JP4594481B2 - Powder transport amount control method and powder transport amount control device in electrostatic powder transport device. - Google Patents

Powder transport amount control method and powder transport amount control device in electrostatic powder transport device. Download PDF

Info

Publication number
JP4594481B2
JP4594481B2 JP2000067494A JP2000067494A JP4594481B2 JP 4594481 B2 JP4594481 B2 JP 4594481B2 JP 2000067494 A JP2000067494 A JP 2000067494A JP 2000067494 A JP2000067494 A JP 2000067494A JP 4594481 B2 JP4594481 B2 JP 4594481B2
Authority
JP
Japan
Prior art keywords
electrodes
powder transport
grid
powder
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000067494A
Other languages
Japanese (ja)
Other versions
JP2001253539A (en
Inventor
稔 森山
良和 谷井
昭子 宮本
Original Assignee
株式会社高純度物質研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社高純度物質研究所 filed Critical 株式会社高純度物質研究所
Priority to JP2000067494A priority Critical patent/JP4594481B2/en
Publication of JP2001253539A publication Critical patent/JP2001253539A/en
Application granted granted Critical
Publication of JP4594481B2 publication Critical patent/JP4594481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Non-Mechanical Conveyors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、静電式粉体輸送装置における粉体輸送量制御方法と粉体輸送量制御装置に関する。
【0002】
【従来の技術】
従来の静電式粉体輸送装置における粉体輸送用電極として、パネル状のものが特開平7−267363号公報に、パイプ状のものが特開平8−149859号公報に、ドット状のものが特開平8−201702号公報に、それぞれ記載されている。
【0003】
また、本願出願人によって出願された特開平10−236649号公報には、パネル状とパイプ状の電極が、特開平11−165872号には、ドット状の電極が記載されている。
【0004】
上記した粉体輸送用電極は、粉体輸送制御と関連づけられている。
即ち、輸送される粉体は、微小な粒子であり、粉体輸送用電極は、この微細な粒子を、粒径に対応したピッチをもって、輸送方向に絶縁配列した多数の電極上に置き、各電極間に、送り方向へ電界ポテンシャルの進行波が形成されるように、各電極に、多値多相交番電圧(信号)を時系列に印加するべく制御されるようになっている。
【0005】
【発明が解決しようとする課題】
上記従来の粉体輸送用電極においては、多値多相交番電圧繰り返しインターバルを、早くしたり遅くしたりして、輸送量の制御を行うことができる。
しかし、この送り量の最小制御範囲は、粉体輸送用電極の輸送通路の幅で定まるため、微細な輸送量の調整には適しない。
例えば、本願出願人によって出願された特開平10−48031号公報に記載されている粉体の定量供給装置等に使用される粉体輸送用電極においては、秤等の計量器と連動して、送り量を調節しながら、計量中の容器に注ぎ込むことが要求される。
予め定められた重量の粉体を自動計量する目的で、従来の粉体輸送用電極を使用するには、1回の多値多相交番電圧の極性反転に際して、輸送用電極の先端から排出される量を、計量誤差範囲以内の最小供給量として制御可能な範囲としなければならない。
しかし、このような微少な供給量を1回の送り量とした粉体輸送用電極は、短時間に多量の粉体を輸送する場合には適しない。
そのため、従来は、1回の多値多相交番電圧の極性反転に際し、排出量の大きなものと、小さなものとの両方を使用することにより、上述の不都合を解消している。
【0006】
本発明は、従来の技術が有する上記のような問題点に鑑みてなされたもので、多値多相交番電圧によって帯電粒子が輸送される1つの通路をもって、1回の多値多相交番電圧の極性反転に際し、通路の端部から排出される粉体の量を、大きな量から、微少な量まで、自在に調整しうるようにした、静電式粉体輸送装置における粉体輸送量制御方法と粉体輸送量制御装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明によると、上記課題は、次のようにして解決される。
(1) 粉体粒子を帯電さた帯電粒子を、多値多相交番電圧による進行波電界雰囲気内において搬送するようにした静電式粉体輸送装置において、
進行波電界雰囲気形成して帯電粒子を搬送するようにした通路の送り方向と交叉する方向に、互いに絶縁された電極を並べてグリッド電極とし、このグリッド電極を、通路の送り方向に複数本配置し、この複数のグリッド電極間に多値多相交番電圧を印加するとともに、複数のグリッド電極を設けた通路を通過させようとする帯電粒子の量に応じて、複数のグリッド電極において、互いに絶縁された電極間に印加する多値多相交番電圧を制御すること。
【0008】
(2) 上記(1)項において、各グリッド電極における通路の送り方向と交叉方向に並ぶ互いに絶縁された電極の繰り返しピッチが、いずれか最小の繰り返しピッチを有するグリッド電極に対して、他のグリッド電極の繰り返しピッチを、整数倍とする。
【0009】
(3) 上記(2)項において、各グリッド電極における通路の送り方向と交叉する方向に並ぶ互いに絶縁された電極の配列を、各グリッド電極間で、通路の送り方向に互いに整列させる
【0010】
(4) 粉体粒子を帯電さた帯電粒子を、多値多相交番電圧による進行波電界雰囲気内において搬送するようにした静電式粉体輸送装置における粉体輸送用電極において、
多値多相交番電圧による進行波電界雰囲気形成して帯電粒子を搬送するようにした通路の送り方向と交叉する方向に、互いに絶縁された電極を並べたグリッド電極と、
各グリッド電極間に、通路の搬送方向に向けて進行波電界雰囲気を形成するべく、多値多相交番電圧を印加するとともに、各グリッド電極における絶縁された電極間においては、互い印加電圧極性を制御しうる電源とを備えている。
【0011】
(5) 上記(4)項において、グリッド電極は、プリント配線基板に印刷配線されている。
【0012】
(6) 上記(4)項において、グリッド電極は、絶縁被覆電線を複数本撚り合わせたものとする。
【0013】
(7) 上記(4)項において、グリッド電極は、多値多相交番電圧の相数と同数設ける。
【0014】
【発明の実施の形態】
以下、本発明の方法の実施要領を、添付図面を参照しながら説明する。
図1は、本発明方法をパネル状の粉体輸送用電極に適用した一例を示す。
【0015】
(1)は、平板状の巻芯(2)に、複数の絶縁被覆電線(3)を並列に並べて、多条螺旋状に巻回した輸送電極(4)を具備するパネル状の粉体輸送用電極である。
輸送電極(4)における複数の被覆電線(3)には、例えばa〜fで示す3値6相交番電圧が印加される。
【0016】
粉体輸送用電極(1)は、図示の左方が粉体の帯電粒子が搬送される送り出し側となり、巻芯(2)の長手方向で、輸送電極(4)の絶縁被覆電線(3)とほぼ直交する方向の右側が、帯電粒子が送られる方向となり、この帯電粒子が輸送電極(4)に印加される交番電圧によって、輸送される通り道を輸送通路(5)とする。
【0017】
輸送通路(5)における輸送電極(4)の終端端部には、絶縁被覆電線(3)と平行に、交番電圧の相数と同数の撚り線(6)が設けられている。
【0018】
撚り線(6)は、絶縁被覆電線(3)と同様の絶縁被覆電線を、複数本撚り合わせて構成されている。
この絶縁被覆電線(3)及び撚り線(6)には、線間電圧、例えば500ボルト以上の高電圧が印加されるので、両電線には、高耐圧の絶縁層を被覆した、単芯の電線が適している。
【0019】
なお、その他の絶縁被覆電線としては、芯線が単線であると使用可能であるが、絶縁被覆の厚さは、上記高電圧と線間ピッチ、及び巻径などを考慮して定められる。
【0020】
輸送電極(4)と撚り線(6)が並ぶ輸送通路(5)の上面には、粉体を、接触帯電または摩擦帯電させる絶縁シート(7)が設けられている。
【0021】
撚り線(6)は、絶縁シート(7)の直下において、複数の電線が、互いに撚り合わされることにより、輸送通路(5)の送り方向と直交する方向に、互いに絶縁された電極をグリッド状に並べたグリッド電極(8)を形成している。
【0022】
即ち、グリッド電極(8)は、輸送通路(5)の送り方向と直交する方向に、複数の電極を格子(グリッド)状に絶縁して並べたものである。
【0023】
撚り線(6)の捩りピッチは、グリッド電極(8)における、複数の電極を格子状に絶縁して並べた電極の繰り返しピッチと対応している。
この各グリッド電極(8)、即ち送り方向に並べられた複数の撚り線(6)には、3値6相交番電圧発生用電源(9)から、各撚り線(6)における撚り合わされたそれぞれの電線にも、3値6相交番電圧が印加されるようになっている。
【0024】
図2は、各撚り線(6)を、3値6相交番電圧の各相と対応させて示すもの、図3は、各撚り線(6)に対応したグリッド電極(8)のグリッド構造を模式的に示すものである。
【0025】
撚り線(6)は、グリッド電極(8)の一例を示し、他の例としては、図3に示すグリッド電極(8)の模式図を、そのままプリント配線によて、電極パターンとするものがある。
【0026】
図2、図3において、斜線を施した部分は、撚り線(6)及びグリッド電極(8)における、通過量を制御するための制御線(A)を示し、その制御線(A)は、撚り合わされた線の中から自由に選択できる。
【0027】
撚り線(6)は、a、b、c、e、fの各相対応のものを、2本撚りで、d相対応のものは、3本撚りで、それぞれ構成されている。
【0028】
各撚り線(6)の捩りピッチ、即ちグリッド電極(8)においては、電極の繰り返し間隔に相当するものは、図3に示す如く、最小ピッチをなすa相のものに対して、他の相に対するものは、整数倍に整合させてあり、かつグリッド電極(8)の電極の継ぎ目、即ち格子の位置関係も、輸送通路(5)の方向に整合させてある。
【0029】
図2と図3は、実質的に同一のグリッド電極構造を示すもので、以下、これを利用した帯電粒子の通過量の制御について説明する。
【0030】
各撚り線(6)について、撚り合わせてある複数の電線を、同じ交番電圧が印加されるようにすると、各撚り線(6)は、それぞれが1本の電線と同じ電界雰囲気を輸送通路(5)上に生じさせる。
即ち、図2,図3において、斜線で示す制御線(A)が全く無い状態に相当する。
【0031】
この場合、グリッド電極(8)上の帯電粒子には、このグリッド電極(8)の領域より手前の輸送電極(4)の上面と同じ電界雰囲気が生じ、3値6相交番電圧の変化に基づいて、通常に輸送される。
【0032】
この状態から、例えばf相の撚り線()の制御線(A)に、それと撚り合されている他方の線に印加される電圧と逆相の電圧を印加する。
制御線(A)の制御方法としては、無電圧(電源に対してフローティング)もしくは零ボルトの電圧を印加することもできる。
【0033】
図2、図3の斜線で示す制御線(A)のところでは、進行波電界雰囲気の形成ができなくなるので、帯電粒子は、この制御線(A)の領域を通過できなくなる。
【0034】
各撚り線(6)、もしくは各グリッド電極(8)について、制御線(A)に逆相の電圧、もしくは粒子の搬送を阻止するための電圧等を印加するか否かは、そのグリッド電極(8)の領域の輸送通路(5)上を通過させようとする帯電粒子の量に応じて、選択的に定められる。
【0035】
図2、図3に示す制御状態は、それぞれの撚り線(6)において、撚り合わされている線のいずれか1本を制御線として、逆相電圧が印加されているため、ほぼ最小制御状態に絞り込んだものである。
ただし、完全遮断状態にするには、各相のいずれかの撚り線(6)、又はグリッド電極(8)を、本来、進行波を発生する交番電圧に対して、撚り合された両方の線、もしくは並列する電極共に、逆相とすることにより達成できる。
【0036】
図4は、本発明の他の適用例を示すものである。
(11)は、チューブ型の粉体輸送用電極であり、チューブ状の巻芯(12)に、複数の絶縁被覆電線(3)を並列に並べて、多条螺旋状に巻回した輸送電極(4)を具備している。
【0037】
粉体の帯電粒子は、チューブ型粉体輸送用電極(11)の内側表面を、左から右に向けて送られるようになっており、チューブの内側下部が輸送通路(5)となっている。
【0038】
チューブの先端部には、輸送通路(5)と直交して、6本の撚り線(6)が巻回されてグリッド電極(8)となっている。
【0039】
輸送電極(4)をなす6本の被覆電線(3)の一端は、a〜fの各相に対応して、3値6相交番電圧発生用電源(9)に接続され、各撚り線(6)の端部も、a〜fの各相に対応して、3値6相交番電圧発生用電源(9)に接続されている。
なお、3値6相交番電圧発生用電源(9)においては、グリッド電極(8)上を帯電粒子を通過させる量に応じて、各撚り線(6)の中から制御線(A)として選択し、それに進行波を発生する電圧に対して、選択的に逆相の電圧、もしくは、粒子の搬送を阻止する電圧等を印加しうるようになっている。
【0040】
【発明の効果】
本発明によれば、次のような効果を奏することができる。
【0041】
(a) 請求項1記載の発明によると、進行波電界雰囲気が形成されて帯電粒子を搬送する通路に印加する多値多相交番電圧と同じ交番電圧を利用して、交番電圧の繰り返しインターバルと関係なく、帯電粒子の通過量を段階的に調節できる。
【0042】
(b) 請求項2記載の発明によると、輸送量の制御を、通路の通過ゾーン単位で行える。
【0043】
(c) 請求項3記載の発明によると、グリッド電極上を通過する帯電粒子の通り道が明瞭となる。
【0044】
(d) 請求項4記載の発明によると、粉体の通過量の制御が簡単であり、かつ搬送用の多値多相交番電圧をそのまま制御に利用できるので、制御回路が簡素となり、かつ制御電極の構造も構成が簡単で作り易く、低価格の粉体輸送量制御装置を提供できる。
【0045】
(e) 請求項5記載の発明によると、グリッド電極の電極パターンを、精密かつ小型として大量に製造できるため、汎用性の高い粉体輸送量制御装置を安価に提供でき、かつ小型化したものは、粒径の微少な粉体の輸送量の制御を容易とする。
【0046】
(f) 請求項6記載の発明によると、グリッド電極構造が簡単で、少量の製造が容易であるため、試作機やカスタム製品の製造に適している。
【0047】
(g) 請求項7記載の発明によると、輸送用の電極に印加する多値多相交番電圧をそのまま制御に利用できるので、制御回路が簡素となり、かつ制御電極の構造も簡単で作り易く、低価格の粉体輸送量制御装置を提供できる。
【図面の簡単な説明】
【図1】 本発明方法の一実施要領を示すもので、パネル型の粉体輸送用電極に本発明を適用した状態の斜視図である。
【図2】 撚り線をグリッド電極に利用した一実施例を示す、グリッド電極部分の平面図である。
【図3】 図2の撚り線をグリッド電極とした状態の電極構造を、模式的に示すとともに、プリント配線の配線パターンにも適用しうる、図2と同様の平面図である。
【図4】 本発明方法の他の実施要領を示すもので、チューブ型の粉体輸送用電極に本発明を適用した状態の斜視図である。
【符号の説明】
(1)(11)粉体輸送用電極
(2)(12)巻芯
(3)絶縁被覆電線
(4)輸送電極
(5)輸送通路
(6)撚り線
(7)絶縁シート
(8)グリッド電極
(9)3値6相交番電圧発生用電源
(A)制御
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a powder transport amount control method and a powder transport amount control device in an electrostatic powder transport device.
[0002]
[Prior art]
As a powder transport electrode in a conventional electrostatic powder transport apparatus, a panel-shaped electrode is disclosed in JP-A-7-267363, a pipe-shaped electrode is disclosed in JP-A-8-149859, and a dot-shaped electrode is used. JP-A-8-201702 discloses this.
[0003]
Japanese Patent Application Laid-Open No. 10-236649 filed by the applicant of the present application describes panel-shaped and pipe-shaped electrodes, and Japanese Patent Application Laid-Open No. 11-165872 describes dot-shaped electrodes.
[0004]
The powder was transportation electrodes is associated with the powder delivery control.
That is, the transported powder is fine particles, and the powder transport electrode is placed on a number of electrodes that are insulated and arranged in the transport direction with a pitch corresponding to the particle size. It is controlled to apply a multi-value multiphase alternating voltage (signal) to each electrode in time series so that a traveling wave of an electric field potential is formed between the electrodes in the feed direction.
[0005]
[Problems to be solved by the invention]
In the above-described conventional powder transport electrodes, a multi-level multi-phase alternating voltage repetition interval, and faster or slower, it is possible to control the transport volume.
However, since the minimum control range of the feed amount is determined by the width of the transport passage of the powder transport electrode, it is not suitable for fine adjustment of the transport amount.
For example, in the powder transport electrode used in the powder quantitative supply device described in JP-A-10-48031 filed by the applicant of the present application, in conjunction with a measuring instrument such as a scale, It is required to pour into the container being weighed while adjusting the feed amount.
The preweighed powder defined for the purpose of automatic weighing, To use conventional powder transport electrodes, when the polarity inversion of one of the multi-level multi-phase alternating voltage, the discharge from the tip of the transport electrodes The amount to be controlled must be within a controllable range as the minimum supply amount within the weighing error range.
However, the electrode for transporting powder with such a small supply amount as one feed amount is not suitable for transporting a large amount of powder in a short time.
Therefore, conventionally, by and upon the polarity inversion of one of the multi-level multi-phase alternating voltage, using a large emissions, both the smaller ones, it is to eliminate the disadvantages described above.
[0006]
The present invention has been made in view of the above-described problems of the prior art, and has one passage through which charged particles are transported by a multi-value multi-phase alternating voltage. Controlling the amount of powder discharged from the end of the passage when the polarity is reversed, from a large amount to a small amount. It is an object to provide a method and a powder transport amount control device.
[0007]
[Means for Solving the Problems]
According to the present invention, the above problem is solved as follows.
(1) In an electrostatic powder transport apparatus in which charged particles charged with powder particles are transported in a traveling wave electric field atmosphere by a multi-valued multiphase alternating voltage.
In a direction intersecting the feeding direction of Unishi was passage by that transports the charged particles to form a traveling wave electric field atmosphere, and the grid electrode side by side electrodes insulated from each other, a plurality of grid electrodes of this, in the feed direction of the passage arrangement, and it applies a multilevel multiphase alternating voltage between the plurality of grid electrodes, depending on the amount of charged particles and so passed through a passage having a plurality of grid electrodes, Te plurality of grid electrodes smell, controlling the multi-level multi-phase alternating voltage applied between the isolated electrodes to each other.
[0008]
(2) In the above item (1), the repetition pitch of the electrodes insulated from each other arranged in the feeding direction and cross direction of the passage in each grid electrodes, to the grid electrodes having any minimum repetition pitch, other grid The electrode repeat pitch is an integer multiple.
[0009]
In (3) above (2) section, an array of electrodes insulated from each other aligned in a direction intersecting the feeding direction of the passage in each grid electrodes, between the grid electrode are aligned with one another in the feed direction of the passage.
[0010]
(4) In a powder transport electrode in an electrostatic powder transport apparatus in which charged particles obtained by charging powder particles are transported in a traveling wave electric field atmosphere by a multi-value multiphase alternating voltage,
In a direction intersecting the feeding direction of Unishi was passage by which to form a traveling wave electric field atmosphere by the multi-level multi-phase alternating voltage for transporting the charged particles, and a grid electrode arranged electrodes insulated from each other,
Between the grid electrodes, rather form Surube a traveling wave electric field atmosphere toward the conveying direction of the passage, to apply a multi-level multi-phase alternating voltage, between the electrodes which are insulated at each grid electrode, another of the applied voltage And a power source capable of controlling the polarity.
[0011]
(5) In the above item (4), the grid electrode is printed and wired on the printed wiring board.
[0012]
(6) In the above item (4), the grid electrode is formed by twisting a plurality of insulated coated wires.
[0013]
(7) In the above item (4), the number of grid electrodes is the same as the number of phases of the multi-value multi-phase alternating voltage.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereafter, the implementation point of the method of this invention is demonstrated, referring an accompanying drawing.
Figure 1 shows the example of applying the present invention method to a panel-like powder delivery electrode.
[0015]
(1) is a panel-shaped powder transporter having a transport electrode (4) in which a plurality of insulated wires (3) are arranged in parallel on a flat core (2) and wound in a multi-spiral form. Electrode.
The plurality of coated electric wires in the transport electrode (4) (3), for example, 3 values 6-phase alternating voltage shown in a~f is applied.
[0016]
The left side of the powder transporting electrode (1) is the delivery side on which the charged particles of powder are transported, and in the longitudinal direction of the winding core (2), the insulated coated electric wire (3) of the transporting electrode (4) The right side of the direction substantially orthogonal to the direction is the direction in which the charged particles are sent, and the path through which the charged particles are transported by the alternating voltage applied to the transport electrode (4) is defined as the transport path (5).
[0017]
At the terminal end portion of the transport electrode (4) in the transport passage (5), the same number of stranded wires (6) as the number of alternating voltage phases are provided in parallel with the insulation-coated wire (3).
[0018]
The stranded wire (6) is formed by twisting a plurality of insulated wires similar to the insulated wires (3) .
The insulated wire (3) and the stranded wire (6), since the line voltage, for example 500 volts or more high voltage is applied, on both wires were coated with an insulating layer of high withstand voltage, single core Is suitable.
[0019]
As other insulation-coated electric wires, the core wire can be used as a single wire, but the thickness of the insulation coating is determined in consideration of the high voltage, the pitch between the wires, the winding diameter , and the like.
[0020]
On the upper surface of the transport electrode (4) and strand (6) are arranged transport paths (5), a powder, insulating sheet contacting zone Denmark other causes triboelectric charging (7) are provided.
[0021]
The stranded wire (6) has a grid of electrodes insulated from each other in a direction perpendicular to the feeding direction of the transport passage (5) by twisting a plurality of electric wires directly below the insulating sheet (7). The grid electrode (8) arranged in a row is formed .
[0022]
That is, the grid electrode (8) is formed by arranging a plurality of electrodes in a grid (grid) shape in a direction perpendicular to the feeding direction of the transport passage (5).
[0023]
The twist pitch of the stranded wire (6) corresponds to the repeated pitch of the electrodes in the grid electrode (8) in which a plurality of electrodes are insulated and arranged in a lattice pattern.
Each grid electrode (8), that is, a plurality of strands arranged in the feed direction (6), the ternary 6-phase alternating voltage generating power source (9), respectively, which twisted in each strand (6) the electric wire also ternary 6-phase alternating voltage is adapted to be applied.
[0024]
2, each strand (6), also shown in association with each phase of the ternary 6-phase alternating voltage, Fig. 3, the grid structure of the grid electrode (8) corresponding to each strand (6) Is schematically shown.
[0025]
Those stranded wire (6) shows an example of a grid electrode (8), as another example, a schematic diagram of the grid electrode (8) shown in FIG. 3, as it Tsu by the printed circuit, to the electrode pattern There is.
[0026]
2, 3, portions indicated by hatching, the stranded wire (6) and the grid in the electrode (8), shows a control electric line for controlling the passage amount (A), the control electric line (A) It can be freely selected from among the twisted line.
[0027]
Strand (6) is, a, b, c, e, those of each phase corresponding f, 2 present at twisting, those of d-phase response, three in twist are constituted respectively.
[0028]
As shown in FIG. 3, the twist pitch of each stranded wire (6), that is, the grid electrode (8), which corresponds to the repetition interval of the electrodes, is different from that of the a phase having the minimum pitch as shown in FIG. Are aligned to an integral multiple, and the electrode joints of the grid electrode (8), that is, the positional relationship of the lattice, are also aligned in the direction of the transport path (5).
[0029]
FIG. 2 and FIG. 3 show substantially the same grid electrode structure. Hereinafter, control of the passing amount of charged particles using this will be described.
[0030]
For each strand (6), a plurality of conductive lines are combined twist Ri, the same alternating voltage is to be applied, each strand (6), each transport the same field atmosphere one wire It is generated on the passage (5).
That is, FIG. 2, 3, the control electric line indicated by hatching (A) corresponds to a state completely free.
[0031]
In this case, the charged particles on the grid electrode (8) have the same electric field atmosphere as the upper surface of the transport electrode (4) in front of the region of the grid electrode (8), and are based on the change in the ternary 6-phase alternating voltage. Normally transported.
[0032]
From this state, is applied to, for example, f-phase twisted wire (6) of the control electric line (A), a voltage applied to the other side of the line therewith that have been twisted, the voltages of opposite phase.
As a control method for controlling electric line (A) can also be a voltage of no-voltage (floating to the power), or zero volts.
[0033]
Figure 2, at the control electric line shown by oblique lines in FIG. 3 (A), so can not be formed of the traveling wave electric field atmosphere, charged particles, can not be passed through the region of the control electric line (A).
[0034]
Each strand (6), or for each grid electrode (8), voltages of opposite phases to control electric line (A) or whether to apply a voltage such as to prevent the transport of particles, the grid electrode, It is selectively determined according to the amount of charged particles to be passed over the transport passage (5) in the region (8).
[0035]
2, the control state shown in FIG. 3, Oite each twisted wire (6), as a control electric line either one is twisted lines, for reverse-phase voltage is applied, about a minimum The control state is narrowed down.
However, in order to achieve a complete shut-off state, either one of the stranded wires (6) of each phase or the grid electrode (8) is originally stranded with respect to an alternating voltage that generates a traveling wave. Alternatively, both the parallel electrodes can be achieved by setting them in reverse phase.
[0036]
FIG. 4 shows another application example of the present invention.
(11) is a tube-type electrode for transporting powder. A transport electrode in which a plurality of insulation-coated wires (3) are arranged in parallel on a tube-shaped core (12) and wound in a multi-spiral shape ( 4).
[0037]
The charged particles of the powder are sent from the left to the right on the inner surface of the tube-type powder transport electrode (11), and the lower part on the inner side of the tube serves as a transport passage (5). .
[0038]
Six stranded wires (6) are wound around the tip of the tube perpendicular to the transport passage (5) to form a grid electrode (8).
[0039]
One end of each of the six covered electric wires (3) forming the transport electrode (4) is connected to a ternary six-phase alternating voltage generating power source (9) corresponding to each phase of a to f. The end of 6) is also connected to the ternary 6-phase alternating voltage generating power source 9 corresponding to the phases a to f.
Note that in the ternary 6-phase alternating voltage generating power source (9), in accordance with the grid electrode (8) on the amount of passing charged particles, as the control electric line (A) from each strand (6) selected, the voltage for generating a traveling wave to it, selectively reverse phase voltage or, adapted to be applied a voltage such as to prevent the transport of the particles.
[0040]
【The invention's effect】
According to the present invention, the following effects can be achieved.
[0041]
(a) According to the first aspect of the invention, the alternating voltage repeat interval is obtained by using the same alternating voltage as the multi-value multi-phase alternating voltage applied to the path in which the traveling wave electric field atmosphere is formed and transports the charged particles. Regardless, the passing amount of charged particles can be adjusted stepwise.
[0042]
(b) According to the invention described in claim 2, the transport amount can be controlled in units of passage zones of the passage.
[0043]
(c) According to the invention of claim 3, the path of the charged particles passing over the grid electrode becomes clear.
[0044]
(d) According to the invention described in claim 4, the control of the amount of powder passing is simple, and the multi-value / multi-phase alternating voltage for conveyance can be used for the control as it is. The structure of the electrode is simple and easy to make, and a low-priced powder transport amount control device can be provided.
[0045]
(e) According to the invention described in claim 5, since the electrode pattern of the grid electrode can be manufactured in large quantities with precision and small size, a highly versatile powder transport amount control device can be provided at a low cost and downsized. Makes it easy to control the transport amount of fine powder having a small particle diameter.
[0046]
(f) According to the invention described in claim 6, since the grid electrode structure is simple and a small amount can be easily manufactured, it is suitable for manufacturing a prototype or a custom product.
[0047]
(g) According to the invention described in claim 7, since the multi-valued and multi-phase alternating voltage applied to the electrode for transportation can be used as it is for control, the control circuit is simplified, and the structure of the control electrode is simple and easy to make. A low-priced powder transport amount control device can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view of a state in which the present invention is applied to a panel-type powder transport electrode, showing an outline of the method of the present invention.
FIG. 2 is a plan view of a grid electrode portion showing an embodiment in which a stranded wire is used as a grid electrode.
[3] The strand of Figure 2 the electrodes structure of a state in which the grid electrode, with schematically shows, also applicable to a wiring pattern of a printed circuit, is a plan view similar to FIG.
FIG. 4 is a perspective view showing another implementation point of the method of the present invention, in a state where the present invention is applied to a tube-type powder transport electrode.
[Explanation of symbols]
(1) (11) Powder transport electrode
(2) (12) Core
(3) Insulated coated wire
(4) Transport electrode
(5) Transport passage
(6) Stranded wire
(7) Insulation sheet
(8) Grid electrode
(9) Power supply for ternary 6-phase alternating voltage generation
(A) Control conductive line

Claims (7)

粉体粒子を帯電さた帯電粒子を、多値多相交番電圧による進行波電界雰囲気内において搬送するようにした静電式粉体輸送装置において、
進行波電界雰囲気形成して帯電粒子を搬送するようにした通路の送り方向と交叉する方向に、互いに絶縁された電極を並べてグリッド電極とし、このグリッド電極を、通路の送り方向に複数本配置し、この複数のグリッド電極間に多値多相交番電圧を印加するとともに、複数のグリッド電極を設けた通路を通過させようとする帯電粒子の量に応じて、複数のグリッド電極において、互いに絶縁された電極間に印加する多値多相交番電圧を制御することを特徴とする静電式粉体輸送装置における粉体輸送量制御方法。
In the electrostatic powder transport device in which the charged particles charged with the powder particles are transported in a traveling wave electric field atmosphere by a multi-value multiphase alternating voltage,
In a direction intersecting the feeding direction of Unishi was passage by that transports the charged particles to form a traveling wave electric field atmosphere, and the grid electrode side by side electrodes insulated from each other, the grid electrodes, a plurality of arranged in the feed direction of the passage and, it applies a multilevel multiphase alternating voltage between the plurality of grid electrodes, depending on the amount of charged particles and so passed through a passage having a plurality of grid electrodes, Te plurality of grid electrodes smell, each other powder delivery rate control method in the electrostatic powder delivery device and controls the multi-level multi-phase alternating voltage applied between the insulated electrodes are.
各グリッド電極における通路の送り方向と交叉方向に並ぶ互いに絶縁された電極の繰り返しピッチが、いずれか最小の繰り返しピッチを有するグリッド電極に対して、他のグリッド電極の繰り返しピッチを、整数倍としてある、請求項1記載の静電式粉体輸送装置における粉体輸送量制御方法In each grid electrode, the repetition pitch of the mutually insulated electrodes arranged in the crossing direction with the passage direction is an integral multiple of the repetition pitch of the other grid electrodes with respect to the grid electrode having the smallest repetition pitch. A method for controlling the amount of powder transport in an electrostatic powder transport apparatus according to claim 1 各グリッド電極における通路の送り方向と交叉する方向に並ぶ互いに絶縁された電極の配列を、各グリッド電極間で、通路の送り方向に互いに整列させる、請求項2記載の静電式粉体輸送装置における粉体輸送量制御方法。The sequence of electrodes insulated from each other aligned in a direction intersecting the feeding direction of the passage in each grid electrodes, between the grid electrode are aligned with one another in the feed direction of the passage, electrostatic powder delivery according to claim 2, wherein A method for controlling the amount of powder transport in the apparatus. 粉体粒子を帯電さた帯電粒子を、多値多相交番電圧による進行波電界雰囲気内において搬送するようにした静電式粉体輸送装置における粉体輸送用電極において、
多値多相交番電圧による進行波電界雰囲気形成して帯電粒子を搬送するようにした通路の送り方向と交叉する方向に、互いに絶縁された電極を並べたグリッド電極と、
各グリッド電極間に、通路の搬送方向に向けて進行波電界雰囲気を形成するべく、多値多相交番電圧を印加するとともに、各グリッド電極における絶縁された電極間において、互い印加電圧極性を制御しうる電源とを備えてなることを特徴とする静電式粉体輸送における粉体輸送量制御装置。
In the electrode for powder transport in an electrostatic powder transport apparatus in which charged particles charged with powder particles are transported in a traveling wave electric field atmosphere by a multi-value multiphase alternating voltage,
In a direction intersecting the feeding direction of Unishi was passage by which to form a traveling wave electric field atmosphere by the multi-level multi-phase alternating voltage for transporting the charged particles, and a grid electrode arranged electrodes insulated from each other,
Between the grid electrodes, rather form Surube a traveling wave electric field atmosphere toward the conveying direction of the passage, to apply a multi-value multi-phase alternating voltage, Te between electrodes odor that is insulated at each grid electrode, another of the applied voltage An apparatus for controlling the amount of powder transport in electrostatic powder transport, comprising a power source capable of controlling polarity.
グリッド電極は、プリント配線基板に印刷配線されている、請求項4に記載の静電式粉体輸送装置における粉体輸送量制御装置The powder transportation amount control device in an electrostatic powder transportation device according to claim 4, wherein the grid electrode is printed and wired on a printed wiring board. グリッド電極は、絶縁被覆電線を複数本撚り合わせたものである、請求項4に記載の静電式粉体輸送装置における粉体輸送量制御装置。The powder transport amount control device in the electrostatic powder transport device according to claim 4, wherein the grid electrode is formed by twisting a plurality of insulated coated electric wires. グリッド電極は、多値多相交番電圧の相数と同数設けられている、請求項4に記載の静電式粉体輸送装置における粉体輸送量制御装置。5. The powder transport amount control device in an electrostatic powder transport device according to claim 4, wherein the number of grid electrodes is the same as the number of phases of the multi-value multi-phase alternating voltage.
JP2000067494A 2000-03-10 2000-03-10 Powder transport amount control method and powder transport amount control device in electrostatic powder transport device. Expired - Lifetime JP4594481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000067494A JP4594481B2 (en) 2000-03-10 2000-03-10 Powder transport amount control method and powder transport amount control device in electrostatic powder transport device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000067494A JP4594481B2 (en) 2000-03-10 2000-03-10 Powder transport amount control method and powder transport amount control device in electrostatic powder transport device.

Publications (2)

Publication Number Publication Date
JP2001253539A JP2001253539A (en) 2001-09-18
JP4594481B2 true JP4594481B2 (en) 2010-12-08

Family

ID=18586677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000067494A Expired - Lifetime JP4594481B2 (en) 2000-03-10 2000-03-10 Powder transport amount control method and powder transport amount control device in electrostatic powder transport device.

Country Status (1)

Country Link
JP (1) JP4594481B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227022A (en) * 1993-02-05 1994-08-16 Brother Ind Ltd Image forming apparatus
JPH06337618A (en) * 1993-05-27 1994-12-06 Ricoh Co Ltd Toner carrying device and image forming device
JPH07267365A (en) * 1994-03-28 1995-10-17 Sekisui Chem Co Ltd Electrostatic conveying device and method
JPH07267363A (en) * 1994-03-25 1995-10-17 Kanagawa Kagaku Gijutsu Akad Variable pitch type powder conveying device
JPH07327378A (en) * 1994-02-10 1995-12-12 Kanagawa Kagaku Gijutsu Akad Powder handling apparatus
JPH1048031A (en) * 1996-08-06 1998-02-20 Kanagawa Kagaku Gijutsu Akad Powder quantitative supplying device
JP2000014175A (en) * 1998-06-26 2000-01-14 Oki Electric Ind Co Ltd Medium conveying device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227022A (en) * 1993-02-05 1994-08-16 Brother Ind Ltd Image forming apparatus
JPH06337618A (en) * 1993-05-27 1994-12-06 Ricoh Co Ltd Toner carrying device and image forming device
JPH07327378A (en) * 1994-02-10 1995-12-12 Kanagawa Kagaku Gijutsu Akad Powder handling apparatus
JPH07267363A (en) * 1994-03-25 1995-10-17 Kanagawa Kagaku Gijutsu Akad Variable pitch type powder conveying device
JPH07267365A (en) * 1994-03-28 1995-10-17 Sekisui Chem Co Ltd Electrostatic conveying device and method
JPH1048031A (en) * 1996-08-06 1998-02-20 Kanagawa Kagaku Gijutsu Akad Powder quantitative supplying device
JP2000014175A (en) * 1998-06-26 2000-01-14 Oki Electric Ind Co Ltd Medium conveying device

Also Published As

Publication number Publication date
JP2001253539A (en) 2001-09-18

Similar Documents

Publication Publication Date Title
CA2826937A1 (en) Method and apparatus for electrodynamically driving a charged gas or charged particles entrained in a gas
JP4594481B2 (en) Powder transport amount control method and powder transport amount control device in electrostatic powder transport device.
US3862022A (en) Electrolytic cell
WO1992012273A1 (en) Method and device for plasma processing of material
CN109182965B (en) System and method for driving and directionally conveying micro-nano particles by using alternating current electric field
JPH07267363A (en) Variable pitch type powder conveying device
EP0027285A1 (en) Corona device
JP2000189978A (en) Discharge treating device
US20050000863A1 (en) System for transporting and selectively sorting particles and method of using the same
EP1860926A1 (en) Electric-insulating sheet neutralizing device, neutralizing method and production method
JP4651151B2 (en) Method for producing electrode for powder transportation in electrostatic powder transportation apparatus
JPH04291375A (en) Semiconductor corona generator for producing ion to charge substrate
JP4504499B2 (en) Method for producing electrode for powder transportation in electrostatic powder transportation apparatus
Rahmani et al. A study of the poly (dA)-poly (dT) DNA electric field-dependence: density of states (DOS) analysis
GB2412492A (en) DC voltage supply for ion-optical RF electrode systems
Sakai Asymmetric electrostatic force
JP2000012200A (en) Heating electric wire
JP2001253538A (en) Electrode for powder transport with guide on electro- static powder transport device
US3247430A (en) Electrostatic charging apparatus
EP2159648A1 (en) A method to charge toner for electrophotography using carbon nanotubes or other nanostructures
DE2600592A1 (en) Producing charged powder particles - using parallel linear electrodes embedded in single planar insulator layer
JP5326397B2 (en) Particle transport equipment
JPS60129150A (en) Single phase electric field curtain device
SU901999A1 (en) Device for regulating loose material component ratio
JPH07267365A (en) Electrostatic conveying device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4594481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140924

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term