JP4593737B2 - Ultrasonic motor drive circuit - Google Patents

Ultrasonic motor drive circuit Download PDF

Info

Publication number
JP4593737B2
JP4593737B2 JP2000221587A JP2000221587A JP4593737B2 JP 4593737 B2 JP4593737 B2 JP 4593737B2 JP 2000221587 A JP2000221587 A JP 2000221587A JP 2000221587 A JP2000221587 A JP 2000221587A JP 4593737 B2 JP4593737 B2 JP 4593737B2
Authority
JP
Japan
Prior art keywords
waveform
ultrasonic motor
frequency
output
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000221587A
Other languages
Japanese (ja)
Other versions
JP2002044969A (en
Inventor
慎太郎 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Priority to JP2000221587A priority Critical patent/JP4593737B2/en
Publication of JP2002044969A publication Critical patent/JP2002044969A/en
Application granted granted Critical
Publication of JP4593737B2 publication Critical patent/JP4593737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は超音波モータを駆動させるための制御回路に関し、さらに詳しくは、電歪素子、圧電素子、磁歪素子等の電気−機械エネルギー変換素子に、機械的振動波を利用する超音波モータの制御回路に関する。
【0002】
【従来の技術】
従来より超音波振動を駆動力とする超音波モータが知られている。圧電体に発生する機械振動の振幅は、駆動信号の周波数が共振周波数のとき最大となるが、共振周波数を含む所定周波数帯域では、弾性体に可聴音の異常振動が発生し、ロータの回転速度及び、超音波モータの効率が低下する場合がある。このため、超音波モータの駆動は、まず可聴音発生帯域よりも高い周波数帯域で超音波モータを駆動する必要がある。
【0003】
ところで、超音波モータの可聴音発生帯域及び、駆動周波数帯域は個々の超音波モータ、超音波モータの周囲温度、超音波モータに加わる負荷の大きさに応じて変動する。従って、駆動信号の適切な周波数は一定ではなく、個々のモータや周囲温度、負荷等に応じて変化させる必要がある。
【0004】
可聴音の検知手段の一例として、特開平3−159583号公報には、圧電素子から出力された検出信号の波形の乱れを監視し、波形が乱れていない場合には駆動周波数の周波数を低下させ、波形が乱れた場合には駆動信号の周波数が可聴音発生帯域に入ったと判断して周波数を上昇させる技術が開示されている。
【0005】
【発明が解決しようとする課題】
ところが、上記特開平3−159583号公報に示される技術手段は、超音波モータの圧電素子に波形検出用のモニタ電極を配置する必要があり、製作上手間がかかると共にコスト増大を招く。
【0006】
また、モニタ電極から検出する電圧波形の振幅は、駆動信号の周波数によって大きく変化するため、波形の乱れを検知するのは回路が複雑となり困難である。
【0007】
また、可聴音が発生しない超音波モータの場合、モニタ電極からの検出波形は乱れないため、共振周波数を超えて駆動周波数を低下させ、急激にロータの回転速度を低下させる恐れがある。また過電流によって超音波モータ及び、超音波モータ駆動回路の構成部品を破壊する恐れがある。
【0008】
【課題を解決するための手段】
上記の課題を解決するために、本発明による超音波モータ駆動回路では、電流波形の検出手段と、検出した電流波形をデジタル信号に変換する波形整形手段と、この波形整形手段の出力に基づいて駆動周波数を制御する周波数制御手段とを具備する事により、電流波形の乱れから可聴音の発生を検知する事で、モニタ電極の配置を不要とし、駆動信号の周波数による振幅の変化も無視できる。
【0009】
また、可聴音の発生しない超音波モータにおいては電流波形も乱れないが、共振点に近づくにつれて電流量が増加してくるため、波形整形回路で所定のしきい値を設定する事によって、波形整形回路の出力の周期を検知する事により、特別な素子を用いる事なく過電流を検知できる。
【0010】
【実施例】
以下、図面を参照して本発明の実施例を説明する。
【0011】
図1は本発明の一実施例を示す超音波モータ駆動回路の回路図である。図において、1がマイクロコンピュータで、波形整形部5の出力に応じて超音波モータ8の駆動周波数を決定し、周波数設定部2によって発振部3の出力の周波数を設定する。発部3から出力された信号をパルス制御部4によってスイッチングトランジスタQ1〜Q4をスイッチングする制御信号φ1〜φ4を発生させる。
【0012】
この超音波モータ駆動回路は2つの電極8a、8bを有する公知の超音波モータ8に、90度位相差があるA相、B相の2相交流信号を印加する。
【0013】
φ1とφ2、φ3とφ4はそれぞれ180度位相差があり、φ1とφ3、φ2とφ4はそれぞれ90度の位相差があるパルス信号で、φ1〜φ4はスイッチング動作を行うスイッチングトランジスタQ1〜Q4にそれぞれ対応している。トランスT1、T2の一次側の中間タップにDC電源7のプラス電圧が供給され、上記スイッチングトランジスタQ1とQ2のスイッチング動作によってトランスT1の一次側がオンし、これに伴い二次側にA相の交流信号を出力する。同じく上記スイッチングトランジスタQ3とQ4のスイッチング動作によってトランスT2の一次側がオンし、これに伴い2次側にB相の交流信号を出力する。抵抗RsはDC電源7とトランスT1、T2の一次側に直列に接続され、抵抗Rsの両端の電位差を得る事で電流波形を検出している。抵抗Rsの両端の電位差は微小であるため電流波形検出部6内の差動増幅回路によって増幅をしている。差動増幅回路からの出力信号は所定のデジタル信号に変換する波形整形部5と、該波形整形部5のデジタル出力信号の周期が特定の周期になった際にマイクロコンピュータ1により駆動周波数を制御する構成となっている。
【0014】
図2はパルス制御部のタイミングチャート図で、φ1〜φ4はスイッチングトランジスタQ1〜Q4をスイッチングする制御信号である。
【0015】
図3は正常回転時の電流波形検出部6と波形整形部5の出力波形である。電流波形検出部6の出力は検出抵抗Rsによって検出された電流波形である。この波形はスイッチングトランジスタQ1〜Q4がトランスT1,T2の1次側巻線に印加されているDC電源1をオン・オフしたときの電流波形となる。波形整形部5の出力は電流波形検出部6の検出波形をデジタル信号に整形した波形である。この波形はスイッチングトランジスタQ1〜Q4のスイッチング波形の周期となるため、駆動周波数の4倍の周期となる。
【0016】
図4は可聴音発生時の電流波形検出部6と波形整形部5の出力波形である。電流波形検出部6の出力は検出抵抗Rsによって検出された電流波形である。波形整形部5の出力は電流波形検出部6の検出波形をデジタル信号に整形した波形である。この波形が駆動周波数の4倍の周期から大きくずれた際に電流波形の乱れとマイクロコンピュータ1により判断する。
【0017】
次に一実施例の動作について説明する。
【0018】
電流波形検出部6内の差動増幅回路から出力される波形は、図2に示すQ1〜Q4のスイッチング波形であり、すなわち駆動周波数の4倍の周波数となる。検出した波形はヒステリシス特性を有した波形整形部5でデジタル信号に整形して、整形されたデジタル信号から周期を求める。検出結果が駆動周波数の4倍の周波数から大きく変わった周期となった際に波形の乱れと判断して、可聴音の発生と判断し駆動周波数を上昇修正させる。また、所定以上の電流量となった際も電流量の増加によって波形整形部5の出力で周期が変わるため、過電流と判断し駆動周波数を上昇修正させる。
【0019】
【発明の効果】
以上説明したように本発明によれば、特にモニタ電極を具備しない超音波モータであっても可聴音の発生を検知する事ができる。また、可聴音の発生しない超音波モータでも同時に過電流を検知する事ができ、過電流によるモータ及び回路の構成部品の破壊等を防ぐ事ができる。
【図面の簡単な説明】
【図1】本発明を適用した超音波モータ駆動回路の回路図である。
【図2】パルス制御部のタイミングチャート図である。
【図3】正常時の電流波形検出部と波形整形部の出力を示す出力波形図である。
【図4】可聴音発生時の電流波形検出部と波形整形部の出力を示す出力波形図である。
【符号の説明】
1 マイクロコンピュータ
2 周波数設定部
3 発信部
4 パルス制御部
5 波形整形部
6 電流波形検出部
7 DC電源
8 超音波モータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control circuit for driving an ultrasonic motor, and more particularly, to control an ultrasonic motor that uses a mechanical vibration wave for an electro-mechanical energy conversion element such as an electrostrictive element, a piezoelectric element, or a magnetostrictive element. Regarding the circuit.
[0002]
[Prior art]
Conventionally, an ultrasonic motor using ultrasonic vibration as a driving force is known. The amplitude of the mechanical vibration generated in the piezoelectric body is maximum when the frequency of the drive signal is the resonance frequency, but in a predetermined frequency band including the resonance frequency, abnormal vibration of audible sound occurs in the elastic body, and the rotational speed of the rotor And the efficiency of an ultrasonic motor may fall. For this reason, it is necessary to drive the ultrasonic motor in a frequency band higher than the audible sound generation band.
[0003]
By the way, the audible sound generation band and the drive frequency band of the ultrasonic motor vary depending on the individual ultrasonic motor, the ambient temperature of the ultrasonic motor, and the load applied to the ultrasonic motor. Therefore, the appropriate frequency of the drive signal is not constant and needs to be changed according to the individual motor, ambient temperature, load, and the like.
[0004]
As an example of audible sound detection means, Japanese Patent Application Laid-Open No. 3-159583 monitors the disturbance of the waveform of the detection signal output from the piezoelectric element, and reduces the drive frequency when the waveform is not disturbed. A technique is disclosed in which when the waveform is disturbed, the frequency of the drive signal is determined to have entered the audible sound generation band and the frequency is increased.
[0005]
[Problems to be solved by the invention]
However, the technical means disclosed in Japanese Patent Laid-Open No. 3-159583 requires that a monitor electrode for waveform detection be disposed on the piezoelectric element of the ultrasonic motor, which is troublesome in production and increases costs.
[0006]
Further, since the amplitude of the voltage waveform detected from the monitor electrode varies greatly depending on the frequency of the drive signal, it is difficult to detect the waveform disturbance because the circuit becomes complicated.
[0007]
Further, in the case of an ultrasonic motor that does not generate audible sound, the detected waveform from the monitor electrode is not disturbed, so that the drive frequency may be reduced beyond the resonance frequency, and the rotational speed of the rotor may be rapidly reduced. Moreover, there is a risk of destruction of the components of the ultrasonic motor and the ultrasonic motor drive circuit due to overcurrent.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, in the ultrasonic motor driving circuit according to the present invention, a current waveform detecting means, a waveform shaping means for converting the detected current waveform into a digital signal, and an output of the waveform shaping means are used. By providing the frequency control means for controlling the drive frequency, by detecting the generation of audible sound from the disturbance of the current waveform, the arrangement of the monitor electrode becomes unnecessary, and the change in the amplitude due to the frequency of the drive signal can be ignored.
[0009]
In an ultrasonic motor that does not generate audible sound, the current waveform is not disturbed, but the amount of current increases as it approaches the resonance point. Therefore, by setting a predetermined threshold in the waveform shaping circuit, waveform shaping is performed. By detecting the cycle of the output of the circuit, overcurrent can be detected without using a special element.
[0010]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0011]
FIG. 1 is a circuit diagram of an ultrasonic motor driving circuit showing an embodiment of the present invention. In the figure, reference numeral 1 denotes a microcomputer, which determines the drive frequency of the ultrasonic motor 8 according to the output of the waveform shaping unit 5, and sets the frequency of the output of the oscillation unit 3 by the frequency setting unit 2. The signal output from the oscillation unit 3 by the pulse control unit 4 generates a control signal φ1~φ4 for switching the switching transistor Q1 to Q4.
[0012]
This ultrasonic motor drive circuit applies a two-phase AC signal of A phase and B phase having a phase difference of 90 degrees to a known ultrasonic motor 8 having two electrodes 8a and 8b.
[0013]
φ1 and φ2, φ3 and φ4 each have a phase difference of 180 degrees, φ1 and φ3, φ2 and φ4 are pulse signals each having a phase difference of 90 degrees, and φ1 to φ4 are switching transistors Q1 to Q4 that perform a switching operation. Each corresponds. A positive voltage of the DC power source 7 is supplied to the intermediate tap on the primary side of the transformers T1 and T2, and the primary side of the transformer T1 is turned on by the switching operation of the switching transistors Q1 and Q2, and accordingly, the A-phase AC is supplied to the secondary side. Output a signal. Similarly, the primary side of the transformer T2 is turned on by the switching operation of the switching transistors Q3 and Q4, and accordingly, a B-phase AC signal is output to the secondary side. The resistor Rs is connected in series with the DC power source 7 and the primary side of the transformers T1 and T2, and a current waveform is detected by obtaining a potential difference between both ends of the resistor Rs. Since the potential difference between both ends of the resistor Rs is very small, it is amplified by the differential amplifier circuit in the current waveform detector 6. The output signal from the differential amplifier circuit and the waveform shaping unit 5 for converting a predetermined digital signal, controlling the driving frequency by the microcomputer 1 when the cycle of the digital output signal of the waveform shaping section 5 becomes a specific period It is the composition to do.
[0014]
FIG. 2 is a timing chart of the pulse control unit, and φ1 to φ4 are control signals for switching the switching transistors Q1 to Q4.
[0015]
FIG. 3 shows output waveforms of the current waveform detection unit 6 and the waveform shaping unit 5 during normal rotation. The output of the current waveform detector 6 is a current waveform detected by the detection resistor Rs. This waveform is a current waveform when the switching transistors Q1 to Q4 turn on / off the DC power source 1 applied to the primary side windings of the transformers T1 and T2. The output of the waveform shaping unit 5 is a waveform obtained by shaping the detection waveform of the current waveform detection unit 6 into a digital signal. Since this waveform is the cycle of the switching waveform of the switching transistors Q1 to Q4, the cycle is four times the drive frequency.
[0016]
FIG. 4 shows output waveforms of the current waveform detection unit 6 and the waveform shaping unit 5 when an audible sound is generated. The output of the current waveform detector 6 is a current waveform detected by the detection resistor Rs. The output of the waveform shaping unit 5 is a waveform obtained by shaping the detection waveform of the current waveform detection unit 6 into a digital signal. When this waveform deviates significantly from a period four times the drive frequency, the microcomputer 1 determines that the current waveform is disturbed.
[0017]
Next, the operation of one embodiment will be described.
[0018]
The waveform output from the differential amplifier circuit in the current waveform detector 6 is a switching waveform of Q1 to Q4 shown in FIG. 2, that is, a frequency four times the drive frequency. The detected waveform is shaped into a digital signal by the waveform shaping unit 5 having hysteresis characteristics, and the period is obtained from the shaped digital signal. When the detection result has a period greatly changed from four times the driving frequency, it is determined that the waveform is disturbed, and it is determined that an audible sound is generated, and the driving frequency is increased and corrected. Also, when the current amount exceeds a predetermined amount, the cycle changes depending on the output of the waveform shaping unit 5 due to the increase in the current amount, so that it is determined as an overcurrent and the drive frequency is increased and corrected.
[0019]
【The invention's effect】
As described above, according to the present invention, the generation of audible sound can be detected even with an ultrasonic motor that does not include a monitor electrode. In addition, even an ultrasonic motor that does not generate an audible sound can simultaneously detect an overcurrent, thereby preventing damage to the motor and circuit components due to the overcurrent.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an ultrasonic motor driving circuit to which the present invention is applied.
FIG. 2 is a timing chart of a pulse control unit.
FIG. 3 is an output waveform diagram showing outputs of a current waveform detection unit and a waveform shaping unit in a normal state.
FIG. 4 is an output waveform diagram showing outputs of a current waveform detection unit and a waveform shaping unit when an audible sound is generated.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Microcomputer 2 Frequency setting part 3 Transmission part 4 Pulse control part 5 Waveform shaping part 6 Current waveform detection part 7 DC power supply 8 Ultrasonic motor

Claims (1)

超音波モータに供給される電源電流を検出する検出手段と、
所定のヒステリシス特性を有し、前記検出手段により検出した電流波形をデジタル波形に変換する波形整形手段と、
超音波モータの駆動周波数を決定する駆動周波数制御手段と、
を有し、
前記駆動周波数制御手段は、前記デジタル波形が駆動周波数の2n倍(nは正の整数)となる周期から外れている場合には、可聴音又は過電流の発生と判断して前記駆動周波数を上昇修正る事を特徴とする超音波モータ駆動回路。
Detecting means for detecting a power supply current supplied to the ultrasonic motor ;
Waveform shaping means having a predetermined hysteresis characteristic and converting the current waveform detected by the detection means into a digital waveform ;
Drive frequency control means for determining the drive frequency of the ultrasonic motor;
Have
The driving frequency control unit, when the digital waveform 2n times the driving frequency (n is a positive integer) are out of the consisting cycle, increasing the driving frequency is determined that generation of audible sound or overcurrent ultrasonic motor drive circuit, wherein the you modify.
JP2000221587A 2000-07-24 2000-07-24 Ultrasonic motor drive circuit Expired - Lifetime JP4593737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000221587A JP4593737B2 (en) 2000-07-24 2000-07-24 Ultrasonic motor drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000221587A JP4593737B2 (en) 2000-07-24 2000-07-24 Ultrasonic motor drive circuit

Publications (2)

Publication Number Publication Date
JP2002044969A JP2002044969A (en) 2002-02-08
JP4593737B2 true JP4593737B2 (en) 2010-12-08

Family

ID=18715961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000221587A Expired - Lifetime JP4593737B2 (en) 2000-07-24 2000-07-24 Ultrasonic motor drive circuit

Country Status (1)

Country Link
JP (1) JP4593737B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145876A (en) * 1990-10-01 1992-05-19 Koji Toda Driving circuit for ultrasonic actuator
JPH06303783A (en) * 1993-04-13 1994-10-28 Asmo Co Ltd Drive control circuit of ultrasonic motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112378A (en) * 1989-09-21 1991-05-13 Matsushita Electric Ind Co Ltd Drive circuit for ultrasonic motor
JP3165315B2 (en) * 1994-02-18 2001-05-14 アスモ株式会社 Ultrasonic motor drive circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145876A (en) * 1990-10-01 1992-05-19 Koji Toda Driving circuit for ultrasonic actuator
JPH06303783A (en) * 1993-04-13 1994-10-28 Asmo Co Ltd Drive control circuit of ultrasonic motor

Also Published As

Publication number Publication date
JP2002044969A (en) 2002-02-08

Similar Documents

Publication Publication Date Title
JP3126735U (en) Motor control circuit
KR100710631B1 (en) Dual sided self-oscillation circuit for driving an oscillatory actuator
JPH0685343A (en) Piezoelectric transconverter for power
US6812618B2 (en) Control apparatus for vibration type actuator
US6121714A (en) Vibration type motor device
JP2622128B2 (en) Vibration wave motor device
JP4593737B2 (en) Ultrasonic motor drive circuit
US5210454A (en) Driving circuit for an ultrasonic motor
JP2002199749A (en) Ultrasonic motor drive circuit and method
JP3140237B2 (en) Ultrasonic motor drive circuit
CN104821740A (en) Travelling wave motor pre-driver using high resolution PWM generators
US20060024035A1 (en) Control system of transfering pulse width moldulation for a cooling fan motor
JP3495810B2 (en) Vibration wave motor device
JPH09271174A (en) Power supply equipment and control equipment of vibration wave actuator
JPH11191979A (en) Drive cirucit of ultrasonic motor
JP2667811B2 (en) Vibration type motor
JP2958962B2 (en) PWM pulse generator
JP3131520B2 (en) Ultrasonic motor drive circuit
JP3114954B2 (en) Ultrasonic motor drive
JP3105684B2 (en) Ultrasonic motor drive circuit
JP3068651B2 (en) Motor control device
JP3533321B2 (en) Ultrasonic motor drive circuit
JPH05111267A (en) Driving circuit for ultrasonic motor
JPS58172984A (en) Speed controller for dc motor
JP2001095268A (en) Method for control of ultrasonic motor and control circuit thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4593737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term