WO2020262044A1 - Tire testing machine, and method for conveying tire in tire testing machine - Google Patents

Tire testing machine, and method for conveying tire in tire testing machine Download PDF

Info

Publication number
WO2020262044A1
WO2020262044A1 PCT/JP2020/023225 JP2020023225W WO2020262044A1 WO 2020262044 A1 WO2020262044 A1 WO 2020262044A1 JP 2020023225 W JP2020023225 W JP 2020023225W WO 2020262044 A1 WO2020262044 A1 WO 2020262044A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
transport
sensor
detection unit
outer peripheral
Prior art date
Application number
PCT/JP2020/023225
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 森
顕史 吉川
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2020262044A1 publication Critical patent/WO2020262044A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/02Details of balancing machines or devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres

Definitions

  • the present invention relates to a tire testing machine and a tire transport method in a tire testing machine.
  • the tire testing machine has a spindle shaft that is arranged at the tire test position and rotatably supports the tire around a rotation center axis that extends in the vertical direction, and a rotation center axis that is parallel to the rotation center axis of the spindle shaft. It also has a rotating drum that can come into contact with the outer peripheral surface of the tire and a load cell that can measure the load applied to the rotating drum. When the rotating drum is pressed against the outer peripheral surface of the tire mounted on the spindle shaft and the tire rotates around the spindle shaft, the load cell measures the load fluctuation data corresponding to the rotation of the tire. Tire uniformity is evaluated based on the measured load variation data.
  • the inner diameter of a tire evaluated by such a tire testing machine may differ depending on the type of tire. Therefore, when the tire is mounted on the spindle shaft, an upper rim and a lower rim corresponding to the tire size are mounted on both side surfaces of the tire, and the spindle shaft rotatably supports the tire via these rims. ..
  • Patent Document 1 discloses a technique of shortening the feed distance of a tire with respect to a tire test position according to the outer diameter of the tire and shortening the feed time.
  • the tire testing machine has a belt conveyor that conveys the tire in a posture in which its rotation center axis extends in the vertical direction, and a pair of front and rear photoelectric sensors that detect the outer peripheral surface of the tire on the tire transport path.
  • the outer diameter of the tire is calculated from the time difference and the transport speed of the tire.
  • the tip portion of the tire is detected again by the photoelectric sensor on the downstream side, and the tire is temporarily stopped at a predetermined standby position.
  • the transport distance from the standby position to the tire test position is calculated according to the calculated outer diameter of the tire, and the tire is delivered to the tire test position by transporting the tire by the distance.
  • the center axis of the tire and the center of the spindle axis are aligned, and the upper rim and the lower rim corresponding to the tire size can be mounted on both side surfaces of the tire from above and below.
  • the tire having an arc-shaped outer peripheral surface such as a tire for a motorbike is transported, or when a tire having a tread (groove) formed on the outer peripheral surface is transported
  • the tire The testing machine erroneously detects the outer diameter of the transported tire as a value smaller than the maximum outer diameter of the tire.
  • the central axis of the transported tire does not reach the rotation central axis of the spindle shaft, and the rim is attached to the tire. There was a problem that it could not be installed accurately and that a part of the tire was damaged by the rim.
  • An object of the present invention is to provide a tire tester and a tire transport method in a tire tester capable of accurately carrying a plurality of types of tires having various shapes into a tire test position.
  • a tire testing machine which includes a spindle shaft, a transport mechanism, a first tire detection unit, a tire dimension calculation unit, a second tire detection unit, and a stop. It includes a control unit, a movement distance calculation unit, and a transport control unit.
  • the spindle shaft is capable of rotating the tire around a reference rotation center axis extending in the vertical direction via a rim mounted on the tire at a tire test position where the tire is placed to perform a predetermined test on the tire.
  • the transport mechanism has a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and can transport the tire to the tire test position along a predetermined transport path. is there.
  • the first tire detection unit detects the tire transported by the transport mechanism.
  • the first tire detection unit is a virtual cutting surface in which the tire mounted on the transport surface is arranged at a predetermined height from the transport surface and is parallel to the transport surface. It is detected that the front end portion and the rear end portion of the specific outer peripheral edge, which is the outer peripheral edge of the tire formed by being cut, in the transport direction of the tire have reached a predetermined detection position for dimensional calculation.
  • the tire dimension calculation unit has a time difference in which the first tire detection unit detects that the front end portion and the rear end portion of the specific outer peripheral edge have reached the dimension calculation detection position, and the transport mechanism of the tire.
  • the outer diameter dimension of the specific outer peripheral edge of the tire is calculated based on the transport speed.
  • the second tire detection unit is arranged on the downstream side of the first tire detection unit in the transport direction, and the tip portion of the specific outer peripheral edge of the tire transported by the transport mechanism is at a predetermined stop detection position. Detect that it has arrived.
  • the stop control unit when the second tire detection unit detects that the tip portion of the specific outer peripheral edge has reached the stop detection position, the tip portion of the specific outer peripheral edge of the tire is moved.
  • the transport mechanism is controlled so as to temporarily stop at a predetermined standby position on the transport path.
  • the moving distance calculation unit moves the tire from the standby position to the tire based on the outer diameter dimension of the specific outer peripheral edge calculated by the tire dimension calculation unit and the distance from the standby position to the tire test position.
  • the moving distance of the tire for moving to the test position is calculated.
  • the transport control unit controls the transport mechanism so that the tire moves from the standby position to the tire test position according to the movement distance calculated by the movement distance calculation unit.
  • a tire testing machine which includes a spindle shaft, a transport mechanism, a first tire detection unit, a tire dimension calculation unit, and a second tire detection unit. , A stop control unit, a movement distance calculation unit, and a transfer control unit are provided.
  • the spindle shaft is capable of rotating the tire around a reference rotation center axis extending in the vertical direction via a rim mounted on the tire at a tire test position where the tire is placed to perform a predetermined test on the tire.
  • the transport mechanism has a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and can transport the tire to the tire test position along a predetermined transport path. is there.
  • the first tire detection unit is arranged at a position at a predetermined height with respect to the transport surface, and the front end portion and the rear end portion of the tire in the transport direction of the tire have reached a predetermined detection position for dimension calculation. Are detected respectively.
  • the tire dimensional calculation unit has a time difference in which the first tire detection unit detects that the front end portion and the rear end portion of the tire have reached the dimensional calculation detection position, and the transfer speed of the tire by the transfer mechanism. Based on the above, the outer diameter dimension of the tire is calculated.
  • the second tire detection unit is arranged on the downstream side in the transport direction from the first tire detection unit at the same height as the first tire detection unit with respect to the transport surface, and is transported by the transport mechanism.
  • the stop control unit detects that the tip of the tire has reached the stop detection position, and the tip of the tire reaches a predetermined position on the transport path.
  • the transport mechanism is controlled so as to pause at the standby position.
  • the moving distance calculation unit moves the tire from the standby position to the tire based on the stop control unit, the outer diameter dimension calculated by the tire dimension calculation unit, and the distance from the standby position to the tire test position.
  • the moving distance of the tire for moving to the tire test position is calculated.
  • the transport control unit controls the transport mechanism so that the tire moves from the standby position to the tire test position according to the movement distance calculated by the movement distance calculation unit.
  • the present invention is a tire transport of a tire testing machine that transports the tire to a tire test position where the tire is arranged in order to perform the test in a tire testing machine that performs a predetermined test on the tire.
  • the tire transport method has a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and transports the tire to the tire test position along a predetermined transport path.
  • the transport direction of the tire on the specific outer peripheral edge which is the outer peripheral edge of the tire, which is formed by virtually cutting by a virtual cutting surface parallel to the transport surface and arranged at a position at a predetermined height from the transport surface.
  • a first tire detection unit that detects that the front end portion and the rear end portion of the tire have reached a predetermined dimensional calculation detection position is arranged on the transfer path, and the tire conveyed by the transfer mechanism
  • the second tire detection unit that detects that the tip portion of the specific outer peripheral edge has reached a predetermined stop detection position is arranged on the downstream side in the transport direction from the first tire detection unit, and the specific outer peripheral edge Based on the time difference in which the first tire detection unit detects that the front end portion and the rear end portion of the tire have reached the detection position for dimension calculation and the transfer speed of the tire by the transfer mechanism, the tire As the outer diameter dimension of the specific outer peripheral edge is calculated and the second tire detecting unit detects that the tip portion of the specific outer peripheral edge has reached the stop detection position, the tire Controlling
  • the movement distance of the tire for moving the tire from the standby position to the tire test position is calculated, and the movement distance calculation unit. It includes controlling the transport mechanism so that the tire moves from the standby position to the tire test position according to the movement distance calculated by.
  • the present invention is a tire transport of a tire testing machine that transports the tire to a tire test position where the tire is arranged in order to perform the test in a tire testing machine that performs a predetermined test on the tire.
  • the tire transport method has a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and transports the tire to the tire test position along a predetermined transport path.
  • First tire detection capable of preparing a possible transport mechanism and detecting that the front end and the rear end of the tire transported by the transport mechanism have reached a predetermined detection position for dimensional calculation, respectively.
  • the second tire detection unit is arranged on the downstream side in the transport direction of the tire from the first tire detection unit at the same height as the first tire detection unit with respect to the transport surface, and the tire.
  • the outside of the tire is based on the time difference in which the first tire detection unit detects that the front end portion and the rear end portion have reached the detection position for dimension calculation and the transport speed of the tire by the transport mechanism.
  • the transport mechanism is controlled so as to temporarily stop at a predetermined standby position, and the moving distance of the tire from the standby position to the tire test position is calculated according to the calculated outer diameter dimension. Based on the calculated movement distance and the distance from the standby position to the tire test position, the transport mechanism is controlled so that the tire moves from the standby position to the tire test position. And to be prepared.
  • FIG. 1 is a plan view of the tire testing machine 100 according to the present embodiment.
  • the tire testing machine 100 performs a predetermined test on the tire T (FIG. 3).
  • the tire testing machine 100 includes a spindle shaft 31, a pair of left and right first belt conveyors 1, a pair of left and right second belt conveyors 2, a pair of left and right roller portions 3, a pair of left and right supply conveyors 5, and a first sensor.
  • a tire measurement sensor 60 (first tire detection unit) including 61 and a second sensor 62, a stop sensor 63 (second tire detection unit), a lubricator 7 (lubricating mechanism), and a pair of left and right pressing units. 9 and.
  • the tire testing machine 100 includes a housing 50 and a sensor support portion 51 that supports three pairs of left and right sensors (first sensor 61, second sensor 62, and stop sensor 63). ,have.
  • the spindle shaft 31 is arranged at the tire test position TP where the tire T is arranged to perform a predetermined test on the tire T, and is provided via a pair of rims (not shown) mounted on both side surfaces of the tire T.
  • the tire T is rotatably supported around the reference rotation center axis L extending in the vertical direction.
  • the tire testing machine 100 further includes a rotating drum (not shown) that is rotatably supported around the rotation center axis parallel to the reference rotation center axis L of the spindle shaft 31 and can be brought into contact with the outer peripheral surface of the tire T. It has a load cell (not shown) capable of measuring the load applied to the rotating drum.
  • the load cell collects load fluctuation data corresponding to the rotation of the tire T. measure. As a result, the uniformity of the tire is evaluated based on the measured load fluctuation data.
  • the transport direction of the tire T is indicated by the arrow DS.
  • the pair of left and right first belt conveyors 1 and the pair of left and right second belt conveyors 2 function as the transport mechanism of the present invention.
  • the first belt conveyor 1 and the second belt conveyor 2 each have a flat transport surface 1H (see FIG. 8) on which the tire T is placed in a posture in which the rotation axis of the tire T extends in the vertical direction. It is possible to transport the tire T to the tire test position TP along a predetermined transport path.
  • the pair of left and right first belt conveyors 1 extend along the front-rear direction and are arranged at intervals in the left-right direction.
  • the pair of left and right second belt conveyors 2 extend along the front-rear direction and are spaced apart from each other in the left-right direction on the front side of the pair of left and right first belt conveyors 1, that is, on the downstream side in the transport direction of the tire T. Will be placed. As shown in FIG. 1, the downstream end of the pair of left and right first belt conveyors 1 and the upstream end of the pair of left and right second belt conveyors 2 partially overlap. Further, in the present embodiment, the distance between the pair of left and right second belt conveyors 2 is set wider than the distance between the pair of left and right first belt conveyors 1.
  • the pair of left and right first belt conveyors 1 and the pair of left and right second belt conveyors 2 are arranged line-symmetrically with respect to a center line extending in the front-rear direction through the reference rotation center axis L. Further, the tire test position TP described above is arranged at a substantially central portion of the pair of left and right second belt conveyors 2.
  • the pair of left and right supply conveyors 5 are arranged on the upstream side of the pair of left and right first belt conveyors 1, and the tires T are carried into the upstream end of the pair of left and right first belt conveyors 1.
  • the pair of left and right roller portions 3 are arranged outside the pair of left and right first belt conveyors 1 in the width direction (left and right direction).
  • Each roller portion 3 has a plurality of mounting rollers 3A that are arranged and rotatable adjacent to each other in the front-rear direction and the left-right direction. These mounting rollers 3A form a mounting surface on which the tire T in the collapsed state is rotatably mounted in a horizontal plane.
  • the roller portions 3 may be provided inside the pair of left and right first belt conveyors 1, or may be provided both inside and outside the pair of left and right first belt conveyors 1.
  • each first belt conveyor 1 has a belt 1A, a driving roller 1B, and a driven roller 1C.
  • the belt 1A is rotatably supported by the driving roller 1B and the driven roller 1C.
  • the drive roller 1B is connected to a motor (not shown), and receives a rotational driving force from the motor to rotate the belt 1A.
  • the driven roller 1C supports the belt 1A on the side opposite to the driving roller 1B, and rotates in a driven manner of the belt 1A.
  • the upper surface of the belt 1A constitutes the transport surface 1H.
  • the tire measurement sensor 60 detects the tire T conveyed by the first belt conveyor 1. Specifically, in the tire measurement sensor 60, the tire T mounted on the transport surface 1H of the first belt conveyor 1 is arranged at a position at a predetermined height H from the transport surface 1H, and is virtually cut parallel to the transport surface 1H. The front end portion and the rear end portion of the specific outer peripheral edge VC (see FIG. 8), which is the outer peripheral edge of the tire T formed by being virtually cut by the surface G, in the transport direction of the tire T are detected. In the present embodiment, the virtual cut surface G is a horizontal plane.
  • the tire measurement sensor 60 has a first sensor 61 and a second sensor 62.
  • the first sensor 61 detects the rear end portion of the specific outer peripheral edge VC of the tire T.
  • the second sensor 62 is arranged on the downstream side in the transport direction with respect to the first sensor 61, and detects the tip end portion of the specific outer peripheral edge VC of the tire T.
  • the first sensor 61 is composed of a photoelectric sensor, and emits detection light (see the alternate long and short dash line in FIG. 1, the same applies to subsequent sensors) in a direction intersecting (orthogonal) and horizontal with the transport direction of the tire T. It has a light emitting unit 61A and a first light receiving unit 61B that receives the detected light.
  • the second sensor 62 includes a second light emitting unit 62A which is composed of a photoelectric sensor and emits detection light in a direction intersecting (orthogonal) and horizontal with the transport direction of the tire T, and receives the detection light. It has a second light receiving unit 62B.
  • the positions of the detection lights of the first sensor 61 and the second sensor 62 correspond to the detection positions for dimensional calculation of the present invention, respectively.
  • the stop sensor 63 is arranged on the downstream side in the transport direction of the tire T from the second sensor 62 of the tire measurement sensor 60, and is a specific outer peripheral edge of the tire T transported by the first belt conveyor 1 and the second belt conveyor 2. Detects the tip of the VC.
  • the stop sensor 63 includes a third light emitting unit 63A that comprises a photoelectric sensor and emits detection light in a direction intersecting (orthogonal) and horizontal with the transport direction of the tire T, and a third light receiving unit that receives the detected light. It has a part 63B and. The position of the detection light of the stop sensor 63 corresponds to the stop detection position of the present invention.
  • the lubricator 7 is arranged between the first sensor 61 and the second sensor 62, between the pair of left and right first belt conveyors 1.
  • the lubricator 7 can be raised and lowered by an air cylinder (not shown).
  • the lubricator 7 abuts on the inner peripheral surface of the tire T so as to position the tire T between the brush 7A that applies a lubricant to the bead portion (not shown) on the inner peripheral surface of the tire T and the pressing unit 9. It has a pair of positioning rollers 7B to be formed.
  • the pair of left and right pressing units 9 are arranged on both the left and right sides of the pair of left and right first belt conveyors 1 (roller portions 3).
  • the pair of left and right pressing units 9 have a pressing roller 9A that presses the outer peripheral surface of the tire T toward the center, and a supporting portion 9B that swingably supports the pressing roller 9A.
  • the supporting portion 9B is a pressing roller. While holding the 9A, it can swing on a horizontal plane with the base end portion of the support portion 9B on the opposite side of the pressing roller 9A as a fulcrum.
  • the housing 50 supports the first belt conveyor 1, the second belt conveyor 2, the roller portion 3, the lubricator 7, and the like. Further, the three pairs of left and right sensor support portions 51 are arranged so as to extend upward from the left and right end portions of the housing 50, and the first light emitting unit 61A, the first light receiving unit 61B, and the second light emitting unit 62A, respectively. It supports the second light receiving unit 62B, the third light emitting unit 63A, and the third light receiving unit 63B.
  • the sensor support portion 51 that supports the first light emitting portion 61A and the first light receiving portion 61B is shown, but behind the sensor support portion 51 (on the back side in the direction orthogonal to the paper surface).
  • the other sensor support units 51 support the second light emitting unit 62A, the second light receiving unit 62B, the third light emitting unit 63A, and the third light receiving unit 63B, respectively.
  • FIG. 2 is a block diagram of the control unit 80 of the tire testing machine 100 according to the present embodiment.
  • the tire testing machine 100 further includes a control unit 80.
  • the control unit 80 comprehensively controls each mechanism of the tire testing machine 100.
  • the control unit 80 is composed of a CPU (Central Processing Unit), a ROM for storing control programs (Read Only Memory), a RAM (Random Access Memory) used as a work area of the CPU, and the like, and is composed of a first belt conveyor 1 , The operation of the second belt conveyor 2, the supply conveyor 5, the lubricator 7, the pressing unit 9, and the like is controlled. Further, in addition to each of these members, the first sensor 61, the second sensor 62, and the stop sensor 63 described above are electrically connected to the control unit 80.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the control unit 80 executes a control program stored in the ROM by the CPU to execute a drive control unit 801 (stop control unit, transfer control unit) and a tire transfer calculation unit 802 (tire dimension calculation unit, movement distance calculation).
  • a unit) and a storage unit 803 are provided.
  • the drive control unit 801 inputs a command signal for driving to each drive system of the first belt conveyor 1, the second belt conveyor 2, the supply conveyor 5, the lubricator 7, and the pressing unit 9. Further, in the drive control unit 801, the tip of the specific outer peripheral edge VC of the tire T is the tip of the drive control unit 801 as the stop sensor 63 detects the tip of the specific outer peripheral edge VC of the tire T in the transport process of the tire T.
  • the first belt conveyor 1 and the second belt conveyor 2 are controlled so as to temporarily stop at a predetermined standby position SP (FIG. 6) on the transport path. Further, the drive control unit 801 first moves the tire T from the standby position SP to the tire test position TP (FIG. 1) according to the later movement distance X calculated by the tire transfer calculation unit 802. It controls the belt conveyor 1 and the second belt conveyor 2.
  • the tire transfer calculation unit 802 calculates various parameters for carrying the tire T to the tire test position TP.
  • the time difference between the first sensor 61 and the second sensor 62 of the tire measurement sensor 60 for detecting the rear end and the tip of the specific outer peripheral edge VC of the tire T and the first sensor 61 respectively.
  • the outer diameter dimension VD (FIG. 8) of the specific outer peripheral edge VC of the tire T is calculated based on the transport speed of the tire T between the second sensor 62 and the second sensor 62.
  • the tire transfer calculation unit 802 is based on the outer diameter dimension VD of the specific outer peripheral edge VC calculated by the tire transfer calculation unit 802 and the distance from the standby position SP to the tire test position TP.
  • the moving distance X of the specific outer peripheral edge VC of the tire T for moving the tire T from the standby position SP to the tire test position TP is calculated.
  • the storage unit 803 stores various threshold values, constants, mathematical formulas, etc. referred to by the drive control unit 801 and the tire transfer calculation unit 802.
  • FIG. 4 is a side view of the tire testing machine 100 according to the present embodiment.
  • the virtual specific outer peripheral edge VC drawn above the tire T (MC tire T1) is a plan view.
  • 9 and 10 are rear views of the tire testing machine 100 according to the present embodiment.
  • the MC tire T1 is mounted as the tire T on the transport surface 1H of the first belt conveyor 1
  • the PC tire T2 is mounted as the tire T.
  • the MC tire T1 is a tire for Motor Cycle
  • the PC tire T2 is a tire for Passenger Car.
  • the outer peripheral surface of the MC tire T1 has a substantially arc shape (curved shape).
  • the PC tire T2 has a shape whose outer peripheral surface is substantially flat. Grooves (treads, irregularities) (not shown) are often formed relatively deeply on the outer peripheral surface of the PC tire T2.
  • the drive control unit 801 of the control unit 80 controls the pair of left and right supply conveyors 5 and the tires T are carried into the pair of left and right first belt conveyors 1, the tires T are conveyed by the pair of left and right first belt conveyors 1. While doing so, as shown in FIG. 3, the rear end portion of the tire T is detected by the first sensor 61. At this time, as shown in FIG. 8, since the first sensor 61 is arranged at a position above the transport surface 1H of the first belt conveyor 1 by a height H, the first sensor 61 is the outer circumference of the tire T. Of the surfaces, the rear end portion of the specific outer peripheral edge VC is detected. The detection is detected by a state change from a state in which the detection light emitted by the first light emitting unit 61A is blocked by the tire T to a state in which the light is started to be received by the first light receiving unit 61B.
  • the tire T is conveyed by a pair of left and right first belt conveyors 1 at a relatively low constant transfer speed V along the transfer direction, and as shown in FIG. 4, the tip of the tire T is detected by the second sensor 62. Will be done.
  • the second sensor 62 is arranged at a position above the transport surface 1H of the first belt conveyor 1 by a height H, the second sensor 62 is an outer peripheral surface of the tire T. Of these, the tip of the specific outer peripheral VC is detected.
  • the detection is detected by a state change from a state in which the detection light emitted by the second light emitting unit 62A is received by the second light receiving unit 62B to a state in which the tire T has begun to block the detection light.
  • the drive control unit 801 of the control unit 80 controls the pair of left and right first belt conveyors 1, and the transportation of the tire T is temporarily stopped.
  • the moving distance ⁇ L from when the first sensor 61 detects the rear end portion of the specific outer peripheral edge VC of the tire T until the tire T temporarily stops is the rear end of the specific outer peripheral edge VC by the first sensor 61.
  • the distance L1 corresponds to the distance between the first sensor 61 and the second sensor 62.
  • the outer diameter dimension VD (FIG. 8) of the specific outer peripheral edge VC of the tire T is calculated by the following equation 2 using the moving distance ⁇ L calculated by the equation 1.
  • VD L1- ⁇ L ⁇ ⁇ ⁇ (Equation 2)
  • the moving distance ⁇ L is calculated from, for example, the relationship between the number of pulses of the encoder attached to the motor connected to the drive roller 1B of the first belt conveyor 1 and the belt moving distance of the belt 1A per pulse. It is also possible to ask for it. Specifically, the pulse between the first sensor 61 detecting the rear end portion of the specific outer peripheral edge VC of the tire T and the second sensor 62 detecting the tip end portion of the specific outer peripheral edge VC of the tire T. The movement distance ⁇ L may be obtained by counting the number and multiplying the counted number of pulses by the movement distance per pulse.
  • the drive control unit 801 of the control unit 80 controls the lubricator 7 and the pair of left and right pressing units 9 with the tire T stopped between the first sensor 61 and the second sensor 62. That is, an air cylinder (not shown) connected to the lubricator 7 is operated, and the lubricator 7 rises between the pair of left and right roller portions 3 so as to project upward from the roller portions 3. Then, when the drive control unit 801 lowers the transport surface 1H of the pair of left and right first belt conveyors 1 from the roller unit 3 by the air cylinder, the tire T is mounted on the plurality of mounting rollers 3A of the roller unit 3. Cylinder.
  • the drive control unit 801 horizontally rotates the pair of left and right pressing units 9 with the base end portion of the supporting portion 9B as a fulcrum
  • the tire T is generated by the pair of left and right pressing rollers 9A and the pair of left and right positioning rollers 7B. It is pinched (Fig. 5).
  • the center position of the tire T is positioned on a straight line extending in the front-rear direction through the reference rotation center axis L.
  • the pressing roller 9A of one pressing unit 9 is rotationally driven by a motor (not shown)
  • the tire T on the roller portion 3 rotates in a horizontal plane, and the brush 7A of the lubricant 7 is inside the tire T. Apply lubricant to the peripheral surface.
  • the pair of left and right pressing units 9 and the lubricator 7 are separated from the tire T, and the lubricator 7 moves below the roller portion 3.
  • the drive control unit 801 of the control unit 80 raises the transport surface 1H of the first belt conveyor 1 from the roller unit 3 by the air cylinder, and places the tire T again on the pair of left and right first belt conveyors 1. .. Then, the pair of left and right first belt conveyors 1 convey the tire T to the downstream side in the conveying direction again.
  • the stop sensor 63 detects the tip of the specific outer peripheral edge VC of the tire T. As shown in FIG.
  • the stop sensor 63 since the stop sensor 63 is arranged at a position above the transport surface 1H of the first belt conveyor 1 by a height H, the stop sensor 63 is included in the outer peripheral surface of the tire T. , Detects the tip of the specific outer peripheral VC. The detection is detected by a state change from a state in which the detection light emitted by the third light emitting unit 63A is received by the third light receiving unit 63B to a state in which the tire T has begun to block the detection light.
  • the drive control unit 801 of the control unit 80 controls the pair of left and right first belt conveyors 1 to move the tire T to the standby position SP in FIG. Pause with. Therefore, the tip portion of the tire T previously positioned in the left-right direction (width direction) by the pair of left-right pressing units 9 is arranged at the standby position SP regardless of the outer diameter dimension of the tire T.
  • the drive control unit 801 of the control unit 80 controls the pair of left and right first belt conveyors 1 and the pair of left and right second belt conveyors 2 to move the tire T from the standby position SP to the tire test position TP.
  • the rotation center of the tire T coincides with the reference rotation center axis L of the spindle shaft 31, and a rim (not shown) is fitted into the tire T, so that the spindle shaft 31 rotatably supports the tire T. it can.
  • the moving distance X (FIG. 7) is the distance L2 in the transport direction from the predetermined stop sensor 63 to the reference rotation center axis L of the spindle shaft 31, in other words, the reference rotation center of the spindle shaft 31 from the standby position SP. It is calculated by the following formula 3 from the distance L2 in the transport direction to the shaft L and the outer diameter dimension VD of the specific outer peripheral edge VC of the tire T obtained by the formula 2.
  • X L2 + VD / 2 ... (Equation 3)
  • the moving distance X of the tire T from the standby position SP to the reference rotation center axis L of the spindle shaft 31 of the tire test position TP is the tire T. It changes according to the outer diameter dimension VD of the specific outer peripheral edge VC, and the smaller the outer diameter dimension VD, the shorter the moving distance X can be. Therefore, the moving time of the tire T can be shortened as much as possible according to the tire diameter. Therefore, the cycle time of the tire test can be shortened, and the efficiency of the tire test can be improved.
  • FIG. 12 and 13 are side views of another tire testing machine compared with the tire testing machine 100 according to the present embodiment.
  • the MC tire T1 is mounted on the transport surface 1H of the first belt conveyor 1
  • the PC tire T2 is mounted on the transport surface 1H of the first belt conveyor 1.
  • the other tire testing machine is different from the tire testing machine 100 according to the present embodiment in that the heights of the first sensor 61, the second sensor 62, and the stop sensor 63 with respect to the transport surface 1H are different from each other.
  • the first sensor 61 is arranged at a position of height H1 from the transport surface 1H
  • the second sensor 62 is arranged at a position of height H2 from the transport surface 1H
  • the stop sensor 63 is arranged at a height H2 from the transport surface 1H. It is arranged at the position of H3 (H2 ⁇ H1 ⁇ H3).
  • the first sensor 61 detects the rear end portion of the tire T
  • the second sensor 62 and the stop sensor 63 detect the tip end portion of the tire T, and then as described above.
  • the first sensor 61, the second sensor 62, and the stop sensor 63 detect outer peripheral edges having different outer diameter dimensions from each other.
  • an error occurs in the calculation of the outer diameter dimension of the tire T and the calculation of the moving distance X.
  • the first sensor 61 detects a portion (maximum outer diameter portion) corresponding to the maximum outer diameter of the tire T in FIGS.
  • the second sensor 62 and the stop sensor 63 are A portion whose outer diameter is smaller than the maximum outer diameter is detected.
  • the second sensor 62 detects the outer peripheral portion of the tire T at a timing later than the maximum outer diameter portion detected by the first sensor 61.
  • the calculation result of the maximum outer diameter dimension of the tire T based on the formulas 1 and 2 becomes smaller than the maximum outer diameter portion (in this case, the outer diameter of the specific outer peripheral VC of the formulas 1 and 2).
  • Dimension VD is replaced by the maximum outer diameter dimension). If the moving distance X is calculated based on the equation 3 while including the error, the moving distance X becomes smaller than the original moving distance according to the outer diameter dimension of the tire T.
  • the rotation center of the tire T and the reference rotation center axis L do not match, and the rims cannot be mounted on the upper and lower side surfaces of the tire T.
  • the first sensor 61, the second sensor 62, and the stop sensor 63 can detect the front end portion or the rear end portion of the same specific outer peripheral edge VC.
  • each sensor support portion 51 supports the light emitting portion and the light receiving portion of the first sensor 61, the second sensor 62, and the stop sensor 63 so that the height H with respect to the transport surface 1H is the same as each other. ing. Therefore, it is suppressed that an error occurs in the calculation of the outer diameter dimension and the moving distance of the tire T due to the relative position variation between the sensors, and the tire T is accurately set to the reference rotation center axis L of the tire test position TP. Can be placed well.
  • the tire measurement sensor 60 indicates that the front end portion and the rear end portion of the specific outer peripheral edge VC of the tire T (T1, T2) have reached the predetermined dimension calculation detection positions, respectively. Detect.
  • the tire T placed on the transport surface 1H is arranged at a position at a predetermined height H from the transport surface 1H, and the virtual cut surface G parallel to the transport surface 1H (FIG. 8). ) Is the outer peripheral edge of the tire T formed by being virtually cut.
  • the tire transport calculation unit 802 detects the time difference between the tire measurement sensor 60 that the front end portion and the rear end portion of the specific outer peripheral edge VC have reached the dimension calculation detection position, and the tire T by the transport mechanism.
  • the outer diameter dimension VD of the specific outer peripheral edge VC of the tire T is calculated based on the transport speed.
  • the stop sensor 63 detects that the tip of the specific outer peripheral edge VC of the tire T has reached a predetermined stop detection position, and the drive control unit 801 uses the tip of the specific outer peripheral edge VC for stopping.
  • the first belt conveyor 1 is controlled so that the tip end portion of the specific outer peripheral edge VC of the tire T temporarily stops at a predetermined standby position SP.
  • the tire transfer calculation unit 802 sets the tire T based on the outer diameter dimension VD of the specific outer peripheral edge VC calculated by the tire transfer calculation unit 802 and the distance from the standby position SP to the tire test position TP.
  • the movement distance X of the tire T for moving from the standby position SP to the tire test position TP is calculated.
  • the drive control unit 801 performs the first belt conveyor 1 and the second belt so that the tire T moves from the standby position SP to the tire test position TP according to the movement distance X calculated by the tire transfer calculation unit 802. Control the conveyor 2.
  • the tire measurement sensor 60 and the stop sensor 63 detect the specific outer peripheral edge VC of the tire T on the transport surface 1H, and the tire transport calculation unit 802 sets the tire T based on the specific outer peripheral edge VC.
  • the outer diameter dimension VD and the moving distance X of the tire T to be carried into the tire test position TP can be calculated, respectively. Therefore, the tire measurement sensor 60 and the stop sensor 63 are included in the calculated outer diameter dimension and moving distance of the tire T as compared with the case where the outer peripheral surfaces of the tire T detect different portions. The error can be reduced, and a plurality of types of tires T having various shapes can be accurately carried into the tire test position TP.
  • the tire measurement sensor 60 and the stop sensor 63 do not necessarily have to detect the maximum outer diameter portion of the tire T to be transported, the degree of freedom in arranging each sensor (detection unit) is increased and the tire T is transported. The need to adjust the position of each sensor according to the tire T is reduced. Further, since the moving distance X in which the tire T is conveyed from the standby position SP to the tire test position TP is determined with reference to the tip end portion of the specific outer peripheral edge VC of the tire T, the moving distance X is the rotation center axis of the tire T. The moving distance of the tire T from the standby position SP to the tire test position TP can be set according to the size of the tire T, as compared with the case where the determination is made based on.
  • the tire measurement sensor 60 (first sensor 61, second sensor 62) and the stop sensor 63 according to the present embodiment are above the center position in the width direction of the tire T mounted on the transport surface 1H. Alternatively, it may be placed below.
  • the tire transport calculation unit 802 calculates the outer diameter dimension and the moving distance of the tire T for carrying the tire T to the tire test position TP based on the portion arranged at the same height of the tire T. be able to. Therefore, as compared with the case where the tire measurement sensor 60 and the stop sensor 63 detect portions of the outer peripheral surface of the tire T having different heights, the calculated outer diameter dimension and movement of the tire T are calculated.
  • the error included in the distance can be reduced, and a plurality of types of tires T having various shapes can be accurately carried into the tire test position TP. Further, since the tire measurement sensor 60 and the stop sensor 63 do not necessarily have to detect the maximum outer diameter portion of the tire T to be transported, the degree of freedom in arranging each sensor (detection unit) is increased and the tire T is transported. The need to adjust the position of each sensor according to the tire T is reduced. Further, since the moving distance at which the tire T is conveyed from the standby position SP to the tire test position TP is determined with reference to the tip end portion of the tire T, the moving distance is determined with reference to the rotation center axis of the tire T.
  • the moving distance of the tire T from the standby position SP to the tire test position TP can be set according to the size of the tire T.
  • the moving distance in the entire plurality of types of tires T can be shortened as compared with the case where a uniform moving distance is set regardless of the size of the tire T.
  • the space between the first sensor 61 and the second sensor 62 since the position of the tire can be detected by the first sensor 61 and the second sensor 62 of the tire measurement sensor 60, the space between the first sensor 61 and the second sensor 62. It is possible to temporarily stop the tire T and to perform a predetermined process on the tire T in the space.
  • the tire measurement sensor 60 does not include the second sensor 62
  • the first sensor 61 is arranged near the upstream end of the first belt conveyor 1
  • the tip of the tire T is the supply conveyor 5. It is assumed that the tip portion of the specific outer peripheral edge is also detected immediately after being placed on the first belt conveyor 1.
  • the tire T since the tire T is not stably mounted on the first belt conveyor 1, the tire T and the first belt conveyor 1 or the supply conveyor 5 are connected to the supply conveyor 5 to the first belt conveyor 1. It is relatively easy for slippage to occur between the two, and the detection of the tip may include some errors. Therefore, as described above, when the first sensor 61 is arranged at the upstream end of the first belt conveyor 1, the tire measurement sensor 60 detects the rear end of the specific outer peripheral edge. It is desirable to include the sensor 61 and the second sensor 62 that detects the tip of the specific outer peripheral edge.
  • the tire T is detected accurately in a short time without each sensor coming into contact with the tire T. be able to.
  • the lubricant 7 can apply a lubricant to the inner peripheral surface of the tire T between the first sensor 61 and the second sensor 62, and the spindle shaft 31 is set at the tire test position TP.
  • the tire T can be rotated stably.
  • the lubricator 7 can apply a lubricant to the inner peripheral surface of the tire T, so that the rim can be smoothly applied to the tire T. It can be installed.
  • the tire transport method in the tire testing machine 100 is a tire that transports the tire to a tire test position where the tire is arranged in order to perform the test in the tire testing machine that performs a predetermined test on the tire. This is a tire transfer method for the testing machine.
  • the tire transport method is It has a transport surface 1H on which the tire T is placed in a posture in which the rotation axis of the tire T extends in the vertical direction, and can transport the tire T to the tire test position TP along a predetermined transport path.
  • Preparation of various transport mechanisms first belt conveyor 1, second belt conveyor 2
  • a tire measurement sensor 60 that detects the tire T transported by the transport mechanism.
  • the tire T mounted on the transport surface 1H is predetermined from the transport surface 1H.
  • the specific outer peripheral edge VC which is the outer peripheral edge of the tire T and is formed by being virtually cut by a virtual cutting surface G arranged at a height position and parallel to the transport surface 1H.
  • a tire measurement sensor 60 for detecting that the front end portion and the rear end portion have reached a predetermined dimensional calculation detection position is arranged on the transport path.
  • the stop sensor 63 for detecting that the tip of the specific outer peripheral edge VC of the tire T transported by the transport mechanism has reached a predetermined stop detection position is more in the transport direction than the tire measurement sensor 60. To place it on the downstream side and Based on the time difference that the tire measurement sensor 60 detects that the front end portion and the rear end portion of the specific outer peripheral edge VC have reached the dimension calculation detection position, and the transport speed of the tire T by the transport mechanism. Then, the outer diameter dimension VD of the specific outer peripheral edge VC of the tire T is calculated.
  • the tip of the specific outer peripheral VC of the tire T has the transport path. Controlling the transport mechanism so as to temporarily stop at the predetermined standby position SP above, Based on the outer diameter dimension VD of the specific outer peripheral edge VC calculated by the tire dimension calculation unit and the distance from the standby position SP to the tire test position TP, the tire T is moved from the standby position SP to the tire. The movement distance X of the tire T for moving to the test position TP is calculated, and Controlling the transport mechanism so that the tire T moves from the standby position SP to the tire test position TP according to the movement distance X calculated by the movement distance calculation unit. To be equipped.
  • a first sensor 61 that detects the rear end portion of the specific outer peripheral edge VC of the tire T, and A second sensor 62, which is arranged downstream of the first sensor 61 in the transport direction and detects the tip of the specific outer peripheral edge VC of the tire T It is desirable to be further prepared to prepare.
  • the tire transport method in the tire testing machine 100 is as follows. This is a tire transport method for a tire testing machine, in which the tire T is transported to a tire test position TP where the tire T is arranged in order to perform the test in the tire testing machine 100 that performs a predetermined test on the tire T.
  • the tire transport method is It has a transport surface 1H on which the tire T is placed in a posture in which the rotation axis of the tire T extends in the vertical direction, and can transport the tire T to the tire test position TP along a predetermined transport path.
  • Preparation of various transport mechanisms first belt conveyor 1, second belt conveyor 2
  • a tire measurement sensor 60 capable of detecting that the front end portion and the rear end portion of the tire T conveyed by the transfer mechanism have reached a predetermined dimensional calculation detection position is provided on the transfer surface 1H. Placing it at a predetermined height and
  • the stop sensor 63 capable of detecting that the tip end portion of the tire T conveyed by the transfer mechanism has reached a predetermined stop detection position is conveyed by the tire T rather than the tire measurement sensor 60.
  • the tire T is arranged at the same height as the tire measurement sensor 60 with respect to the transport surface 1H on the downstream side in the direction.
  • the tire T is based on a time difference in which the tire measurement sensor 60 detects that the front end portion and the rear end portion of the tire T have reached the detection position for dimension calculation and the transport speed of the tire T by the transport mechanism. Calculating the outer diameter of the tire T and As the stop sensor 63 detects that the tip of the tire T has reached the stop detection position, the tip of the tire T temporarily reaches a predetermined standby position SP on the transport path.
  • Controlling the transport mechanism so that it stops To calculate the moving distance of the tire T from the standby position SP to the tire test position TP based on the calculated outer diameter dimension and the distance from the standby position SP to the tire test position TP.
  • the detection light intersects the transport direction and faces a horizontal direction, respectively. It is further desirable to prepare a device having a light emitting unit that emits light and a light receiving unit that receives the detected light.
  • each sensor is another non-contact type. It can also be a sensor or a contact type sensor.
  • each of the above sensors may be a photoelectric sensor such as visible light, infrared ray, or fiber.
  • each sensor may be composed of an image sensor, the edge of the tire T may be detected by the image sensor, and pixels of the same height included in the detected edge of each sensor may be compared.
  • the tire measurement sensor 60 may be composed of one sensor.
  • the outer diameter of the specific outer peripheral edge VC is determined by the time difference between the time when the tip of the specific outer peripheral edge VC reaches the detection light of the sensor and the time when the rear end portion of the specific outer peripheral edge VC passes through the detection light.
  • the dimension VD is calculated.
  • the transport mechanism for feeding the tire T to the tire test position TP has been described in the embodiment of the first belt conveyor 1 and the second belt conveyor 2, but the transport mechanism is 1 It can be one continuous belt conveyor, or it can be a conveyor other than the belt conveyor.
  • the first sensor 61, the second sensor 62 (first tire detection unit), and the stop sensor 63 (second tire detection unit) are placed on the transport surface 1H of the first belt conveyor 1.
  • a movement mechanism capable of relative movement in the vertical direction may be further provided.
  • the plurality of sensor support portions 51 of FIGS. 9 and 10 may be composed of cylinders that can be expanded and contracted in the vertical direction. In this case, the plurality of cylinders expand and contract so that the relative heights of the first sensor 61, the second sensor 62, and the stop sensor 63 with respect to the transport surface 1H are equal to each other, based on the specific outer peripheral edge VC of the tire T. The above-mentioned control becomes possible.
  • the independent sensor support portions are synchronized by a link mechanism or the like. It may be configured so that it can be expanded and contracted in conjunction with the vertical direction. According to such a configuration, the tire measurement sensor 60 and the stop sensor 63 can be moved relative to the transport surface 1H in the vertical direction according to the size of the tire T, so that the outer diameter dimension of the tire T and the outer diameter dimension of the tire T and The movement distance can be calculated with high accuracy.
  • FIG. 11 is a rear view of the tire testing machine 100A according to the modified embodiment of the present invention.
  • each sensor support portion 51 has a first sensor 61 (first light emitting unit 61A, first light receiving unit 61B), and further, a second sensor 62 (second sensor 62) (not shown) in the depth direction toward the drawing.
  • a plurality of light emitting units 62A, second light receiving unit 62B) and a stop sensor 63 are arranged along the vertical direction.
  • the sensors located at the same height as each other are selected as specific sensors for controlling the position of the tire T according to the size (particularly the tire width) of the tire T to which the control unit 80 is conveyed. It is possible to control the tire T based on the specific outer peripheral edge VC as in the embodiment.
  • the virtual cut surface G has been described in the form of a horizontal plane, but when the transport surface of each belt conveyor is arranged with a gentle inclination, the virtual cut surface G is Any surface parallel to the transport surface may be used.
  • a belt conveyor is shown as a transport mechanism.
  • the transport mechanism of the present invention is not limited to the belt conveyor, and may be another conveyor such as a crescent conveyor, a slat conveyor, a top chain conveyor, a drive roller conveyor, or the like.
  • the transport mechanism is a belt conveyor or the like configured on an endless track
  • the flat upper surface of the conveyor constitutes the transport surface.
  • the transfer mechanism is a drive roller conveyor or the like composed of trajectories composed of a plurality of parallel cylindrical surfaces, a virtual plane including a portion of the plurality of cylindrical surfaces that can come into contact with the tire T constitutes the transfer surface.
  • a tire testing machine which includes a spindle shaft, a transport mechanism, a first tire detection unit, a tire dimension calculation unit, a second tire detection unit, and a stop. It includes a control unit, a movement distance calculation unit, and a transport control unit.
  • the spindle shaft is capable of rotating the tire around a reference rotation center axis extending in the vertical direction via a rim mounted on the tire at a tire test position where the tire is placed to perform a predetermined test on the tire.
  • the transport mechanism has a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and can transport the tire to the tire test position along a predetermined transport path. is there.
  • the first tire detection unit detects the tire transported by the transport mechanism.
  • the first tire detection unit is formed by arranging the tire mounted on the transport surface at a position at a predetermined height from the transport surface and virtually cutting the tire by a virtual cut surface parallel to the transport surface. It is detected that the front end portion and the rear end portion of the specific outer peripheral edge, which is the outer peripheral edge of the tire, in the transport direction of the tire have reached a predetermined detection position for dimension calculation.
  • the tire dimension calculation unit has a time difference in which the first tire detection unit detects that the front end portion and the rear end portion of the specific outer peripheral edge have reached the dimension calculation detection position, and the transport mechanism of the tire.
  • the outer diameter dimension of the specific outer peripheral edge of the tire is calculated based on the transport speed.
  • the second tire detection unit is arranged on the downstream side of the first tire detection unit in the transport direction, and the tip portion of the specific outer peripheral edge of the tire transported by the transport mechanism is at a predetermined stop detection position. Detect that it has arrived.
  • the stop control unit when the second tire detection unit detects that the tip portion of the specific outer peripheral edge has reached the stop detection position, the tip portion of the specific outer peripheral edge of the tire is moved.
  • the transport mechanism is controlled so as to temporarily stop at a predetermined standby position on the transport path.
  • the moving distance calculation unit moves the tire from the standby position to the tire based on the outer diameter dimension of the specific outer peripheral edge calculated by the tire dimension calculation unit and the distance from the standby position to the tire test position.
  • the moving distance of the tire for moving to the test position is calculated.
  • the transport control unit controls the transport mechanism so that the tire moves from the standby position to the tire test position according to the movement distance calculated by the movement distance calculation unit.
  • the first tire detection unit and the second tire detection unit detect the specific outer peripheral edge of the tire on the transport surface, and the tire dimension calculation unit and the moving distance calculation unit are based on the specific outer peripheral edge. It is possible to calculate the outer diameter dimension and the moving distance of the tire for bringing the tire to the tire test position. Therefore, an error included in the calculated outer diameter dimension and moving distance of the tire as compared with the case where the first tire detection unit and the second tire detection unit detect different parts of the outer peripheral surface of the tire. It is possible to reduce the size of the tire and to carry a plurality of types of tires having various shapes into the tire test position with high accuracy.
  • the first tire detection unit and the second tire detection unit do not necessarily have to detect the maximum outer diameter portion of the tire to be transported, the degree of freedom in the arrangement of each detection unit is increased, and the tire to be transported The need to adjust the position of each detection unit accordingly is reduced. Therefore, a tire testing machine capable of accurately carrying a plurality of types of tires having various outer diameters and shapes to a tire testing position is provided.
  • the first tire detection unit is arranged with a first sensor that detects the rear end portion of the specific outer peripheral edge of the tire and a downstream side of the first sensor in the transport direction, and the tire. It is desirable to have a second sensor that detects the tip portion of the specific outer peripheral edge of the tire.
  • the tire since the position of the tire can be detected by the first sensor and the second sensor, the tire can be temporarily stopped in the space between the first sensor and the second sensor, or in the space. It is possible to apply a predetermined treatment to the tire.
  • a tire testing machine which includes a spindle shaft, a transport mechanism, a first tire detection unit, a tire dimension calculation unit, and a second tire detection unit. , A stop control unit, a movement distance calculation unit, and a transfer control unit are provided.
  • the spindle shaft is capable of rotating the tire around a reference rotation center axis extending in the vertical direction via a rim mounted on the tire at a tire test position where the tire is placed to perform a predetermined test on the tire.
  • the transport mechanism has a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and can transport the tire to the tire test position along a predetermined transport path. is there.
  • the first tire detection unit is arranged at a position at a predetermined height with respect to the transport surface, and the front end portion and the rear end portion of the tire in the transport direction of the tire have reached a predetermined detection position for dimension calculation. Are detected respectively.
  • the tire dimension calculation unit has a time difference in which the first tire detection unit detects that the front end portion and the rear end portion of the tire have reached the dimension calculation detection position, and the transfer speed of the tire by the transfer mechanism. Based on the above, the outer diameter dimension of the tire is calculated.
  • the second tire detection unit is arranged on the downstream side in the transport direction from the first tire detection unit at the same height as the first tire detection unit with respect to the transport surface, and is transported by the transport mechanism.
  • the stop control unit detects that the tip of the tire has reached the stop detection position, and the tip of the tire reaches a predetermined position on the transport path.
  • the transport mechanism is controlled so as to pause at the standby position.
  • the moving distance calculation unit moves the tire from the standby position to the tire test position based on the outer diameter dimension calculated by the tire dimension calculation unit and the distance from the standby position to the tire test position.
  • the moving distance of the tire for causing the tire is calculated.
  • the transport control unit controls the transport mechanism so that the tire moves from the standby position to the tire test position according to the movement distance calculated by the movement distance calculation unit.
  • the first tire detection unit and the second tire detection unit are arranged at the same height with respect to the transport surface. It is possible to detect parts of the same height. Therefore, the tire dimension calculation unit and the movement distance calculation unit calculate the outer diameter dimension and the movement distance of the tire for bringing the tire to the tire test position based on the portion arranged at the same height of the tire. be able to. Therefore, as compared with the case where the first tire detection unit and the second tire detection unit detect portions of the outer peripheral surface of the tire having different heights, the calculated outer diameter dimension and moving distance of the tire are calculated.
  • the first tire detection unit is arranged on the downstream side of the first sensor in the transport direction with the first sensor that detects the rear end portion of the tire, and the tip portion of the tire. It is desirable to have a second sensor for detecting.
  • the tire since the position of the tire can be detected by the first sensor and the second sensor, the tire can be temporarily stopped in the space between the first sensor and the second sensor, or in the space. It is possible to apply a predetermined treatment to the tire.
  • the first sensor, the second sensor, and the second tire detection unit of the first tire detection unit emit detection light in a direction intersecting with the transport direction and in a horizontal direction. It is desirable to have a light receiving portion that receives the detected light and a light receiving portion that receives the detected light.
  • the first sensor, the second sensor, and the second tire detection unit are composed of photoelectric sensors, tires can be detected accurately in a short time.
  • a lubricant application mechanism that is arranged between the first sensor and the second sensor in the transport direction and applies a lubricant to the inner peripheral surface of the tire.
  • the first tire detection unit and the second tire detection unit can be moved relative to the transport surface in the vertical direction according to the size of the tire, so that the outer diameter dimensions of the tires having various widths can be determined. And the calculation of the movement distance can be performed with high accuracy.
  • the present invention is a tire transport of a tire testing machine that transports the tire to a tire test position where the tire is arranged in order to perform the test in a tire testing machine that performs a predetermined test on the tire.
  • the tire transport method has a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and transports the tire to the tire test position along a predetermined transport path.
  • It is a first tire detection unit that prepares a possible transport mechanism and detects the tire transported by the transport mechanism, and the tire mounted on the transport surface has a predetermined height from the transport surface.
  • the tip and rear ends of the specific outer peripheral edge of the tire which is the outer peripheral edge of the tire and is formed by being virtually cut by a virtual cutting surface parallel to the transport surface, are arranged at the position of
  • a first tire detection unit that detects that a predetermined dimensional calculation detection position has been reached is arranged on the transport path, and the tip portion of the specific outer peripheral edge of the tire transported by the transport mechanism
  • the second tire detection unit that detects that the predetermined stop detection position has been reached is arranged on the downstream side in the transport direction from the first tire detection unit, and the front end portion and the rear end portion of the specific outer peripheral edge are arranged.
  • the outer diameter dimension of the specific outer peripheral edge of the tire based on the time difference in which the first tire detection unit detects that the unit has reached the detection position for dimension calculation and the transport speed of the tire by the transport mechanism. Is calculated, and the second tire detection unit detects that the tip portion of the specific outer peripheral edge has reached the stop detection position, so that the tip portion of the specific outer peripheral edge of the tire is detected. Controls the transport mechanism so that the tire temporarily stops at a predetermined standby position on the transport path, the outer diameter dimension of the specific outer peripheral edge calculated by the tire dimension calculation unit, and the tire from the standby position.
  • the movement distance of the tire for moving the tire from the standby position to the tire test position is calculated, and the movement distance calculated by the movement distance calculation unit is used.
  • the transport mechanism is controlled so that the tire moves from the standby position to the tire test position.
  • a tire transport method in a tire testing machine capable of accurately carrying a plurality of types of tires having various outer diameters and shapes to a tire test position is provided.
  • a first sensor that detects the rear end portion of the specific outer peripheral edge of the tire and a tire that is arranged downstream of the first sensor in the transport direction. It is further desirable to prepare a second sensor for detecting the tip portion of the specific outer peripheral edge of the tire.
  • the present invention is a tire transport of a tire testing machine that transports the tire to a tire test position where the tire is arranged in order to perform the test in a tire testing machine that performs a predetermined test on the tire.
  • the tire transport method has a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and transports the tire to the tire test position along a predetermined transport path.
  • First tire detection capable of preparing a possible transport mechanism and detecting that the front end and the rear end of the tire transported by the transport mechanism have reached a predetermined detection position for dimensional calculation, respectively.
  • the second tire detection unit is arranged on the downstream side in the transport direction of the tire from the first tire detection unit at the same height as the first tire detection unit with respect to the transport surface, and the tire.
  • the outside of the tire is based on the time difference in which the first tire detection unit detects that the front end portion and the rear end portion have reached the detection position for dimension calculation and the transport speed of the tire by the transport mechanism.
  • the transport mechanism is controlled so as to temporarily stop at a predetermined standby position, and the moving distance of the tire from the standby position to the tire test position is calculated according to the calculated outer diameter dimension. Based on the calculated movement distance and the distance from the standby position to the tire test position, the transport mechanism is controlled so that the tire moves from the standby position to the tire test position. And to be prepared.
  • a tire transport method in a tire testing machine capable of accurately carrying a plurality of types of tires having various outer diameters and shapes to a tire test position is provided.
  • the first tire detection unit a first sensor that detects the rear end portion of the tire and the tip portion of the tire that is arranged downstream of the first sensor in the transport direction are used.
  • the second sensor to be detected is prepared, and the first sensor, the second sensor, and the second tire detection unit of the first tire detection unit are located at the same height as each other with respect to the transport surface. It is desirable to further prepare for the arrangement.
  • the first sensor, the second sensor, and the second tire detection unit of the first tire detection unit emit detection light in a direction intersecting and horizontal with the transport direction, respectively. It is further desirable to prepare a device having a light emitting unit and a light receiving unit that receives the detected light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Testing Of Balance (AREA)

Abstract

The present invention conveys, to a tire testing position and with good precision, a plurality of types of tires having various outer diameters and shapes. A tire testing machine (100) comprises a conveyance mechanism (1), a first tire detection unit (60), a second tire detection unit (63), and a control unit (80). The first tire detection unit (60) and the second tire detection unit (63) detect a leading end part or a rear end part of a specific outer circumferential edge (VC), which is an outer circumferential edge of a tire (T) formed by virtually cutting the tire (T) by a virtual cross-section arranged at a position of a predetermined height (H) from a conveyance surface (1H). The control unit (80) calculates an outer diameter dimension (VD) of the specific outer circumferential edge (VC) of the tire (T), and calculates, on the basis of the outer diameter dimension (VD), a movement distance (X) from a standby position (SP) to a tire test position (TP).

Description

タイヤ試験機およびタイヤ試験機におけるタイヤ搬送方法Tire transport method in tire tester and tire tester
 本発明は、タイヤ試験機およびタイヤ試験機におけるタイヤ搬送方法に関する。 The present invention relates to a tire testing machine and a tire transport method in a tire testing machine.
 従来、タイヤのユニフォミティなどを測定するタイヤ試験機が知られている。当該タイヤ試験機は、タイヤ試験位置に配置されタイヤを上下方向に延びる回転中心軸回りに回転可能に支持するスピンドル軸と、スピンドル軸の回転中心軸と平行な回転中心軸回りに回転可能に支持され且つタイヤの外周面に当接可能とされた回転ドラムと、回転ドラムに加わる荷重を計測可能なロードセルと、を有する。スピンドル軸に装着されたタイヤの外周面に回転ドラムが押し付けられ、タイヤがスピンドル軸回りに回転すると、タイヤが回転した分の荷重変動データをロードセルが計測する。計測された荷重変動データに基づいて、タイヤの均一性(ユニフォミティ)が評価される。このようなタイヤ試験機において評価されるタイヤの内径は、タイヤの品種によって異なる場合がある。このため、タイヤをスピンドル軸に装着する際には、タイヤの両側面にそれぞれタイヤサイズに応じた上リムおよび下リムが装着され、これらのリムを介してスピンドル軸がタイヤを回転可能に支持する。 Conventionally, a tire testing machine that measures tire uniformity and the like is known. The tire testing machine has a spindle shaft that is arranged at the tire test position and rotatably supports the tire around a rotation center axis that extends in the vertical direction, and a rotation center axis that is parallel to the rotation center axis of the spindle shaft. It also has a rotating drum that can come into contact with the outer peripheral surface of the tire and a load cell that can measure the load applied to the rotating drum. When the rotating drum is pressed against the outer peripheral surface of the tire mounted on the spindle shaft and the tire rotates around the spindle shaft, the load cell measures the load fluctuation data corresponding to the rotation of the tire. Tire uniformity is evaluated based on the measured load variation data. The inner diameter of a tire evaluated by such a tire testing machine may differ depending on the type of tire. Therefore, when the tire is mounted on the spindle shaft, an upper rim and a lower rim corresponding to the tire size are mounted on both side surfaces of the tire, and the spindle shaft rotatably supports the tire via these rims. ..
 特許文献1には、タイヤの外径に応じてタイヤ試験位置に対するタイヤの送り込み距離を短くし、その送り込み時間を短縮する技術が開示されている。具体的に、タイヤ試験機は、タイヤをその回転中心軸が上下方向に延びる姿勢で搬送するベルトコンベアと、タイヤの搬送路上においてタイヤの外周面を検知する前後一対の光電センサとを有する。一対の光電センサによってタイヤの先端部および後端部が検知されると、その時間差とタイヤの搬送速度とによってタイヤの外径が算出される。その後、一対の光電センサ間においてタイヤの内周面に潤滑剤が塗布されると、下流側の光電センサによってタイヤの先端部が再び検知されるとともにタイヤが所定の待機位置に一旦停止される。その後、算出されたタイヤの外径に応じて待機位置からタイヤ試験位置までの搬送距離が算出され、当該距離だけタイヤが搬送されることでタイヤがタイヤ試験位置に搬入される。この際、理想的には、タイヤの中心軸とスピンドル軸の中心とが合致し、タイヤの両側面にそれぞれタイヤサイズに応じた上リムおよび下リムが上下から装着可能とされる。 Patent Document 1 discloses a technique of shortening the feed distance of a tire with respect to a tire test position according to the outer diameter of the tire and shortening the feed time. Specifically, the tire testing machine has a belt conveyor that conveys the tire in a posture in which its rotation center axis extends in the vertical direction, and a pair of front and rear photoelectric sensors that detect the outer peripheral surface of the tire on the tire transport path. When the front end and the rear end of the tire are detected by the pair of photoelectric sensors, the outer diameter of the tire is calculated from the time difference and the transport speed of the tire. After that, when the lubricant is applied to the inner peripheral surface of the tire between the pair of photoelectric sensors, the tip portion of the tire is detected again by the photoelectric sensor on the downstream side, and the tire is temporarily stopped at a predetermined standby position. After that, the transport distance from the standby position to the tire test position is calculated according to the calculated outer diameter of the tire, and the tire is delivered to the tire test position by transporting the tire by the distance. At this time, ideally, the center axis of the tire and the center of the spindle axis are aligned, and the upper rim and the lower rim corresponding to the tire size can be mounted on both side surfaces of the tire from above and below.
特開2012-220319号公報Japanese Unexamined Patent Publication No. 2012-220319
 特許文献1に記載された技術では、さまざまな形状を有する複数種のタイヤの外径および搬送距離を、必ずしも精度良く算出することができず、タイヤ試験位置へのタイヤの搬入に位置ずれが発生するという問題があった。具体的に、上記の技術では、前記一対の光電センサの搬送方向における位置は特定されているものの、上下方向における位置は特定されていない。このため、前記一対の光電センサがベルトコンベアによって搬送されるタイヤの最大外径部分とは異なる高さの位置に配置されていると、当該一対の光電センサはタイヤの外周面のうち上下方向において前記最大外径部分とは異なる部分をそれぞれ検知することとなる。この結果、モーターバイク用のタイヤのようにその外周面が円弧形状からなるタイヤが搬送される場合や、その外周面にトレッド(溝)が形成されているタイヤが搬送される場合には、タイヤ試験機は搬送されるタイヤの外径をそのタイヤの最大外径よりも小さな値に誤検出することとなる。この場合、前記待機位置からタイヤ試験位置までの搬送距離が前記小さな外径に基づいて算出されるため、搬送されるタイヤの中心軸がスピンドル軸の回転中心軸に届かずに、リムをタイヤに正確に装着できない問題やリムによってタイヤの一部が破損するという問題があった。 With the technique described in Patent Document 1, it is not always possible to accurately calculate the outer diameter and the transport distance of a plurality of types of tires having various shapes, and a displacement occurs when the tire is brought into the tire test position. There was a problem of doing. Specifically, in the above technique, although the position of the pair of photoelectric sensors in the transport direction is specified, the position in the vertical direction is not specified. Therefore, if the pair of photoelectric sensors are arranged at a height different from the maximum outer diameter portion of the tire conveyed by the belt conveyor, the pair of photoelectric sensors will be placed in the vertical direction on the outer peripheral surface of the tire. Each portion different from the maximum outer diameter portion is detected. As a result, when a tire having an arc-shaped outer peripheral surface such as a tire for a motorbike is transported, or when a tire having a tread (groove) formed on the outer peripheral surface is transported, the tire The testing machine erroneously detects the outer diameter of the transported tire as a value smaller than the maximum outer diameter of the tire. In this case, since the transport distance from the standby position to the tire test position is calculated based on the small outer diameter, the central axis of the transported tire does not reach the rotation central axis of the spindle shaft, and the rim is attached to the tire. There was a problem that it could not be installed accurately and that a part of the tire was damaged by the rim.
 本発明の目的は、さまざまな形状を有する複数種のタイヤをタイヤ試験位置にそれぞれ精度良く搬入することが可能なタイヤ試験機およびタイヤ試験機におけるタイヤ搬送方法を提供することにある。 An object of the present invention is to provide a tire tester and a tire transport method in a tire tester capable of accurately carrying a plurality of types of tires having various shapes into a tire test position.
 本発明によって提供されるのはタイヤ試験機であって、当該タイヤ試験機は、スピンドル軸と、搬送機構と、第1タイヤ検知部と、タイヤ寸法演算部と、第2タイヤ検知部と、停止制御部と、移動距離演算部と、搬送制御部と、を備える。スピンドル軸は、タイヤに所定の試験を行うために前記タイヤが配置されるタイヤ試験位置において、前記タイヤに装着されるリムを介して、上下方向に延びる基準回転中心軸回りに前記タイヤを回転可能に支持する。搬送機構は、前記タイヤの回転軸が上下方向に延びる姿勢で前記タイヤが載置される搬送面を有し、所定の搬送経路に沿って前記タイヤを前記タイヤ試験位置まで搬送することが可能である。第1タイヤ検知部は、前記搬送機構によって搬送される前記タイヤを検知する。第1タイヤ検知部は、当該第1タイヤ検知部は、前記搬送面に載置された前記タイヤが前記搬送面から所定の高さの位置に配置され前記搬送面と平行な仮想切断面によって仮想的に切断されることで形成される前記タイヤの外周縁である特定外周縁の前記タイヤの搬送方向における先端部および後端部が所定の寸法演算用検知位置に到達したことをそれぞれ検知する。タイヤ寸法演算部は、前記特定外周縁の前記先端部および前記後端部が前記寸法演算用検知位置に到達したことを前記第1タイヤ検知部がそれぞれ検知する時間差と前記搬送機構による前記タイヤの搬送速度とに基づいて、前記タイヤの前記特定外周縁の外径寸法を演算する。第2タイヤ検知部は、前記第1タイヤ検知部よりも前記搬送方向下流側に配置され、前記搬送機構によって搬送される前記タイヤの前記特定外周縁の前記先端部が所定の停止用検知位置に到達したことを検知する。停止制御部は、前記特定外周縁の前記先端部が前記停止用検知位置に到達したことを前記第2タイヤ検知部が検知することに伴って、前記タイヤの前記特定外周縁の前記先端部が前記搬送経路上の所定の待機位置に一時停止するように前記搬送機構を制御する。移動距離演算部は、前記タイヤ寸法演算部によって演算された前記特定外周縁の外径寸法と、前記待機位置から前記タイヤ試験位置までの距離とに基づいて、前記タイヤを前記待機位置から前記タイヤ試験位置まで移動させるための前記タイヤの移動距離を演算する。搬送制御部は、前記移動距離演算部によって演算された前記移動距離に応じて、前記タイヤが前記待機位置から前記タイヤ試験位置まで移動するように前記搬送機構を制御する。 Provided by the present invention is a tire testing machine, which includes a spindle shaft, a transport mechanism, a first tire detection unit, a tire dimension calculation unit, a second tire detection unit, and a stop. It includes a control unit, a movement distance calculation unit, and a transport control unit. The spindle shaft is capable of rotating the tire around a reference rotation center axis extending in the vertical direction via a rim mounted on the tire at a tire test position where the tire is placed to perform a predetermined test on the tire. Support. The transport mechanism has a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and can transport the tire to the tire test position along a predetermined transport path. is there. The first tire detection unit detects the tire transported by the transport mechanism. The first tire detection unit is a virtual cutting surface in which the tire mounted on the transport surface is arranged at a predetermined height from the transport surface and is parallel to the transport surface. It is detected that the front end portion and the rear end portion of the specific outer peripheral edge, which is the outer peripheral edge of the tire formed by being cut, in the transport direction of the tire have reached a predetermined detection position for dimensional calculation. The tire dimension calculation unit has a time difference in which the first tire detection unit detects that the front end portion and the rear end portion of the specific outer peripheral edge have reached the dimension calculation detection position, and the transport mechanism of the tire. The outer diameter dimension of the specific outer peripheral edge of the tire is calculated based on the transport speed. The second tire detection unit is arranged on the downstream side of the first tire detection unit in the transport direction, and the tip portion of the specific outer peripheral edge of the tire transported by the transport mechanism is at a predetermined stop detection position. Detect that it has arrived. In the stop control unit, when the second tire detection unit detects that the tip portion of the specific outer peripheral edge has reached the stop detection position, the tip portion of the specific outer peripheral edge of the tire is moved. The transport mechanism is controlled so as to temporarily stop at a predetermined standby position on the transport path. The moving distance calculation unit moves the tire from the standby position to the tire based on the outer diameter dimension of the specific outer peripheral edge calculated by the tire dimension calculation unit and the distance from the standby position to the tire test position. The moving distance of the tire for moving to the test position is calculated. The transport control unit controls the transport mechanism so that the tire moves from the standby position to the tire test position according to the movement distance calculated by the movement distance calculation unit.
 また、本発明によって提供されるのはタイヤ試験機であって、当該タイヤ試験機は、スピンドル軸と、搬送機構と、第1タイヤ検知部と、タイヤ寸法演算部と、第2タイヤ検知部と、停止制御部と、移動距離演算部と、搬送制御部と、を備える。スピンドル軸は、タイヤに所定の試験を行うために前記タイヤが配置されるタイヤ試験位置において、前記タイヤに装着されるリムを介して、上下方向に延びる基準回転中心軸回りに前記タイヤを回転可能に支持する。搬送機構は、前記タイヤの回転軸が上下方向に延びる姿勢で前記タイヤが載置される搬送面を有し、所定の搬送経路に沿って前記タイヤを前記タイヤ試験位置まで搬送することが可能である。第1タイヤ検知部は、前記搬送面に対して所定の高さの位置に配置され、前記タイヤの搬送方向における前記タイヤの先端部および後端部が所定の寸法演算用検知位置に到達したことをそれぞれ検知する。タイヤ寸法演算部は、前記タイヤの前記先端部および前記後端部が前記寸法演算用検知位置に到達したことを前記第1タイヤ検知部がそれぞれ検知する時間差と前記搬送機構による前記タイヤの搬送速度とに基づいて、前記タイヤの外径寸法を演算する。第2タイヤ検知部は、前記第1タイヤ検知部よりも前記搬送方向下流側において前記搬送面に対して前記第1タイヤ検知部と同じ高さの位置に配置され、前記搬送機構によって搬送される前記タイヤの前記先端部が所定の停止用検知位置に到達したことを検知する。停止制御部は、前記タイヤの前記先端部が前記停止用検知位置に到達したことを前記第2タイヤ検知部が検知することに伴って、前記タイヤの前記先端部が前記搬送経路上の所定の待機位置に一時停止するように前記搬送機構を制御する。移動距離演算部は、停止制御部と、前記タイヤ寸法演算部によって演算された前記外径寸法と、前記待機位置から前記タイヤ試験位置までの距離とに基づいて、前記タイヤを前記待機位置から前記タイヤ試験位置まで移動させるための前記タイヤの移動距離を演算する。搬送制御部は、前記移動距離演算部によって演算された前記移動距離に応じて、前記タイヤが前記待機位置から前記タイヤ試験位置まで移動するように前記搬送機構を制御する。 Further, what is provided by the present invention is a tire testing machine, which includes a spindle shaft, a transport mechanism, a first tire detection unit, a tire dimension calculation unit, and a second tire detection unit. , A stop control unit, a movement distance calculation unit, and a transfer control unit are provided. The spindle shaft is capable of rotating the tire around a reference rotation center axis extending in the vertical direction via a rim mounted on the tire at a tire test position where the tire is placed to perform a predetermined test on the tire. Support. The transport mechanism has a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and can transport the tire to the tire test position along a predetermined transport path. is there. The first tire detection unit is arranged at a position at a predetermined height with respect to the transport surface, and the front end portion and the rear end portion of the tire in the transport direction of the tire have reached a predetermined detection position for dimension calculation. Are detected respectively. The tire dimensional calculation unit has a time difference in which the first tire detection unit detects that the front end portion and the rear end portion of the tire have reached the dimensional calculation detection position, and the transfer speed of the tire by the transfer mechanism. Based on the above, the outer diameter dimension of the tire is calculated. The second tire detection unit is arranged on the downstream side in the transport direction from the first tire detection unit at the same height as the first tire detection unit with respect to the transport surface, and is transported by the transport mechanism. It is detected that the tip end portion of the tire has reached a predetermined stop detection position. The stop control unit detects that the tip of the tire has reached the stop detection position, and the tip of the tire reaches a predetermined position on the transport path. The transport mechanism is controlled so as to pause at the standby position. The moving distance calculation unit moves the tire from the standby position to the tire based on the stop control unit, the outer diameter dimension calculated by the tire dimension calculation unit, and the distance from the standby position to the tire test position. The moving distance of the tire for moving to the tire test position is calculated. The transport control unit controls the transport mechanism so that the tire moves from the standby position to the tire test position according to the movement distance calculated by the movement distance calculation unit.
 また、本発明によって提供されるのは、タイヤに所定の試験を行うタイヤ試験機において前記試験を行うために前記タイヤが配置されるタイヤ試験位置に前記タイヤを搬送する、タイヤ試験機のタイヤ搬送方法である。当該タイヤ搬送方法は、前記タイヤの回転軸が上下方向に延びる姿勢で前記タイヤが載置される搬送面を有し、所定の搬送経路に沿って前記タイヤを前記タイヤ試験位置まで搬送することが可能な搬送機構を準備することと、前記搬送機構によって搬送される前記タイヤを検知する第1タイヤ検知部であって、当該第1タイヤ検知部は、前記搬送面に載置された前記タイヤが前記搬送面から所定の高さの位置に配置され前記搬送面と平行な仮想切断面によって仮想的に切断されることで形成される前記タイヤの外周縁である特定外周縁の前記タイヤの搬送方向における先端部および後端部が所定の寸法演算用検知位置に到達したことをそれぞれ検知する第1タイヤ検知部を前記搬送経路上に配置することと、前記搬送機構によって搬送される前記タイヤの前記特定外周縁の前記先端部が所定の停止用検知位置に到達したことを検知する第2タイヤ検知部を前記第1タイヤ検知部よりも前記搬送方向下流側に配置することと、前記特定外周縁の前記先端部および前記後端部が前記寸法演算用検知位置に到達したことを前記第1タイヤ検知部がそれぞれ検知する時間差と前記搬送機構による前記タイヤの搬送速度とに基づいて、前記タイヤの前記特定外周縁の外径寸法を演算することと、前記特定外周縁の前記先端部が前記停止用検知位置に到達したことを前記第2タイヤ検知部が検知することに伴って、前記タイヤの前記特定外周縁の前記先端部が前記搬送経路上の所定の待機位置に一時停止するように前記搬送機構を制御することと、前記タイヤ寸法演算部によって演算された前記特定外周縁の外径寸法と、前記待機位置から前記タイヤ試験位置までの距離とに基づいて、前記タイヤを前記待機位置から前記タイヤ試験位置まで移動させるための前記タイヤの移動距離を演算することと、前記移動距離演算部によって演算された前記移動距離に応じて、前記タイヤが前記待機位置から前記タイヤ試験位置まで移動するように前記搬送機構を制御することと、を備える。 Further provided by the present invention is a tire transport of a tire testing machine that transports the tire to a tire test position where the tire is arranged in order to perform the test in a tire testing machine that performs a predetermined test on the tire. The method. The tire transport method has a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and transports the tire to the tire test position along a predetermined transport path. It is a first tire detection unit that prepares a possible transport mechanism and detects the tire transported by the transport mechanism, and the first tire detection unit is a tire mounted on the transport surface. The transport direction of the tire on the specific outer peripheral edge, which is the outer peripheral edge of the tire, which is formed by virtually cutting by a virtual cutting surface parallel to the transport surface and arranged at a position at a predetermined height from the transport surface. A first tire detection unit that detects that the front end portion and the rear end portion of the tire have reached a predetermined dimensional calculation detection position is arranged on the transfer path, and the tire conveyed by the transfer mechanism The second tire detection unit that detects that the tip portion of the specific outer peripheral edge has reached a predetermined stop detection position is arranged on the downstream side in the transport direction from the first tire detection unit, and the specific outer peripheral edge Based on the time difference in which the first tire detection unit detects that the front end portion and the rear end portion of the tire have reached the detection position for dimension calculation and the transfer speed of the tire by the transfer mechanism, the tire As the outer diameter dimension of the specific outer peripheral edge is calculated and the second tire detecting unit detects that the tip portion of the specific outer peripheral edge has reached the stop detection position, the tire Controlling the transport mechanism so that the tip portion of the specific outer peripheral edge temporarily stops at a predetermined standby position on the transport path, and the outer diameter dimension of the specific outer peripheral edge calculated by the tire dimension calculation unit. And, based on the distance from the standby position to the tire test position, the movement distance of the tire for moving the tire from the standby position to the tire test position is calculated, and the movement distance calculation unit. It includes controlling the transport mechanism so that the tire moves from the standby position to the tire test position according to the movement distance calculated by.
 また、本発明によって提供されるのは、タイヤに所定の試験を行うタイヤ試験機において前記試験を行うために前記タイヤが配置されるタイヤ試験位置に前記タイヤを搬送する、タイヤ試験機のタイヤ搬送方法である。当該タイヤ搬送方法は、前記タイヤの回転軸が上下方向に延びる姿勢で前記タイヤが載置される搬送面を有し、所定の搬送経路に沿って前記タイヤを前記タイヤ試験位置まで搬送することが可能な搬送機構を準備することと、前記搬送機構によって搬送される前記タイヤの先端部および後端部が所定の寸法演算用検知位置に到達したことをそれぞれ検知することが可能な第1タイヤ検知部を前記搬送面に対して所定の高さの位置に配置することと、前記搬送機構によって搬送される前記タイヤの前記先端部が所定の停止用検知位置に到達したことを検知することが可能な第2タイヤ検知部を前記第1タイヤ検知部よりも前記タイヤの搬送方向下流側において前記搬送面に対して前記第1タイヤ検知部と同じ高さの位置に配置することと、前記タイヤの前記先端部および前記後端部が前記寸法演算用検知位置に到達したことを前記第1タイヤ検知部がそれぞれ検知する時間差と前記搬送機構による前記タイヤの搬送速度とに基づいて、前記タイヤの外径寸法を演算することと、前記タイヤの前記先端部が前記停止用検知位置に到達したことを前記第2タイヤ検知部が検知することに伴って、前記タイヤの前記先端部が前記搬送経路上の所定の待機位置に一時停止するように前記搬送機構を制御することと、前記演算された前記外径寸法に応じて、前記待機位置から前記タイヤ試験位置までの前記タイヤの移動距離を演算することと、前記演算された前記移動距離と、前記待機位置から前記タイヤ試験位置までの距離とに基づいて、前記タイヤが前記待機位置から前記タイヤ試験位置まで移動するように前記搬送機構を制御することと、を備える。 Further provided by the present invention is a tire transport of a tire testing machine that transports the tire to a tire test position where the tire is arranged in order to perform the test in a tire testing machine that performs a predetermined test on the tire. The method. The tire transport method has a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and transports the tire to the tire test position along a predetermined transport path. First tire detection capable of preparing a possible transport mechanism and detecting that the front end and the rear end of the tire transported by the transport mechanism have reached a predetermined detection position for dimensional calculation, respectively. It is possible to arrange the portion at a predetermined height position with respect to the transport surface and to detect that the tip portion of the tire transported by the transport mechanism has reached a predetermined stop detection position. The second tire detection unit is arranged on the downstream side in the transport direction of the tire from the first tire detection unit at the same height as the first tire detection unit with respect to the transport surface, and the tire. The outside of the tire is based on the time difference in which the first tire detection unit detects that the front end portion and the rear end portion have reached the detection position for dimension calculation and the transport speed of the tire by the transport mechanism. With the calculation of the diameter dimension and the detection by the second tire detection unit that the tip of the tire has reached the stop detection position, the tip of the tire is on the transport path. The transport mechanism is controlled so as to temporarily stop at a predetermined standby position, and the moving distance of the tire from the standby position to the tire test position is calculated according to the calculated outer diameter dimension. Based on the calculated movement distance and the distance from the standby position to the tire test position, the transport mechanism is controlled so that the tire moves from the standby position to the tire test position. And to be prepared.
本発明の一実施形態に係るタイヤ試験機の平面図である。It is a top view of the tire testing machine which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタイヤ試験機の制御部のブロック図である。It is a block diagram of the control part of the tire tester which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタイヤ試験機においてタイヤがタイヤ試験位置に搬入されるまでの工程を示す平面図である。It is a top view which shows the process until the tire is carried into the tire test position in the tire test machine which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタイヤ試験機においてタイヤがタイヤ試験位置に搬入されるまでの工程を示す平面図である。It is a top view which shows the process until the tire is carried into the tire test position in the tire test machine which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタイヤ試験機においてタイヤがタイヤ試験位置に搬入されるまでの工程を示す平面図である。It is a top view which shows the process until the tire is carried into the tire test position in the tire test machine which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタイヤ試験機においてタイヤがタイヤ試験位置に搬入されるまでの工程を示す平面図である。It is a top view which shows the process until the tire is carried into the tire test position in the tire test machine which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタイヤ試験機においてタイヤがタイヤ試験位置に搬入されるまでの工程を示す平面図である。It is a top view which shows the process until the tire is carried into the tire test position in the tire test machine which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタイヤ試験機の側面図である。It is a side view of the tire testing machine which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタイヤ試験機の背面図である。It is a rear view of the tire testing machine which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタイヤ試験機の背面図である。It is a rear view of the tire testing machine which concerns on one Embodiment of this invention. 本発明の変形実施形態に係るタイヤ試験機の背面図である。It is a rear view of the tire testing machine which concerns on the modification embodiment of this invention. 本発明の一実施形態に係るタイヤ試験機と比較される他のタイヤ試験機の側面図である。It is a side view of another tire testing machine compared with the tire testing machine which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタイヤ試験機と比較される他のタイヤ試験機の側面図である。It is a side view of another tire testing machine compared with the tire testing machine which concerns on one Embodiment of this invention.
 以下、図面に基づき、本発明の一実施形態に係るタイヤ試験機100を説明する。図1は、本実施形態に係るタイヤ試験機100の平面図である。タイヤ試験機100は、タイヤT(図3)に所定の試験を行う。 Hereinafter, the tire testing machine 100 according to the embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a plan view of the tire testing machine 100 according to the present embodiment. The tire testing machine 100 performs a predetermined test on the tire T (FIG. 3).
 タイヤ試験機100は、スピンドル軸31と、左右一対の第1ベルトコンベア1と、左右一対の第2ベルトコンベア2と、左右一対のローラー部3と、左右一対の供給コンベア5と、第1センサ61および第2センサ62を含むタイヤ計測用センサ60(第1タイヤ検知部)と、停止用センサ63(第2タイヤ検知部)と、ルブリケータ7(潤滑剤塗布機構)と、左右一対の押圧ユニット9と、を備える。更に、図9に示されるように、タイヤ試験機100は、筐体50と、左右3対のセンサ(第1センサ61、第2センサ62及び停止用センサ63)を支持するセンサ支持部51と、を有している。 The tire testing machine 100 includes a spindle shaft 31, a pair of left and right first belt conveyors 1, a pair of left and right second belt conveyors 2, a pair of left and right roller portions 3, a pair of left and right supply conveyors 5, and a first sensor. A tire measurement sensor 60 (first tire detection unit) including 61 and a second sensor 62, a stop sensor 63 (second tire detection unit), a lubricator 7 (lubricating mechanism), and a pair of left and right pressing units. 9 and. Further, as shown in FIG. 9, the tire testing machine 100 includes a housing 50 and a sensor support portion 51 that supports three pairs of left and right sensors (first sensor 61, second sensor 62, and stop sensor 63). ,have.
 スピンドル軸31は、タイヤTに所定の試験を行うために前記タイヤTが配置されるタイヤ試験位置TPに配置され、タイヤTの両側面にそれぞれ装着される不図示の一対のリムを介して、上下方向に延びる基準回転中心軸L回りにタイヤTを回転可能に支持する。タイヤ試験機100は、更に、スピンドル軸31の基準回転中心軸Lと平行な回転中心軸回りに回転可能に支持され且つタイヤTの外周面に当接可能とされた不図示の回転ドラムと、当該回転ドラムに加わる荷重を計測可能な不図示のロードセルと、を有する。タイヤ試験位置TPにおいてスピンドル軸31に装着されたタイヤTの外周面に前記回転ドラムが押し付けられ、タイヤTがスピンドル軸31回りに回転すると、タイヤTが回転した分の荷重変動データを前記ロードセルが計測する。この結果、計測された荷重変動データに基づいて、タイヤの均一性(ユニフォミティ)が評価される。 The spindle shaft 31 is arranged at the tire test position TP where the tire T is arranged to perform a predetermined test on the tire T, and is provided via a pair of rims (not shown) mounted on both side surfaces of the tire T. The tire T is rotatably supported around the reference rotation center axis L extending in the vertical direction. The tire testing machine 100 further includes a rotating drum (not shown) that is rotatably supported around the rotation center axis parallel to the reference rotation center axis L of the spindle shaft 31 and can be brought into contact with the outer peripheral surface of the tire T. It has a load cell (not shown) capable of measuring the load applied to the rotating drum. When the rotating drum is pressed against the outer peripheral surface of the tire T mounted on the spindle shaft 31 at the tire test position TP and the tire T rotates around the spindle shaft 31, the load cell collects load fluctuation data corresponding to the rotation of the tire T. measure. As a result, the uniformity of the tire is evaluated based on the measured load fluctuation data.
 図1では、タイヤTの搬送方向が矢印DSで示されている。矢印DSの方向から見た場合、左右一対の第1ベルトコンベア1および左右一対の第2ベルトコンベア2は、本発明の搬送機構として機能する。これらの第1ベルトコンベア1および第2ベルトコンベア2は、タイヤTの回転軸が上下方向に延びる姿勢でタイヤTが載置される平面状の搬送面1H(図8参照)をそれぞれ有し、所定の搬送経路に沿ってタイヤTをタイヤ試験位置TPまで搬送することが可能とされている。左右一対の第1ベルトコンベア1は、前後方向に沿って延びるとともに互いに左右方向に間隔をおいて配置される。同様に、左右一対の第2ベルトコンベア2は、左右一対の第1ベルトコンベア1よりも前側、すなわち、タイヤTの搬送方向下流側において、前後方向に沿って延びるとともに互いに左右方向に間隔をおいて配置される。なお、図1に示すように、左右一対の第1ベルトコンベア1の下流側端部と、左右一対の第2ベルトコンベア2の上流側端部とは部分的にオーバーラップしている。また、本実施形態においては、左右一対の第2ベルトコンベア2同士の間隔は、左右一対の第1ベルトコンベア1同士の間隔よりも広く設定されている。また、左右一対の第1ベルトコンベア1および左右一対の第2ベルトコンベア2は、基準回転中心軸Lを通り前後方向に延びる中心線に対して線対称に配置されている。更に、前述のタイヤ試験位置TPは、左右一対の第2ベルトコンベア2の略中央部に配置されている。 In FIG. 1, the transport direction of the tire T is indicated by the arrow DS. When viewed from the direction of the arrow DS, the pair of left and right first belt conveyors 1 and the pair of left and right second belt conveyors 2 function as the transport mechanism of the present invention. The first belt conveyor 1 and the second belt conveyor 2 each have a flat transport surface 1H (see FIG. 8) on which the tire T is placed in a posture in which the rotation axis of the tire T extends in the vertical direction. It is possible to transport the tire T to the tire test position TP along a predetermined transport path. The pair of left and right first belt conveyors 1 extend along the front-rear direction and are arranged at intervals in the left-right direction. Similarly, the pair of left and right second belt conveyors 2 extend along the front-rear direction and are spaced apart from each other in the left-right direction on the front side of the pair of left and right first belt conveyors 1, that is, on the downstream side in the transport direction of the tire T. Will be placed. As shown in FIG. 1, the downstream end of the pair of left and right first belt conveyors 1 and the upstream end of the pair of left and right second belt conveyors 2 partially overlap. Further, in the present embodiment, the distance between the pair of left and right second belt conveyors 2 is set wider than the distance between the pair of left and right first belt conveyors 1. Further, the pair of left and right first belt conveyors 1 and the pair of left and right second belt conveyors 2 are arranged line-symmetrically with respect to a center line extending in the front-rear direction through the reference rotation center axis L. Further, the tire test position TP described above is arranged at a substantially central portion of the pair of left and right second belt conveyors 2.
 左右一対の供給コンベア5は、左右一対の第1ベルトコンベア1の上流側に配置されており、タイヤTを左右一対の第1ベルトコンベア1の上流側端部に搬入する。 The pair of left and right supply conveyors 5 are arranged on the upstream side of the pair of left and right first belt conveyors 1, and the tires T are carried into the upstream end of the pair of left and right first belt conveyors 1.
 左右一対のローラー部3は、左右一対の第1ベルトコンベア1の幅方向(左右方向)外側に配置されている。各ローラー部3は、前後方向および左右方向に互いに隣接して配置され回転可能な複数の載置ローラー3Aを有する。これらの載置ローラー3Aは、倒伏状態のタイヤTを水平面内で回転可能に載置する載置面を構成する。なお、ローラー部3は左右一対の第1ベルトコンベア1の内側に設けられてもよく、左右一対の第1ベルトコンベア1の内側および外側の両方に設けられてもよい。 The pair of left and right roller portions 3 are arranged outside the pair of left and right first belt conveyors 1 in the width direction (left and right direction). Each roller portion 3 has a plurality of mounting rollers 3A that are arranged and rotatable adjacent to each other in the front-rear direction and the left-right direction. These mounting rollers 3A form a mounting surface on which the tire T in the collapsed state is rotatably mounted in a horizontal plane. The roller portions 3 may be provided inside the pair of left and right first belt conveyors 1, or may be provided both inside and outside the pair of left and right first belt conveyors 1.
 左右一対の第1ベルトコンベア1は、不図示のシリンダによって昇降され、タイヤTを搬送するときは、その搬送面1Hがローラー部3の載置面よりも上昇し、後述するようにタイヤTを回転させるときは、搬送面1Hがローラー部3の載置面よりも下方に下降する。なお、他の実施形態において左右一対の第1ベルトコンベア1の上下位置を固定し、ローラー部3を昇降させてもよい。図8に示すように、各第1ベルトコンベア1は、ベルト1Aと、駆動ローラー1Bと、従動ローラー1Cと、を有する。ベルト1Aは、駆動ローラー1Bおよび従動ローラー1Cに周回移動可能に支持されている。駆動ローラー1Bは、不図示のモーターに接続されており、当該モーターから回転駆動力を受けることで、ベルト1Aを周回させる。従動ローラー1Cは、駆動ローラー1Bとは反対側でベルト1Aを支持し、ベルト1Aに従動して回転する。ベルト1Aの上面部が搬送面1Hを構成している。 The pair of left and right first belt conveyors 1 are raised and lowered by cylinders (not shown), and when the tire T is conveyed, the conveying surface 1H rises above the mounting surface of the roller portion 3, and the tire T is raised as described later. When rotating, the transport surface 1H descends below the mounting surface of the roller portion 3. In another embodiment, the vertical positions of the pair of left and right first belt conveyors 1 may be fixed, and the roller portion 3 may be raised and lowered. As shown in FIG. 8, each first belt conveyor 1 has a belt 1A, a driving roller 1B, and a driven roller 1C. The belt 1A is rotatably supported by the driving roller 1B and the driven roller 1C. The drive roller 1B is connected to a motor (not shown), and receives a rotational driving force from the motor to rotate the belt 1A. The driven roller 1C supports the belt 1A on the side opposite to the driving roller 1B, and rotates in a driven manner of the belt 1A. The upper surface of the belt 1A constitutes the transport surface 1H.
 タイヤ計測用センサ60は、第1ベルトコンベア1によって搬送されるタイヤTを検知する。具体的に、タイヤ計測用センサ60は、第1ベルトコンベア1の搬送面1Hに載置されたタイヤTが搬送面1Hから所定の高さHの位置に配置され搬送面1Hと平行な仮想切断面Gによって仮想的に切断されることで形成されるタイヤTの外周縁である特定外周縁VC(図8参照)のタイヤTの搬送方向における先端部および後端部をそれぞれ検知する。なお、本実施形態では、仮想切断面Gは水平面である。 The tire measurement sensor 60 detects the tire T conveyed by the first belt conveyor 1. Specifically, in the tire measurement sensor 60, the tire T mounted on the transport surface 1H of the first belt conveyor 1 is arranged at a position at a predetermined height H from the transport surface 1H, and is virtually cut parallel to the transport surface 1H. The front end portion and the rear end portion of the specific outer peripheral edge VC (see FIG. 8), which is the outer peripheral edge of the tire T formed by being virtually cut by the surface G, in the transport direction of the tire T are detected. In the present embodiment, the virtual cut surface G is a horizontal plane.
 タイヤ計測用センサ60は、前述のように、第1センサ61と、第2センサ62と、を有する。第1センサ61は、タイヤTの特定外周縁VCの後端部を検知する。また、第2センサ62は、第1センサ61よりも前記搬送方向下流側に配置され、タイヤTの特定外周縁VCの先端部を検知する。第1センサ61は、光電センサからなり、タイヤTの搬送方向と交差(直交)しかつ水平な方向に向かって検出光(図1の一点鎖線参照、以後のセンサも同様)を発光する第1発光部61Aと、前記検出光を受光する第1受光部61Bと、を有する。同様に、第2センサ62は、光電センサからなり、タイヤTの搬送方向と交差(直交)しかつ水平な方向に向かって検出光を発光する第2発光部62Aと、前記検出光を受光する第2受光部62Bと、を有する。第1センサ61および第2センサ62の検出光の位置は、それぞれ本発明の寸法演算用検知位置に相当する。 As described above, the tire measurement sensor 60 has a first sensor 61 and a second sensor 62. The first sensor 61 detects the rear end portion of the specific outer peripheral edge VC of the tire T. Further, the second sensor 62 is arranged on the downstream side in the transport direction with respect to the first sensor 61, and detects the tip end portion of the specific outer peripheral edge VC of the tire T. The first sensor 61 is composed of a photoelectric sensor, and emits detection light (see the alternate long and short dash line in FIG. 1, the same applies to subsequent sensors) in a direction intersecting (orthogonal) and horizontal with the transport direction of the tire T. It has a light emitting unit 61A and a first light receiving unit 61B that receives the detected light. Similarly, the second sensor 62 includes a second light emitting unit 62A which is composed of a photoelectric sensor and emits detection light in a direction intersecting (orthogonal) and horizontal with the transport direction of the tire T, and receives the detection light. It has a second light receiving unit 62B. The positions of the detection lights of the first sensor 61 and the second sensor 62 correspond to the detection positions for dimensional calculation of the present invention, respectively.
 停止用センサ63は、タイヤ計測用センサ60の第2センサ62よりもタイヤTの搬送方向下流側に配置され、第1ベルトコンベア1および第2ベルトコンベア2によって搬送されるタイヤTの特定外周縁VCの先端部を検知する。停止用センサ63は、光電センサからなり、タイヤTの搬送方向と交差(直交)しかつ水平な方向に向かって検出光を発光する第3発光部63Aと、前記検出光を受光する第3受光部63Bと、を有する。停止用センサ63の検出光の位置は、本発明の停止用検知位置に相当する。 The stop sensor 63 is arranged on the downstream side in the transport direction of the tire T from the second sensor 62 of the tire measurement sensor 60, and is a specific outer peripheral edge of the tire T transported by the first belt conveyor 1 and the second belt conveyor 2. Detects the tip of the VC. The stop sensor 63 includes a third light emitting unit 63A that comprises a photoelectric sensor and emits detection light in a direction intersecting (orthogonal) and horizontal with the transport direction of the tire T, and a third light receiving unit that receives the detected light. It has a part 63B and. The position of the detection light of the stop sensor 63 corresponds to the stop detection position of the present invention.
 ルブリケータ7は、第1センサ61と第2センサ62との間において、左右一対の第1ベルトコンベア1の間に配置されている。ルブリケータ7は、不図示のエアシリンダによって昇降可能とされている。ルブリケータ7は、タイヤTの内周面のビード部(不図示)に潤滑剤を塗布するブラシ7Aと、押圧ユニット9との間でタイヤTを位置決めするようにタイヤTの内周面に当接される一対の位置決めローラー7Bとを有している。 The lubricator 7 is arranged between the first sensor 61 and the second sensor 62, between the pair of left and right first belt conveyors 1. The lubricator 7 can be raised and lowered by an air cylinder (not shown). The lubricator 7 abuts on the inner peripheral surface of the tire T so as to position the tire T between the brush 7A that applies a lubricant to the bead portion (not shown) on the inner peripheral surface of the tire T and the pressing unit 9. It has a pair of positioning rollers 7B to be formed.
 また、左右一対の押圧ユニット9は、左右一対の第1ベルトコンベア1(ローラー部3)の左右両側に配置されている。左右一対の押圧ユニット9は、タイヤTの外周面を中心側へ押し付ける押圧ローラー9Aと、当該押圧ローラー9Aを揺動可能に支持する支持部9Bと、をそれぞれ有する、支持部9Bは、押圧ローラー9Aを保持した状態で、当該押圧ローラー9Aとは反対側の支持部9Bの基端部を支点として、水平面上を揺動することができる。 Further, the pair of left and right pressing units 9 are arranged on both the left and right sides of the pair of left and right first belt conveyors 1 (roller portions 3). The pair of left and right pressing units 9 have a pressing roller 9A that presses the outer peripheral surface of the tire T toward the center, and a supporting portion 9B that swingably supports the pressing roller 9A. The supporting portion 9B is a pressing roller. While holding the 9A, it can swing on a horizontal plane with the base end portion of the support portion 9B on the opposite side of the pressing roller 9A as a fulcrum.
 図9に示すように、筐体50は、上記の第1ベルトコンベア1、第2ベルトコンベア2、ローラー部3、ルブリケータ7などを支持している。また、左右3対のセンサ支持部51は、筐体50の左右端部から上方に延びるように配置されており、それぞれ、第1発光部61A、第1受光部61B、第2発光部62A、第2受光部62B、第3発光部63Aおよび第3受光部63Bを支持している。なお、図9では、第1発光部61Aおよび第1受光部61Bを支持するセンサ支持部51が図示されているが、当該センサ支持部51の後方(紙面と直交する方向の奥側)において、他のセンサ支持部51が、それぞれ、第2発光部62A、第2受光部62B、第3発光部63Aおよび第3受光部63Bを支持している。 As shown in FIG. 9, the housing 50 supports the first belt conveyor 1, the second belt conveyor 2, the roller portion 3, the lubricator 7, and the like. Further, the three pairs of left and right sensor support portions 51 are arranged so as to extend upward from the left and right end portions of the housing 50, and the first light emitting unit 61A, the first light receiving unit 61B, and the second light emitting unit 62A, respectively. It supports the second light receiving unit 62B, the third light emitting unit 63A, and the third light receiving unit 63B. In FIG. 9, the sensor support portion 51 that supports the first light emitting portion 61A and the first light receiving portion 61B is shown, but behind the sensor support portion 51 (on the back side in the direction orthogonal to the paper surface). The other sensor support units 51 support the second light emitting unit 62A, the second light receiving unit 62B, the third light emitting unit 63A, and the third light receiving unit 63B, respectively.
 図2は、本実施形態に係るタイヤ試験機100の制御部80のブロック図である。タイヤ試験機100は、更に制御部80を備える。制御部80は、タイヤ試験機100の各機構を統括的に制御する。制御部80は、CPU(Central Processing Unit)、制御プログラムを記憶するROM(Read Only Memory)、CPUの作業領域として使用されるRAM(Random Access Memory)等から構成されており、第1ベルトコンベア1、第2ベルトコンベア2、供給コンベア5、ルブリケータ7および押圧ユニット9などの動作を制御する。また、制御部80には、これらの各部材に加えて、前述の第1センサ61、第2センサ62および停止用センサ63が電気的に接続されている。 FIG. 2 is a block diagram of the control unit 80 of the tire testing machine 100 according to the present embodiment. The tire testing machine 100 further includes a control unit 80. The control unit 80 comprehensively controls each mechanism of the tire testing machine 100. The control unit 80 is composed of a CPU (Central Processing Unit), a ROM for storing control programs (Read Only Memory), a RAM (Random Access Memory) used as a work area of the CPU, and the like, and is composed of a first belt conveyor 1 , The operation of the second belt conveyor 2, the supply conveyor 5, the lubricator 7, the pressing unit 9, and the like is controlled. Further, in addition to each of these members, the first sensor 61, the second sensor 62, and the stop sensor 63 described above are electrically connected to the control unit 80.
 制御部80は、前記CPUが前記ROMに記憶された制御プログラムを実行することにより、駆動制御部801(停止制御部、搬送制御部)、タイヤ搬送演算部802(タイヤ寸法演算部、移動距離演算部)および記憶部803を備える。 The control unit 80 executes a control program stored in the ROM by the CPU to execute a drive control unit 801 (stop control unit, transfer control unit) and a tire transfer calculation unit 802 (tire dimension calculation unit, movement distance calculation). A unit) and a storage unit 803 are provided.
 駆動制御部801は、第1ベルトコンベア1、第2ベルトコンベア2、供給コンベア5、ルブリケータ7および押圧ユニット9の各駆動系に対して、駆動のための指令信号をそれぞれ入力する。また、駆動制御部801は、タイヤTの搬送過程において、停止用センサ63がタイヤTの特定外周縁VCの先端部を検知することに伴って、タイヤTの特定外周縁VCの先端部がその搬送経路上の所定の待機位置SP(図6)に一時停止するように第1ベルトコンベア1および第2ベルトコンベア2を制御する。更に、駆動制御部801は、タイヤ搬送演算部802によって演算された後記の移動距離Xに応じて、タイヤTが前記待機位置SPから前記タイヤ試験位置TP(図1)まで移動するように第1ベルトコンベア1および第2ベルトコンベア2を制御する。 The drive control unit 801 inputs a command signal for driving to each drive system of the first belt conveyor 1, the second belt conveyor 2, the supply conveyor 5, the lubricator 7, and the pressing unit 9. Further, in the drive control unit 801, the tip of the specific outer peripheral edge VC of the tire T is the tip of the drive control unit 801 as the stop sensor 63 detects the tip of the specific outer peripheral edge VC of the tire T in the transport process of the tire T. The first belt conveyor 1 and the second belt conveyor 2 are controlled so as to temporarily stop at a predetermined standby position SP (FIG. 6) on the transport path. Further, the drive control unit 801 first moves the tire T from the standby position SP to the tire test position TP (FIG. 1) according to the later movement distance X calculated by the tire transfer calculation unit 802. It controls the belt conveyor 1 and the second belt conveyor 2.
 タイヤ搬送演算部802は、タイヤTをタイヤ試験位置TPに搬入するための各種のパラメータを演算する。特に、タイヤ搬送演算部802は、タイヤ計測用センサ60の第1センサ61および第2センサ62がタイヤTの特定外周縁VCの後端部および先端部をそれぞれ検知する時間差と、第1センサ61と第2センサ62との間におけるタイヤTの搬送速度と、に基づいて、タイヤTの特定外周縁VCの外径寸法VD(図8)を演算する。また、タイヤ搬送演算部802は、当該タイヤ搬送演算部802によって演算された上記の特定外周縁VCの外径寸法VDと、前記待機位置SPから前記タイヤ試験位置TPまでの距離とに基づいて、タイヤTを待機位置SPからタイヤ試験位置TPまで移動させるためのタイヤTの特定外周縁VCの移動距離Xを演算する。 The tire transfer calculation unit 802 calculates various parameters for carrying the tire T to the tire test position TP. In particular, in the tire transport calculation unit 802, the time difference between the first sensor 61 and the second sensor 62 of the tire measurement sensor 60 for detecting the rear end and the tip of the specific outer peripheral edge VC of the tire T and the first sensor 61, respectively. The outer diameter dimension VD (FIG. 8) of the specific outer peripheral edge VC of the tire T is calculated based on the transport speed of the tire T between the second sensor 62 and the second sensor 62. Further, the tire transfer calculation unit 802 is based on the outer diameter dimension VD of the specific outer peripheral edge VC calculated by the tire transfer calculation unit 802 and the distance from the standby position SP to the tire test position TP. The moving distance X of the specific outer peripheral edge VC of the tire T for moving the tire T from the standby position SP to the tire test position TP is calculated.
 記憶部803は、駆動制御部801およびタイヤ搬送演算部802が参照する各種の閾値、定数および数式などを記憶している。 The storage unit 803 stores various threshold values, constants, mathematical formulas, etc. referred to by the drive control unit 801 and the tire transfer calculation unit 802.
 以下に、制御部80がタイヤTをタイヤ試験位置TPに送り込む手順を説明する。図3、図4、図5、図6および図7は、本実施形態に係るタイヤ試験機100においてタイヤTがタイヤ試験位置TPに搬入されるまでの工程を示す平面図である。図8は、本実施形態に係るタイヤ試験機100の側面図である。なお、図8のうち、タイヤT(MCタイヤT1)の上方に描かれている仮想的な特定外周縁VCは平面図である。図9および図10は、本実施形態に係るタイヤ試験機100の背面図である。なお、図9では、第1ベルトコンベア1の搬送面1H上に、タイヤTとしてMCタイヤT1が載置されており、図10では、タイヤTとしてPCタイヤT2が載置されている。MCタイヤT1は、Motor Cycle用タイヤであり、PCタイヤT2は、Passenger Car用タイヤである。MCタイヤT1は、その外周面が略円弧形状(湾曲形状)を有している。一方、PCタイヤT2は、その外周面がほぼ平坦な形状を有している。なお、PCタイヤT2の外周面には不図示の溝(トレッド、凹凸)が比較的深めに形成されていることが多い。 The procedure in which the control unit 80 sends the tire T to the tire test position TP will be described below. 3, FIG. 4, FIG. 5, FIG. 6 and FIG. 7 are plan views showing a process until the tire T is carried into the tire test position TP in the tire testing machine 100 according to the present embodiment. FIG. 8 is a side view of the tire testing machine 100 according to the present embodiment. In FIG. 8, the virtual specific outer peripheral edge VC drawn above the tire T (MC tire T1) is a plan view. 9 and 10 are rear views of the tire testing machine 100 according to the present embodiment. In FIG. 9, the MC tire T1 is mounted as the tire T on the transport surface 1H of the first belt conveyor 1, and in FIG. 10, the PC tire T2 is mounted as the tire T. The MC tire T1 is a tire for Motor Cycle, and the PC tire T2 is a tire for Passenger Car. The outer peripheral surface of the MC tire T1 has a substantially arc shape (curved shape). On the other hand, the PC tire T2 has a shape whose outer peripheral surface is substantially flat. Grooves (treads, irregularities) (not shown) are often formed relatively deeply on the outer peripheral surface of the PC tire T2.
 制御部80の駆動制御部801が左右一対の供給コンベア5を制御し、タイヤTが左右一対の第1ベルトコンベア1に搬入されると、当該タイヤTが左右一対の第1ベルトコンベア1によって搬送されながら、図3に示すように、タイヤTの後端部が第1センサ61によって検知される。このとき、図8に示すように、第1センサ61は、第1ベルトコンベア1の搬送面1Hから高さHだけ上方の位置に配置されているため、第1センサ61は、タイヤTの外周面のうち、特定外周縁VCの後端部を検知する。なお、当該検知は、第1発光部61Aが発光した検知光がタイヤTによって遮られた状態から、第1受光部61Bによって受光され始めた状態への状態変化によって検知される。 When the drive control unit 801 of the control unit 80 controls the pair of left and right supply conveyors 5 and the tires T are carried into the pair of left and right first belt conveyors 1, the tires T are conveyed by the pair of left and right first belt conveyors 1. While doing so, as shown in FIG. 3, the rear end portion of the tire T is detected by the first sensor 61. At this time, as shown in FIG. 8, since the first sensor 61 is arranged at a position above the transport surface 1H of the first belt conveyor 1 by a height H, the first sensor 61 is the outer circumference of the tire T. Of the surfaces, the rear end portion of the specific outer peripheral edge VC is detected. The detection is detected by a state change from a state in which the detection light emitted by the first light emitting unit 61A is blocked by the tire T to a state in which the light is started to be received by the first light receiving unit 61B.
 タイヤTは、左右一対の第1ベルトコンベア1によって搬送方向に沿って比較的低速の一定の搬送速度Vで搬送され、図4に示すように、タイヤTの先端部が第2センサ62によって検知される。なお、図8に示すように、第2センサ62は、第1ベルトコンベア1の搬送面1Hから高さHだけ上方の位置に配置されているため、第2センサ62は、タイヤTの外周面のうち、特定外周縁VCの先端部を検知する。なお、当該検知は、第2発光部62Aが発光した検知光が第2受光部62Bによって受光された状態から、タイヤTによって遮られ始めた状態への状態変化によって検知される。 The tire T is conveyed by a pair of left and right first belt conveyors 1 at a relatively low constant transfer speed V along the transfer direction, and as shown in FIG. 4, the tip of the tire T is detected by the second sensor 62. Will be done. As shown in FIG. 8, since the second sensor 62 is arranged at a position above the transport surface 1H of the first belt conveyor 1 by a height H, the second sensor 62 is an outer peripheral surface of the tire T. Of these, the tip of the specific outer peripheral VC is detected. The detection is detected by a state change from a state in which the detection light emitted by the second light emitting unit 62A is received by the second light receiving unit 62B to a state in which the tire T has begun to block the detection light.
 第2センサ62によって特定外周縁VCの先端部が検知されると、制御部80の駆動制御部801が左右一対の第1ベルトコンベア1を制御して、タイヤTの搬送が一旦停止される。ここで、第1センサ61がタイヤTの特定外周縁VCの後端部を検知してから、タイヤTが一旦停止するまでの移動距離ΔLは、第1センサ61が特定外周縁VCの後端部を検知した時刻T1、第2センサ62が特定外周縁VCの先端部を検知した時刻T2、および左右一対の第1ベルトコンベア1によるタイヤTの搬送速度Vから、下記の式1で算出される。なお、距離L1は第1センサ61と第2センサ62との距離に相当する。
 ΔL=(T2-T1)×V   ・・・(式1)
When the tip of the specific outer peripheral edge VC is detected by the second sensor 62, the drive control unit 801 of the control unit 80 controls the pair of left and right first belt conveyors 1, and the transportation of the tire T is temporarily stopped. Here, the moving distance ΔL from when the first sensor 61 detects the rear end portion of the specific outer peripheral edge VC of the tire T until the tire T temporarily stops is the rear end of the specific outer peripheral edge VC by the first sensor 61. Calculated by the following formula 1 from the time T1 when the unit is detected, the time T2 when the second sensor 62 detects the tip of the specific outer peripheral edge VC, and the transport speed V of the tire T by the pair of left and right first belt conveyors 1. To. The distance L1 corresponds to the distance between the first sensor 61 and the second sensor 62.
ΔL = (T2-T1) × V ・ ・ ・ (Equation 1)
 したがって、タイヤTの特定外周縁VCの外径寸法VD(図8)は、式1で算出された移動距離ΔLを用いて下記の式2によって算出される。
 VD=L1-ΔL   ・・・(式2)
Therefore, the outer diameter dimension VD (FIG. 8) of the specific outer peripheral edge VC of the tire T is calculated by the following equation 2 using the moving distance ΔL calculated by the equation 1.
VD = L1-ΔL ・ ・ ・ (Equation 2)
 なお、移動距離ΔLは、例えば、第1ベルトコンベア1の駆動ローラー1Bに接続されたモーターに取り付けられたエンコーダのパルス数と、その1パルス当たりのベルト1Aのベルト移動距離との関係から算出して求めることも可能である。具体的に、第1センサ61がタイヤTの特定外周縁VCの後端部を検知してから、第2センサ62がタイヤTの特定外周縁VCの先端部を検知するまでの間の上記パルス数をカウントし、当該カウントされたパルス数に1パルス当たりの移動距離を乗算する方法で、移動距離ΔLが求められてもよい。 The moving distance ΔL is calculated from, for example, the relationship between the number of pulses of the encoder attached to the motor connected to the drive roller 1B of the first belt conveyor 1 and the belt moving distance of the belt 1A per pulse. It is also possible to ask for it. Specifically, the pulse between the first sensor 61 detecting the rear end portion of the specific outer peripheral edge VC of the tire T and the second sensor 62 detecting the tip end portion of the specific outer peripheral edge VC of the tire T. The movement distance ΔL may be obtained by counting the number and multiplying the counted number of pulses by the movement distance per pulse.
 図4に示すように、第1センサ61と第2センサ62との間でタイヤTが停止した状態で、制御部80の駆動制御部801がルブリケータ7および左右一対の押圧ユニット9を制御する。すなわち、ルブリケータ7に接続された不図示のエアシリンダが作動され、ルブリケータ7が左右一対のローラー部3の間においてローラー部3よりも上方に突出するように上昇する。そして、駆動制御部801が前記エアシリンダによって左右一対の第1ベルトコンベア1の搬送面1Hをローラー部3よりも下降させると、タイヤTがローラー部3の複数の載置ローラー3Aに載置される。また、駆動制御部801が、左右一対の押圧ユニット9を支持部9Bの基端部を支点として水平に回動させると、左右一対の押圧ローラー9Aと左右一対の位置決めローラー7BとによってタイヤTが挟持される(図5)。この際、タイヤTの中心位置が基準回転中心軸Lを通り前後方向に延びる直線上に位置決めされる。この状態で、一方の押圧ユニット9の押圧ローラー9Aが不図示のモーターで回転駆動されると、ローラー部3上のタイヤTが水平面内で回転して、ルブリケータ7のブラシ7AがタイヤTの内周面に潤滑剤を塗布する。 As shown in FIG. 4, the drive control unit 801 of the control unit 80 controls the lubricator 7 and the pair of left and right pressing units 9 with the tire T stopped between the first sensor 61 and the second sensor 62. That is, an air cylinder (not shown) connected to the lubricator 7 is operated, and the lubricator 7 rises between the pair of left and right roller portions 3 so as to project upward from the roller portions 3. Then, when the drive control unit 801 lowers the transport surface 1H of the pair of left and right first belt conveyors 1 from the roller unit 3 by the air cylinder, the tire T is mounted on the plurality of mounting rollers 3A of the roller unit 3. Cylinder. Further, when the drive control unit 801 horizontally rotates the pair of left and right pressing units 9 with the base end portion of the supporting portion 9B as a fulcrum, the tire T is generated by the pair of left and right pressing rollers 9A and the pair of left and right positioning rollers 7B. It is pinched (Fig. 5). At this time, the center position of the tire T is positioned on a straight line extending in the front-rear direction through the reference rotation center axis L. In this state, when the pressing roller 9A of one pressing unit 9 is rotationally driven by a motor (not shown), the tire T on the roller portion 3 rotates in a horizontal plane, and the brush 7A of the lubricant 7 is inside the tire T. Apply lubricant to the peripheral surface.
 この後、左右一対の押圧ユニット9およびルブリケータ7がタイヤTから離間し、ルブリケータ7がローラー部3よりも下方に移動する。その後、制御部80の駆動制御部801が前記エアシリンダによって第1ベルトコンベア1の搬送面1Hをローラー部3よりも上昇させ、タイヤTを再び左右一対の第1ベルトコンベア1上に載置する。そして、左右一対の第1ベルトコンベア1がタイヤTを再び搬送方向下流側に搬送する。やがて、図6に示すように、停止用センサ63がタイヤTの特定外周縁VCの先端部を検知する。図8に示すように、停止用センサ63は、第1ベルトコンベア1の搬送面1Hから高さHだけ上方の位置に配置されているため、停止用センサ63は、タイヤTの外周面のうち、特定外周縁VCの先端部を検知する。なお、当該検知は、第3発光部63Aが発光した検知光が第3受光部63Bによって受光された状態から、タイヤTによって遮られ始めた状態への状態変化によって検知される。 After that, the pair of left and right pressing units 9 and the lubricator 7 are separated from the tire T, and the lubricator 7 moves below the roller portion 3. After that, the drive control unit 801 of the control unit 80 raises the transport surface 1H of the first belt conveyor 1 from the roller unit 3 by the air cylinder, and places the tire T again on the pair of left and right first belt conveyors 1. .. Then, the pair of left and right first belt conveyors 1 convey the tire T to the downstream side in the conveying direction again. Eventually, as shown in FIG. 6, the stop sensor 63 detects the tip of the specific outer peripheral edge VC of the tire T. As shown in FIG. 8, since the stop sensor 63 is arranged at a position above the transport surface 1H of the first belt conveyor 1 by a height H, the stop sensor 63 is included in the outer peripheral surface of the tire T. , Detects the tip of the specific outer peripheral VC. The detection is detected by a state change from a state in which the detection light emitted by the third light emitting unit 63A is received by the third light receiving unit 63B to a state in which the tire T has begun to block the detection light.
 停止用センサ63がタイヤTの特定外周縁VCの先端部を検知すると、制御部80の駆動制御部801が左右一対の第1ベルトコンベア1を制御して、タイヤTを図6の待機位置SPで一時停止させる。したがって、予め左右一対の押圧ユニット9によって左右方向(幅方向)に位置決めされたタイヤTの先端部が、タイヤTの外径寸法に関係なく、待機位置SPに配置される。 When the stop sensor 63 detects the tip of the specific outer peripheral edge VC of the tire T, the drive control unit 801 of the control unit 80 controls the pair of left and right first belt conveyors 1 to move the tire T to the standby position SP in FIG. Pause with. Therefore, the tip portion of the tire T previously positioned in the left-right direction (width direction) by the pair of left-right pressing units 9 is arranged at the standby position SP regardless of the outer diameter dimension of the tire T.
 最後に、制御部80の駆動制御部801が左右一対の第1ベルトコンベア1および左右一対の第2ベルトコンベア2を制御して、タイヤTを待機位置SPからタイヤ試験位置TPに移動させる。この結果、タイヤTの回転中心とスピンドル軸31の基準回転中心軸Lとが一致し、タイヤTに不図示のリムが嵌め込まれることで、スピンドル軸31がタイヤTを回転可能に支持することができる。 Finally, the drive control unit 801 of the control unit 80 controls the pair of left and right first belt conveyors 1 and the pair of left and right second belt conveyors 2 to move the tire T from the standby position SP to the tire test position TP. As a result, the rotation center of the tire T coincides with the reference rotation center axis L of the spindle shaft 31, and a rim (not shown) is fitted into the tire T, so that the spindle shaft 31 rotatably supports the tire T. it can.
 ここで、待機位置SPからタイヤTの回転中心とスピンドル軸31の基準回転中心軸Lとが互いに一致するタイヤ試験位置TPまで、タイヤTが移動される際のタイヤT(特定外周縁VC)の移動距離X(図7)は、予め定められた停止用センサ63からスピンドル軸31の基準回転中心軸Lまでの搬送方向における距離L2と、換言すると、待機位置SPからスピンドル軸31の基準回転中心軸Lまでの搬送方向における距離L2と、式2で求められたタイヤTの特定外周縁VCの外径寸法VDとから、下記の式3で算出される。
 X=L2+VD/2   ・・・(式3)
Here, the tire T (specific outer peripheral edge VC) when the tire T is moved from the standby position SP to the tire test position TP where the rotation center of the tire T and the reference rotation center axis L of the spindle shaft 31 coincide with each other. The moving distance X (FIG. 7) is the distance L2 in the transport direction from the predetermined stop sensor 63 to the reference rotation center axis L of the spindle shaft 31, in other words, the reference rotation center of the spindle shaft 31 from the standby position SP. It is calculated by the following formula 3 from the distance L2 in the transport direction to the shaft L and the outer diameter dimension VD of the specific outer peripheral edge VC of the tire T obtained by the formula 2.
X = L2 + VD / 2 ... (Equation 3)
 式3から明らかなように、本実施形態に係るタイヤ試験機100は、待機位置SPからタイヤ試験位置TPのスピンドル軸31の基準回転中心軸LへのタイヤTの移動距離Xが、タイヤTの特定外周縁VCの外径寸法VDに応じて変化し、外径寸法VDが小さいほど移動距離Xを短くすることができるので、タイヤ径に応じてタイヤTの移動時間を可及的に短縮して、タイヤ試験のサイクルタイムを短くすることができ、タイヤ試験の効率を高めることができる。 As is clear from Equation 3, in the tire testing machine 100 according to the present embodiment, the moving distance X of the tire T from the standby position SP to the reference rotation center axis L of the spindle shaft 31 of the tire test position TP is the tire T. It changes according to the outer diameter dimension VD of the specific outer peripheral edge VC, and the smaller the outer diameter dimension VD, the shorter the moving distance X can be. Therefore, the moving time of the tire T can be shortened as much as possible according to the tire diameter. Therefore, the cycle time of the tire test can be shortened, and the efficiency of the tire test can be improved.
 図12および図13は、本実施形態に係るタイヤ試験機100と比較される他のタイヤ試験機の側面図である。図12では、前述のMCタイヤT1が第1ベルトコンベア1の搬送面1Hに載置されており、図13では、前述のPCタイヤT2が第1ベルトコンベア1の搬送面1Hに載置されている。当該他のタイヤ試験機は、第1センサ61、第2センサ62および停止用センサ63の搬送面1Hに対する高さが互いに異なる点で、本実施形態に係るタイヤ試験機100と異なっている。具体的に、第1センサ61は搬送面1Hから高さH1の位置に配置され、第2センサ62は搬送面1Hから高さH2の位置に配置され、停止用センサ63は搬送面1Hから高さH3の位置に配置されている(H2<H1<H3)。 12 and 13 are side views of another tire testing machine compared with the tire testing machine 100 according to the present embodiment. In FIG. 12, the MC tire T1 is mounted on the transport surface 1H of the first belt conveyor 1, and in FIG. 13, the PC tire T2 is mounted on the transport surface 1H of the first belt conveyor 1. There is. The other tire testing machine is different from the tire testing machine 100 according to the present embodiment in that the heights of the first sensor 61, the second sensor 62, and the stop sensor 63 with respect to the transport surface 1H are different from each other. Specifically, the first sensor 61 is arranged at a position of height H1 from the transport surface 1H, the second sensor 62 is arranged at a position of height H2 from the transport surface 1H, and the stop sensor 63 is arranged at a height H2 from the transport surface 1H. It is arranged at the position of H3 (H2 <H1 <H3).
 このような他のタイヤ試験機において、第1センサ61がタイヤTの後端部を検知し、第2センサ62および停止用センサ63がタイヤTの先端部を検知した上で、前述のようなタイヤ試験位置TPへのタイヤTの搬入制御を想定した場合、第1センサ61、第2センサ62および停止用センサ63は、互いに外径寸法の異なる外周縁を検知することとなる。この結果、タイヤTの外径寸法の算出や移動距離Xの算出に誤差が生じる。具体的に、図12および図13において、第1センサ61が、タイヤTの最大外径に対応する部分(最大外径部分)を検知すると仮定すると、第2センサ62および停止用センサ63は、外径が前記最大外径よりも小さな部分を検知する。この場合、第2センサ62は、第1センサ61が検知した最大外径部分よりも遅いタイミングでタイヤTの外周部を検知する。この結果、式1、式2に基づいたタイヤTの最大外径寸法の算出結果が前記最大外径部分よりも小さくなってしまう(この場合、式1、式2の特定外周縁VCの外径寸法VDは最大外径寸法に置き換えられる)。当該誤差を含んだまま、式3に基づいて移動距離Xが算出されると、当該移動距離XはタイヤTの外径寸法に応じた本来の移動距離よりも小さくなる。この結果、タイヤTの回転中心と基準回転中心軸Lとが一致せず、タイヤTの上下両側面にリムが装着できないという問題が発生する。 In such another tire testing machine, the first sensor 61 detects the rear end portion of the tire T, the second sensor 62 and the stop sensor 63 detect the tip end portion of the tire T, and then as described above. Assuming control of carrying the tire T into the tire test position TP, the first sensor 61, the second sensor 62, and the stop sensor 63 detect outer peripheral edges having different outer diameter dimensions from each other. As a result, an error occurs in the calculation of the outer diameter dimension of the tire T and the calculation of the moving distance X. Specifically, assuming that the first sensor 61 detects a portion (maximum outer diameter portion) corresponding to the maximum outer diameter of the tire T in FIGS. 12 and 13, the second sensor 62 and the stop sensor 63 are A portion whose outer diameter is smaller than the maximum outer diameter is detected. In this case, the second sensor 62 detects the outer peripheral portion of the tire T at a timing later than the maximum outer diameter portion detected by the first sensor 61. As a result, the calculation result of the maximum outer diameter dimension of the tire T based on the formulas 1 and 2 becomes smaller than the maximum outer diameter portion (in this case, the outer diameter of the specific outer peripheral VC of the formulas 1 and 2). Dimension VD is replaced by the maximum outer diameter dimension). If the moving distance X is calculated based on the equation 3 while including the error, the moving distance X becomes smaller than the original moving distance according to the outer diameter dimension of the tire T. As a result, there arises a problem that the rotation center of the tire T and the reference rotation center axis L do not match, and the rims cannot be mounted on the upper and lower side surfaces of the tire T.
 特に、このような問題は、図12の上下方向(タイヤTの回転中心方向)に沿って外径が大きく変化するように湾曲したMCタイヤT1において顕著に発生する。また、図13に示されるPCタイヤT2においても、その外周面に複数の溝(トレッド)が形成されている場合には、第1センサ61がトレッドの山部分(PCタイヤT2の外表面)を検知する一方、第2センサ62または停止用センサ63が第1センサ61のトレッドの谷部分を検知する可能性があり、上記と同様の問題が発生する。 In particular, such a problem occurs remarkably in the MC tire T1 which is curved so that the outer diameter changes significantly along the vertical direction (direction of the rotation center of the tire T) in FIG. Further, also in the PC tire T2 shown in FIG. 13, when a plurality of grooves (treads) are formed on the outer peripheral surface thereof, the first sensor 61 covers the mountain portion of the tread (the outer surface of the PC tire T2). On the other hand, the second sensor 62 or the stop sensor 63 may detect the valley portion of the tread of the first sensor 61, and the same problem as described above occurs.
 一方、本実施形態では、図8乃至図10に示すように、第1センサ61、第2センサ62および停止用センサ63が、同じ特定外周縁VCの先端部または後端部を検知することが可能なように、搬送面1Hに対する高さHが互いに同じとなるように、各センサ支持部51が第1センサ61、第2センサ62および停止用センサ63の発光部および受光部をそれぞれ支持している。したがって、センサ同士の相対的な位置バラつきに起因して、タイヤTの外径寸法および移動距離の算出に誤差が生じることが抑止され、タイヤTをタイヤ試験位置TPの基準回転中心軸Lに精度良く配置することができる。 On the other hand, in the present embodiment, as shown in FIGS. 8 to 10, the first sensor 61, the second sensor 62, and the stop sensor 63 can detect the front end portion or the rear end portion of the same specific outer peripheral edge VC. As possible, each sensor support portion 51 supports the light emitting portion and the light receiving portion of the first sensor 61, the second sensor 62, and the stop sensor 63 so that the height H with respect to the transport surface 1H is the same as each other. ing. Therefore, it is suppressed that an error occurs in the calculation of the outer diameter dimension and the moving distance of the tire T due to the relative position variation between the sensors, and the tire T is accurately set to the reference rotation center axis L of the tire test position TP. Can be placed well.
 以上のように、本実施形態では、タイヤ計測用センサ60は、タイヤT(T1、T2)の特定外周縁VCの先端部および後端部が所定の寸法演算用検知位置に到達したことをそれぞれ検知する。ここで、タイヤTの特定外周縁VCは、搬送面1Hに載置されたタイヤTが搬送面1Hから所定の高さHの位置に配置され搬送面1Hと平行な仮想切断面G(図8)によって仮想的に切断されることで形成されるタイヤTの外周縁である。そして、タイヤ搬送演算部802は、特定外周縁VCの先端部および後端部が前記寸法演算用検知位置に到達したことをタイヤ計測用センサ60がそれぞれ検知する時間差と前記搬送機構によるタイヤTの搬送速度とに基づいてタイヤTの特定外周縁VCの外径寸法VDを演算する。更に、停止用センサ63は、タイヤTの特定外周縁VCの先端部が所定の停止用検知位置に到達したことを検知し、駆動制御部801は、特定外周縁VCの先端部が前記停止用検知位置に到達したことを停止用センサ63が検知することに伴って、タイヤTの特定外周縁VCの前記先端部が所定の待機位置SPに一時停止するように第1ベルトコンベア1を制御する。また、タイヤ搬送演算部802は、当該タイヤ搬送演算部802によって演算された前記特定外周縁VCの外径寸法VDと、待機位置SPからタイヤ試験位置TPまでの距離とに基づいて、タイヤTを待機位置SPからタイヤ試験位置TPまで移動させるためのタイヤTの移動距離Xを演算する。そして、駆動制御部801は、タイヤ搬送演算部802によって演算された前記移動距離Xに応じて、タイヤTが待機位置SPからタイヤ試験位置TPまで移動するように第1ベルトコンベア1および第2ベルトコンベア2を制御する。このように、タイヤ計測用センサ60および停止用センサ63が搬送面1H上のタイヤTの特定外周縁VCを検知し、当該特定外周縁VCに基づいて、タイヤ搬送演算部802が、タイヤTをタイヤ試験位置TPに搬入するためのタイヤTの外径寸法VDおよび移動距離Xをそれぞれ演算することができる。このため、タイヤ計測用センサ60および停止用センサ63が、タイヤTの外周面のうち互いに異なる部分をそれぞれ検知する場合と比較して、演算されるタイヤTの外径寸法や移動距離に含まれる誤差を小さくすることができるとともに、さまざまな形状を有する複数種のタイヤTをそれぞれタイヤ試験位置TPに精度良く搬入することができる。また、タイヤ計測用センサ60および停止用センサ63が、必ずしも搬送されるタイヤTの最大外径部分を検知する必要がないため、各センサ(検知部)の配置の自由度が増すとともに、搬送されるタイヤTに応じて各センサの位置を調整する必要が低減される。また、タイヤTが待機位置SPからタイヤ試験位置TPまで搬送される移動距離XがタイヤTの特定外周縁VCの先端部を基準として決定されるため、前記移動距離XがタイヤTの回転中心軸を基準に決定される場合と比較して、待機位置SPからタイヤ試験位置TPまでのタイヤTの移動距離をタイヤTの大きさに応じて設定することができる。この結果、タイヤTの大きさによらず、一律の移動距離が設定される場合と比較して、複数種のタイヤ全体における移動距離を短くすることができる。なお、本実施形態に係るタイヤ計測用センサ60(第1センサ61、第2センサ62)および停止用センサ63は、搬送面1H上に載置されるタイヤTの幅方向の中心位置よりも上方または下方に配置されてもよい。 As described above, in the present embodiment, the tire measurement sensor 60 indicates that the front end portion and the rear end portion of the specific outer peripheral edge VC of the tire T (T1, T2) have reached the predetermined dimension calculation detection positions, respectively. Detect. Here, in the specific outer peripheral edge VC of the tire T, the tire T placed on the transport surface 1H is arranged at a position at a predetermined height H from the transport surface 1H, and the virtual cut surface G parallel to the transport surface 1H (FIG. 8). ) Is the outer peripheral edge of the tire T formed by being virtually cut. Then, the tire transport calculation unit 802 detects the time difference between the tire measurement sensor 60 that the front end portion and the rear end portion of the specific outer peripheral edge VC have reached the dimension calculation detection position, and the tire T by the transport mechanism. The outer diameter dimension VD of the specific outer peripheral edge VC of the tire T is calculated based on the transport speed. Further, the stop sensor 63 detects that the tip of the specific outer peripheral edge VC of the tire T has reached a predetermined stop detection position, and the drive control unit 801 uses the tip of the specific outer peripheral edge VC for stopping. As the stop sensor 63 detects that the detection position has been reached, the first belt conveyor 1 is controlled so that the tip end portion of the specific outer peripheral edge VC of the tire T temporarily stops at a predetermined standby position SP. .. Further, the tire transfer calculation unit 802 sets the tire T based on the outer diameter dimension VD of the specific outer peripheral edge VC calculated by the tire transfer calculation unit 802 and the distance from the standby position SP to the tire test position TP. The movement distance X of the tire T for moving from the standby position SP to the tire test position TP is calculated. Then, the drive control unit 801 performs the first belt conveyor 1 and the second belt so that the tire T moves from the standby position SP to the tire test position TP according to the movement distance X calculated by the tire transfer calculation unit 802. Control the conveyor 2. In this way, the tire measurement sensor 60 and the stop sensor 63 detect the specific outer peripheral edge VC of the tire T on the transport surface 1H, and the tire transport calculation unit 802 sets the tire T based on the specific outer peripheral edge VC. The outer diameter dimension VD and the moving distance X of the tire T to be carried into the tire test position TP can be calculated, respectively. Therefore, the tire measurement sensor 60 and the stop sensor 63 are included in the calculated outer diameter dimension and moving distance of the tire T as compared with the case where the outer peripheral surfaces of the tire T detect different portions. The error can be reduced, and a plurality of types of tires T having various shapes can be accurately carried into the tire test position TP. Further, since the tire measurement sensor 60 and the stop sensor 63 do not necessarily have to detect the maximum outer diameter portion of the tire T to be transported, the degree of freedom in arranging each sensor (detection unit) is increased and the tire T is transported. The need to adjust the position of each sensor according to the tire T is reduced. Further, since the moving distance X in which the tire T is conveyed from the standby position SP to the tire test position TP is determined with reference to the tip end portion of the specific outer peripheral edge VC of the tire T, the moving distance X is the rotation center axis of the tire T. The moving distance of the tire T from the standby position SP to the tire test position TP can be set according to the size of the tire T, as compared with the case where the determination is made based on. As a result, the moving distance of the entire plurality of types of tires can be shortened as compared with the case where a uniform moving distance is set regardless of the size of the tire T. The tire measurement sensor 60 (first sensor 61, second sensor 62) and the stop sensor 63 according to the present embodiment are above the center position in the width direction of the tire T mounted on the transport surface 1H. Alternatively, it may be placed below.
 換言すれば、本実施形態では、タイヤ計測用センサ60および停止用センサ63が、搬送面1Hに対して同じ高さHに配置されているため、タイヤ計測用センサ60および停止用センサ63が搬送面1H上のタイヤTの同じ高さの部分を検知することができる。このため、タイヤ搬送演算部802は、タイヤTをタイヤ試験位置TPに搬入するためのタイヤTの外径寸法および移動距離を、前記タイヤTの同じ高さに配置される部分に基づいて演算することができる。このため、タイヤ計測用センサ60および停止用センサ63が、前記タイヤTの外周面のうち互いに高さが異なる部分をそれぞれ検知する場合と比較して、演算されるタイヤTの外径寸法や移動距離に含まれる誤差を小さくすることができるとともに、さまざまな形状を有する複数種のタイヤTをそれぞれタイヤ試験位置TPに精度良く搬入することができる。また、タイヤ計測用センサ60および停止用センサ63が、必ずしも搬送されるタイヤTの最大外径部分を検知する必要がないため、各センサ(検知部)の配置の自由度が増すとともに、搬送されるタイヤTに応じて各センサの位置を調整する必要が低減される。また、タイヤTが待機位置SPからタイヤ試験位置TPまで搬送される移動距離がタイヤTの先端部を基準として決定されるため、前記移動距離がタイヤTの回転中心軸を基準に決定される場合と比較して、待機位置SPからタイヤ試験位置TPまでのタイヤTの移動距離をタイヤTの大きさに応じて設定することができる。この結果、タイヤTの大きさによらず、一律の移動距離が設定される場合と比較して、複数種のタイヤT全体における移動距離を短くすることができる。 In other words, in the present embodiment, since the tire measurement sensor 60 and the stop sensor 63 are arranged at the same height H with respect to the transfer surface 1H, the tire measurement sensor 60 and the stop sensor 63 are conveyed. A portion of the tire T on the surface 1H at the same height can be detected. Therefore, the tire transport calculation unit 802 calculates the outer diameter dimension and the moving distance of the tire T for carrying the tire T to the tire test position TP based on the portion arranged at the same height of the tire T. be able to. Therefore, as compared with the case where the tire measurement sensor 60 and the stop sensor 63 detect portions of the outer peripheral surface of the tire T having different heights, the calculated outer diameter dimension and movement of the tire T are calculated. The error included in the distance can be reduced, and a plurality of types of tires T having various shapes can be accurately carried into the tire test position TP. Further, since the tire measurement sensor 60 and the stop sensor 63 do not necessarily have to detect the maximum outer diameter portion of the tire T to be transported, the degree of freedom in arranging each sensor (detection unit) is increased and the tire T is transported. The need to adjust the position of each sensor according to the tire T is reduced. Further, since the moving distance at which the tire T is conveyed from the standby position SP to the tire test position TP is determined with reference to the tip end portion of the tire T, the moving distance is determined with reference to the rotation center axis of the tire T. The moving distance of the tire T from the standby position SP to the tire test position TP can be set according to the size of the tire T. As a result, the moving distance in the entire plurality of types of tires T can be shortened as compared with the case where a uniform moving distance is set regardless of the size of the tire T.
 また、本実施形態では、タイヤ計測用センサ60の第1センサ61および第2センサ62によってタイヤの位置を検知することが可能であるため、当該第1センサ61および第2センサ62の間の空間にタイヤTを一時停止させることや当該空間においてタイヤTに所定の処理を施すことが可能となる。なお、例えば、タイヤ計測用センサ60が第2センサ62を含まず、第1センサ61が、第1ベルトコンベア1の上流側端部の近くに配置され、タイヤTの先端部が、供給コンベア5から第1ベルトコンベア1に載置された直後に、前記特定外周縁の前記先端部をも検知するような構成を想定する。この場合、タイヤTが第1ベルトコンベア1に安定的に載置されていないために、供給コンベア5から第1ベルトコンベア1への乗り継ぎ部分において、タイヤTと第1ベルトコンベア1または供給コンベア5との間で相対的に滑りが生じやすくなり、前記先端部の検知に若干誤差を含む場合がある。このため、上記のように、第1センサ61を第1ベルトコンベア1の上流側端部に配置する場合には、タイヤ計測用センサ60が、前記特定外周縁の後端部を検知する第1センサ61および前記特定外周縁の先端部を検知する第2センサ62を含むことが望ましい。 Further, in the present embodiment, since the position of the tire can be detected by the first sensor 61 and the second sensor 62 of the tire measurement sensor 60, the space between the first sensor 61 and the second sensor 62. It is possible to temporarily stop the tire T and to perform a predetermined process on the tire T in the space. For example, the tire measurement sensor 60 does not include the second sensor 62, the first sensor 61 is arranged near the upstream end of the first belt conveyor 1, and the tip of the tire T is the supply conveyor 5. It is assumed that the tip portion of the specific outer peripheral edge is also detected immediately after being placed on the first belt conveyor 1. In this case, since the tire T is not stably mounted on the first belt conveyor 1, the tire T and the first belt conveyor 1 or the supply conveyor 5 are connected to the supply conveyor 5 to the first belt conveyor 1. It is relatively easy for slippage to occur between the two, and the detection of the tip may include some errors. Therefore, as described above, when the first sensor 61 is arranged at the upstream end of the first belt conveyor 1, the tire measurement sensor 60 detects the rear end of the specific outer peripheral edge. It is desirable to include the sensor 61 and the second sensor 62 that detects the tip of the specific outer peripheral edge.
 また、本実施形態では、第1センサ61および第2センサ62ならびに停止用センサ63が光電センサからなることで、各センサがタイヤTに接触することなく、タイヤTを短時間で精度良く検知することができる。 Further, in the present embodiment, since the first sensor 61, the second sensor 62, and the stop sensor 63 are photoelectric sensors, the tire T is detected accurately in a short time without each sensor coming into contact with the tire T. be able to.
 更に、本実施形態では、第1センサ61と第2センサ62との間において、ルブリケータ7がタイヤTの内周面に潤滑剤を塗布することが可能となり、タイヤ試験位置TPにおいてスピンドル軸31がタイヤTを安定して回転させることができる。更に、本実施形態では、第1センサ61と第2センサ62との間において、ルブリケータ7がタイヤTの内周面に潤滑剤を塗布することが可能となり、タイヤTに対してリムをスムーズに装着することが可能となる。 Further, in the present embodiment, the lubricant 7 can apply a lubricant to the inner peripheral surface of the tire T between the first sensor 61 and the second sensor 62, and the spindle shaft 31 is set at the tire test position TP. The tire T can be rotated stably. Further, in the present embodiment, between the first sensor 61 and the second sensor 62, the lubricator 7 can apply a lubricant to the inner peripheral surface of the tire T, so that the rim can be smoothly applied to the tire T. It can be installed.
 なお、本発明に係るタイヤ試験機100におけるタイヤ搬送方法は、タイヤに所定の試験を行うタイヤ試験機において前記試験を行うために前記タイヤが配置されるタイヤ試験位置に前記タイヤを搬送する、タイヤ試験機のタイヤ搬送方法である。 The tire transport method in the tire testing machine 100 according to the present invention is a tire that transports the tire to a tire test position where the tire is arranged in order to perform the test in the tire testing machine that performs a predetermined test on the tire. This is a tire transfer method for the testing machine.
 当該タイヤ搬送方法は、
 前記タイヤTの回転軸が上下方向に延びる姿勢で前記タイヤTが載置される搬送面1Hを有し、所定の搬送経路に沿って前記タイヤTを前記タイヤ試験位置TPまで搬送することが可能な搬送機構(第1ベルトコンベア1、第2ベルトコンベア2)を準備することと、
 前記搬送機構によって搬送される前記タイヤTを検知するタイヤ計測用センサ60であって、当該タイヤ計測用センサ60は、前記搬送面1Hに載置された前記タイヤTが前記搬送面1Hから所定の高さの位置に配置され前記搬送面1Hと平行な仮想切断面Gによって仮想的に切断されることで形成される前記タイヤTの外周縁である特定外周縁VCの前記タイヤTの搬送方向における先端部および後端部が所定の寸法演算用検知位置に到達したことをそれぞれ検知するタイヤ計測用センサ60を前記搬送経路上に配置することと、
 前記搬送機構によって搬送される前記タイヤTの前記特定外周縁VCの前記先端部が所定の停止用検知位置に到達したことを検知する停止用センサ63を前記タイヤ計測用センサ60よりも前記搬送方向下流側に配置することと、
 前記特定外周縁VCの前記先端部および前記後端部が前記寸法演算用検知位置に到達したことを前記タイヤ計測用センサ60が検知する時間差と前記搬送機構による前記タイヤTの搬送速度とに基づいて、前記タイヤTの前記特定外周縁VCの外径寸法VDを演算することと、
 前記特定外周縁VCの前記先端部が前記停止用検知位置に到達したことを前記停止用センサ63が検知することに伴って、前記タイヤTの前記特定外周縁VCの前記先端部が前記搬送経路上の所定の待機位置SPに一時停止するように前記搬送機構を制御することと、
 前記タイヤ寸法演算部によって演算された前記特定外周縁VCの外径寸法VDと、前記待機位置SPから前記タイヤ試験位置TPまでの距離とに基づいて、前記タイヤTを前記待機位置SPから前記タイヤ試験位置TPまで移動させるための前記タイヤTの移動距離Xを演算することと、
 前記移動距離演算部によって演算された前記移動距離Xに応じて、前記タイヤTが前記待機位置SPから前記タイヤ試験位置TPまで移動するように前記搬送機構を制御することと、
 を備える。
The tire transport method is
It has a transport surface 1H on which the tire T is placed in a posture in which the rotation axis of the tire T extends in the vertical direction, and can transport the tire T to the tire test position TP along a predetermined transport path. Preparation of various transport mechanisms (first belt conveyor 1, second belt conveyor 2)
A tire measurement sensor 60 that detects the tire T transported by the transport mechanism. In the tire measurement sensor 60, the tire T mounted on the transport surface 1H is predetermined from the transport surface 1H. In the transport direction of the tire T, the specific outer peripheral edge VC, which is the outer peripheral edge of the tire T and is formed by being virtually cut by a virtual cutting surface G arranged at a height position and parallel to the transport surface 1H. A tire measurement sensor 60 for detecting that the front end portion and the rear end portion have reached a predetermined dimensional calculation detection position is arranged on the transport path.
The stop sensor 63 for detecting that the tip of the specific outer peripheral edge VC of the tire T transported by the transport mechanism has reached a predetermined stop detection position is more in the transport direction than the tire measurement sensor 60. To place it on the downstream side and
Based on the time difference that the tire measurement sensor 60 detects that the front end portion and the rear end portion of the specific outer peripheral edge VC have reached the dimension calculation detection position, and the transport speed of the tire T by the transport mechanism. Then, the outer diameter dimension VD of the specific outer peripheral edge VC of the tire T is calculated.
As the stop sensor 63 detects that the tip of the specific outer peripheral VC has reached the stop detection position, the tip of the specific outer peripheral VC of the tire T has the transport path. Controlling the transport mechanism so as to temporarily stop at the predetermined standby position SP above,
Based on the outer diameter dimension VD of the specific outer peripheral edge VC calculated by the tire dimension calculation unit and the distance from the standby position SP to the tire test position TP, the tire T is moved from the standby position SP to the tire. The movement distance X of the tire T for moving to the test position TP is calculated, and
Controlling the transport mechanism so that the tire T moves from the standby position SP to the tire test position TP according to the movement distance X calculated by the movement distance calculation unit.
To be equipped.
 上記の方法において、前記タイヤ計測用センサ60として、
  前記タイヤTの前記特定外周縁VCの前記後端部を検知する第1センサ61と、
  前記第1センサ61よりも前記搬送方向下流側に配置され、前記タイヤTの前記特定外周縁VCの前記先端部を検知する第2センサ62と、
 を準備することを更に備えることが望ましい。
In the above method, as the tire measurement sensor 60,
A first sensor 61 that detects the rear end portion of the specific outer peripheral edge VC of the tire T, and
A second sensor 62, which is arranged downstream of the first sensor 61 in the transport direction and detects the tip of the specific outer peripheral edge VC of the tire T,
It is desirable to be further prepared to prepare.
 また、本発明に係るタイヤ試験機100におけるタイヤ搬送方法は、
タイヤTに所定の試験を行うタイヤ試験機100において前記試験を行うために前記タイヤTが配置されるタイヤ試験位置TPに前記タイヤTを搬送する、タイヤ試験機のタイヤ搬送方法である。
Further, the tire transport method in the tire testing machine 100 according to the present invention is as follows.
This is a tire transport method for a tire testing machine, in which the tire T is transported to a tire test position TP where the tire T is arranged in order to perform the test in the tire testing machine 100 that performs a predetermined test on the tire T.
 当該タイヤ搬送方法は、
 前記タイヤTの回転軸が上下方向に延びる姿勢で前記タイヤTが載置される搬送面1Hを有し、所定の搬送経路に沿って前記タイヤTを前記タイヤ試験位置TPまで搬送することが可能な搬送機構(第1ベルトコンベア1、第2ベルトコンベア2)を準備することと、
 前記搬送機構によって搬送される前記タイヤTの先端部および後端部が所定の寸法演算用検知位置に到達したことをそれぞれ検知することが可能なタイヤ計測用センサ60を前記搬送面1Hに対して所定の高さの位置に配置することと、
 前記搬送機構によって搬送される前記タイヤTの前記先端部が所定の停止用検知位置に到達したことを検知することが可能な停止用センサ63を前記タイヤ計測用センサ60よりも前記タイヤTの搬送方向下流側において前記搬送面1Hに対して前記タイヤ計測用センサ60と同じ高さの位置に配置することと、
 前記タイヤTの前記先端部および前記後端部が前記寸法演算用検知位置に到達したことを前記タイヤ計測用センサ60がそれぞれ検知する時間差と前記搬送機構によるタイヤTの搬送速度とに基づいて前記タイヤTの外径寸法を演算することと、
 前記タイヤTの前記先端部が前記停止用検知位置に到達したことを前記停止用センサ63が検知することに伴って、前記タイヤTの先端部が前記搬送経路上の所定の待機位置SPに一時停止するように前記搬送機構を制御することと、
 前記演算された前記外径寸法と、前記待機位置SPから前記タイヤ試験位置TPまでの距離とに基づいて、前記待機位置SPから前記タイヤ試験位置TPまでの前記タイヤTの移動距離を演算することと、
 前記演算された前記移動距離に応じて、前記タイヤTが前記待機位置SPから前記タイヤ試験位置TPまで移動するように前記搬送機構を制御することと、
 を備える。
The tire transport method is
It has a transport surface 1H on which the tire T is placed in a posture in which the rotation axis of the tire T extends in the vertical direction, and can transport the tire T to the tire test position TP along a predetermined transport path. Preparation of various transport mechanisms (first belt conveyor 1, second belt conveyor 2)
A tire measurement sensor 60 capable of detecting that the front end portion and the rear end portion of the tire T conveyed by the transfer mechanism have reached a predetermined dimensional calculation detection position is provided on the transfer surface 1H. Placing it at a predetermined height and
The stop sensor 63 capable of detecting that the tip end portion of the tire T conveyed by the transfer mechanism has reached a predetermined stop detection position is conveyed by the tire T rather than the tire measurement sensor 60. It is arranged at the same height as the tire measurement sensor 60 with respect to the transport surface 1H on the downstream side in the direction.
The tire T is based on a time difference in which the tire measurement sensor 60 detects that the front end portion and the rear end portion of the tire T have reached the detection position for dimension calculation and the transport speed of the tire T by the transport mechanism. Calculating the outer diameter of the tire T and
As the stop sensor 63 detects that the tip of the tire T has reached the stop detection position, the tip of the tire T temporarily reaches a predetermined standby position SP on the transport path. Controlling the transport mechanism so that it stops,
To calculate the moving distance of the tire T from the standby position SP to the tire test position TP based on the calculated outer diameter dimension and the distance from the standby position SP to the tire test position TP. When,
Controlling the transport mechanism so that the tire T moves from the standby position SP to the tire test position TP according to the calculated movement distance.
To be equipped.
 上記の方法において、前記タイヤ計測用センサ60として、
  前記タイヤTの前記後端部を検知する第1センサ61と、
  前記第1センサ61よりも前記搬送方向下流側に配置され、前記タイヤTの前記先端部を検知する第2センサ62と、
 を準備することと、
 前記タイヤ計測用センサ60の前記第1センサ61および前記第2センサ62ならびに前記停止用センサ63を前記搬送面1Hに対して互いに同じ高さの位置に配置することと、
を更に備えることが望ましい。
In the above method, as the tire measurement sensor 60,
A first sensor 61 that detects the rear end portion of the tire T, and
A second sensor 62, which is arranged downstream of the first sensor 61 in the transport direction and detects the tip of the tire T,
To prepare and
The first sensor 61, the second sensor 62, and the stop sensor 63 of the tire measurement sensor 60 are arranged at the same height as the transport surface 1H.
It is desirable to further prepare.
 また、上記の方法において、前記タイヤ計測用センサ60の前記第1センサ61および前記第2センサ62ならびに前記停止用センサ63として、それぞれ、前記搬送方向と交差しかつ水平な方向に向かって検出光を発光する発光部と前記検出光を受光する受光部とを有するものを準備することを更に備えることが望ましい。 Further, in the above method, as the first sensor 61, the second sensor 62, and the stop sensor 63 of the tire measurement sensor 60, the detection light intersects the transport direction and faces a horizontal direction, respectively. It is further desirable to prepare a device having a light emitting unit that emits light and a light receiving unit that receives the detected light.
 以上、本発明の一実施形態に係るタイヤ試験機100およびタイヤ試験機におけるタイヤ搬送方法について説明したが、本発明はこれらの形態に限定されるものではなく、以下のような変形実施形態が可能である。 Although the tire tester 100 and the tire transport method in the tire tester according to the embodiment of the present invention have been described above, the present invention is not limited to these modes, and the following modified embodiments are possible. Is.
 (1)上記の実施形態では、第1センサ61、第2センサ62および停止用センサ63がレーザを光源とする非接触式の光電センサの場合で説明したが、各センサは他の非接触式センサや接触式センサとすることもできる。また、上記の各センサは、可視光線、赤外線、ファイバ等の光電センサであってもよい。更に、各センサが画像センサからなり、当該画像センサによってタイヤTのエッジ検出を行い、それぞれのセンサが検出されたエッジに含まれる同じ高さの画素を比較する態様でもよい。また、第1センサ61および第2センサ62の代わりに、タイヤ計測用センサ60が一つのセンサからなるものでもよい。この場合、特定外周縁VCの先端部が当該センサの検出光に到達した時間と、特定外周縁VCの後端部が前記検出光を通過する時間との時間差によって、特定外周縁VCの外径寸法VDが算出される。 (1) In the above embodiment, the case where the first sensor 61, the second sensor 62, and the stop sensor 63 are non-contact photoelectric sensors using a laser as a light source has been described, but each sensor is another non-contact type. It can also be a sensor or a contact type sensor. Further, each of the above sensors may be a photoelectric sensor such as visible light, infrared ray, or fiber. Further, each sensor may be composed of an image sensor, the edge of the tire T may be detected by the image sensor, and pixels of the same height included in the detected edge of each sensor may be compared. Further, instead of the first sensor 61 and the second sensor 62, the tire measurement sensor 60 may be composed of one sensor. In this case, the outer diameter of the specific outer peripheral edge VC is determined by the time difference between the time when the tip of the specific outer peripheral edge VC reaches the detection light of the sensor and the time when the rear end portion of the specific outer peripheral edge VC passes through the detection light. The dimension VD is calculated.
 (2)また、上記の実施形態では、タイヤ試験位置TPにタイヤTを送り込む搬送機構が第1ベルトコンベア1および第2ベルトコンベア2から構成される態様にて説明したが、この搬送機構は1つの連続したベルトコンベアとすることもでき、ベルトコンベア以外の他のコンベアとすることもできる。 (2) Further, in the above embodiment, the transport mechanism for feeding the tire T to the tire test position TP has been described in the embodiment of the first belt conveyor 1 and the second belt conveyor 2, but the transport mechanism is 1 It can be one continuous belt conveyor, or it can be a conveyor other than the belt conveyor.
 (3)また、上記の実施形態において、第1センサ61および第2センサ62(第1タイヤ検知部)および停止用センサ63(第2タイヤ検知部)を第1ベルトコンベア1の搬送面1Hに対して上下方向に相対移動することが可能な移動機構を更に備えるものでもよい。一例として、図9および図10の複数のセンサ支持部51が上下方向に伸縮可能なシリンダから構成されればよい。この場合、第1センサ61、第2センサ62および停止用センサ63の搬送面1Hに対する相対高さが互いに等しくなるように、複数のシリンダが伸縮することで、タイヤTの特定外周縁VCに基づいた前述の制御が可能となる。又は、図示を略すが、第1センサ61、第2センサ62および停止用センサ63がそれぞれ独立したセンサ支持部により支持される場合、当該独立したセンサ支持部を、リンク機構などにより同期させることで上下方向に連動的に伸縮可能とする構成であってもよい。このような構成によれば、タイヤTのサイズに応じてタイヤ計測用センサ60および停止用センサ63を搬送面1Hに対して上下方向に相対移動させることができるため、タイヤTの外径寸法および移動距離の演算を精度良く行うことができる。 (3) Further, in the above embodiment, the first sensor 61, the second sensor 62 (first tire detection unit), and the stop sensor 63 (second tire detection unit) are placed on the transport surface 1H of the first belt conveyor 1. On the other hand, a movement mechanism capable of relative movement in the vertical direction may be further provided. As an example, the plurality of sensor support portions 51 of FIGS. 9 and 10 may be composed of cylinders that can be expanded and contracted in the vertical direction. In this case, the plurality of cylinders expand and contract so that the relative heights of the first sensor 61, the second sensor 62, and the stop sensor 63 with respect to the transport surface 1H are equal to each other, based on the specific outer peripheral edge VC of the tire T. The above-mentioned control becomes possible. Alternatively, although not shown, when the first sensor 61, the second sensor 62, and the stop sensor 63 are supported by independent sensor support portions, the independent sensor support portions are synchronized by a link mechanism or the like. It may be configured so that it can be expanded and contracted in conjunction with the vertical direction. According to such a configuration, the tire measurement sensor 60 and the stop sensor 63 can be moved relative to the transport surface 1H in the vertical direction according to the size of the tire T, so that the outer diameter dimension of the tire T and the outer diameter dimension of the tire T and The movement distance can be calculated with high accuracy.
 (4)また、図11は、本発明の変形実施形態に係るタイヤ試験機100Aの背面図である。本変形実施形態では、各センサ支持部51に、第1センサ61(第1発光部61A、第1受光部61B)、更には図面向かって奥行方向には、図示なき第2センサ62(第2発光部62A、第2受光部62B)および停止用センサ63(第3発光部63A、第3受光部63B)がそれぞれ上下方向に沿って複数配置されている。この場合、制御部80が搬送されるタイヤTのサイズ(特にタイヤ幅)に応じて、互いに同じ高さに位置するセンサをタイヤTの位置制御のための特定センサとしてそれぞれ選択することで、先の実施形態と同様にタイヤTの特定外周縁VCに基づいた制御が可能となる。 (4) Further, FIG. 11 is a rear view of the tire testing machine 100A according to the modified embodiment of the present invention. In this modified embodiment, each sensor support portion 51 has a first sensor 61 (first light emitting unit 61A, first light receiving unit 61B), and further, a second sensor 62 (second sensor 62) (not shown) in the depth direction toward the drawing. A plurality of light emitting units 62A, second light receiving unit 62B) and a stop sensor 63 (third light emitting unit 63A, third light receiving unit 63B) are arranged along the vertical direction. In this case, the sensors located at the same height as each other are selected as specific sensors for controlling the position of the tire T according to the size (particularly the tire width) of the tire T to which the control unit 80 is conveyed. It is possible to control the tire T based on the specific outer peripheral edge VC as in the embodiment.
 (5)また、上記の実施形態では、仮想切断面Gが水平面からなる態様にて説明したが、各ベルトコンベアの搬送面が緩やかに傾斜して配置される場合には、仮想切断面Gは当該搬送面と平行な面であればよい。 (5) Further, in the above embodiment, the virtual cut surface G has been described in the form of a horizontal plane, but when the transport surface of each belt conveyor is arranged with a gentle inclination, the virtual cut surface G is Any surface parallel to the transport surface may be used.
 (6)また、上記の実施形態では、搬送機構としてベルトコンベアを示した。しかしながら、本発明の搬送機構は、ベルトコンベアに限らず、例えば、クレセントコンベア、スラットコンベア、トップチェーンコンベア、駆動ローラーコンベア等、他のコンベアであってもよい。搬送機構が無限軌道で構成されたベルトコンベア等である場合、当該コンベアの平面的な上面が搬送面を構成する。また、搬送機構が平行な複数の円筒面からなる軌道で構成された駆動ローラーコンベア等である場合、複数の円筒面におけるタイヤTと接触しうる箇所を含む仮想平面が搬送面を構成する。 (6) Further, in the above embodiment, a belt conveyor is shown as a transport mechanism. However, the transport mechanism of the present invention is not limited to the belt conveyor, and may be another conveyor such as a crescent conveyor, a slat conveyor, a top chain conveyor, a drive roller conveyor, or the like. When the transport mechanism is a belt conveyor or the like configured on an endless track, the flat upper surface of the conveyor constitutes the transport surface. Further, when the transfer mechanism is a drive roller conveyor or the like composed of trajectories composed of a plurality of parallel cylindrical surfaces, a virtual plane including a portion of the plurality of cylindrical surfaces that can come into contact with the tire T constitutes the transfer surface.
 本発明によって提供されるのはタイヤ試験機であって、当該タイヤ試験機は、スピンドル軸と、搬送機構と、第1タイヤ検知部と、タイヤ寸法演算部と、第2タイヤ検知部と、停止制御部と、移動距離演算部と、搬送制御部と、を備える。スピンドル軸は、タイヤに所定の試験を行うために前記タイヤが配置されるタイヤ試験位置において、前記タイヤに装着されるリムを介して、上下方向に延びる基準回転中心軸回りに前記タイヤを回転可能に支持する。搬送機構は、前記タイヤの回転軸が上下方向に延びる姿勢で前記タイヤが載置される搬送面を有し、所定の搬送経路に沿って前記タイヤを前記タイヤ試験位置まで搬送することが可能である。第1タイヤ検知部は、前記搬送機構によって搬送される前記タイヤを検知する。第1タイヤ検知部は、前記搬送面に載置された前記タイヤが前記搬送面から所定の高さの位置に配置され前記搬送面と平行な仮想切断面によって仮想的に切断されることで形成される前記タイヤの外周縁である特定外周縁の前記タイヤの搬送方向における先端部および後端部が所定の寸法演算用検知位置に到達したことをそれぞれ検知する。タイヤ寸法演算部は、前記特定外周縁の前記先端部および前記後端部が前記寸法演算用検知位置に到達したことを前記第1タイヤ検知部がそれぞれ検知する時間差と前記搬送機構による前記タイヤの搬送速度とに基づいて、前記タイヤの前記特定外周縁の外径寸法を演算する。第2タイヤ検知部は、前記第1タイヤ検知部よりも前記搬送方向下流側に配置され、前記搬送機構によって搬送される前記タイヤの前記特定外周縁の前記先端部が所定の停止用検知位置に到達したことを検知する。停止制御部は、前記特定外周縁の前記先端部が前記停止用検知位置に到達したことを前記第2タイヤ検知部が検知することに伴って、前記タイヤの前記特定外周縁の前記先端部が前記搬送経路上の所定の待機位置に一時停止するように前記搬送機構を制御する。移動距離演算部は、前記タイヤ寸法演算部によって演算された前記特定外周縁の外径寸法と、前記待機位置から前記タイヤ試験位置までの距離とに基づいて、前記タイヤを前記待機位置から前記タイヤ試験位置まで移動させるための前記タイヤの移動距離を演算する。搬送制御部は、前記移動距離演算部によって演算された前記移動距離に応じて、前記タイヤが前記待機位置から前記タイヤ試験位置まで移動するように前記搬送機構を制御する。 Provided by the present invention is a tire testing machine, which includes a spindle shaft, a transport mechanism, a first tire detection unit, a tire dimension calculation unit, a second tire detection unit, and a stop. It includes a control unit, a movement distance calculation unit, and a transport control unit. The spindle shaft is capable of rotating the tire around a reference rotation center axis extending in the vertical direction via a rim mounted on the tire at a tire test position where the tire is placed to perform a predetermined test on the tire. Support. The transport mechanism has a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and can transport the tire to the tire test position along a predetermined transport path. is there. The first tire detection unit detects the tire transported by the transport mechanism. The first tire detection unit is formed by arranging the tire mounted on the transport surface at a position at a predetermined height from the transport surface and virtually cutting the tire by a virtual cut surface parallel to the transport surface. It is detected that the front end portion and the rear end portion of the specific outer peripheral edge, which is the outer peripheral edge of the tire, in the transport direction of the tire have reached a predetermined detection position for dimension calculation. The tire dimension calculation unit has a time difference in which the first tire detection unit detects that the front end portion and the rear end portion of the specific outer peripheral edge have reached the dimension calculation detection position, and the transport mechanism of the tire. The outer diameter dimension of the specific outer peripheral edge of the tire is calculated based on the transport speed. The second tire detection unit is arranged on the downstream side of the first tire detection unit in the transport direction, and the tip portion of the specific outer peripheral edge of the tire transported by the transport mechanism is at a predetermined stop detection position. Detect that it has arrived. In the stop control unit, when the second tire detection unit detects that the tip portion of the specific outer peripheral edge has reached the stop detection position, the tip portion of the specific outer peripheral edge of the tire is moved. The transport mechanism is controlled so as to temporarily stop at a predetermined standby position on the transport path. The moving distance calculation unit moves the tire from the standby position to the tire based on the outer diameter dimension of the specific outer peripheral edge calculated by the tire dimension calculation unit and the distance from the standby position to the tire test position. The moving distance of the tire for moving to the test position is calculated. The transport control unit controls the transport mechanism so that the tire moves from the standby position to the tire test position according to the movement distance calculated by the movement distance calculation unit.
 本構成によれば、第1タイヤ検知部および第2タイヤ検知部が搬送面上のタイヤの特定外周縁を検知し、当該特定外周縁に基づいて、タイヤ寸法演算部および移動距離演算部が、タイヤをタイヤ試験位置に搬入するためのタイヤの外径寸法および移動距離をそれぞれ演算することができる。このため、第1タイヤ検知部および第2タイヤ検知部が、タイヤの外周面のうち互いに異なる部分をそれぞれ検知する場合と比較して、演算されるタイヤの外径寸法や移動距離に含まれる誤差を小さくすることができるとともに、さまざまな形状を有する複数種のタイヤをそれぞれタイヤ試験位置に精度良く搬入することができる。また、第1タイヤ検知部および第2タイヤ検知部が、必ずしも搬送されるタイヤの最大外径部分を検知する必要がないため、各検知部の配置の自由度が増すとともに、搬送されるタイヤに応じて各検知部の位置を調整する必要が低減される。したがって、さまざまな外径や形状を有する複数種のタイヤをタイヤ試験位置に精度良く搬入することが可能なタイヤ試験機が提供される。 According to this configuration, the first tire detection unit and the second tire detection unit detect the specific outer peripheral edge of the tire on the transport surface, and the tire dimension calculation unit and the moving distance calculation unit are based on the specific outer peripheral edge. It is possible to calculate the outer diameter dimension and the moving distance of the tire for bringing the tire to the tire test position. Therefore, an error included in the calculated outer diameter dimension and moving distance of the tire as compared with the case where the first tire detection unit and the second tire detection unit detect different parts of the outer peripheral surface of the tire. It is possible to reduce the size of the tire and to carry a plurality of types of tires having various shapes into the tire test position with high accuracy. Further, since the first tire detection unit and the second tire detection unit do not necessarily have to detect the maximum outer diameter portion of the tire to be transported, the degree of freedom in the arrangement of each detection unit is increased, and the tire to be transported The need to adjust the position of each detection unit accordingly is reduced. Therefore, a tire testing machine capable of accurately carrying a plurality of types of tires having various outer diameters and shapes to a tire testing position is provided.
 上記の構成において、前記第1タイヤ検知部は、前記タイヤの前記特定外周縁の前記後端部を検知する第1センサと、前記第1センサよりも前記搬送方向下流側に配置され、前記タイヤの前記特定外周縁の前記先端部を検知する第2センサと、を有することが望ましい。 In the above configuration, the first tire detection unit is arranged with a first sensor that detects the rear end portion of the specific outer peripheral edge of the tire and a downstream side of the first sensor in the transport direction, and the tire. It is desirable to have a second sensor that detects the tip portion of the specific outer peripheral edge of the tire.
 本構成によれば、第1センサおよび第2センサによってタイヤの位置を検知することが可能であるため、当該第1センサおよび第2センサの間の空間にタイヤを一時停止させることや当該空間においてタイヤに所定の処理を施すことが可能となる。 According to this configuration, since the position of the tire can be detected by the first sensor and the second sensor, the tire can be temporarily stopped in the space between the first sensor and the second sensor, or in the space. It is possible to apply a predetermined treatment to the tire.
 また、本発明によって提供されるのはタイヤ試験機であって、当該タイヤ試験機は、スピンドル軸と、搬送機構と、第1タイヤ検知部と、タイヤ寸法演算部と、第2タイヤ検知部と、停止制御部と、移動距離演算部と、搬送制御部と、を備える。スピンドル軸は、タイヤに所定の試験を行うために前記タイヤが配置されるタイヤ試験位置において、前記タイヤに装着されるリムを介して、上下方向に延びる基準回転中心軸回りに前記タイヤを回転可能に支持する。搬送機構は、前記タイヤの回転軸が上下方向に延びる姿勢で前記タイヤが載置される搬送面を有し、所定の搬送経路に沿って前記タイヤを前記タイヤ試験位置まで搬送することが可能である。第1タイヤ検知部は、前記搬送面に対して所定の高さの位置に配置され、前記タイヤの搬送方向における前記タイヤの先端部および後端部が所定の寸法演算用検知位置に到達したことをそれぞれ検知する。タイヤ寸法演算部は、前記タイヤの前記先端部および前記後端部が前記寸法演算用検知位置に到達したことを前記第1タイヤ検知部がそれぞれ検知する時間差と前記搬送機構による前記タイヤの搬送速度とに基づいて、前記タイヤの外径寸法を演算する。第2タイヤ検知部は、前記第1タイヤ検知部よりも前記搬送方向下流側において前記搬送面に対して前記第1タイヤ検知部と同じ高さの位置に配置され、前記搬送機構によって搬送される前記タイヤの前記先端部が所定の停止用検知位置に到達したことを検知する。停止制御部は、前記タイヤの前記先端部が前記停止用検知位置に到達したことを前記第2タイヤ検知部が検知することに伴って、前記タイヤの前記先端部が前記搬送経路上の所定の待機位置に一時停止するように前記搬送機構を制御する。移動距離演算部は、前記タイヤ寸法演算部によって演算された前記外径寸法と、前記待機位置から前記タイヤ試験位置までの距離とに基づいて、前記タイヤを前記待機位置から前記タイヤ試験位置まで移動させるための前記タイヤの移動距離を演算する。搬送制御部は、前記移動距離演算部によって演算された前記移動距離に応じて、前記タイヤが前記待機位置から前記タイヤ試験位置まで移動するように前記搬送機構を制御する。 Further, what is provided by the present invention is a tire testing machine, which includes a spindle shaft, a transport mechanism, a first tire detection unit, a tire dimension calculation unit, and a second tire detection unit. , A stop control unit, a movement distance calculation unit, and a transfer control unit are provided. The spindle shaft is capable of rotating the tire around a reference rotation center axis extending in the vertical direction via a rim mounted on the tire at a tire test position where the tire is placed to perform a predetermined test on the tire. Support. The transport mechanism has a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and can transport the tire to the tire test position along a predetermined transport path. is there. The first tire detection unit is arranged at a position at a predetermined height with respect to the transport surface, and the front end portion and the rear end portion of the tire in the transport direction of the tire have reached a predetermined detection position for dimension calculation. Are detected respectively. The tire dimension calculation unit has a time difference in which the first tire detection unit detects that the front end portion and the rear end portion of the tire have reached the dimension calculation detection position, and the transfer speed of the tire by the transfer mechanism. Based on the above, the outer diameter dimension of the tire is calculated. The second tire detection unit is arranged on the downstream side in the transport direction from the first tire detection unit at the same height as the first tire detection unit with respect to the transport surface, and is transported by the transport mechanism. It is detected that the tip end portion of the tire has reached a predetermined stop detection position. The stop control unit detects that the tip of the tire has reached the stop detection position, and the tip of the tire reaches a predetermined position on the transport path. The transport mechanism is controlled so as to pause at the standby position. The moving distance calculation unit moves the tire from the standby position to the tire test position based on the outer diameter dimension calculated by the tire dimension calculation unit and the distance from the standby position to the tire test position. The moving distance of the tire for causing the tire is calculated. The transport control unit controls the transport mechanism so that the tire moves from the standby position to the tire test position according to the movement distance calculated by the movement distance calculation unit.
 本構成によれば、第1タイヤ検知部および第2タイヤ検知部が搬送面に対して同じ高さに配置されているため、第1タイヤ検知部および第2タイヤ検知部が搬送面上のタイヤの同じ高さの部分を検知することができる。このため、タイヤ寸法演算部および移動距離演算部は、タイヤをタイヤ試験位置に搬入するためのタイヤの外径寸法および移動距離を、前記タイヤの同じ高さに配置される部分に基づいて演算することができる。このため、第1タイヤ検知部および第2タイヤ検知部が、前記タイヤの外周面のうち互いに高さが異なる部分をそれぞれ検知する場合と比較して、演算されるタイヤの外径寸法や移動距離に含まれる誤差を小さくすることができるとともに、さまざまな形状を有する複数種のタイヤをそれぞれタイヤ試験位置に精度良く搬入することができる。また、第1タイヤ検知部および第2タイヤ検知部が、必ずしも搬送されるタイヤの最大外径部分を検知する必要がないため、各検知部の配置の自由度が増すとともに、搬送されるタイヤに応じて各検知部の位置を調整する必要が低減される。したがって、さまざまな外径や形状を有する複数種のタイヤをタイヤ試験位置に精度良く搬入することが可能なタイヤ試験機が提供される。 According to this configuration, since the first tire detection unit and the second tire detection unit are arranged at the same height with respect to the transport surface, the first tire detection unit and the second tire detection unit are tires on the transport surface. It is possible to detect parts of the same height. Therefore, the tire dimension calculation unit and the movement distance calculation unit calculate the outer diameter dimension and the movement distance of the tire for bringing the tire to the tire test position based on the portion arranged at the same height of the tire. be able to. Therefore, as compared with the case where the first tire detection unit and the second tire detection unit detect portions of the outer peripheral surface of the tire having different heights, the calculated outer diameter dimension and moving distance of the tire are calculated. It is possible to reduce the error included in the tire, and it is possible to accurately carry a plurality of types of tires having various shapes to the tire test position. Further, since the first tire detection unit and the second tire detection unit do not necessarily have to detect the maximum outer diameter portion of the tire to be transported, the degree of freedom in the arrangement of each detection unit is increased, and the tire to be transported has a degree of freedom. The need to adjust the position of each detection unit accordingly is reduced. Therefore, a tire testing machine capable of accurately carrying a plurality of types of tires having various outer diameters and shapes to a tire testing position is provided.
 上記の構成において、前記第1タイヤ検知部は、前記タイヤの前記後端部を検知する第1センサと、前記第1センサよりも前記搬送方向下流側に配置され、前記タイヤの前記先端部を検知する第2センサと、を有することが望ましい。 In the above configuration, the first tire detection unit is arranged on the downstream side of the first sensor in the transport direction with the first sensor that detects the rear end portion of the tire, and the tip portion of the tire. It is desirable to have a second sensor for detecting.
 本構成によれば、第1センサおよび第2センサによってタイヤの位置を検知することが可能であるため、当該第1センサおよび第2センサの間の空間にタイヤを一時停止させることや当該空間においてタイヤに所定の処理を施すことが可能となる。 According to this configuration, since the position of the tire can be detected by the first sensor and the second sensor, the tire can be temporarily stopped in the space between the first sensor and the second sensor, or in the space. It is possible to apply a predetermined treatment to the tire.
 上記の構成において、前記第1タイヤ検知部の前記第1センサおよび前記第2センサならびに前記第2タイヤ検知部は、前記搬送方向と交差しかつ水平な方向に向かって検出光を発光する発光部と前記検出光を受光する受光部とをそれぞれ有することが望ましい。 In the above configuration, the first sensor, the second sensor, and the second tire detection unit of the first tire detection unit emit detection light in a direction intersecting with the transport direction and in a horizontal direction. It is desirable to have a light receiving portion that receives the detected light and a light receiving portion that receives the detected light.
 本構成によれば、第1センサおよび第2センサならびに第2タイヤ検知部が光電センサからなることで、タイヤを短時間で精度良く検知することができる。 According to this configuration, since the first sensor, the second sensor, and the second tire detection unit are composed of photoelectric sensors, tires can be detected accurately in a short time.
 上記の構成において、前記搬送方向において前記第1センサと前記第2センサとの間に配置され、前記タイヤの内周面に潤滑剤を塗布する潤滑剤塗布機構を更に備えることが望ましい。 In the above configuration, it is desirable to further include a lubricant application mechanism that is arranged between the first sensor and the second sensor in the transport direction and applies a lubricant to the inner peripheral surface of the tire.
 本構成によれば、第1センサと第2センサとの間において、タイヤの内周面に潤滑剤を塗布することが可能となるため、タイヤに対してリムをスムーズに装着することが可能となる。 According to this configuration, it is possible to apply a lubricant to the inner peripheral surface of the tire between the first sensor and the second sensor, so that the rim can be smoothly attached to the tire. Become.
 上記の構成において、前記第1タイヤ検知部および前記第2タイヤ検知部を前記搬送面に対して上下方向に相対移動することが可能な移動機構を更に備えることが望ましい。 In the above configuration, it is desirable to further include a moving mechanism capable of moving the first tire detection unit and the second tire detection unit relative to the transport surface in the vertical direction.
 本構成によれば、タイヤのサイズに応じて第1タイヤ検知部および第2タイヤ検知部を搬送面に対して上下方向に相対移動させることができるため、さまざまな幅を有するタイヤの外径寸法および移動距離の演算を精度良く行うことができる。 According to this configuration, the first tire detection unit and the second tire detection unit can be moved relative to the transport surface in the vertical direction according to the size of the tire, so that the outer diameter dimensions of the tires having various widths can be determined. And the calculation of the movement distance can be performed with high accuracy.
 また、本発明によって提供されるのは、タイヤに所定の試験を行うタイヤ試験機において前記試験を行うために前記タイヤが配置されるタイヤ試験位置に前記タイヤを搬送する、タイヤ試験機のタイヤ搬送方法である。当該タイヤ搬送方法は、前記タイヤの回転軸が上下方向に延びる姿勢で前記タイヤが載置される搬送面を有し、所定の搬送経路に沿って前記タイヤを前記タイヤ試験位置まで搬送することが可能な搬送機構を準備することと、前記搬送機構によって搬送される前記タイヤを検知する第1タイヤ検知部であって、前記搬送面に載置された前記タイヤが前記搬送面から所定の高さの位置に配置され前記搬送面と平行な仮想切断面によって仮想的に切断されることで形成される前記タイヤの外周縁である特定外周縁の前記タイヤの搬送方向における先端部および後端部が所定の寸法演算用検知位置に到達したことをそれぞれ検知する第1タイヤ検知部を前記搬送経路上に配置することと、前記搬送機構によって搬送される前記タイヤの前記特定外周縁の前記先端部が所定の停止用検知位置に到達したことを検知する第2タイヤ検知部を前記第1タイヤ検知部よりも前記搬送方向下流側に配置することと、前記特定外周縁の前記先端部および前記後端部が前記寸法演算用検知位置に到達したことを前記第1タイヤ検知部がそれぞれ検知する時間差と前記搬送機構による前記タイヤの搬送速度とに基づいて、前記タイヤの前記特定外周縁の外径寸法を演算することと、前記特定外周縁の前記先端部が前記停止用検知位置に到達したことを前記第2タイヤ検知部が検知することに伴って、前記タイヤの前記特定外周縁の前記先端部が前記搬送経路上の所定の待機位置に一時停止するように前記搬送機構を制御することと、前記タイヤ寸法演算部によって演算された前記特定外周縁の外径寸法と、前記待機位置から前記タイヤ試験位置までの距離とに基づいて、前記タイヤを前記待機位置から前記タイヤ試験位置まで移動させるための前記タイヤの移動距離を演算することと、前記移動距離演算部によって演算された前記移動距離に応じて、前記タイヤが前記待機位置から前記タイヤ試験位置まで移動するように前記搬送機構を制御することと、を備える。 Further provided by the present invention is a tire transport of a tire testing machine that transports the tire to a tire test position where the tire is arranged in order to perform the test in a tire testing machine that performs a predetermined test on the tire. The method. The tire transport method has a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and transports the tire to the tire test position along a predetermined transport path. It is a first tire detection unit that prepares a possible transport mechanism and detects the tire transported by the transport mechanism, and the tire mounted on the transport surface has a predetermined height from the transport surface. The tip and rear ends of the specific outer peripheral edge of the tire, which is the outer peripheral edge of the tire and is formed by being virtually cut by a virtual cutting surface parallel to the transport surface, are arranged at the position of A first tire detection unit that detects that a predetermined dimensional calculation detection position has been reached is arranged on the transport path, and the tip portion of the specific outer peripheral edge of the tire transported by the transport mechanism The second tire detection unit that detects that the predetermined stop detection position has been reached is arranged on the downstream side in the transport direction from the first tire detection unit, and the front end portion and the rear end portion of the specific outer peripheral edge are arranged. The outer diameter dimension of the specific outer peripheral edge of the tire based on the time difference in which the first tire detection unit detects that the unit has reached the detection position for dimension calculation and the transport speed of the tire by the transport mechanism. Is calculated, and the second tire detection unit detects that the tip portion of the specific outer peripheral edge has reached the stop detection position, so that the tip portion of the specific outer peripheral edge of the tire is detected. Controls the transport mechanism so that the tire temporarily stops at a predetermined standby position on the transport path, the outer diameter dimension of the specific outer peripheral edge calculated by the tire dimension calculation unit, and the tire from the standby position. Based on the distance to the test position, the movement distance of the tire for moving the tire from the standby position to the tire test position is calculated, and the movement distance calculated by the movement distance calculation unit is used. Correspondingly, the transport mechanism is controlled so that the tire moves from the standby position to the tire test position.
 本方法によれば、さまざまな外径や形状を有する複数種のタイヤをタイヤ試験位置に精度良く搬入することが可能なタイヤ試験機におけるタイヤ搬送方法が提供される。 According to this method, a tire transport method in a tire testing machine capable of accurately carrying a plurality of types of tires having various outer diameters and shapes to a tire test position is provided.
 上記の方法において、前記第1タイヤ検知部として、前記タイヤの前記特定外周縁の前記後端部を検知する第1センサと、前記第1センサよりも前記搬送方向下流側に配置され、前記タイヤの前記特定外周縁の前記先端部を検知する第2センサと、を準備することを更に備えることが望ましい。 In the above method, as the first tire detection unit, a first sensor that detects the rear end portion of the specific outer peripheral edge of the tire and a tire that is arranged downstream of the first sensor in the transport direction. It is further desirable to prepare a second sensor for detecting the tip portion of the specific outer peripheral edge of the tire.
 また、本発明によって提供されるのは、タイヤに所定の試験を行うタイヤ試験機において前記試験を行うために前記タイヤが配置されるタイヤ試験位置に前記タイヤを搬送する、タイヤ試験機のタイヤ搬送方法である。当該タイヤ搬送方法は、前記タイヤの回転軸が上下方向に延びる姿勢で前記タイヤが載置される搬送面を有し、所定の搬送経路に沿って前記タイヤを前記タイヤ試験位置まで搬送することが可能な搬送機構を準備することと、前記搬送機構によって搬送される前記タイヤの先端部および後端部が所定の寸法演算用検知位置に到達したことをそれぞれ検知することが可能な第1タイヤ検知部を前記搬送面に対して所定の高さの位置に配置することと、前記搬送機構によって搬送される前記タイヤの前記先端部が所定の停止用検知位置に到達したことを検知することが可能な第2タイヤ検知部を前記第1タイヤ検知部よりも前記タイヤの搬送方向下流側において前記搬送面に対して前記第1タイヤ検知部と同じ高さの位置に配置することと、前記タイヤの前記先端部および前記後端部が前記寸法演算用検知位置に到達したことを前記第1タイヤ検知部がそれぞれ検知する時間差と前記搬送機構による前記タイヤの搬送速度とに基づいて、前記タイヤの外径寸法を演算することと、前記タイヤの前記先端部が前記停止用検知位置に到達したことを前記第2タイヤ検知部が検知することに伴って、前記タイヤの前記先端部が前記搬送経路上の所定の待機位置に一時停止するように前記搬送機構を制御することと、前記演算された前記外径寸法に応じて、前記待機位置から前記タイヤ試験位置までの前記タイヤの移動距離を演算することと、前記演算された前記移動距離と、前記待機位置から前記タイヤ試験位置までの距離とに基づいて、前記タイヤが前記待機位置から前記タイヤ試験位置まで移動するように前記搬送機構を制御することと、を備える。 Further provided by the present invention is a tire transport of a tire testing machine that transports the tire to a tire test position where the tire is arranged in order to perform the test in a tire testing machine that performs a predetermined test on the tire. The method. The tire transport method has a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and transports the tire to the tire test position along a predetermined transport path. First tire detection capable of preparing a possible transport mechanism and detecting that the front end and the rear end of the tire transported by the transport mechanism have reached a predetermined detection position for dimensional calculation, respectively. It is possible to arrange the portion at a predetermined height position with respect to the transport surface and to detect that the tip portion of the tire transported by the transport mechanism has reached a predetermined stop detection position. The second tire detection unit is arranged on the downstream side in the transport direction of the tire from the first tire detection unit at the same height as the first tire detection unit with respect to the transport surface, and the tire. The outside of the tire is based on the time difference in which the first tire detection unit detects that the front end portion and the rear end portion have reached the detection position for dimension calculation and the transport speed of the tire by the transport mechanism. With the calculation of the diameter dimension and the detection by the second tire detection unit that the tip of the tire has reached the stop detection position, the tip of the tire is on the transport path. The transport mechanism is controlled so as to temporarily stop at a predetermined standby position, and the moving distance of the tire from the standby position to the tire test position is calculated according to the calculated outer diameter dimension. Based on the calculated movement distance and the distance from the standby position to the tire test position, the transport mechanism is controlled so that the tire moves from the standby position to the tire test position. And to be prepared.
 本方法によれば、さまざまな外径や形状を有する複数種のタイヤをタイヤ試験位置に精度良く搬入することが可能なタイヤ試験機におけるタイヤ搬送方法が提供される。 According to this method, a tire transport method in a tire testing machine capable of accurately carrying a plurality of types of tires having various outer diameters and shapes to a tire test position is provided.
 上記の方法において、前記第1タイヤ検知部として、前記タイヤの前記後端部を検知する第1センサと、前記第1センサよりも前記搬送方向下流側に配置され、前記タイヤの前記先端部を検知する第2センサと、を準備することと、前記第1タイヤ検知部の前記第1センサおよび前記第2センサならびに前記第2タイヤ検知部を前記搬送面に対して互いに同じ高さの位置に配置することと、を更に備えることが望ましい。 In the above method, as the first tire detection unit, a first sensor that detects the rear end portion of the tire and the tip portion of the tire that is arranged downstream of the first sensor in the transport direction are used. The second sensor to be detected is prepared, and the first sensor, the second sensor, and the second tire detection unit of the first tire detection unit are located at the same height as each other with respect to the transport surface. It is desirable to further prepare for the arrangement.
 上記の方法において、前記第1タイヤ検知部の前記第1センサおよび前記第2センサならびに前記第2タイヤ検知部として、それぞれ、前記搬送方向と交差しかつ水平な方向に向かって検出光を発光する発光部と前記検出光を受光する受光部とを有するものを準備することを更に備えることが望ましい。 In the above method, the first sensor, the second sensor, and the second tire detection unit of the first tire detection unit emit detection light in a direction intersecting and horizontal with the transport direction, respectively. It is further desirable to prepare a device having a light emitting unit and a light receiving unit that receives the detected light.

Claims (12)

  1.  タイヤに所定の試験を行うために前記タイヤが配置されるタイヤ試験位置において、前記タイヤに装着されるリムを介して、上下方向に延びる基準回転中心軸回りに前記タイヤを回転可能に支持するスピンドル軸と、
     前記タイヤの回転軸が上下方向に延びる姿勢で前記タイヤが載置される搬送面を有し、所定の搬送経路に沿って前記タイヤを前記タイヤ試験位置まで搬送することが可能な搬送機構と、
     前記搬送機構によって搬送される前記タイヤを検知する第1タイヤ検知部であって、当該第1タイヤ検知部は、前記搬送面に載置された前記タイヤが前記搬送面から所定の高さの位置に配置され前記搬送面と平行な仮想切断面によって仮想的に切断されることで形成される前記タイヤの外周縁である特定外周縁の前記タイヤの搬送方向における先端部および後端部が所定の寸法演算用検知位置に到達したことをそれぞれ検知する、第1タイヤ検知部と、
     前記特定外周縁の前記先端部および前記後端部が前記寸法演算用検知位置に到達したことを前記第1タイヤ検知部がそれぞれ検知する時間差と前記搬送機構による前記タイヤの搬送速度とに基づいて、前記タイヤの前記特定外周縁の外径寸法を演算するタイヤ寸法演算部と、
     前記第1タイヤ検知部よりも前記搬送方向下流側に配置され、前記搬送機構によって搬送される前記タイヤの前記特定外周縁の前記先端部が所定の停止用検知位置に到達したことを検知する第2タイヤ検知部と、
     前記特定外周縁の前記先端部が前記停止用検知位置に到達したことを前記第2タイヤ検知部が検知することに伴って、前記タイヤの前記特定外周縁の前記先端部が前記搬送経路上の所定の待機位置に一時停止するように前記搬送機構を制御する停止制御部と、
     前記タイヤ寸法演算部によって演算された前記特定外周縁の外径寸法と、前記待機位置から前記タイヤ試験位置までの距離とに基づいて、前記タイヤを前記待機位置から前記タイヤ試験位置まで移動させるための前記タイヤの移動距離を演算する、移動距離演算部と、
     前記移動距離演算部によって演算された前記移動距離に応じて、前記タイヤが前記待機位置から前記タイヤ試験位置まで移動するように前記搬送機構を制御する搬送制御部と、
     を備える、タイヤ試験機。
    A spindle that rotatably supports the tire around a reference rotation center axis extending in the vertical direction via a rim mounted on the tire at a tire test position where the tire is placed to perform a predetermined test on the tire. Axis and
    A transport mechanism having a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction and capable of transporting the tire to the tire test position along a predetermined transport path.
    A first tire detection unit that detects the tires transported by the transport mechanism, and the first tire detection unit is a position where the tire mounted on the transport surface is at a predetermined height from the transport surface. The front end portion and the rear end portion in the transport direction of the tire of the specific outer peripheral edge, which is the outer peripheral edge of the tire formed by being virtually cut by a virtual cutting surface parallel to the transport surface, are predetermined. The first tire detection unit that detects that the detection position for dimensional calculation has been reached, and
    Based on the time difference in which the first tire detection unit detects that the front end portion and the rear end portion of the specific outer peripheral edge have reached the detection position for dimension calculation and the transfer speed of the tire by the transfer mechanism. , A tire dimension calculation unit that calculates the outer diameter dimension of the specific outer peripheral edge of the tire,
    A second tire, which is arranged downstream of the first tire detection unit in the transport direction and detects that the tip portion of the specific outer peripheral edge of the tire transported by the transport mechanism has reached a predetermined stop detection position. 2 Tire detector and
    As the second tire detecting unit detects that the tip of the specific outer peripheral edge has reached the stop detection position, the tip of the specific outer peripheral edge of the tire is on the transport path. A stop control unit that controls the transport mechanism so as to temporarily stop at a predetermined standby position,
    To move the tire from the standby position to the tire test position based on the outer diameter dimension of the specific outer peripheral edge calculated by the tire dimension calculation unit and the distance from the standby position to the tire test position. A movement distance calculation unit that calculates the movement distance of the tire,
    A transfer control unit that controls the transfer mechanism so that the tire moves from the standby position to the tire test position according to the movement distance calculated by the movement distance calculation unit.
    A tire testing machine equipped with.
  2.  前記第1タイヤ検知部は、
      前記タイヤの前記特定外周縁の前記後端部を検知する第1センサと、
      前記第1センサよりも前記搬送方向下流側に配置され、前記タイヤの前記特定外周縁の前記先端部を検知する第2センサと、
     を有する、請求項1に記載のタイヤ試験機。
    The first tire detection unit is
    A first sensor that detects the rear end of the specific outer peripheral edge of the tire, and
    A second sensor, which is arranged downstream of the first sensor in the transport direction and detects the tip of the specific outer peripheral edge of the tire,
    The tire testing machine according to claim 1.
  3.  タイヤに所定の試験を行うために前記タイヤが配置されるタイヤ試験位置において、前記タイヤに装着されるリムを介して、上下方向に延びる基準回転中心軸回りに前記タイヤを回転可能に支持するスピンドル軸と、
     前記タイヤの回転軸が上下方向に延びる姿勢で前記タイヤが載置される搬送面を有し、所定の搬送経路に沿って前記タイヤを前記タイヤ試験位置まで搬送することが可能な搬送機構と、
     前記搬送面に対して所定の高さの位置に配置され、前記タイヤの搬送方向における前記タイヤの先端部および後端部が所定の寸法演算用検知位置に到達したことをそれぞれ検知する第1タイヤ検知部と、
     前記タイヤの前記先端部および前記後端部が前記寸法演算用検知位置に到達したことを前記第1タイヤ検知部がそれぞれ検知する時間差と前記搬送機構による前記タイヤの搬送速度とに基づいて、前記タイヤの外径寸法を演算するタイヤ寸法演算部と、
     前記第1タイヤ検知部よりも前記搬送方向下流側において前記搬送面に対して前記第1タイヤ検知部と同じ高さの位置に配置され、前記搬送機構によって搬送される前記タイヤの前記先端部が所定の停止用検知位置に到達したことを検知する第2タイヤ検知部と、
     前記タイヤの前記先端部が前記停止用検知位置に到達したことを前記第2タイヤ検知部が検知することに伴って、前記タイヤの前記先端部が前記搬送経路上の所定の待機位置に一時停止するように前記搬送機構を制御する停止制御部と、
     前記タイヤ寸法演算部によって演算された前記外径寸法と、前記待機位置から前記タイヤ試験位置までの距離とに基づいて、前記タイヤを前記待機位置から前記タイヤ試験位置まで移動させるための前記タイヤの移動距離を演算する、移動距離演算部と、
     前記移動距離演算部によって演算された前記移動距離に応じて、前記タイヤが前記待機位置から前記タイヤ試験位置まで移動するように前記搬送機構を制御する搬送制御部と、
     を備える、タイヤ試験機。
    A spindle that rotatably supports the tire around a reference rotation center axis extending in the vertical direction via a rim mounted on the tire at a tire test position where the tire is placed to perform a predetermined test on the tire. Axis and
    A transport mechanism having a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction and capable of transporting the tire to the tire test position along a predetermined transport path.
    A first tire that is arranged at a predetermined height with respect to the transport surface and detects that the front end and the rear end of the tire in the transport direction of the tire have reached a predetermined dimensional calculation detection position, respectively. With the detector
    Based on the time difference in which the first tire detection unit detects that the front end portion and the rear end portion of the tire have reached the detection position for dimension calculation and the transfer speed of the tire by the transfer mechanism, the said. A tire size calculation unit that calculates the outer diameter of a tire,
    The tip of the tire, which is arranged on the downstream side in the transport direction from the first tire detection unit at the same height as the first tire detection unit with respect to the transport surface and is transported by the transport mechanism, is A second tire detection unit that detects that a predetermined stop detection position has been reached, and
    As the second tire detection unit detects that the tip of the tire has reached the stop detection position, the tip of the tire temporarily stops at a predetermined standby position on the transport path. A stop control unit that controls the transport mechanism so as to
    The tire for moving the tire from the standby position to the tire test position based on the outer diameter dimension calculated by the tire dimension calculation unit and the distance from the standby position to the tire test position. A moving distance calculation unit that calculates the moving distance,
    A transfer control unit that controls the transfer mechanism so that the tire moves from the standby position to the tire test position according to the movement distance calculated by the movement distance calculation unit.
    A tire testing machine equipped with.
  4.  前記第1タイヤ検知部は、
      前記タイヤの前記後端部を検知する第1センサと、
      前記第1センサよりも前記搬送方向下流側に配置され、前記タイヤの前記先端部を検知する第2センサと、
     を有する、請求項3に記載のタイヤ試験機。
    The first tire detection unit is
    A first sensor that detects the rear end of the tire,
    A second sensor, which is arranged downstream of the first sensor in the transport direction and detects the tip of the tire,
    The tire testing machine according to claim 3.
  5.  前記第1タイヤ検知部の前記第1センサおよび前記第2センサならびに前記第2タイヤ検知部は、前記搬送方向と交差しかつ水平な方向に向かって検出光を発光する発光部と前記検出光を受光する受光部とをそれぞれ有する、請求項2または4に記載のタイヤ試験機。 The first sensor, the second sensor, and the second tire detection unit of the first tire detection unit emit a light emitting unit that emits detection light in a direction intersecting and horizontal with the transport direction, and the detection light. The tire testing machine according to claim 2 or 4, further comprising a light receiving portion that receives light.
  6.  前記搬送方向において前記第1センサと前記第2センサとの間に配置され、前記タイヤの内周面に潤滑剤を塗布する潤滑剤塗布機構を更に備える、請求項2または4に記載のタイヤ試験機。 The tire test according to claim 2 or 4, further comprising a lubricant application mechanism that is arranged between the first sensor and the second sensor in the transport direction and applies a lubricant to the inner peripheral surface of the tire. Machine.
  7.  前記第1タイヤ検知部および前記第2タイヤ検知部を前記搬送面に対して上下方向に相対移動することが可能な移動機構を更に備える、請求項1または3に記載のタイヤ試験機。 The tire testing machine according to claim 1 or 3, further comprising a moving mechanism capable of moving the first tire detecting unit and the second tire detecting unit relative to the transport surface in the vertical direction.
  8.  タイヤに所定の試験を行うタイヤ試験機において前記試験を行うために前記タイヤが配置されるタイヤ試験位置に前記タイヤを搬送する、タイヤ試験機のタイヤ搬送方法であって、
     前記タイヤの回転軸が上下方向に延びる姿勢で前記タイヤが載置される搬送面を有し、所定の搬送経路に沿って前記タイヤを前記タイヤ試験位置まで搬送することが可能な搬送機構を準備することと、
     前記搬送機構によって搬送される前記タイヤを検知する第1タイヤ検知部であって、前記搬送面に載置された前記タイヤが前記搬送面から所定の高さの位置に配置され前記搬送面と平行な仮想切断面によって仮想的に切断されることで形成される前記タイヤの外周縁である特定外周縁の前記タイヤの搬送方向における先端部および後端部が所定の寸法演算用検知位置に到達したことをそれぞれ検知する第1タイヤ検知部を前記搬送経路上に配置することと、
     前記搬送機構によって搬送される前記タイヤの前記特定外周縁の前記先端部が所定の停止用検知位置に到達したことを検知する第2タイヤ検知部を前記第1タイヤ検知部よりも前記搬送方向下流側に配置することと、
     前記特定外周縁の前記先端部および前記後端部が前記寸法演算用検知位置に到達したことを前記第1タイヤ検知部がそれぞれ検知する時間差と前記搬送機構による前記タイヤの搬送速度とに基づいて、前記タイヤの前記特定外周縁の外径寸法を演算することと、
     前記特定外周縁の前記先端部が前記停止用検知位置に到達したことを前記第2タイヤ検知部が検知することに伴って、前記タイヤの前記特定外周縁の前記先端部が前記搬送経路上の所定の待機位置に一時停止するように前記搬送機構を制御することと、
     前記タイヤ寸法演算部によって演算された前記特定外周縁の外径寸法と、前記待機位置から前記タイヤ試験位置までの距離とに基づいて、前記タイヤを前記待機位置から前記タイヤ試験位置まで移動させるための前記タイヤの移動距離を演算することと、
     前記移動距離演算部によって演算された前記移動距離に応じて、前記タイヤが前記待機位置から前記タイヤ試験位置まで移動するように前記搬送機構を制御することと、
     を備える、タイヤ試験機におけるタイヤ搬送方法。
    A tire transport method for a tire testing machine, which transports the tire to a tire test position where the tire is arranged in order to perform the test in a tire testing machine that performs a predetermined test on the tire.
    Prepare a transport mechanism having a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and capable of transporting the tire to the tire test position along a predetermined transport path. To do and
    A first tire detection unit that detects the tires transported by the transport mechanism, wherein the tires mounted on the transport surface are arranged at a position at a predetermined height from the transport surface and parallel to the transport surface. The front end portion and the rear end portion in the transport direction of the tire of the specific outer peripheral edge, which is the outer peripheral edge of the tire formed by being virtually cut by the virtual cutting surface, have reached a predetermined detection position for dimensional calculation. By arranging the first tire detection unit that detects each of them on the transport path,
    A second tire detection unit that detects that the tip of the specific outer peripheral edge of the tire transported by the transfer mechanism has reached a predetermined stop detection position is downstream of the first tire detection unit in the transport direction. To place it on the side and
    Based on the time difference in which the first tire detection unit detects that the front end portion and the rear end portion of the specific outer peripheral edge have reached the detection position for dimension calculation and the transfer speed of the tire by the transfer mechanism. , Calculating the outer diameter dimension of the specific outer peripheral edge of the tire,
    As the second tire detecting unit detects that the tip of the specific outer peripheral edge has reached the stop detection position, the tip of the specific outer peripheral edge of the tire is on the transport path. To control the transport mechanism so as to pause at a predetermined standby position,
    To move the tire from the standby position to the tire test position based on the outer diameter dimension of the specific outer peripheral edge calculated by the tire dimension calculation unit and the distance from the standby position to the tire test position. To calculate the moving distance of the tire
    Controlling the transport mechanism so that the tire moves from the standby position to the tire test position according to the movement distance calculated by the movement distance calculation unit.
    A tire transport method in a tire testing machine.
  9.  前記第1タイヤ検知部として、
      前記タイヤの前記特定外周縁の前記後端部を検知する第1センサと、
      前記第1センサよりも前記搬送方向下流側に配置され、前記タイヤの前記特定外周縁の前記先端部を検知する第2センサと、
     を準備することを更に備える、請求項8に記載のタイヤ試験機におけるタイヤ搬送方法。
    As the first tire detection unit
    A first sensor that detects the rear end of the specific outer peripheral edge of the tire, and
    A second sensor, which is arranged downstream of the first sensor in the transport direction and detects the tip of the specific outer peripheral edge of the tire,
    The tire transporting method in the tire testing machine according to claim 8, further comprising preparing the tire.
  10.  タイヤに所定の試験を行うタイヤ試験機において前記試験を行うために前記タイヤが配置されるタイヤ試験位置に前記タイヤを搬送する、タイヤ試験機のタイヤ搬送方法であって、
     前記タイヤの回転軸が上下方向に延びる姿勢で前記タイヤが載置される搬送面を有し、所定の搬送経路に沿って前記タイヤを前記タイヤ試験位置まで搬送することが可能な搬送機構を準備することと、
     前記搬送機構によって搬送される前記タイヤの先端部および後端部が所定の寸法演算用検知位置に到達したことをそれぞれ検知することが可能な第1タイヤ検知部を前記搬送面に対して所定の高さの位置に配置することと、
     前記搬送機構によって搬送される前記タイヤの前記先端部が所定の停止用検知位置に到達したことを検知することが可能な第2タイヤ検知部を前記第1タイヤ検知部よりも前記タイヤの搬送方向下流側において前記搬送面に対して前記第1タイヤ検知部と同じ高さの位置に配置することと、
     前記タイヤの前記先端部および前記後端部が前記寸法演算用検知位置に到達したことを前記第1タイヤ検知部がそれぞれ検知する時間差と前記搬送機構による前記タイヤの搬送速度とに基づいて、前記タイヤの外径寸法を演算することと、
     前記タイヤの前記先端部が前記停止用検知位置に到達したことを前記第2タイヤ検知部が検知することに伴って、前記タイヤの前記先端部が前記搬送経路上の所定の待機位置に一時停止するように前記搬送機構を制御することと、
     前記演算された前記外径寸法と、前記待機位置から前記タイヤ試験位置までの距離とに基づいて、前記待機位置から前記タイヤ試験位置までの前記タイヤの移動距離を演算することと、
     前記演算された前記移動距離に応じて、前記タイヤが前記待機位置から前記タイヤ試験位置まで移動するように前記搬送機構を制御することと、
     を備える、タイヤ試験機におけるタイヤ搬送方法。
    A tire transport method for a tire testing machine, which transports the tire to a tire test position where the tire is arranged in order to perform the test in a tire testing machine that performs a predetermined test on the tire.
    Prepare a transport mechanism having a transport surface on which the tire is placed in a posture in which the rotation axis of the tire extends in the vertical direction, and capable of transporting the tire to the tire test position along a predetermined transport path. To do and
    A first tire detection unit capable of detecting that the front end portion and the rear end portion of the tire conveyed by the transfer mechanism have reached a predetermined dimensional calculation detection position is designated with respect to the transfer surface. Placing it at a height position and
    The second tire detection unit capable of detecting that the tip portion of the tire conveyed by the transfer mechanism has reached a predetermined stop detection position is more in the transport direction of the tire than the first tire detection unit. On the downstream side, the tires should be arranged at the same height as the first tire detection unit with respect to the transport surface.
    Based on the time difference in which the first tire detection unit detects that the front end portion and the rear end portion of the tire have reached the detection position for dimension calculation and the transfer speed of the tire by the transfer mechanism. Calculating the outer diameter of the tire and
    As the second tire detection unit detects that the tip of the tire has reached the stop detection position, the tip of the tire temporarily stops at a predetermined standby position on the transport path. To control the transport mechanism so as to
    Based on the calculated outer diameter dimension and the distance from the standby position to the tire test position, the movement distance of the tire from the standby position to the tire test position is calculated.
    Controlling the transport mechanism so that the tire moves from the standby position to the tire test position according to the calculated movement distance.
    A tire transport method in a tire testing machine.
  11.  前記第1タイヤ検知部として、
      前記タイヤの前記後端部を検知する第1センサと、
      前記第1センサよりも前記搬送方向下流側に配置され、前記タイヤの前記先端部を検知する第2センサと、
     を準備することと、
     前記第1タイヤ検知部の前記第1センサおよび前記第2センサならびに前記第2タイヤ検知部を前記搬送面に対して互いに同じ高さの位置に配置することと、
    を更に備える、請求項10に記載のタイヤ試験機におけるタイヤ搬送方法。
    As the first tire detection unit
    A first sensor that detects the rear end of the tire,
    A second sensor, which is arranged downstream of the first sensor in the transport direction and detects the tip of the tire,
    To prepare and
    By arranging the first sensor, the second sensor, and the second tire detection unit of the first tire detection unit at the same height as each other with respect to the transport surface.
    The tire transport method in the tire testing machine according to claim 10, further comprising.
  12.  前記第1タイヤ検知部の前記第1センサおよび前記第2センサならびに前記第2タイヤ検知部として、それぞれ、前記搬送方向と交差しかつ水平な方向に向かって検出光を発光する発光部と前記検出光を受光する受光部とを有するものを準備することを更に備える、請求項9または11に記載のタイヤ試験機におけるタイヤ搬送方法。 As the first sensor, the second sensor, and the second tire detection unit of the first tire detection unit, a light emitting unit that emits detection light in a direction intersecting and horizontal to the transport direction and the detection unit, respectively. The tire transport method in a tire testing machine according to claim 9 or 11, further comprising preparing a tire having a light receiving unit that receives light.
PCT/JP2020/023225 2019-06-28 2020-06-12 Tire testing machine, and method for conveying tire in tire testing machine WO2020262044A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019121184A JP2021006800A (en) 2019-06-28 2019-06-28 Tire testing machine and tire conveying method in tire testing machine
JP2019-121184 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020262044A1 true WO2020262044A1 (en) 2020-12-30

Family

ID=74061897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023225 WO2020262044A1 (en) 2019-06-28 2020-06-12 Tire testing machine, and method for conveying tire in tire testing machine

Country Status (3)

Country Link
JP (1) JP2021006800A (en)
TW (1) TW202102829A (en)
WO (1) WO2020262044A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486907A (en) * 2021-12-30 2022-05-13 中科蓝海(扬州)智能视觉科技有限公司 Method and device for detecting metal pole piece of charger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220319A (en) * 2011-04-07 2012-11-12 Kobe Steel Ltd Tire testing machine conveyer
US20140260583A1 (en) * 2013-03-15 2014-09-18 Kobelco Stewart Bolling, Inc. Tire testing machine
JP2019015724A (en) * 2017-07-03 2019-01-31 株式会社神戸製鋼所 Tire testing machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220319A (en) * 2011-04-07 2012-11-12 Kobe Steel Ltd Tire testing machine conveyer
US20140260583A1 (en) * 2013-03-15 2014-09-18 Kobelco Stewart Bolling, Inc. Tire testing machine
JP2019015724A (en) * 2017-07-03 2019-01-31 株式会社神戸製鋼所 Tire testing machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486907A (en) * 2021-12-30 2022-05-13 中科蓝海(扬州)智能视觉科技有限公司 Method and device for detecting metal pole piece of charger

Also Published As

Publication number Publication date
JP2021006800A (en) 2021-01-21
TW202102829A (en) 2021-01-16

Similar Documents

Publication Publication Date Title
US8950250B2 (en) Loading device for tire testing machine
US9126759B2 (en) Tire conveyor for a tire testing machine
KR101140074B1 (en) Cutting tool
JP6034759B2 (en) Marking device
US6007017A (en) Method for detecting the position of a web supply roll and for positioning the roll
JP6018540B2 (en) Conveyor for tire testing machine
EP0677444B1 (en) Product optical control method
WO2020262044A1 (en) Tire testing machine, and method for conveying tire in tire testing machine
JP2008007246A (en) Belt adjusting device, belt adjusting method, and belt conveyance device
JP6173964B2 (en) Tire testing machine
CN107366459B (en) Device and method for parking
JP6728741B2 (en) Bead inspection device and bead inspection method
TWI523804B (en) Rotating positioning method and rotation positioning system
JP4275875B2 (en) Parts inspection device
CN110672012B (en) Full-size detection machine for valve
JP4537624B2 (en) Tread ring joint amount verification method and verification device
US11193857B2 (en) Tire tester machine having a lubricator in a conveying direction
KR20130053710A (en) Apparatus and method for winding strip into coil
CN210047107U (en) Tire component feeding device
JPH0531458B2 (en)
US20230150167A1 (en) Lathe charger control device, lathe charger including the same, and a method for controlling a lathe charger
JPH07104134B2 (en) External Dimension Measuring Device for Centerless Grinder
JP2004219344A (en) Method and apparatus for measuring shape of tube, method and apparatus for inspecting tube, and method and system for manufacturing tube
JP2005271542A (en) Method of determining tip tilting angle of sheet-like member and its apparatus
JP2005001143A (en) Tire discrimination device and automatic talc coating device using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20833693

Country of ref document: EP

Kind code of ref document: A1