JP4593403B2 - Method for predicting cracks in concrete - Google Patents

Method for predicting cracks in concrete Download PDF

Info

Publication number
JP4593403B2
JP4593403B2 JP2005246337A JP2005246337A JP4593403B2 JP 4593403 B2 JP4593403 B2 JP 4593403B2 JP 2005246337 A JP2005246337 A JP 2005246337A JP 2005246337 A JP2005246337 A JP 2005246337A JP 4593403 B2 JP4593403 B2 JP 4593403B2
Authority
JP
Japan
Prior art keywords
shrinkage strain
drying shrinkage
strain
specimen
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005246337A
Other languages
Japanese (ja)
Other versions
JP2007057493A (en
Inventor
啓一 今本
寿美江 石井
徹志 閑田
啓祐 藤森
晴基 百瀬
文敏 桜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2005246337A priority Critical patent/JP4593403B2/en
Publication of JP2007057493A publication Critical patent/JP2007057493A/en
Application granted granted Critical
Publication of JP4593403B2 publication Critical patent/JP4593403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、経時変化によってコンクリートに生じるひび割れを予測するコンクリートのひび割れ予測方法に関する。   The present invention relates to a crack prediction method for concrete that predicts cracks that occur in concrete due to changes over time.

コンクリート造建築物の収縮ひび割れ制御設計において、乾燥収縮の予測は重要な事項となる。このコンクリートの乾燥収縮ひずみを把握するため、実験的に測定する方法がある。この実験的測定方法では、コンクリートの供試体を所定条件下で養生し、そのときに生じる乾燥収縮から、後の乾燥収縮、ひいてはコンクリートのひび割れを予測するものである。   In shrinkage crack control design of concrete buildings, prediction of drying shrinkage is an important issue. In order to grasp the drying shrinkage strain of this concrete, there is a method of experimental measurement. In this experimental measurement method, a concrete specimen is cured under a predetermined condition, and the subsequent drying shrinkage and, consequently, cracking of the concrete are predicted from the drying shrinkage generated at that time.

この実験的測定方法でひび割れ予測をする際、その精度を向上させるためには、実験期間をある程度の期間、たとえば6月程度とする必要があった。ところが、実験期間として6月もの期間を要するとすると、コンクリート造建造物の工期を長期化する要因となってしまうことから、短期間でひび割れ予測をすることが望まれている。そこで、短期間の実験で得られたデータに所定の演算式を施すことにより、長期にわたる収縮ひずみを予測する方法が提案されている。   When predicting cracks with this experimental measurement method, it was necessary to set the experimental period to a certain period, for example, about six months, in order to improve the accuracy. However, if a period of six months is required as an experimental period, it will be a factor for prolonging the construction period of a concrete structure, and therefore it is desired to predict cracks in a short period. Therefore, a method for predicting contraction strain over a long period of time by applying a predetermined arithmetic expression to data obtained in a short-term experiment has been proposed.

たとえば、石井寿美江、他1名「短期の実験データに基づくコンクリートの乾燥収縮量の予測」、日本建築学会大会学術講演梗概集(東海)、2003年9月、p.115−116(非特許文献1)には、短期の実験データに基づくコンクリートの乾燥収縮量の予測方法が開示されている。この予測方法では、コンクリートの乾燥収縮の短期データから長期ひずみを予測する方法が開示されている。この予測を行う際に、下記(10)式または(11)式を用いることを提案している。   For example, Toshie Ishii and one other, “Prediction of Drying Shrinkage of Concrete Based on Short-term Experimental Data”, Annual Meeting of Architectural Institute of Japan (Tokai), September 2003, p. 115-116 (Non-patent Document 1) discloses a method for predicting the drying shrinkage of concrete based on short-term experimental data. In this prediction method, a method for predicting long-term strain from short-term data on drying shrinkage of concrete is disclosed. It is proposed to use the following formula (10) or (11) when making this prediction.

εsh(t,t)=εsh(t,t)/β(t−t)・β(t−t
・・・(10)
εsh(t,t)=[1−exp{−0.108(t−t0.56}]・
εsh(t,t)/[1−exp{−0.108(t−t0.56}]
・・・(11)
上記(3)式および(4)式において、
εsh:ひずみ予測値
t:コンクリートの材齢
β:乾燥収縮の進行速度を表す係数
上記(10)式および(11)式を用いたコンクリートの乾燥収縮量の予測方法では、ti=7日,28日に設定した場合の例を見てみると、ひずみ予測値εshとして求められる計算値と実験により求められる実験値との間での誤差小さくすることができる。
石井寿美江、他1名「短期の実験データに基づくコンクリートの乾燥収縮量の予測」、日本建築学会大会学術講演梗概集(東海)、2003年9月、p.115−116
ε sh (t, t 0 ) = ε sh (t i , t 0 ) / β s (t i −t 0 ) · β s (t−t 0 )
···(Ten)
ε sh (t, t 0 ) = [1-exp {−0.108 (t−t 0 ) 0.56 }].
ε sh (t i , t 0 ) / [1-exp {−0.108 (t i −t 0 ) 0.56 }]
(11)
In the above equations (3) and (4),
ε sh : predicted strain value
t: Age of concrete
β s : Coefficient representing the rate of progress of drying shrinkage In the method for predicting the amount of drying shrinkage of concrete using the above equations (10) and (11), see the example when ti = 7 days and 28 days. As a result, it is possible to reduce the error between the calculated value obtained as the predicted strain value ε sh and the experimental value obtained through experiments.
Toshie Ishii, 1 other "Prediction of drying shrinkage of concrete based on short-term experimental data", Abstracts of Annual Conference of Architectural Institute of Japan (Tokai), September 2003, p. 115-116

しかし、上記非特許文献1に開示されたコンクリートの乾燥収縮量の予測方法では、計算値と実験値との誤差が小さくなってはいるものの、その誤差は未だ見られるものであり、さらに、その誤差を小さくしていくことが望まれる。   However, in the method for predicting the drying shrinkage amount of concrete disclosed in Non-Patent Document 1, although the error between the calculated value and the experimental value is small, the error is still seen. It is desirable to reduce the error.

そこで、本発明の課題は、短期データにより、精度よくコンクリートの乾燥収縮量を予測し、コンクリートに生じるひび割れを予測することができるコンクリートのひび割れ予測方法を提供することにある。   Accordingly, an object of the present invention is to provide a concrete crack prediction method capable of accurately predicting the drying shrinkage of concrete based on short-term data and predicting cracks occurring in the concrete.

上記課題を解決した本発明に係るコンクリートのひび割れ予測方法は、コンクリート製の供試体を製造し、供試体を所定環境下に配置し、供試体が、複数設定された所定の材齢t(i=0,1,2,…)に到達したときに生じる乾燥収縮ひずみを乾燥収縮ひずみ短期データε(t)として計測し、計測した複数の乾燥収縮ひずみ短期データε(t)に対応する材齢t到達時における乾燥収縮ひずみ個別最終予測値εsh(t)を求め、複数の乾燥収縮ひずみ個別最終予測値εsh(t)に基づいて、コンクリート供試体における乾燥収縮ひずみ最終予測値εshを求め、求めた乾燥収縮ひずみ最終予測値εshに基づいて、乾燥収縮ひずみ長期予測値εshJ(t,t)を求めることを特徴とするものである。 The method for predicting cracks in concrete according to the present invention that solves the above-described problems is to manufacture a specimen made of concrete, place the specimen in a predetermined environment, and set a plurality of specimens to a predetermined age t i ( i = 0,1,2, ... the drying shrinkage strain occurs when it reaches the) was measured as drying shrinkage strain short data epsilon (t i), corresponding to a plurality of drying shrinkage strain short data epsilon measured (t i) age of t i reaches drying shrinkage individual final prediction value at Ipushironsh seeking (t i), based on a plurality of drying shrinkage strain individual final prediction value εsh (t i), drying shrinkage strain in the concrete specimen to obtains a final prediction value Ipushironsh ∞, based on the dry shrinkage strain final prediction value Ipushironsh obtained, drying shrinkage strain LTP value ε shJ (t, t 0) der what and obtains the .

本発明に係りコンクリートのひび割れ予測方法においては、複数のひずみ個別最終予測値εsh(t)に基づいて、コンクリート供試体における乾燥収縮ひずみ最終予測値εshを求め、乾燥収縮ひずみ最終予測値εshに基づいて、乾燥収縮ひずみ長期予測値εshJ(t,t)を求めている。このため、単に乾燥収縮ひずみ短期データから乾燥収縮ひずみ最終予測値を求める場合よりも精度よく乾燥収縮量を予測することができる。したがって、コンクリートに生じるひび割れを精度よく予測することができる。 In the cracking method for predicting relates concrete present invention, based on the plurality of strain individual final prediction value εsh (t i), determine the drying shrinkage strain final prediction value Ipushironsh in the concrete specimen, drying shrinkage strain final prediction value Based on εsh , a dry shrinkage strain long-term predicted value ε shJ (t, t 0 ) is obtained. For this reason, the amount of drying shrinkage can be predicted with higher accuracy than when the final predicted value of drying shrinkage strain is simply obtained from short-term drying shrinkage strain data. Therefore, the crack which arises in concrete can be estimated accurately.

ここで、乾燥収縮ひずみ個別最終予測値εsh(t)を下記(1)式で求め、材齢tと乾燥収縮ひずみ個別最終予測値εsh(t)との関係を双曲線により最小二乗近似して乾燥収縮ひずみ最終予測値εshを求め、乾燥収縮ひずみ長期予測値εshJ(t,t)を下記(2)式で求める態様とすることができる。 Minimum Here, calculated drying shrinkage strain individual final prediction value Ipushironsh a (t i) by the following equation (1), the hyperbola a relationship between the age of t i and the drying shrinkage strain individual final prediction value Ipushironsh (t i) It is possible to obtain a drying shrinkage strain final predicted value εsh by square approximation and to obtain a drying shrinkage strain long-term predicted value εshJ (t, t 0 ) by the following equation (2).

εsh∞(t)=εsh(t,t)/β(t−t) ・・・(1)
εshJ(t,t)=α×[1/b・β(T)−{1/b・β(T′)−εshf(t,t)}] ・・・(2)
上記各式において、
T:t−t
T′:t−t
β:乾燥収縮の進行速度をあらわす係数
α:供試体の寸法に関わる係数
b:1/εsh∞
このように、上記(1)式および(2)式を用いることにより、コンクリートの乾燥収縮量を精度よく予測することができる。
ε sh∞ (t i ) = ε sh (t i , t 0 ) / β s (t i −t 0 ) (1)
ε shJ (t, t 0 ) = α 1 × [1 / b · β s (T) − {1 / b · β s (T ′) − ε shf (t i , t 0 )}] ( 2)
In each of the above formulas,
T: t−t 0
T ′: t i −t 0
β s : coefficient representing the rate of progress of drying shrinkage
α 1 : Coefficient related to the dimensions of the specimen
b: 1 / ε sh∞
Thus, the drying shrinkage amount of concrete can be accurately predicted by using the above equations (1) and (2).

本発明に係るコンクリートのひび割れ予測方法によれば、短期データにより、精度よくコンクリートの乾燥収縮量を予測し、コンクリートに生じるひび割れを予測することができる。   According to the method for predicting cracks in concrete according to the present invention, it is possible to accurately predict the amount of drying shrinkage of concrete by short-term data and to predict cracks occurring in concrete.

以下、図面を参照して、本発明の好適な実施形態について説明する。本実施形態に係るコンクリートのひび割れ予測方法では、コンクリート製の供試体を製造し、所定条件で供試体を養生する。それから、一定期間ごとに乾燥収縮ひずみ量を短期データとして求めて、これらの短期データから長期間経過した後のコンクリートの乾燥収縮量を予測し、この乾燥収縮量に基づいてコンクリートのひび割れを予測するものである。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the concrete crack prediction method according to the present embodiment, a concrete specimen is manufactured, and the specimen is cured under predetermined conditions. Then, the amount of drying shrinkage strain is calculated as short-term data at regular intervals, the amount of drying shrinkage of the concrete after a long period of time is predicted from these short-term data, and the crack of the concrete is predicted based on this amount of drying shrinkage. Is.

図1は、ひび割れ予測に用いられる供試体を示し、(a)は平面図、(b)は側面図である。図1に示すように、供試体1は、供試体本体2とひずみゲージ3とを備えている、供試体本体2は、コンクリート製であり、図1(a)に示すように、底面が円形であり、図1(b)に示すように、柱状をなす円柱状をなしている。   FIG. 1 shows a specimen used for crack prediction, where (a) is a plan view and (b) is a side view. As shown in FIG. 1, the specimen 1 includes a specimen body 2 and a strain gauge 3. The specimen body 2 is made of concrete, and the bottom surface is circular as shown in FIG. As shown in FIG. 1B, it has a columnar columnar shape.

また、図1(b)に示すように、ひずみゲージ3は、板状のセンサ11を備えている。センサ11はフィルム製の防水材12によって覆われており、センサ11への水の接触が防止されている。また、センサ11には、ケーブル13が接続されている。センサ11では、供試体本体2に生じた乾燥収縮ひずみの経時変化εshを測定しており、ケーブル13を介して図示しない測定器に測定結果を送信している。 In addition, as shown in FIG. 1B, the strain gauge 3 includes a plate-like sensor 11. The sensor 11 is covered with a waterproof material 12 made of a film, and water contact with the sensor 11 is prevented. A cable 13 is connected to the sensor 11. The sensor 11 measures the time-dependent change ε sh of the drying shrinkage strain generated in the specimen body 2 and transmits the measurement result to a measuring device (not shown) via the cable 13.

供試体1は、ある程度の固化が進むまで安定した温度環境下で養生され、その後、水中養生される。それから、所定環境下に置かれて、供試体本体2に生じる乾燥収縮量が測定される。ここでのひずみゲージ3としては、たとえば東京測器研究所製PFL−120、PFL−60、PMLF−120、PMLF−60、共和電業製KM−120、KMC−70などが好適に用いられる。   The specimen 1 is cured under a stable temperature environment until solidification to some extent proceeds, and then cured under water. Then, the amount of dry shrinkage generated in the specimen body 2 is measured under a predetermined environment. As the strain gauge 3 here, for example, PFL-120, PFL-60, PMLF-120, PMLF-60, Kyowa Denki KM-120, KMC-70, etc. manufactured by Tokyo Sokki Kenkyujo Co., Ltd. are preferably used.

供試体1の製造手順について説明すると、まず、供試体1の外形と略同径の内形を有する供試体型枠を用意し、この供試体型枠内にセンサ11を設置する。次に、供試体型枠内にコンクリートを打設する。続いて、所定期間が経過して型枠を脱型するまで封かんして、極力安定した温度状況中で養生する。それから、供試体型枠を脱型し、所定の材齢となるまで所定の温度の水中で供試体1を養生する。そして、供試体1を水中より引き上げ、所定の温度環境に設置する。供試体1を所定の温度環境に設置したら、ひずみゲージ3のケーブルを測定器に接続して、所定時間ごとに供試体本体2に生じる乾燥収縮ひずみを測定する
こうして測定された供試体本体2に生じる乾燥収縮ひずみの短期データから長期間経過後の乾燥収縮量(以下「乾燥収縮ひずみ長期予測値」という)を予測する。以下にその手順について説明する。
The manufacturing procedure of the specimen 1 will be described. First, a specimen mold having an inner shape substantially the same diameter as the outer shape of the specimen 1 is prepared, and the sensor 11 is installed in the specimen mold. Next, concrete is placed in the specimen formwork. Subsequently, the mold is sealed until the mold is removed after a predetermined period of time, and the mold is cured in a temperature condition as stable as possible. Then, the specimen form is removed, and the specimen 1 is cured in water at a predetermined temperature until a predetermined age is reached. And the specimen 1 is pulled up from water and installed in a predetermined temperature environment. When the specimen 1 is installed in a predetermined temperature environment, the cable of the strain gauge 3 is connected to a measuring instrument, and the dry shrinkage strain generated in the specimen body 2 is measured every predetermined time. The amount of drying shrinkage after a long period of time (hereinafter referred to as “long-term predicted value of drying shrinkage strain”) is predicted from the short-term data of the generated drying shrinkage strain. The procedure will be described below.

短期データεshfから、材齢がtとなったときの乾燥収縮ひずみ長期予測値εshJ(t,t)を予測するにあたっては、下記(2)式を用いることができる。 Short-term data epsilon shf, drying shrinkage strain long-term prediction value when an age becomes t ε shJ (t, t 0 ) when predicting may use the following equation (2).

εshJ(t,t)=α×[1/b・β(T)−{1/b・β(T′)−εshf(t,t)}] ・・・(2)
上記(2)式において、
T:t−t
T′:t−t
β:乾燥収縮の進行速度を表す係数
α:供試体の寸法に関わる係数
b:1/εsh∞
ここで、乾燥収縮の進行速度を表す係数βの算出には、下記(3)式を用いることができる。
ε shJ (t, t 0 ) = α 1 × [1 / b · β s (T) − {1 / b · β s (T ′) − ε shf (t i , t 0 )}] ( 2)
In the above equation (2),
T: t−t 0
T ′: t i −t 0
β s : coefficient indicating the rate of progress of drying shrinkage
α 1 : Coefficient related to the dimensions of the specimen
b: 1 / ε sh∞
Here, the following equation (3) can be used to calculate the coefficient β s representing the rate of progress of drying shrinkage.

β(T)={(T)/(0.035×50+(T))}0.5 ・・・(3)
上記(2)式では、乾燥収縮ひずみ最終予測値εshを用いているが、ここで、乾燥収縮ひずみ最終予測値εshの求め方について説明する。乾燥収縮ひずみ最終予測値εshを求めるにあたっては、複数の材齢tにおける乾燥収縮ひずみ個別最終予測値εsh(t)を下記(1)式によって求める。
β s (T) = {(T) / (0.035 × 50 2 + (T))} 0.5 (3)
In the above formula (2), the dry shrinkage strain final predicted value εsh is used. Here, a method for obtaining the dry shrinkage strain final predicted value εsh will be described. In obtaining the drying shrinkage strain final prediction value Ipushironsh obtains multiple age of t i Drying shrinkage in strain individual final prediction value Ipushironsh a (t i) by the following equation (1).

εsh∞(t)=εsh(t,t)/β(t−t) ・・・(1)
ここで、t:材齢0(日)
εsh(t,t):tからtまでの乾燥収縮量
たとえば材齢tとして、第一材齢t=7(日)、第二材齢t=14(日)、第三材齢t=21(日)を設定する。これらの各材齢t,t,tおよびひずみゲージ3で計測されるεsh(t,t),εsh(t,t),εsh(t,t)を上記(1)式に代入する。こうして、各材齢t,t,tにおける乾燥収縮ひずみ個別最終予測値εsh(t),εsh∞(t),εsh∞(t)を求める。ここでの材齢t,t,tと乾燥収縮ひずみ個別最終予測値εsh(t),εsh∞(t),εsh∞(t)との関係を図2に示す。
ε sh∞ (t i ) = ε sh (t i , t 0 ) / β s (t i −t 0 ) (1)
Here, t 0 : Age 0 (day)
ε sh (t i , t 0 ): dry shrinkage amount from t 0 to t i For example, as material age t i , first material age t 1 = 7 (day), second material age t 2 = 14 (day) The third material age t 3 = 21 (day) is set. Ε sh (t 1 , t 0 ), ε sh (t 2 , t 0 ), ε sh (t 3 , t 0 ) measured by these respective ages t 1 , t 2 , t 3 and the strain gauge 3 Is substituted into the above equation (1). In this way, the drying shrinkage strain individual final predicted values ε sh (t 1 ), ε sh (t 2 ), and ε sh ∞ (t 3 ) at the respective ages t 1 , t 2 , and t 3 are obtained . FIG. 2 shows the relationship between the ages t 1 , t 2 and t 3 and the final predicted shrinkage strain values ε sh (t 1 ), ε sh (t 2 ), and ε sh ∞ (t 3 ). Show.

ここで、図2から分かるように、材齢t,t,tと乾燥収縮ひずみ個別最終予測値εsh(t),εsh∞(t),εsh∞(t)との関係をプロットしていくと、図3に示すように、乾燥収縮ひずみ最終予測値εshに収束していく。したがって、材齢tと乾燥収縮ひずみ個別最終予測値εsh(t)との関係を双曲線によって最小二乗近似していく。すると、図3に示す双曲線を下記(4)式で定義して、乾燥収縮ひずみ最終予測値εsh(=1/b)が求められる。 Here, as can be seen from FIG. 2, ages t 1 , t 2 , t 3 and dry shrinkage strain individual final predicted values ε sh (t 1 ), ε sh (t 2 ), ε sh∞ (t 3 ) When the relationship is plotted, as shown in FIG. 3, it converges to the dry shrinkage strain final predicted value εsh . Therefore, the relation between the age of age t i and the individual final predicted shrinkage strain value ε sh (t i ) is approximated by the least squares by a hyperbola. Then, the hyperbola shown in FIG. 3 is defined by the following equation (4), and the drying shrinkage strain final predicted value εsh (= 1 / b) is obtained.

y=t/(a+bt) ・・・(4)
このようにして、乾燥収縮ひずみ最終予測値εshが求められることにより、上記(2)式を用いて、乾燥収縮ひずみ長期予測値εshJを求めることができる。
y = t i / (a + bt i ) (4)
Thus, by obtaining the dry shrinkage strain final predicted value εsh , the dry shrinkage strain long-term predicted value εshJ can be obtained using the above equation (2).

このように、本実施形態に係るコンクリートのひび割れ予測方法では、複数のひずみ個別最終予測値εsh(t)に基づいて、コンクリート供試体における乾燥収縮ひずみ最終予測値εshを求め、それから、乾燥収縮ひずみ最終予測値εshに基づいて、乾燥収縮ひずみ長期予測値εshJ(t,t)を求めている。このため、単に乾燥収縮ひずみ短期データから乾燥収縮ひずみ最終予測値を求める場合よりも精度よく乾燥収縮量を予測することができる。 Thus, in the cracking prediction method of the concrete according to the present embodiment, based on the plurality of strain individual final prediction value εsh (t i), determine the drying shrinkage strain final prediction value Ipushironsh in the concrete specimen, then, A dry shrinkage strain long-term predicted value ε shJ (t, t 0 ) is obtained based on the dry shrinkage strain final predicted value ε sh . For this reason, the amount of drying shrinkage can be predicted with higher accuracy than when the final predicted value of drying shrinkage strain is simply obtained from short-term drying shrinkage strain data.

こうして、材齢tとなったときの乾燥収縮ひずみ長期予測値(t,t)を求めたら、この乾燥収縮の予測結果に基づいて、コンクリートに生じるひび割れの状態を予測する。上記のように、乾燥収縮ひずみ長期予測値(t,t)を高い精度で予測できることから、コンクリートに生じるひび割れを精度よく予測することができる。 Thus, when the dry shrinkage strain long-term predicted value (t, t 0 ) at the age of t is obtained, the state of cracks occurring in the concrete is predicted based on the prediction result of the dry shrinkage. As described above, since the drying shrinkage strain long-term predicted value (t, t 0 ) can be predicted with high accuracy, cracks occurring in the concrete can be predicted with high accuracy.

以上に説明した実施形態では、短期データとしての材齢を3回測定して、乾燥収縮ひずみ長期予測値εshJを求めているが、測定回数は限定されず、2回または4回以上とすることもできる。 In the embodiment described above, the age as the short-term data is measured three times to obtain the dry shrinkage strain long-term predicted value ε shJ . However, the number of times of measurement is not limited and is two times or four times or more. You can also.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

本実施例では、上記の実施形態と同様の手順で供試体1を製造した。供試体1の寸法は、底面の直径100mm高さ200mmとした。また、型枠から供試体1を脱型するまで2日間養生した。さらに、脱型後は、水温20℃の水中で材齢7日となるまで水中養生し、水中養生後に水中から引き上げられた供試体1を温度20℃、相対湿度60%の環境(以下「養生環境」という)に設置した。そして、ひずみゲージ3により、3時間間隔で供試体本体2におけるひずみを測定し、測定結果を測定器に送信した。なお、tで示す材齢としては、水中養生後の養生環境下での材齢を示している。 In this example, the specimen 1 was manufactured in the same procedure as in the above embodiment. The dimensions of the specimen 1 were a bottom diameter of 100 mm and a height of 200 mm. The specimen 1 was cured for 2 days until the specimen 1 was removed from the mold. Furthermore, after demolding, water curing is performed in water having a water temperature of 20 ° C. until the age of the material reaches 7 days. Environment)). And the strain in the specimen main body 2 was measured by the strain gauge 3 at intervals of 3 hours, and the measurement result was transmitted to the measuring instrument. As the wood age indicated by t i, it shows a wood age under curing environment after cured in water.

測定器では、ひずみゲージ3から送信される供試体本体2のひずみ量を記録している。また、ひずみゲージ3から送信されたひずみ量および別途計測している材齢から適宜上記(1)式に基づく乾燥収縮ひずみ個別最終予測値εsh(t)および上記(2)式に基づく乾燥収縮ひずみ長期予測値εshJ(t,t)などを算出している。また、上記(2)式において、供試体1が上記の寸法とされていることから、供試体の寸法に関わる係数αを0.925とした。 In the measuring instrument, the strain amount of the specimen body 2 transmitted from the strain gauge 3 is recorded. Further, the drying shrinkage strain individual final predicted value εsh (t i ) based on the above equation (1) and the drying based on the above equation (2) as appropriate from the strain amount transmitted from the strain gauge 3 and the age measured separately. The contraction strain long-term predicted value ε shJ (t, t 0 ) and the like are calculated. Further, in the above equation (2), since the specimen 1 has the above dimensions, the coefficient α 1 related to the dimensions of the specimen is set to 0.925.

本実施例では、ひずみゲージ3から送信された供試体本体2のひずみ、上記(2)式を用いて求めた乾燥収縮ひずみ長期予測値εshJ(t,t)と、JISに規定される乾燥収縮ひずみ測定方法(以下「JIS法」という)によるデータの比較を行った。JISに規定される乾燥収縮ひずみ測定方法は、JIS A 1121に標準方法として定められている。 In the present embodiment, the strain of the specimen body 2 transmitted from the strain gauge 3, the long-term dry shrinkage strain predicted value ε shJ (t, t 0 ) obtained using the above equation (2), and JIS are prescribed. Comparison of data by a drying shrinkage strain measurement method (hereinafter referred to as “JIS method”) was performed. The dry shrinkage strain measuring method defined in JIS is defined as a standard method in JIS A 1121.

まず、JIS法により測定した乾燥収縮ひずみの測定結果と、本実験例に係る乾燥収縮ひずみの測定結果とを比較した。ここでの本実験例に係る結果では、予測値を求めることなく、養生環境下での養生を6月間行い、その後、ひずみゲージ3で計測されるひずみ量を用いている。同様に、JIS法においても、6月間の養生を行った。   First, the measurement result of the drying shrinkage strain measured by the JIS method was compared with the measurement result of the drying shrinkage strain according to this experimental example. In the result according to the present experimental example, curing is performed for 6 months in a curing environment without obtaining a predicted value, and then the strain amount measured by the strain gauge 3 is used. Similarly, curing was performed for 6 months in the JIS method.

JIS法による測定結果と、本実験例に係る測定結果との関係を図4に示す。図4では、本実験例で得られた測定結果にαを乗じた値を横軸とし、JIS法により得られた測定結果を縦軸としている。図4から分かるように、本実験例に係る測定結果から得られた値と、JIS法により得られた測定結果とは、非常に高い相関関係があった。このことから、本実験例に係る測定方法により、JIS法と同等の精度のある乾燥収縮ひずみ測定をできることが分かった。 FIG. 4 shows the relationship between the measurement result by the JIS method and the measurement result according to this experimental example. In FIG. 4, a value obtained by multiplying the alpha 1 on the obtained measurement results in this experimental example on the horizontal axis, and the vertical axis the measurement results obtained by the JIS method. As can be seen from FIG. 4, the value obtained from the measurement result according to this experimental example and the measurement result obtained by the JIS method had a very high correlation. From this, it was found that the drying shrinkage strain measurement with the same accuracy as the JIS method can be performed by the measurement method according to this experimental example.

次に、養生期間を4週間とし、第一材齢t=7(日)、第二材齢t=14(日)、第三材齢t=21(日)として、上記(2)式から乾燥収縮ひずみ長期予測値εshJ(t,t)を求め、JIS法により測定した乾燥収縮ひずみの測定結果と比較した。その結果を図5に示す。図5では、(2)式から求めた乾燥収縮ひずみ長期予測値εshJ(t,t)を横軸とし、JIS法により得られた測定結果を縦軸としている。 Next, the curing period is 4 weeks, the first age t 1 = 7 (days), the second age t 2 = 14 (days), and the third age t 3 = 21 (days) (2 ) The drying shrinkage strain long-term predicted value ε shJ (t, t 0 ) was determined from the formula, and compared with the measurement result of the drying shrinkage strain measured by the JIS method. The result is shown in FIG. In FIG. 5, the dry shrinkage strain long-term predicted value ε shJ (t, t 0 ) obtained from equation (2) is on the horizontal axis, and the measurement result obtained by the JIS method is on the vertical axis.

図5から分かるように、本実験例に係る測定結果と同様、乾燥収縮ひずみ長期予測値εshJ(t,t)と、JIS法により得られた測定結果とは、非常に高い相関関係があった。具体的には、±10%以内の精度でJIS法と同等の結果を得られた。このことから、本実験例に係る乾燥収縮ひずみ長期予測値εshJ(t,t)を用いた測定方法により、JIS法と同等の精度のある乾燥収縮ひずみ測定をできることが分かった。 As can be seen from FIG. 5, like the measurement results according to this experimental example, the dry shrinkage strain long-term predicted value ε shJ (t, t 0 ) and the measurement results obtained by the JIS method have a very high correlation. there were. Specifically, a result equivalent to the JIS method was obtained with an accuracy within ± 10%. From this, it was found that the measurement method using the dry shrinkage strain long-term predicted value ε shJ (t, t 0 ) according to this experimental example can measure the dry shrinkage strain with the same accuracy as the JIS method.

続いて、比較例として、上記非特許文献1に開示された予測方法による例を示す。図6は、上記(10)式を用いて乾燥収縮ひずみ長期予測値εshJ(t,t)を求める一方、6月後における実際のひずみ測定値(実測値)との関係を示す図である。図6から分かるように、上記非特許文献1に開示された方法では、予測制度の誤差がおよそ±20%程度生じている。ことことから、本実験例に係る測定方法により、精度のよい乾燥収縮ひずみ測定をできることが分かった。 Then, the example by the prediction method disclosed by the said nonpatent literature 1 is shown as a comparative example. FIG. 6 is a diagram showing the relationship with the actual strain measurement value (actual measurement value) after 6 months while obtaining the dry shrinkage strain long-term prediction value ε shJ (t, t 0 ) using the above equation (10). is there. As can be seen from FIG. 6, in the method disclosed in Non-Patent Document 1, an error of the prediction system is about ± 20%. From the above, it was found that the measurement method according to this experimental example can measure the drying shrinkage strain with high accuracy.

ひび割れ予測に用いられる供試体を示す図であり、(a)は平面図、(b)は側面図である。It is a figure which shows the specimen used for a crack prediction, (a) is a top view, (b) is a side view. 材齢と乾燥収縮ひずみ個別最終予測値との関係を示す図である。It is a figure which shows the relationship between material age and the drying shrinkage | contraction individual separate prediction value. 材齢と乾燥収縮ひずみ最終予測値との関係を示す図である。It is a figure which shows the relationship between material age and the drying shrinkage distortion final prediction value. JIS法による測定結果と、本実験例に係る測定結果との関係を示す図である。It is a figure which shows the relationship between the measurement result by JIS method, and the measurement result which concerns on this experiment example. 乾燥収縮ひずみ長期予測値εshJ(t,t)と、JIS法により測定した乾燥収縮ひずみの測定結果との関係を示す図である。Drying Shrinkage term prediction value ε shJ (t, t 0) and a diagram showing the relationship between the measurement result of the measured drying shrinkage strain by JIS method. 上記(10)式を用いて求めた乾燥収縮ひずみ長期予測値と、実際のひずみ測定値との関係を示す図である。It is a figure which shows the relationship between the drying shrinkage long-term prediction value calculated | required using said Formula (10), and an actual strain measurement value.

符号の説明Explanation of symbols

1…供試体
2…供試体本体
3…ひずみゲージ
11…センサ
12…防水材
13…ケーブル
DESCRIPTION OF SYMBOLS 1 ... Specimen 2 ... Specimen main body 3 ... Strain gauge 11 ... Sensor 12 ... Waterproof material 13 ... Cable

Claims (2)

コンクリート製の供試体を製造し、
前記供試体を所定環境下に配置し、
前記供試体が、複数設定された所定の材齢t(i=0,1,2,…)に到達したときに生じる乾燥収縮ひずみを乾燥収縮ひずみ短期データε(t)として計測し、
計測した複数の乾燥収縮ひずみ短期データε(t)に対応する前記材齢t到達時における乾燥収縮ひずみ個別最終予測値εsh(t)を求め、
複数の乾燥収縮ひずみ個別最終予測値εsh(t)に基づいて、前記コンクリート供試体における乾燥収縮ひずみ最終予測値εshを求め、
求めた乾燥収縮ひずみ最終予測値εshに基づいて、乾燥収縮ひずみ長期予測値εshJ(t,t)を求めることを特徴とするコンクリートのひび割れ予測方法。
Producing concrete specimens,
The specimen is placed in a predetermined environment,
The specimen is measured more set predetermined age of t i (i = 0,1,2, ... ) the drying shrinkage strain occurs when it reaches the as drying shrinkage strain short data epsilon (t i),
Obtains a plurality of drying shrinkage strain short data measured ε drying shrinkage strain individual final prediction value Ipushironsh in the ages t i upon reaching corresponding to (t i) (t i),
Based on a plurality of dry shrinkage strain individual final predicted values εsh (t i ), a dry shrinkage strain final predicted value εsh in the concrete specimen is obtained,
A concrete crack prediction method, characterized in that a dry shrinkage strain long-term predicted value ε shJ (t, t 0 ) is obtained based on the obtained dry shrinkage strain final predicted value εsh .
前記乾燥収縮ひずみ個別最終予測値εsh(t)を下記(1)式で求め、
材齢tと前記乾燥収縮ひずみ個別最終予測値εsh(t)との関係を双曲線により最小二乗近似して前記乾燥収縮ひずみ最終予測値εshを求め、
前記乾燥収縮ひずみ長期予測値εshJ(t,t)を下記(2)式で求める請求項1に記載のコンクリートのひび割れ予測方法。
εsh∞(t)=εsh(t,t)/β(t−t) ・・・(1)
εshJ(t,t)=α×[1/b・β(T)−{1/b・β(T′)−εshf(t,t)}] ・・・(2)
上記各式において、
T:t−t
T′:t−t
β:乾燥収縮の進行速度を表す係数
α:供試体の寸法に関わる係数
b:1/εsh∞
The drying shrinkage strain individual final predicted value εsh (t i ) is obtained by the following equation (1),
The dry shrinkage strain final predicted value εsh is obtained by approximating the relationship between the age of age t i and the individual final shrinkage strain predicted value εsh (t i ) by a least squares with a hyperbola,
The method for predicting cracks in concrete according to claim 1, wherein the dry shrinkage strain long-term predicted value ε shJ (t, t 0 ) is obtained by the following equation (2).
ε sh∞ (t i ) = ε sh (t i , t 0 ) / β s (t i −t 0 ) (1)
ε shJ (t, t 0 ) = α 1 × [1 / b · β s (T) − {1 / b · β s (T ′) − ε shf (t i , t 0 )}] ( 2)
In each of the above formulas,
T: t−t 0
T ′: t i −t 0
β s : coefficient indicating the rate of progress of drying shrinkage
α 1 : Coefficient related to the dimensions of the specimen
b: 1 / ε sh∞
JP2005246337A 2005-08-26 2005-08-26 Method for predicting cracks in concrete Active JP4593403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005246337A JP4593403B2 (en) 2005-08-26 2005-08-26 Method for predicting cracks in concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005246337A JP4593403B2 (en) 2005-08-26 2005-08-26 Method for predicting cracks in concrete

Publications (2)

Publication Number Publication Date
JP2007057493A JP2007057493A (en) 2007-03-08
JP4593403B2 true JP4593403B2 (en) 2010-12-08

Family

ID=37921110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246337A Active JP4593403B2 (en) 2005-08-26 2005-08-26 Method for predicting cracks in concrete

Country Status (1)

Country Link
JP (1) JP4593403B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738618A (en) * 2018-12-06 2019-05-10 同济大学 A kind of preliminary method for early warning of cement-based material plastic shrinkage cracking

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977811B1 (en) 2008-04-15 2010-08-24 충남대학교산학협력단 Evaluation Method for Properies of Concrete Shrinkage Crack by Slat-Ring Type Restrained Test
JP5353086B2 (en) * 2008-06-23 2013-11-27 株式会社Ihi Construction method of floor slab concrete
JP5246113B2 (en) * 2009-03-19 2013-07-24 住友大阪セメント株式会社 Early estimation method of concrete drying shrinkage strain
JP5671267B2 (en) * 2010-06-18 2015-02-18 太平洋セメント株式会社 Method for estimating drying shrinkage of hardened concrete
JP5713429B2 (en) * 2010-11-17 2015-05-07 太平洋セメント株式会社 Estimation Method of Drying Shrinkage Strain of Concrete with Addition of Shrinkage Inhibiting Material
CN102183626B (en) * 2011-03-04 2013-10-16 同济大学 Method for predicting plastic shrinkage cracking of cement mortar material
CN116644599A (en) * 2023-06-05 2023-08-25 重庆大学 Crack prediction method based on elastic modulus of concrete under capillary pore stress effect

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642196A (en) * 1992-06-12 1994-02-15 Shimizu Corp Concrete cracking countermeasure support system
JP2002048690A (en) * 2000-08-01 2002-02-15 Okumura Corp Cracking judgment method in premature age of member using high strength concrete and judging apparatus using the same and casting method of high strength concrete
JP2004217514A (en) * 2002-12-26 2004-08-05 Sumitomo Osaka Cement Co Ltd Concrete material, concrete structure, and its manufacturing method
JP2005017040A (en) * 2003-06-24 2005-01-20 Ohbayashi Corp Stress evaluation device and method of concrete, computer program, and computer-readable recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642196A (en) * 1992-06-12 1994-02-15 Shimizu Corp Concrete cracking countermeasure support system
JP2002048690A (en) * 2000-08-01 2002-02-15 Okumura Corp Cracking judgment method in premature age of member using high strength concrete and judging apparatus using the same and casting method of high strength concrete
JP2004217514A (en) * 2002-12-26 2004-08-05 Sumitomo Osaka Cement Co Ltd Concrete material, concrete structure, and its manufacturing method
JP2005017040A (en) * 2003-06-24 2005-01-20 Ohbayashi Corp Stress evaluation device and method of concrete, computer program, and computer-readable recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738618A (en) * 2018-12-06 2019-05-10 同济大学 A kind of preliminary method for early warning of cement-based material plastic shrinkage cracking

Also Published As

Publication number Publication date
JP2007057493A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP4593403B2 (en) Method for predicting cracks in concrete
JP3975255B2 (en) Concrete embedded strain gauge and concrete strain measurement method
JP6118129B2 (en) Linear expansion coefficient test method
Li et al. Resistance of segmental joints to carbonation
Liu et al. Research on temperature action and cracking risk of steel–concrete composite girder during the hydration process
KR101331015B1 (en) Apparatus for Estimating Thermal Crack Susceptibility of Concrete and Method using thereof
CN115392082A (en) On-site large-volume concrete hydration heat temperature prediction system and method
JP2021056178A (en) Measuring method for relative humidity, dry shrinkage strain, and relative moisture content inside concrete
Zhang et al. Characterization of moisture diffusion in cured concrete slabs at early ages
JP6363392B2 (en) Method for estimating compressive strength of concrete
CN101776430B (en) Method for measuring hydration heat temperature restraint strain of wall by using vibrating string extensometer
JP2013092445A (en) Early-stage evaluation method for concrete dry shrinkage strain
JP6524460B2 (en) Test body, strain measurement method, contraction / expansion strain estimation method and effective prestress amount estimation method
CN111650366A (en) Method for measuring self-shrinkage volume rate of cement concrete
JP2006010420A (en) Estimation method of expansion stress of expansive concrete
JP5930386B2 (en) Method for predicting drying shrinkage strain of concrete and method for predicting drying shrinkage stress of concrete
JP6198059B2 (en) Method and apparatus for estimating mortar compressive strength
JP6826494B2 (en) Creep prediction method for laminated elastic bodies
Dong et al. Influence of specimen thickness on cracking behavior in restrained shrinkage ring test
Tacas et al. Mechanical characterization of adobe constructions using flat jack tests: case study of the Virgen de la Asunción de Sacsamarca Church
Abbasnia et al. Prediction of free shrinkage strain related to internal moisture loss
JP7106373B2 (en) Method for Predicting Drying Shrinkage Strain of Concrete
CN113341113A (en) Method for matching corresponding drying shrinkage under humidity gradient in cement-based material
JP2014106003A (en) Method for measuring strain of hydraulic material
JP6223880B2 (en) Analysis method of the cause of strain of restraint in constrained concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4593403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250