials and excluded later if necessary). .

また、前記反射式の距離検出器の形式についても、特段の制約はなく、レーザー光などの光線を光源とする汎用光源形式の外に、例えば超音波を用いる形式など、従来公知の種々の形式を用いて差支えなく、更に、その配設位置についても、従来に準じて、少なくとも原木の両端部付近の二箇所に、好ましくは、加えて原木の中央部付近の一箇所に、必要に応じては、更に加えて原木の両端部付近と中央部付近との中間部に、夫々配設すれば足りる。   Also, there are no particular restrictions on the format of the reflection type distance detector, and there are various known types such as a format using ultrasonic waves in addition to a general-purpose light source format using a light beam such as a laser beam as a light source. In addition, according to the conventional arrangement, at least two locations near both ends of the raw wood, preferably, at one location near the central portion of the raw wood, if necessary, In addition, it is sufficient to arrange them in the middle part between the both ends of the log and the center.

また、接触揺動式の検知部材につては、前記実施例に例示する如く、先端側に平板状の検知具を付設して成る形式が、原木の回転が極めて円滑に行い得て好都合であるが、必ずしもこの形式に限定するものではなく、その外にも例えば先記図8(イ)の例と同様に、先端側に円筒状の検知具を付設して成る形式、或は図示は省略したが、先端側に半裁円筒状の検知具を付設して成る形式など、要は原木の回転を著しく阻害する虞のない形式であれば足りる。更に、その区分数についても特段の制約はないが、仮に区分が過少であると、検知部材の捩れに起因して、輪郭データが実際の輪郭と少なからず異なる値になる虞が生じ、逆に区分が過多であると、余分に輪郭データが得られて、データ処理が必要以上に過剰となる虞が生じるので、適度な数に区分するのが好ましく、常用の原木長さからすると、一区分当りの長さが一尺をやや上回る程度(概ね33cm前後)となるように区分するのが一応の目安である。   As for the contact swing type detection member, as exemplified in the above-described embodiment, a form in which a flat plate-like detection tool is attached to the tip side is advantageous in that the raw wood can be rotated very smoothly. However, the present invention is not necessarily limited to this form. In addition, as in the example of FIG. 8 (a), a form in which a cylindrical detector is attached to the tip side, or illustration is omitted. However, any type that does not significantly impede the rotation of the raw wood, such as a type in which a half-cylindrical cylindrical detector is attached to the tip side, is sufficient. Furthermore, there are no particular restrictions on the number of sections. However, if the number of sections is too small, there is a risk that the contour data may have a value different from the actual contour due to torsion of the detection member. If there are too many sections, extra contour data will be obtained, and there is a risk that the data processing will be excessive more than necessary, so it is preferable to divide it into an appropriate number. It is a tentative guide to classify the length so that the hit length is slightly over one scale (approximately 33 cm).

更に、心出し処理した原木を、芯出し処理装置からベニヤレースまで移送する原木移送機構についても、その形式について特段の制約はなく、従前よりこの種の処理方法には、種々の原木移送機構が用いられているので、それら公知の形式のいずれかを用いれば差支えないが、参考までに一例を挙げると、例えば図5に例示する如く、芯出し処理装置とベニヤレース25との中間に、先端側に適数個の把持爪31が付設され、基端側が、支点軸受27によって枢支される支点軸28へ軸芯方向に対して摺動可能に嵌装されており、流体シリンダー等から成る作動機構29の作動を得て、相互に接近・離隔せしめられる左右一対の移送アーム30を備えると共に、サーボモータ・減速機付電動機等から成る駆動源32の作動を得て、前記移送アーム30が、図示矢印N1・N2で示す如く、前記支点軸28の中心S1と芯出し処理装置の心出し基準位置(常時一定の位置)S2とを結ぶ供給開始位置Pから、途中に設けた供給待機位置Qを経て、支点軸28の中心S1とベニヤレース25のスピンドル26の中心S3とを結ぶ供給終了位置Rまで、交互に一体的に往復回動するよう構成し、而も適宜の作動機構(図示省略)を介して、芯出し処理装置の仮回転軸1を、左右各別に水平方向(X方向)及び垂直方向(Y方向)に移動できるよう構成して成る原木移送機構が挙げられる。   Furthermore, there is no particular limitation on the type of the log transport mechanism that transports the centered log from the centering processing device to the veneer lace, and this type of processing method has conventionally had various log transport mechanisms. However, if any of these known types is used, for example, as shown in FIG. 5, for example, a tip is placed between the centering device and the veneer lace 25. An appropriate number of gripping claws 31 are provided on the side, and the base end side is fitted to a fulcrum shaft 28 pivotally supported by a fulcrum bearing 27 so as to be slidable in the axial direction, and is composed of a fluid cylinder or the like. A pair of left and right transfer arms 30 that can be operated and separated from each other are obtained by the operation of the operation mechanism 29, and the operation of the drive source 32 including a servo motor, a motor with a speed reducer, and the like is obtained. As shown by the illustrated arrows N1 and N2, the system 30 is provided in the middle from the supply start position P connecting the center S1 of the fulcrum shaft 28 and the centering reference position (always constant position) S2 of the centering processing device. Through the supply standby position Q, it is configured to reciprocate integrally and alternately to a supply end position R connecting the center S1 of the fulcrum shaft 28 and the center S3 of the spindle 26 of the veneer race 25, and the appropriate operation There is a log transporting mechanism configured to move the temporary rotating shaft 1 of the centering processing device in the horizontal direction (X direction) and the vertical direction (Y direction) separately through the mechanism (not shown). .

例えば述上の如く構成して成る原木移送機構を用いる場合には、先述の如き処理方法によって原木Mの心出し処理をした後に、仮回転軸1を左右各別に所要量だけ水平方向及び垂直方向に移動させて、算定された原木Mの適切な旋削軸芯の位置を、芯出し処理装置の心出し基準位置S2に合致させ、更に供給待機位置Qに待機させていた各移送アーム30を、駆動源32を介して一体的に供給開始位置Pまで回動させると共に、作動機構29を介して各移送アーム30を相互に接近させて、原木Mを左右両側から把持する。次いで、仮回転軸1による原木Mの挟持を開放した後に、駆動源32を介して各移送アーム30を一体的に供給終了位置Rまで回動させ(必要に応じては、供給待機位置Qに一旦待機させてから)、更にベニヤレース25のスピンドル26を作動させて原木Mを挟持した後に、作動機構29を介して各移送アーム30を相互に離隔させることにより、原木Mの移送を完了することができる。   For example, when a log transport mechanism configured as described above is used, after the log M is centered by the processing method as described above, the provisional rotary shaft 1 is moved in the horizontal and vertical directions by the required amount separately for the left and right. Each of the transfer arms 30 that have been made to match the calculated position of the appropriate turning shaft core of the log M with the centering reference position S2 of the centering processing apparatus and further waiting at the supply standby position Q. While rotating integrally to the supply start position P via the drive source 32, each transfer arm 30 is mutually approached via the action mechanism 29, and the log M is gripped from both the left and right sides. Next, after the holding of the log M by the temporary rotating shaft 1 is released, the transfer arms 30 are integrally rotated to the supply end position R via the drive source 32 (if necessary, the supply arm 30 is moved to the supply standby position Q). After waiting once), the spindle 26 of the veneer race 25 is further operated to clamp the log M, and then the transfer arms 30 are separated from each other via the operating mechanism 29 to complete the transfer of the log M. be able to.

勿論、原木移送機構の形式が、斯様な実例の形式に限定されないことは既に述べた通りであって、この他にも、図示は省略したが、例えば原木を移送する途中に於て、原木の適切な旋削軸芯の位置を、所望の基準位置に合致させるように、原木の位置を変動させる形式、或は例えば原木の移送を終了する間際に於て、原木の適切な旋削軸芯の位置を、スピンドルの中心に合致させるように、原木の供給位置を換える形式など、従来公知の種々の形式の原木移送機構を用いることができる。   Of course, the type of the log transport mechanism is not limited to that of such an example as described above. In addition to this, although not shown in the figure, for example, in the course of transferring the log, the log In the form of varying the position of the raw wood so that the position of the appropriate turning axis of the wood matches the desired reference position, or for example just before finishing the transportation of the raw wood, Various types of log transporting mechanisms known in the art can be used, such as a mode in which the feed position of the log is changed so as to match the position with the center of the spindle.

本発明によれば、総じて、従来に比べて一段と有効な心出し処理を行うことができ、心出し処理工程の合理化に好適である。   According to the present invention, the centering process can be performed more effectively than the prior art, which is suitable for rationalizing the centering process.

本発明に係る原木の芯出し処理方法の実施に用いる原木の芯出し処理装置の正面説明図である。It is front explanatory drawing of the centering processing apparatus of the raw wood used for implementation of the centering processing method of the raw wood which concerns on this invention. 図1に例示した原木の芯出し処理装置の部分正面説明図である。FIG. 2 is a partial front explanatory view of the raw wood centering apparatus illustrated in FIG. 1. 図1に例示した原木の芯出し処理装置の部分側面説明図である。FIG. 2 is a partial side view of the raw wood centering apparatus illustrated in FIG. 1. 図1に例示した原木の芯出し処理装置に於ける制御系関係の概要説明図である。FIG. 2 is a schematic explanatory diagram of control system relationships in the raw wood centering processing apparatus illustrated in FIG. 1. 本発明に係る原木の芯出し処理装置の後工程に備える原木移送機構の一例の側面説明図である。It is side surface explanatory drawing of an example of the log transport mechanism with which the post process of the log centering apparatus concerning this invention is equipped. 原木の旋削軸芯を定める手法の実例を説明する為の概略側面説明図である。It is a schematic side view for demonstrating the example of the method of determining the turning axis of a raw wood. 従来の芯出し処理方法を説明する為の概略正面説明図である。It is a schematic front explanatory drawing for demonstrating the conventional centering processing method. 従来の別の芯出し処理方法を説明する為の概略側面説明図である。It is a schematic side view for demonstrating another conventional centering processing method. 従来の更に別の芯出し処理方法を説明する為の概略側面説明図である。It is a schematic side view for demonstrating another conventional centering processing method. 従来の更に別の芯出し処理方法を説明する為の概略正面説明図である。It is a schematic front explanatory drawing for demonstrating another conventional centering processing method. 従来の更に別の芯出し処理方法を説明する為の概略正面説明図である。It is a schematic front explanatory drawing for demonstrating another conventional centering processing method.

符号の説明Explanation of symbols

A・B・E・F・G・H・M :原木
B1・E1・F1・G1・H1・M1:原木の凸部
A2・E2・F2・M2 :原木の凹部
C1・C2 :従来の原木の芯出し処理装置の計測機器
D :原木の直径
P :原木の供給開始位置
Q :原木の供給待機位置
R :原木の供給終了位置
a・b・d :原木の旋削軸芯
c :原木の仮の軸芯
1 :左右一対の仮回転軸
3・29 :作動機構
4・32 :駆動源
6 :回転角検知器
8 :反射式の距離検出器
11・50 :接触揺動式の検知部材
14 :平板状の検知具
15 :揺動角検知器
21 :芯出し演算機構
25 :ベニヤレース
26 :スピンドル
30 :移送アーム
51 :円筒状の検知具
53 :リニヤエンコーダ
54 :投光器
55 :受光器
56 :反射式の輪郭検知器
A, B, E, F, G, H, M: Log B1, E1, F1, G1, H1, M1: Logs A2, E2, F2, M2: Logs C1, C2 of logs: Conventional logs Measuring device D of centering processing device: Diameter of raw wood P: Raw wood supply start position Q: Raw wood supply standby position R: Raw wood supply end position a · b · d: Raw wood turning axis c: Raw wood temporary Shaft core 1: A pair of left and right temporary rotating shafts 3 and 29: Actuating mechanism 4 and 32: Drive source 6: Rotation angle detector 8: Reflection type distance detector 11 and 50: Contact swing type detection member 14: Flat plate -Shaped detector 15: rocking angle detector 21: centering calculation mechanism 25: veneer race 26: spindle 30: transfer arm 51: cylindrical detector 53: linear encoder 54: projector 55: light receiver 56: reflection type Contour detector

Claims (8)

仮の軸芯を中心に原木を回転させ、所望の回転角度毎に原木の輪郭を計測すると共に、計測した輪郭データに基づいて、原木の旋削に適する旋削軸芯と、旋削軸芯に対応する最大回転半径とを算定する原木の芯出し処理方法であって、旋削軸芯の算定に用いる輪郭と、最大回転半径の算定に用いる輪郭とを各々別途に計測することとし、旋削軸芯の算定に用いる輪郭は、原木の軸芯方向に適宜の間隔を隔てた所望の複数の計測点に限定して定点的に計測し、また最大回転半径の算定に用いる輪郭は、原木の軸芯方向にほぼ隙間なく区分した所望の複数の計測区域毎に一括して広域的に計測することを特徴とする原木の芯出し処理方法。   The log is rotated around the temporary axis and the outline of the log is measured at each desired rotation angle. Based on the measured outline data, the turning axis suitable for turning the log and the turning axis are supported. A raw wood centering method that calculates the maximum turning radius. The contour used to calculate the turning axis and the contour used to calculate the maximum turning radius are measured separately, and the turning axis is calculated. The contour used for the measurement is fixed-point measurement limited to a plurality of desired measurement points separated by appropriate intervals in the axial direction of the raw wood, and the contour used for calculating the maximum turning radius is in the axial direction of the raw wood. A raw wood centering method characterized in that measurement is performed over a wide area for each of a plurality of desired measurement areas divided almost without gaps. 少なくとも原木の両端部付近の二箇所の計測点に於て、旋削軸芯の算定に用いる輪郭を計測する請求項1記載の原木の芯出し処理方法。   2. The raw wood centering method according to claim 1, wherein the contour used for calculating the turning axis is measured at least at two measurement points near both ends of the raw wood. 原木の中央部付近の一箇所の計測点に於ても、旋削軸芯の算定に用いる輪郭を計測する請求項2記載の原木の芯出し処理方法。   3. The raw wood centering method according to claim 2, wherein the contour used for calculating the turning axis is measured at one measurement point near the center of the raw wood. 所定の仮芯場所に供給される原木の両端面の側方へ、相互に接近・離隔自在に、且つ少なくとも片側が回転駆動されるように備えられる左右一対の仮回転軸と、該仮回転軸の回転角度を検知する回転角検知器と、仮芯場所に供給される原木の外周の近傍であって、而も原木の軸芯方向に適宜の間隔を隔てた所望の複数の箇所へ、検出方角を原木求芯方向に向けて備えられる反射式の距離検出器と、原木の軸芯方向に対して所望の複数に区分された夫々の基端側が、仮芯場所に供給される原木の外周の近傍に位置する支軸を介して枢支されており、且つ各々の先端側に付設された検知具が、原木の軸芯方向にほぼ隙間なく並んで原木外周に接触するよう備えられる接触揺動式の検知部材と、各検知部材の揺動量を個別に検知する複数の揺動角検知器と、前記回転角検知器の検知信号及び距離検出器の輪郭データに基づいて、原木の旋削に適する旋削軸芯を算定し、且つ前記揺動角検知器の輪郭データを更に加えて、旋削軸芯に対応する最大回転半径を算定する芯出し演算機構とを備えたことを特徴とする原木の芯出し処理装置。   A pair of left and right temporary rotating shafts provided so as to be able to approach and separate from each other and to be driven to rotate at least on one side to both sides of the raw wood supplied to a predetermined temporary core location, and the temporary rotating shaft Rotation angle detector for detecting the rotation angle of the wood and detection to a plurality of desired locations in the vicinity of the outer periphery of the raw wood supplied to the temporary core location, with appropriate intervals in the axial direction of the raw wood Reflective distance detectors with the direction facing the centripetal direction of the log and the outer periphery of the log that is supplied to the temporary core location on the base end side divided into the desired multiple with respect to the axis direction of the log Contact detectors that are pivotally supported via a support shaft located in the vicinity of each other, and that are provided so that the detectors attached to the respective tip ends are arranged in the axial center direction of the raw wood so as to be in contact with the outer circumference of the raw wood. Dynamic detection members and multiple swing angle detections that individually detect the swing amount of each detection member A turning axis suitable for turning the raw wood based on the detector, the detection signal of the rotation angle detector and the contour data of the distance detector, and further adding the contour data of the swing angle detector, A centering processing apparatus for raw wood, comprising a centering calculation mechanism for calculating a maximum turning radius corresponding to the shaft center. 少なくとも原木の両端部付近の二箇所に、反射式の距離検出器を備えて成る請求項4記載の原木の芯出し処理装置。   5. The raw wood centering apparatus according to claim 4, further comprising reflective distance detectors at least at two locations near both ends of the raw wood. 原木の中央部付近の一箇所にも、反射式の距離検出器を備えて成る請求項5記載の原木の芯出し処理装置。   6. The raw wood centering apparatus according to claim 5, further comprising a reflection-type distance detector at one location near the center of the raw wood. 平板状の検知具を付設した検知部材を備えて成る請求項4又は請求項5又は請求項6記載の原木の芯出し処理装置。   The raw wood centering processing apparatus according to claim 4, comprising a detection member provided with a flat plate-shaped detection tool. 円筒状の検知具を付設した検知部材を備えて成る請求項4又は請求項5又は請求項6記載の原木の芯出し処理装置。   The raw wood centering apparatus according to claim 4, further comprising a detection member provided with a cylindrical detection tool.
JP2004122404A 2003-04-25 2004-04-19 Raw wood centering processing method and raw wood centering processing apparatus Expired - Fee Related JP4594643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122404A JP4594643B2 (en) 2003-04-25 2004-04-19 Raw wood centering processing method and raw wood centering processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003121393 2003-04-25
JP2004122404A JP4594643B2 (en) 2003-04-25 2004-04-19 Raw wood centering processing method and raw wood centering processing apparatus

Publications (2)

Publication Number Publication Date
JP2004338391A JP2004338391A (en) 2004-12-02
JP4594643B2 true JP4594643B2 (en) 2010-12-08

Family

ID=33543261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122404A Expired - Fee Related JP4594643B2 (en) 2003-04-25 2004-04-19 Raw wood centering processing method and raw wood centering processing apparatus

Country Status (1)

Country Link
JP (1) JP4594643B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4603509B2 (en) * 2006-06-05 2010-12-22 株式会社名南製作所 Raw wood centering method and raw wood centering device
EP2066475B1 (en) * 2006-08-30 2018-07-11 USNR/Kockums Cancar Company Charger scanner system
JP5613003B2 (en) * 2010-10-14 2014-10-22 株式会社名南製作所 Supplying raw wood to veneer lace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293002A (en) * 1992-12-22 1994-10-21 Taihei Mach Works Ltd Aligning method and aligning supply method of log and device thereof
JPH06328408A (en) * 1993-05-20 1994-11-29 Taihei Mach Works Ltd Method and device for centering log
JPH08216117A (en) * 1995-02-09 1996-08-27 Taihei Mach Works Ltd Method and apparatus for detecting maximum diameter of raw lumber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293002A (en) * 1992-12-22 1994-10-21 Taihei Mach Works Ltd Aligning method and aligning supply method of log and device thereof
JPH06328408A (en) * 1993-05-20 1994-11-29 Taihei Mach Works Ltd Method and device for centering log
JPH08216117A (en) * 1995-02-09 1996-08-27 Taihei Mach Works Ltd Method and apparatus for detecting maximum diameter of raw lumber

Also Published As

Publication number Publication date
JP2004338391A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP3602199B2 (en) Material dimension measuring device
US5201351A (en) Edger for a conventional sawmill
KR20060129091A (en) Cutting tool
JPH0229404B2 (en)
US6116306A (en) Method and apparatus for positioning log blocks on optimum center in lathe charger for transfer to veneer lathe
AU2004201631B2 (en) Method and apparatus for centering a log
JP4594643B2 (en) Raw wood centering processing method and raw wood centering processing apparatus
JP2010101740A (en) Shaft workpiece measuring apparatus
JPH1110486A (en) Automatic centering device for pipe to be machined
AU2006202071B2 (en) An apparatus and method for producing barrel staves
WO2023224089A1 (en) Machining machine
ITMI20081252A1 (en) Procedure and device for positioning a piece with respect to a tool
JP4985508B2 (en) Measuring tool for adjusting the conveying roller and adjusting method
CN211696277U (en) Light transmission gap data comparison device for straightness detection of working edge of knife-edge-shaped ruler
JP7092102B2 (en) Pipe end shape measuring device, pipe end shape measuring method, and steel pipe manufacturing method
WO2020262044A1 (en) Tire testing machine, and method for conveying tire in tire testing machine
JP7187010B2 (en) Position adjustment device for bar surface treatment equipment
JPH06328408A (en) Method and device for centering log
JPH1062299A (en) Device for measuring shape of preform for optical fiber
JPH10109250A (en) Method and device for milling
JPH08240414A (en) Diameter measuring device
CN217786117U (en) Pipe bending degree detection device
JPH08178861A (en) Surface inspection device
JPH07120226A (en) Measuring instrument for shape steel dimension
JPS6117641B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4594643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees