JP2667811B2 - Vibration type motor - Google Patents

Vibration type motor

Info

Publication number
JP2667811B2
JP2667811B2 JP61046703A JP4670386A JP2667811B2 JP 2667811 B2 JP2667811 B2 JP 2667811B2 JP 61046703 A JP61046703 A JP 61046703A JP 4670386 A JP4670386 A JP 4670386A JP 2667811 B2 JP2667811 B2 JP 2667811B2
Authority
JP
Japan
Prior art keywords
frequency
frequency signal
signal
energy conversion
mechanical energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61046703A
Other languages
Japanese (ja)
Other versions
JPS62203574A (en
Inventor
和弘 伊豆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61046703A priority Critical patent/JP2667811B2/en
Publication of JPS62203574A publication Critical patent/JPS62203574A/en
Application granted granted Critical
Publication of JP2667811B2 publication Critical patent/JP2667811B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、電歪素子,磁歪素子,圧電素子等の電気−
機械エネルギー変換素子を用い進行性振動波を発生さ
せ、該振動波にてローターを駆動する振動型モーター駆
動回路に関するものである。 <従来技術> 上記型式の振動型モーター(以下SSMと称す)を共振
状態で駆動制御させるに際して、モーターの駆動状態を
センサー電極でモニターし、該モニター信号とSSMの駆
動周波信号との位相差を比較し、該位相差を特定の値に
する様上記SSMの駆動周波数を調定する型式の駆動制御
を特願昭60−226566号にて本願出願人は提案している。 第2図は該特願昭60−226566号に示される制御方式を
示すSSMの駆動回路を示すブロツク図である。 図において、1は位相比較回路で、2は入力信号の位
相差を検知して、位相差が特定の関係(同一位相)にあ
る時には出力がオープン状態となり、R入力への立上り
信号に対してS入力の立上り信号が遅い位相差状態にあ
る時には上記立上り信号の差の期間ハイ出力を示し、逆
にR入力への立上り信号に対してS入力の立上り信号が
早い位相差状態にある時には上記立上り信号の差の期間
ロウ出力を示す。 2,3はロウパスフイルターを構成する抵抗及びコンデ
ンサーで、該コンデンサー3の出力電位は上記比較回路
出力がハイの時に充電され上昇し、ロウの時放電され下
降し、オープンの時その出力電位を保持する。 4はデユテイ比50%の信号を入力電圧に応じた周波数
で出力する電圧制御発振器(以下VCOと称す)。5はVCO
からの信号を0゜と90゜の位相関係パルスに移相させる
シフターであり、その出力はアンプ6,7を介して電歪素
子が配される固定子8の駆動電極8−1,8−2に印加さ
れている。8−3は固定子の電歪素子の出力を検知して
固定子の振動状態に応じた出力を送出するセンサー用電
極を示している。該構成にあっては、駆動電極8−2へ
の印加周波信号とセンサー電極8−3の出力周波信号の
位相差比較が比較回路1にて行なわれ、比較結果上記位
相差がない時には、VCO4はその発振状態を保持する。
尚、この場合電極8−2への駆動信号の位相と、電極8
−3の発生信号の位相が同一の時に共振状態となる位置
に配される電歪素子に上記電極8−3が設けられている
ものとする。よって、位相差がない時にはSSMは共振周
波数にて駆動され続ける。 又、電極8−3の信号が電極8−2への信号よりも進
んだ位相差状態となった時には比較回路からハイが送出
されるので、コンデンサー3の電圧が上昇し、これにて
VCO4の周波数が上昇する。駆動電極への駆動信号の周波
数が上昇すると、固定子1の振動状態が変化し電極8−
3の出力信号と電極8−2の印加信号の位相差が減少す
る様にSSMの系が構成されているため、これにてVCO4の
周波数は上記比較回路1の両入力の位相差がなくなる値
に制御され共振状態へ移行する。又、電極8−3の信号
が電極8−2への信号よりも遅れた位相差状態となった
時には比較回路1からロウが出力され、コンデンサー3
の電位が低下する。よって、この場合はVCO4の周波数が
低下、上述の如く比較回路への入力信号の位相差がなく
なる周波数へ移行し共振駆動される。 この様に位相差比較によるSSMの駆動制御にあっては
常に共振状態にてSSMを駆動制御することが出来、SSMの
駆動回路としては非常に好適なものであるが、SSMの駆
動時VCO4は低周波数に固定され続け共振周波数とならな
いおそれがある。 即ち、SSMの駆動時の初期状態ではコンデンサー3の
電位はアースとなっており、VCO4は最低周波数が選ばれ
ており、この状態で電源が投入されることにてSSMの駆
動がなされる。この時SSMが正常に振動しないとすると
比較回路1の出力はロウとなりVCOの周波数を低下させ
ようとするが、上記の如くVCO4の周波数は上記の如く最
低周波数が選ばれているため、VCO4の出力周波数は、そ
の状態に固定されてしまい共振周波数方向へ周波数を変
移させることは出来ない。 <目的> 本発明は上述の事項に鑑みなされたものでその構成と
して、振動体に配された第1の電気−機械エネルギー変
換素子部と第2の電気−機械エネルギー変換素子部に対
して、位相の異なる駆動用周波信号を印加して振動体を
振動させ駆動力を得る振動型モーター装置において、振
動体に振動状態検知用の第3の電気−機械エネルギー変
換素子部を配するとともに、該第3の電気−機械エネル
ギー変換素子部に発生する周波信号と前記第1の電気−
機械エネルギー変換素子部に印加される駆動用周波信号
との位相比較を行い、該駆動用周波信号の位相が前記第
3の電気−機械エネルギー変換素子部に発生する周波信
号よりも早い時共振周波数が現在の駆動用周波信号の周
波数よりも低いことを表わす信号を出力する位相比較回
路と、該比較回路の比較結果にて共振周波数が現在の駆
動用周波信号の周波数よりも低いことを表わす信号が出
力された時に前記駆動用周波信号の周波数を低周波数方
向へ移行させる調定回路と、起動に際して前記駆動用周
波信号の周波数を強制的に高周波数方向にシフトさせる
シフト回路を設け、位相比較にて共振状態を検知して駆
動制御を行う形式の振動型モーターにおける上記の問題
を解消したものである。 <実施例> 第1図は本発明に係る振動型モーターの駆動制御回路
の一実施例を示す回路図であり、第2図における構成と
同一構成部には同一記号を附してある。 図において、11はSSMの駆動に際してオフとなるスイ
ツチ、9はアンドゲート、10は交流結合用コンデンサー
である。駆動に際してスイツチ11をオフとするとVCO4の
出力がアンドゲート9及びコンデンサー10を介してVCO4
に入力される。よって、SSMの駆動時にSSMが振動せず、
比較回路1からロウが出力し続けている状態にあっても
コンデンサー3は充電されVCO4の出力は強制的に高周波
側へシフトし、共振周波数側へ移行し、該シフトされた
周波数で駆動がなされる。よってSSMへの周波数が共振
方向となるので、SSMが振動を開始し以後上記位相差制
御がなされる。 尚、スイツチ11は駆動後オンとなり、これにてゲート
9はロウとなるため、駆動後は第2図の場合と全く同様
に制御されることとなる。 第3図,第4図は本発明の他の実施例における要部構
成を示す回路図であり、第1図実施例と同一構成部には
同一記号が附してある。 第3図において、14は発振回路で、11′は駆動時a側
に接続し、駆動後b側に切換わるスイツチである。この
第3図実施例では駆動時スイツチ11′を介して発振回路
14の出力がコンデンサー10を介してコンデンサー3に入
力し、駆動時にVCO4の周波数をシフトさせるものであ
る。又、第4図では駆動時11″を介して発振回路14の出
力を直接コンデンサー3に伝え、VCO4の周波数をシフト
し、駆動後スイツチ11″をオフとなすものである。 <効果> 以上の如く本発明にあってはセンサー電極の出力と駆
動電極への駆動信号との位相差を比較し、共振駆動状態
を検知して駆動周波数を制御させる振動型モーターにお
いて、駆動時上記位相比較と関係なしに強制的に駆動周
波数を共振周波数方向へシフトする様なしたものである
ので、上記型式の振動型モーターにおける駆動時の問題
を解消させることが出来るものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to an electrostrictive element, a magnetostrictive element, a piezoelectric element and the like.
The present invention relates to a vibration-type motor drive circuit that uses a mechanical energy conversion element to generate a progressive vibration wave and drives the rotor with the vibration wave. <Prior Art> When a vibration type motor (hereinafter referred to as SSM) of the above type is driven and controlled in a resonance state, a driving state of the motor is monitored by a sensor electrode, and a phase difference between the monitor signal and a driving frequency signal of the SSM is measured. The applicant of the present application has proposed in Japanese Patent Application No. 60-226566 a drive control of a type for adjusting the drive frequency of the SSM so as to make the phase difference a specific value. FIG. 2 is a block diagram showing an SSM drive circuit showing the control system shown in the Japanese Patent Application No. 60-226566. In the figure, 1 is a phase comparison circuit, 2 detects the phase difference of the input signal, and when the phase difference is in a specific relationship (the same phase), the output is in an open state, and a rising signal to the R input is When the rising signal of the S input is in the late phase difference state, it indicates a high output during the period of the difference of the rising signal. Conversely, when the rising signal of the S input is in the early phase difference state with respect to the rising signal to the R input, The row output is shown during the difference between the rising signals. Reference numerals 2 and 3 denote a resistor and a capacitor constituting a low-pass filter. The output potential of the capacitor 3 is charged and rises when the output of the comparison circuit is high, discharged and falls when the output of the comparison circuit is low, and decreases when the output of the comparison circuit is open. Hold. 4 is a voltage controlled oscillator (hereinafter referred to as VCO) that outputs a signal with a duty ratio of 50% at a frequency according to the input voltage. 5 is VCO
Is a shifter that shifts the phase of the signal from the phase shifter to a phase-related pulse of 0 ° and 90 °, and outputs the drive electrodes 8-1,8- of the stator 8 on which the electrostrictive element is disposed via the amplifiers 6,7. 2 is applied. Reference numeral 8-3 denotes a sensor electrode that detects the output of the electrostrictive element of the stator and sends the output according to the vibration state of the stator. In this configuration, the comparison of the phase difference between the frequency signal applied to the drive electrode 8-2 and the output frequency signal of the sensor electrode 8-3 is performed by the comparison circuit 1, and when there is no such phase difference, the VCO4 Keeps its oscillation state.
In this case, the phase of the drive signal to the electrode 8-2 and the phase of the electrode 8
It is assumed that the electrode 8-3 is provided in the electrostrictive element arranged at a position where the generated signals of −3 are in a resonance state when the phases thereof are the same. Therefore, when there is no phase difference, the SSM continues to be driven at the resonance frequency. When the signal of the electrode 8-3 is in a phase difference state advanced from the signal to the electrode 8-2, a high signal is sent from the comparison circuit, so that the voltage of the capacitor 3 rises.
VCO4 frequency increases. When the frequency of the drive signal to the drive electrode rises, the vibration state of the stator 1 changes and the electrode 8-
Since the SSM system is configured so that the phase difference between the output signal of the third circuit 3 and the signal applied to the electrode 8-2 is reduced, the frequency of the VCO4 is set to a value that eliminates the phase difference between both inputs of the comparison circuit 1. Is shifted to the resonance state. Further, when the signal of the electrode 8-3 is in a phase difference state delayed from the signal to the electrode 8-2, a low is output from the comparison circuit 1 and the capacitor 3
Potential drops. Therefore, in this case, the frequency of VCO4 decreases, and the frequency shifts to a frequency at which the phase difference of the input signals to the comparison circuit disappears as described above, and resonance driving is performed. As described above, in the SSM drive control based on the phase difference comparison, the SSM can always be driven and controlled in a resonance state, which is very suitable as a drive circuit of the SSM. There is a possibility that the frequency remains fixed at the low frequency and does not become the resonance frequency. That is, in the initial state when the SSM is driven, the potential of the capacitor 3 is grounded, the lowest frequency of the VCO 4 is selected, and when the power is turned on in this state, the SSM is driven. At this time, if the SSM does not oscillate normally, the output of the comparison circuit 1 goes low to try to lower the frequency of the VCO. The output frequency is fixed in that state and cannot be changed in the resonance frequency direction. <Purpose> The present invention has been made in view of the above-described matters, and has, as a configuration thereof, a first electro-mechanical energy conversion element portion and a second electro-mechanical energy conversion element portion arranged on a vibrating body. In a vibration type motor device for applying a driving frequency signal having a different phase to vibrate a vibrating body to obtain a driving force, a third electro-mechanical energy conversion element unit for detecting a vibration state is arranged on the vibrating body, and The frequency signal generated in the third electric-mechanical energy conversion element section and the first electric-
When the phase of the driving frequency signal is compared with the driving frequency signal applied to the mechanical energy conversion element, the resonance frequency is higher when the phase of the driving frequency signal is earlier than the frequency signal generated in the third electro-mechanical energy conversion element. A phase comparison circuit that outputs a signal indicating that the resonance frequency is lower than the frequency of the current driving frequency signal, and a signal indicating that the resonance frequency is lower than the frequency of the current driving frequency signal based on the comparison result of the comparison circuit And a shift circuit that forcibly shifts the frequency of the driving frequency signal to the high frequency direction at the time of start-up. The above problem is solved in the vibration type motor of the type in which the resonance state is detected and drive control is performed. <Embodiment> FIG. 1 is a circuit diagram showing an embodiment of a drive control circuit for a vibration type motor according to the present invention, and the same components as those in FIG. 2 are denoted by the same reference numerals. In the figure, 11 is a switch that is turned off when the SSM is driven, 9 is an AND gate, and 10 is an AC coupling capacitor. When the switch 11 is turned off during driving, the output of VCO4 passes through the AND gate 9 and the capacitor 10 and becomes VCO4.
Is input to Therefore, when driving the SSM, the SSM does not vibrate,
Even when the row is continuously output from the comparison circuit 1, the capacitor 3 is charged and the output of the VCO 4 is forcibly shifted to the high frequency side, shifts to the resonance frequency side, and the drive is performed at the shifted frequency. You. Therefore, since the frequency to the SSM is in the resonance direction, the SSM starts oscillating and thereafter the phase difference control is performed. The switch 11 is turned on after driving, and the gate 9 is set low by this, so that after driving, the control is performed in the same manner as in the case of FIG. FIG. 3 and FIG. 4 are circuit diagrams showing the configuration of main parts in another embodiment of the present invention, and the same symbols are given to the same components as those in the embodiment of FIG. In FIG. 3, 14 is an oscillating circuit, and 11 'is a switch which is connected to the side a during driving and is switched to side b after driving. In the embodiment shown in FIG. 3, an oscillating circuit is provided via a driving switch 11 '.
The output of 14 is input to the capacitor 3 through the capacitor 10 and shifts the frequency of VCO4 during driving. In FIG. 4, the output of the oscillating circuit 14 is directly transmitted to the capacitor 3 via the drive 11 "to shift the frequency of the VCO 4, and the switch 11" is turned off after the drive. <Effects> As described above, according to the present invention, the vibration type motor that compares the phase difference between the output of the sensor electrode and the drive signal to the drive electrode, detects the resonance drive state, and controls the drive frequency, Since the driving frequency is forcibly shifted in the direction of the resonance frequency irrespective of the phase comparison, it is possible to solve the problem at the time of driving the vibration type motor of the above type.

【図面の簡単な説明】 第1図は本発明に係る振動型モーターの駆動回路を示す
回路図、第2図は従来の振動型モーターの駆動回路を示
す回路図、第3図は本発明の他の一実施例を示す回路
図、第4図は本発明の更に他の一実施例を示す回路図で
ある。 1……比較回路、9……アンドゲート 3……コンデンサー、4……VCO。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram showing a driving circuit of a vibration type motor according to the present invention, FIG. 2 is a circuit diagram showing a driving circuit of a conventional vibration type motor, and FIG. FIG. 4 is a circuit diagram showing another embodiment, and FIG. 4 is a circuit diagram showing still another embodiment of the present invention. 1 ... Comparison circuit, 9 ... And gate 3 ... Capacitor, 4 ... VCO.

Claims (1)

(57)【特許請求の範囲】 1.振動体に配された第1の電気−機械エネルギー変換
素子部と第2の電気−機械エネルギー変換素子部に対し
て、位相の異なる駆動用周波信号を印加して振動体を振
動させ駆動力を得る振動型モーター装置において、 振動体に振動状態検知用の第3の電気−機械エネルギー
変換素子部を配するとともに、該第3の電気−機械エネ
ルギー変換素子部に発生する周波信号と前記第1の電気
−機械エネルギー変換素子部に印加される駆動用周波信
号との位相比較を行い、該駆動用周波信号の位相が前記
第3の電気−機械エネルギー変換素子部に発生する周波
信号よりも早い時共振周波数が現在の駆動用周波信号の
周波数よりも低いことを表わす信号を出力する位相比較
回路と、該比較回路の比較結果にて共振周波数が現在の
駆動用周波信号の周波数よりも低いことを表わす信号が
出力された時に前記駆動用周波信号の周波数を低周波数
方向へ移行させる調定回路と、起動に際して前記駆動用
周波信号の周波数を強制的に高周波数方向にシフトさせ
るシフト回路を設けたことを特徴とする振動型モーター
装置。
(57) [Claims] A driving frequency signal having a different phase is applied to the first electro-mechanical energy conversion element and the second electro-mechanical energy conversion element disposed on the vibrating body to vibrate the vibrating body to reduce the driving force. In the vibration type motor device to be obtained, a third electro-mechanical energy conversion element for detecting a vibration state is disposed on a vibrating body, and a frequency signal generated in the third electro-mechanical energy conversion element and the first electric-mechanical energy conversion Is compared with the driving frequency signal applied to the electro-mechanical energy conversion element section, and the phase of the driving frequency signal is earlier than the frequency signal generated in the third electro-mechanical energy conversion element section. A phase comparison circuit that outputs a signal indicating that the time resonance frequency is lower than the frequency of the current driving frequency signal, and the comparison result of the comparison circuit indicates that the resonance frequency is lower than the frequency of the current driving frequency signal. And an adjusting circuit that shifts the frequency of the driving frequency signal to a lower frequency direction when a signal indicating that the driving frequency signal is lower than that of the driving frequency signal, and forcibly shifts the frequency of the driving frequency signal to a higher frequency direction at startup. A vibration type motor device comprising a shift circuit.
JP61046703A 1986-03-04 1986-03-04 Vibration type motor Expired - Lifetime JP2667811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61046703A JP2667811B2 (en) 1986-03-04 1986-03-04 Vibration type motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61046703A JP2667811B2 (en) 1986-03-04 1986-03-04 Vibration type motor

Publications (2)

Publication Number Publication Date
JPS62203574A JPS62203574A (en) 1987-09-08
JP2667811B2 true JP2667811B2 (en) 1997-10-27

Family

ID=12754726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61046703A Expired - Lifetime JP2667811B2 (en) 1986-03-04 1986-03-04 Vibration type motor

Country Status (1)

Country Link
JP (1) JP2667811B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236779A (en) * 1988-07-26 1990-02-06 Canon Inc Driving circuit for vibration wave motor
JP4708959B2 (en) * 2005-11-02 2011-06-22 キヤノン株式会社 Imaging apparatus and control method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610792A (en) * 1979-07-06 1981-02-03 Taga Denki Kk Method and circuit for driving ultrasonic-wave converter
JPS6130972A (en) * 1984-07-18 1986-02-13 Taga Denki Kk Supersonic motor device

Also Published As

Publication number Publication date
JPS62203574A (en) 1987-09-08

Similar Documents

Publication Publication Date Title
JP2637467B2 (en) Vibration type actuator device
JP2863280B2 (en) Driving method of ultrasonic motor
JPH09140168A (en) Driver for oscillation motor
JP2000184759A (en) Oscillatory actuator driver
US5920144A (en) Vibrating actuator device
US5625246A (en) Driving control device for vibration wave motor
US6121714A (en) Vibration type motor device
JP2667811B2 (en) Vibration type motor
JP2946533B2 (en) Ultrasonic motor drive
JPS631379A (en) Driving circuit for ultrasonic motor
JP4333122B2 (en) Ultrasonic motor drive circuit and electronic equipment
JPH0461593B2 (en)
JPH09163765A (en) Driving method and driving circuit of ultrasonic motor
JPH06315283A (en) Drive circuit for ultrasonic motor
JP4781558B2 (en) Ultrasonic motor control circuit
JP2836189B2 (en) Ultrasonic motor drive circuit
JP3140235B2 (en) Ultrasonic motor drive circuit
JPS61221585A (en) Drive circuit of vibration wave motor
JP2692801B2 (en) Vibration type actuator device
JP3226411B2 (en) Ultrasonic motor drive circuit
JPH09215352A (en) Speed controller of ultrasonic motor
JP3018400B2 (en) Wave motor
JP2699299B2 (en) Ultrasonic motor drive circuit
JP2605333B2 (en) Ultrasonic motor drive
JPH10191661A (en) Oscillating device and apparatus provided with it

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term