JP4593317B2 - Method for producing grain-oriented electrical steel sheet with excellent magnetic properties - Google Patents

Method for producing grain-oriented electrical steel sheet with excellent magnetic properties Download PDF

Info

Publication number
JP4593317B2
JP4593317B2 JP2005057066A JP2005057066A JP4593317B2 JP 4593317 B2 JP4593317 B2 JP 4593317B2 JP 2005057066 A JP2005057066 A JP 2005057066A JP 2005057066 A JP2005057066 A JP 2005057066A JP 4593317 B2 JP4593317 B2 JP 4593317B2
Authority
JP
Japan
Prior art keywords
steel sheet
rolling
grain
oriented electrical
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005057066A
Other languages
Japanese (ja)
Other versions
JP2006241503A (en
Inventor
英邦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005057066A priority Critical patent/JP4593317B2/en
Publication of JP2006241503A publication Critical patent/JP2006241503A/en
Application granted granted Critical
Publication of JP4593317B2 publication Critical patent/JP4593317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、モーターやトランス用の鉄芯材料として用いられる鉄損および磁束密度ともに優れた方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet excellent in both iron loss and magnetic flux density used as an iron core material for motors and transformers.

現在、市場に流通している方向性電磁鋼板は、主として鋼板内の結晶の方位を{110}<001>方位(以下、ゴス方位と記す)へ高いレベルで集積させたものである。この集積度を高めるため、一次再結晶、脱炭焼鈍、二次再結晶といった複雑な工程が精緻に制御されており、この条件がゴス方位への集積度を左右するため、多くの研究がなされているものの、製造技術的にはノウハウでもあり、非常に重要なものである。   The grain-oriented electrical steel sheets that are currently on the market are mainly those in which the orientation of crystals in the steel sheet is accumulated at a high level in the {110} <001> orientation (hereinafter referred to as the Goth orientation). In order to increase the degree of accumulation, complicated processes such as primary recrystallization, decarburization annealing, and secondary recrystallization are precisely controlled, and since this condition affects the degree of accumulation in the Goss direction, much research has been done. However, it is also a know-how in terms of manufacturing technology and is very important.

メタラジー的に特に特徴的なのは、二次再結晶において、インヒビターと呼ばれる微細な析出物を活用していることであり、これによる結晶粒成長抑制効果と熱処理によるこの効果の消失を活用し、高い温度で二次再結晶を起こさせることでゴス方位への集積を高めている。しかし、このような従来の制御法では、ゴス方位の集積度は、複雑な工程が必要で、その工程条件も、非常に厳格なものとなり、さらにはインヒビターの状態の制御なども、成分・製造条件に非常に敏感なものとなり、生産性が低くなり、方向性電磁鋼板を非常に高価な材料にしている。   A special feature of metallurgy is the use of fine precipitates called inhibitors in secondary recrystallization, which utilizes the effect of suppressing grain growth caused by this and the disappearance of this effect due to heat treatment. The secondary recrystallization is caused to increase the accumulation in the Goth direction. However, with such a conventional control method, the Goss orientation accumulation degree requires a complicated process, and the process conditions become very strict. It becomes very sensitive to the conditions, the productivity is lowered, and the grain-oriented electrical steel sheet is made a very expensive material.

特許文献1では焼鈍時の雰囲気と加熱速度、特許文献2はスラブ加熱条件と窒化、特許文献3は二次再結晶時の加熱速度を精緻に制御するもので、特性向上効果は見られるが、生産性への悪影響は避けられない。また、これらの技術では一次再結晶時の鋼板の組織、主として一次再結晶粒径について考慮して特性向上を図っているが、効果が小さく、製造条件の緩和を達成できるものではない。また、目的とするゴス方位への制御も十分とは言えない。また、特許文献4は一次再結晶鋼板の結晶方位を特定の範囲に制御しようとするものであるが、方位の制御指針が曖昧で、また制御の方法が好ましいものでないため、十分な効果を得るに至っていない。   In Patent Document 1, the atmosphere and heating rate during annealing, Patent Document 2 controls slab heating conditions and nitriding, and Patent Document 3 precisely controls the heating rate during secondary recrystallization. A negative impact on productivity is inevitable. Further, although these techniques attempt to improve the characteristics in consideration of the structure of the steel sheet at the time of primary recrystallization, mainly the primary recrystallization grain size, the effect is small and the relaxation of manufacturing conditions cannot be achieved. Moreover, it cannot be said that the control to the target Goth direction is sufficient. Further, Patent Document 4 is intended to control the crystal orientation of the primary recrystallized steel sheet within a specific range, but the orientation control guidelines are ambiguous and the control method is not preferable, so that a sufficient effect is obtained. It has not reached.

特開2004−115858号公報JP 2004-115858 A 特開2004−204336号公報JP 2004-204336 A 特開2004−218024号公報JP 2004-218042 A 特開2002−60842号公報JP 2002-60842 A

本発明はこのような状況に鑑みなされたもので、特に最終的なゴス方位の結晶方位への集積を高めるため、一次再結晶集合組織を好ましく制御することで、従来の方向性電磁鋼板ではなし得なかった良好な特性を付与するものである。   The present invention has been made in view of such a situation. In particular, in order to increase the accumulation of the final Goss orientation in the crystal orientation, the primary recrystallization texture is preferably controlled, so that the conventional grain-oriented electrical steel sheet is not used. It provides good characteristics that were not obtained.

(1)質量%で、C:0.040%以下、Si:0.05〜6.5%、Mn:3.0%以下、Al:3.5%以下、S:0.055%以下、P:0.25%以下、N:0.040%以下を含み、残部Feおよび不可避的不純物からなる溶鋼を鋳造で厚さ50mm以上の鋼片に凝固させ、その後、熱延工程において500℃以上F℃以下の温度域で圧延が行われ、前記温度域での圧延において、圧下による累積歪(対数歪)Hと各パス出側温度T(℃)および、最終パスを除く圧延パスにおいては圧延後次の圧延パス開始までの時間t(秒)または最終パスの場合は最終パス圧延後水冷開始までの時間t(秒)の関係が、以下の式2
T<F−H×10−t×10 ・・・式2
を満たして行われ、前記温度域での圧延において、そのうちの少なくとも一回の圧延パスについて圧延時の鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上であり、熱延板時点で表層1/4領域に未再結晶組織を残存させ、さらに酸洗後、この未再結晶組織が残存したまま圧下率50%以上の冷間圧延を行うことにより冷延板の表層1/4またはそれより表層側の部位において{411}<148>方位の集積強度/{411}<011>方位の集積強度≧4.0かつ{411}<148>方位の集積強度≧4.0を満たすようにし、前記冷延板を二次再結晶させることを特徴とする方向性電磁鋼板の製造方法。
(2)質量%で、C:0.040%以下、Si:0.05〜6.5%、Mn:3.0%以下、Al:3.5%以下、S:0.055%以下、P:0.25%以下、N:0.040%以下を含み、残部Feおよび不可避的不純物からなる溶鋼を鋳造で厚さ50mm以上の鋼片に凝固させ、その後、熱延工程において500℃以上F℃以下の温度域で圧延が行われ、前記温度域での圧延において、圧下による累積歪(対数歪)Hと各パス出側温度T(℃)および、最終パスを除く圧延パスにおいては圧延後次の圧延パス開始までの時間t(秒)または最終パスの場合は最終パス圧延後水冷開始までの時間t(秒)の関係が、以下の式2
T<F−H×10−t×10 ・・・式2
を満たして行われ、前記温度域での圧延において、そのうちの少なくとも一回の圧延パスについて圧延時の鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上であり、熱延板時点で表層1/4領域に未再結晶組織を残存させ、さらに酸洗後、この未再結晶組織が残存したまま圧下率50%以上の冷間圧延を行うことにより冷延板の鋼板表層1/4またはそれより表層側の部位において<411>//ND方位の集積強度の板面内の方位分布について極大値が4個以上存在するようにし、前記冷延板を二次再結晶させることを特徴とする方向性電磁鋼板の製造方法。
(3)(1)または(2)記載の方向性電磁鋼板の製造方法において熱延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスについて、剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である領域が圧延時の板厚で全板厚の10%以上に及ぶようにすることにより、冷延板の表層1/4またはそれより表層側の部位において{111}<211>方位の集積強度≦2.0を満たすようにすることを特徴とする方向性電磁鋼板の製造方法。
(4)(1)〜(3)のいずれかの項に記載の方向性電磁鋼板の製造方法において冷延板の表層1/4位置またはそれより表層側の位置での{411}<148>方位の集積強度が鋼板板厚中心での集積強度の2倍以上であることを特徴とする方向性電磁鋼板の製造方法。
(5)(1)〜(4)のいずれかの項に記載の方向性電磁鋼板の製造方法において冷延板が(B0+B90)/2−B45≦0.040を満たすことを特徴とする方向性電磁鋼板の製造方法。
ここで各変数は誘起電流密度を5000A/mとした時の圧延方向から0°、45°、90°方向の磁束密度/TをそれぞれB0、B45、B90とする。
(6)(1)〜(5)のいずれかの項に記載の方向性電磁鋼板の製造方法において鋼成分が質量%で、さらに、Cu+Nb+Cr+B+Ni+Co+Mo+Ti:0.2〜8.0%を含有することを特徴とする方向性電磁鋼板の製造方法。
(7)(1)〜(6)のいずれかの項に記載の方向性電磁鋼板の製造方法において鋼成分が質量%で、さらに、Cu:0.2〜8.0%、Nb:0.1〜4.0%、Cr:1.0〜15.0%、B:0.0020〜0.0150%、Ni:0.2〜8.0%、Co:0.2〜8.0%、Mo:0.2〜8.0%、Ti:0.2〜2.0%のいずれか一種以上を含有することを特徴とする方向性電磁鋼板の製造方法。
(8)(1)〜(7)のいずれかの項に記載の方向性電磁鋼板の製造方法において鋼成分が質量%で、W,Sn,Sb,Mg,Ca,Ce、REMの1種または2種以上を合計で0.5%以下含有することを特徴とする方向性電磁鋼板の製造方法。
(9)(1)〜(8)のいずれかの項に記載の方向性電磁鋼板の製造方法において、鋼成分が同じでかつ熱延の全圧延パスがF℃以上で行われた以外は同じ工程で製造された鋼板との比較において、冷延板の表層1/4位置またはそれより表層側の位置での{411}<148>方位の集積強度が2倍以上となっていることを特徴とする方向性電磁鋼板の製造方法。
ここでFは、鋼板の成分による以下の式1で示される。
F=820+(10×Si+50×Cu+50×Nb+10×Cr+5000×B+10×Ni+20×Co+40×Mo+20×Ti) ・・・式1
(1) In mass%, C: 0.040% or less, Si: 0.05 to 6.5%, Mn: 3.0% or less, Al: 3.5% or less, S: 0.055% or less, P: 0.25% or less, N: 0.040% or less, the molten steel consisting of the remainder Fe and inevitable impurities is solidified into a steel piece having a thickness of 50 mm or more by casting, and then 500 ° C or more in the hot rolling process Rolling is performed in a temperature range of F ° C. or lower. In rolling in the temperature range, rolling is performed in the rolling pass excluding the cumulative strain (logarithmic strain) H and each pass outlet temperature T (° C.) due to reduction and the final pass. The relationship between the time t (second) until the start of the subsequent rolling pass or the time t (second) until the start of water cooling after the final pass rolling in the case of the final pass is expressed by the following equation 2
T <F−H × 10−t × 10 Equation 2
In the rolling in the temperature range, at least one of the rolling passes, the shear strain or shear strain / ((thickness direction compressive strain)) in the steel sheet surface layer during rolling is 0.2 or more. , non-recrystallized structure in a surface layer 1/4 region in hot-rolled sheet time is remaining, further pickling, by performing the non-recrystallized structure is cold-rolling remains reduction of 50% or more remaining, cold rolled Integrated strength of {411} <148> orientation / integrated strength of {411} <011> orientation ≧ 4.0 and integrated strength of {411} <148> orientation at the surface layer 1/4 or the surface layer side of the plate A method for producing a grain-oriented electrical steel sheet characterized by satisfying ≧ 4.0 and secondary recrystallization of the cold-rolled sheet.
(2) In mass%, C: 0.040% or less, Si: 0.05 to 6.5%, Mn: 3.0% or less, Al: 3.5% or less, S: 0.055% or less, P: 0.25% or less, N: 0.040% or less, the molten steel consisting of the remainder Fe and inevitable impurities is solidified into a steel piece having a thickness of 50 mm or more by casting, and then 500 ° C or more in the hot rolling process Rolling is performed in a temperature range of F ° C. or lower. In rolling in the temperature range, rolling is performed in the rolling pass excluding the cumulative strain (logarithmic strain) H and each pass outlet temperature T (° C.) due to reduction and the final pass. The relationship between the time t (second) until the start of the subsequent rolling pass or the time t (second) until the start of water cooling after the final pass rolling in the case of the final pass is expressed by the following equation 2
T <F−H × 10−t × 10 Equation 2
In the rolling in the temperature range, at least one of the rolling passes, the shear strain or shear strain / ((thickness direction compressive strain)) in the steel sheet surface layer during rolling is 0.2 or more. , non-recrystallized structure in a surface layer 1/4 region in hot-rolled sheet time is remaining, further pickling, by performing the non-recrystallized structure is cold-rolling remains reduction of 50% or more remaining, cold rolled as the maximum value for the orientation distribution in the plate surface of the integrated intensity of the <411> // ND orientation steel surface layer 1/4 or than at the site of the surface layer side of the plate are present at least four, the cold-rolled plate two A method for producing a grain-oriented electrical steel sheet, characterized by performing next recrystallization.
(3) In the method for producing a grain- oriented electrical steel sheet according to (1) or (2) , in rolling in a temperature range of F ° C. or lower in hot rolling, shear strain or shear strain at the steel sheet surface layer / (sheet thickness direction compression) For a rolling pass having a (strain) of 0.2 or more, the region where the shear strain or shear strain / (sheet thickness direction compressive strain) is 0.2 or more reaches 10% or more of the total plate thickness in the plate thickness during rolling. by way directional electromagnetic, wherein to Rukoto to satisfy integrated intensity ≦ 2.0 {111} <211> orientation at the site of the surface layer 1/4 or above the surface layer side of the cold-rolled plate A method of manufacturing a steel sheet.
(4) In the method for manufacturing a grain- oriented electrical steel sheet according to any one of the items (1) to (3), {411} <148 at the surface layer 1/4 position of the cold-rolled sheet or the surface layer side thereof. A method for producing a grain-oriented electrical steel sheet, characterized in that the accumulated strength in the orientation is at least twice the accumulated strength at the thickness center of the steel plate.
(5) In the method for producing a grain- oriented electrical steel sheet according to any one of (1) to (4) , the cold-rolled sheet satisfies (B0 + B90) /2−B45≦0.040. Method for producing an electrical steel sheet.
Here, for each variable, the magnetic flux densities / T in the 0 °, 45 °, and 90 ° directions from the rolling direction when the induced current density is 5000 A / m are B 0, B 45, and B 90, respectively.
(6) In the manufacturing method of the grain- oriented electrical steel sheet according to any one of the items (1) to (5) , the steel component is mass%, and further contains Cu + Nb + Cr + B + Ni + Co + Mo + Ti: 0.2 to 8.0%. A method for producing a grain-oriented electrical steel sheet characterized by the above.
(7) In the manufacturing method of the grain- oriented electrical steel sheet according to any one of the items (1) to (6) , the steel component is in mass%, and Cu: 0.2 to 8.0%, Nb: 0. 0.1-4.0%, Cr: 1.0-15.0%, B: 0.0020-0.0150%, Ni: 0.2-8.0%, Co: 0.2-8.0 %, Mo: 0.2-8.0%, Ti: Any one or more of 0.2-2.0% are contained, The manufacturing method of the grain-oriented electrical steel sheet characterized by the above-mentioned.
(8) In the method for producing a grain- oriented electrical steel sheet according to any one of (1) to (7) , the steel component is in mass%, and one of W, Sn, Sb, Mg, Ca, Ce, and REM. Or the manufacturing method of the grain-oriented electrical steel sheet characterized by containing 2 or more types in total 0.5% or less.
(9) In the method for producing a grain- oriented electrical steel sheet according to any one of (1) to (8) , the steel components are the same except that the entire rolling pass of hot rolling is performed at F ° C or higher. In comparison with the steel plate produced in the process, the integrated strength of {411} <148> orientation at the surface layer 1/4 position of the cold-rolled sheet or the position on the surface layer side thereof is more than doubled. A method for producing a grain-oriented electrical steel sheet.
Here, F is represented by the following formula 1 depending on the components of the steel plate.
F = 820 + (10 × Si + 50 × Cu + 50 × Nb + 10 × Cr + 5000 × B + 10 × Ni + 20 × Co + 40 × Mo + 20 × Ti) Formula 1

(10)(1)〜(9)のいずれかの項に記載の方向性電磁鋼板の製造方法において、鋼成分が同じでかつ熱延の全圧延パスがF℃以上で行われた以外は同じ工程で製造された鋼板との比較において、冷延板がB45−B’45≧0.030を満たすことを特徴とする方向性電磁鋼板の製造方法。
ここで各変数は誘起電流密度を5000A/mとした時の圧延方向から45°方向の磁束密度/TをB45とする。Bは発明鋼、B’は比較鋼についての特性を示す。
(11)(1)〜(10)のいずれかの項に記載の方向性電磁鋼板の製造方法において冷延板の表層1/4を取り除き板厚中心層1/2厚さで測定するとB45が0.02T以上低下することを特徴とする方向性電磁鋼板の製造方法。
(12)(1)〜(11)のいずれかの項に記載の方向性電磁鋼板の製造方法において、冷延直前の熱延板時点で表層1/4領域の再結晶率が90%以下であることを特徴とする方向性電磁鋼板の製造方法。
(13)(1)〜(12)のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスについて、圧延ワークロールの直径が700mm以下とすることを特徴とする方向性電磁鋼板の製造方法。
(14)(1)〜(13)のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスについて、摩擦係数が0.10以上であることを特徴とする方向性電磁鋼板の製造方法。
(15)(1)〜(14)のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスについて、剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である部位の剪断歪速度が10/s以上であることを特徴とする方向性電磁鋼板の製造方法。
(16)(1)〜(15)のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスを複数回かつ連続して行うに際し、各圧延パス間時間が4.0秒以下であることを特徴とする方向性電磁鋼板の製造方法。
(17)(1)〜(16)のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスを複数回行い、これによる鋼板表層での剪断歪の累計を0.6以上とすることを特徴とする方向性電磁鋼板の製造方法。
(18)(1)〜(17)のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延におけるF℃を超える温度域での圧延において、圧延歪が2.0以下、または1回の圧延パスあたりの圧延歪が0.6以下、または複数回かつ連続したパスを行うに際し各圧延パス間時間が4.0秒以上であることを特徴とする方向性電磁鋼板の製造方法。
(19)(1)〜(18)のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延の最終パス後、水冷開始までの時間を2秒以下とすることを特徴とする方向性電磁鋼板の製造方法。
(20)(1)〜(19)のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延の最終パス後の水冷時の冷却速度を10℃/s以上とし700℃以下まで冷却することを特徴とする方向性電磁鋼板の製造方法。
(21)(1)〜(20)のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延の最終パス後の水冷後、500℃以上に昇温することなく冷延し、焼鈍することを特徴とする方向性電磁鋼板の製造方法。
(22)(1)〜(21)のいずれかの項に記載の方向性電磁鋼板の製造方法において、最終焼鈍後に0.5%以上、50%以下の歪を付与することを特徴とする方向性電磁鋼板の製造方法。
(10) In the method for producing a grain- oriented electrical steel sheet according to any one of (1) to (9), the same except that the steel components are the same and all rolling passes of hot rolling are performed at F ° C or higher. A method for producing a grain-oriented electrical steel sheet, wherein a cold-rolled sheet satisfies B45−B′45 ≧ 0.030 in comparison with the steel sheet manufactured in the process.
Here, for each variable, the magnetic flux density / T in the 45 ° direction from the rolling direction when the induced current density is 5000 A / m is B45. B shows the characteristics of the invention steel and B ′ shows the characteristics of the comparative steel.
(11) In the method for manufacturing a grain- oriented electrical steel sheet according to any one of the items (1) to (10) , when the surface layer 1/4 of the cold-rolled sheet is removed and the thickness is measured by a thickness center layer 1/2 thickness, B45. Is reduced by 0.02 T or more. A method for producing a grain-oriented electrical steel sheet, wherein
(12) (1) - In any of the manufacturing method of the grain-oriented electrical steel sheet according to item (11), the recrystallization of the surface layer 1/4 area hot rolled sheet when cold rolled just before 90% or less A method for producing a grain-oriented electrical steel sheet, comprising:
(13) In the method for producing a grain- oriented electrical steel sheet according to any one of the items (1) to ( 12) , in rolling in a temperature range of F ° C. or lower in hot rolling, shear strain or shear strain in the steel sheet surface layer / The rolling pass whose (thickness direction compressive strain) is 0.2 or more, wherein the diameter of the rolled work roll is 700 mm or less.
In any of the manufacturing method of the grain-oriented electrical steel sheet according to item (14) (1) to (13), in rolling in the temperature range of F ° C. or less in the hot rolling, shear strain or shear strain at the steel sheet surface layer / The method of manufacturing a grain-oriented electrical steel sheet characterized by having a friction coefficient of 0.10 or more for a rolling pass having a (sheet thickness direction compressive strain) of 0.2 or more.
The method of manufacturing a grain-oriented electrical steel sheet according to any one of the paragraphs (15) (1) to (14), in rolling in the temperature range of F ° C. or less in the hot rolling, shear strain or shear strain at the steel sheet surface layer For a rolling pass having a / (sheet thickness direction compressive strain) of 0.2 or more, a shear strain or shear strain / (part of the plate thickness direction compressive strain) has a shear strain rate of 10 / s or more at a site of 0.2 or more. A method for producing a grain-oriented electrical steel sheet, comprising:
The method of manufacturing a grain-oriented electrical steel sheet according to any one of the paragraphs (16) (1) to (15), in rolling in the temperature range of F ° C. or less in the hot rolling, shear strain or shear strain at the steel sheet surface layer / (Sheet thickness direction compressive strain) When performing rolling passes of 0.2 or more multiple times and continuously, the time between each rolling pass is 4.0 seconds or less. Production method.
The method of manufacturing a grain-oriented electrical steel sheet according to any one of the paragraphs (17) (1) to (16), in rolling in the temperature range of F ° C. or less in the hot rolling, shear strain or shear strain at the steel sheet surface layer / (Sheet thickness direction compressive strain) is produced a grain-oriented electrical steel sheet characterized by performing a rolling pass of 0.2 or more several times, thereby making the cumulative total of shear strain on the steel sheet surface layer 0.6 or more. Method.
(18) In the method for producing a grain- oriented electrical steel sheet according to any one of (1) to ( 17) , in rolling in a temperature range exceeding F ° C in hot rolling, the rolling strain is 2.0 or less, or A method for producing a grain-oriented electrical steel sheet, wherein the rolling strain per rolling pass is 0.6 or less, or the time between each rolling pass is 4.0 seconds or more when performing a plurality of continuous passes. .
(19) (1) In the manufacturing method of the grain-oriented electrical steel sheet according to any one of Items to (18), after the final pass of hot rolling, characterized in that the time until the water-cooling start than 2 seconds A method for producing grain-oriented electrical steel sheets.
The method of manufacturing a grain-oriented electrical steel sheet according to any one of the paragraphs (20) (1) to (19), until the cooling rate during water cooling after the final pass of hot rolling a 10 ° C. / s or higher 700 ° C. or less A method for producing a grain-oriented electrical steel sheet, characterized by cooling.
The method of manufacturing a grain-oriented electrical steel sheet according to any one of the paragraphs (21) (1) to (20), cooled with water after the final pass of hot-rolling, cold-rolled without heating to more than 500 ° C., A method for producing a grain-oriented electrical steel sheet, characterized by annealing.
(22) (1) In the manufacturing method of the grain-oriented electrical steel sheet according to any one of Items to (21), after final annealing of 0.5% or more, a direction, which comprises applying a strain of 50% or less Method for producing an electrical steel sheet.

本発明によれば、鉄損および磁束密度ともに優れた方向性電磁鋼板が製造でき、モーターやトランス用の鉄芯材料に最適である。   According to the present invention, a grain-oriented electrical steel sheet excellent in both iron loss and magnetic flux density can be manufactured, which is most suitable for iron core materials for motors and transformers.

以下に本発明について詳細に説明する。本発明者は、磁気特性の良好な電磁鋼板の製造方法を見出すべく最適製造条件(特に熱延条件)について検討を行い、低温大圧下熱延技術を適用することにより、{411}<148>近傍の、従来の電磁鋼板ではそれほど強い集積が見られなかった方位に、非常に強い集積が起きることを見出した。この集合組織の形成には熱延時の剪断変形が重要な役割を有しており、特に熱延板表層での剪断変形が原因となり、冷延再結晶後に磁気特性の板面内平均特性が大幅に向上するだけでなく、特に圧延方向から45°方向の磁気特性が顕著に改善されることを知見し、特願2004−8173、2276989、230693号の出願を行っている。   The present invention is described in detail below. The present inventor has studied the optimum manufacturing conditions (especially hot rolling conditions) in order to find a manufacturing method of an electrical steel sheet having good magnetic properties, and applied {411} <148> by applying a low temperature and high pressure hot rolling technique. It was found that very strong accumulation occurred in the vicinity, in which the conventional electromagnetic steel sheet did not show such strong accumulation. Shear deformation during hot rolling plays an important role in the formation of this texture, especially due to shear deformation on the surface of the hot-rolled sheet, and the in-plane average characteristics of the magnetic properties are greatly increased after cold-rolling recrystallization. In addition, it has been found that the magnetic properties in the direction of 45 ° from the rolling direction are remarkably improved, and Japanese Patent Application Nos. 2004-8173, 2276989, and 230693 have been filed.

この再結晶板表層で見られる特異な集合組織を有する材料を、さらに粒成長させた際の磁気特性の変化を検討するうち、この方位は、特に、二次再結晶を起こさせた場合に、通常では見られないほどの、結晶方位に関する非常に選択的な粒成長を起こし、従来の鋼板では見られない顕著に良好な磁気特性が得られることを明確にして本発明を完成したものである。   While examining the change in the magnetic properties when further growing the material with a unique texture found on the surface layer of this recrystallized plate, this orientation is particularly important when secondary recrystallization occurs. The present invention has been completed by clarifying that extremely selective grain growth with respect to crystal orientation, which is not normally seen, is caused, and that remarkably good magnetic properties not found in conventional steel plates can be obtained. .

従来の技術開発では、二次再結晶前の集合組織の制御が不十分であった。理論的には好ましいと思われる方位は提案されていたものの、その方位への制御方法や、どの程度まで制御すれば、実用的な効果が得られるかについては、全く知見を得られていなかった。   In the conventional technology development, control of the texture before secondary recrystallization has been insufficient. Although the orientation that seems to be theoretically desirable has been proposed, there has been no knowledge about the control method to that orientation and how much control is possible to obtain a practical effect. .

本発明は{411}<148>、技術的には、圧延方向が<011>方向となっている、いわゆるα−fiber方位をさらに板面内で20°程度回転させた方位(α−fiber±20°方位)への集積を制御することで、一次再結晶集合組織としての{411}<148>方位の効果を定量化して評価することに成功した結果なされた。その結果を勘案し、単なる二次再結晶後の特性だけでなく、さらにこの方位を適当な範囲内に制御すれば、従来より格段に簡易な製造条件でも良好な特性を得ることができ、工業的な効果が大きいことを知見して本発明がなされた。   In the present invention, {411} <148>, technically, the rolling direction is the <011> direction, and the so-called α-fiber orientation further rotated by about 20 ° within the plate surface (α-fiber ± By controlling the accumulation in the 20 ° orientation, the effect of {411} <148> orientation as the primary recrystallization texture was successfully quantified and evaluated. Considering the results, not only the characteristics after secondary recrystallization, but also by controlling this orientation within an appropriate range, good characteristics can be obtained even under much simpler manufacturing conditions than in the past. The present invention has been made on the basis of the knowledge that the effective effect is great.

本発明は、熱延温度を単に低くして低温で大圧下を付与するだけでなく、各パスで付与される歪量、圧延温度および圧延後の再結晶が起こりうる高温域での保持時間を考慮して最適化し、特性に十分な効果が得られるような熱延組織を形成させることに特徴がある。本発明の特徴の要点は次のとおりである。
(1)質量%で、C:0.040%以下、Si:0.05〜3.5%、Mn:3.0%以下、Al:3.5%以下、S:0.015%以下、P:0.25%以下、N:0.040%を含有した鋼板で、特に鋼板表層部での{411}<148>、{111}<211>方位の集積強度を特定範囲に限定する。
(2)スラブ加熱中の結晶粒成長を抑制し、かつ熱延における比較的高い温度域での圧延において表層部で大きな剪断歪が付与されても再結晶が起きないよう、Cu、Nb、Cr、Ni等の元素を適量含有させる。
(3)熱延板時点で表層部に未再結晶組織を残存させ、この未再結晶組織が残存したまま冷間圧延を行う。
(4)熱延における特定温度以下の温度域での圧延において圧下パススケジュールさらに圧延後の高温保持時間、冷却条件等の関係を制御する。
(5)特定温度以下の低温域での圧延おける剪断歪または剪断歪/(板厚方向圧縮歪)を特に板厚方向への歪分布を考慮し制御する。
The present invention not only provides a high rolling reduction at a low temperature by simply lowering the hot rolling temperature, but also provides the amount of strain applied in each pass, the rolling temperature, and the holding time in a high temperature range where recrystallization after rolling can occur. It is characterized by forming a hot-rolled structure that can be optimized by taking into account optimization and sufficient effects on the properties. The main features of the present invention are as follows.
(1) In mass%, C: 0.040% or less, Si: 0.05 to 3.5%, Mn: 3.0% or less, Al: 3.5% or less, S: 0.015% or less, The steel sheet containing P: 0.25% or less and N: 0.040%, in particular, the accumulation strength of {411} <148> and {111} <211> orientations in the steel sheet surface layer portion is limited to a specific range.
(2) Cu, Nb, Cr, which suppresses crystal grain growth during slab heating, and prevents recrystallization from occurring even when a large shear strain is applied to the surface layer in rolling in a relatively high temperature range in hot rolling. An appropriate amount of elements such as Ni is contained.
(3) An unrecrystallized structure is left in the surface layer portion at the time of hot rolling, and cold rolling is performed while the unrecrystallized structure remains.
(4) In rolling in the temperature range below a specific temperature in hot rolling, the rolling pass schedule, the relationship between the high temperature holding time after rolling, the cooling conditions and the like are controlled.
(5) The shear strain or shear strain / ((thickness direction compressive strain) in rolling in a low temperature range below a specific temperature is controlled, particularly considering the strain distribution in the thickness direction.

次に本発明の限定理由を説明する。含有量はすべて質量%である。   Next, the reason for limiting the present invention will be described. All the contents are mass%.

Cは本発明のように熱延温度が低い材料では特に結晶方位を好ましく制御し磁束密度を向上させる効果が強く現れるので、通常の無方向性電磁鋼板より高めに制御した特性向上が期待できる。また、固溶Cとして残存するCは単なる材料の高強度化効果ばかりでなく、クリープ変形を抑制することで高回転モーター等で問題となるローターの耐変形性を向上させる効果も有するが、過度なC含有は磁気特性を劣化させるので0.040%以下とする。好ましくは0.030〜0.0001%、さらに好ましくは0.020〜0.0005%、さらに好ましくは0.010〜0.0010%、さらに好ましくは0.008〜0.0015%である。もちろん、従来の多くの方向性電磁鋼板のように、製造の上工程ではC量を比較的高く含有させておき、製造工程の途中で脱炭焼鈍を行い、最終製品では、磁気時効などの悪影響を回避できる程度に低C化することは、本発明にとって全く問題となるものではない。また、炭化物は従来の方向性電磁鋼板において、インヒビターとして用いる技術が知られており、この目的でC量を従来技術の範囲内で制御することは、本発明にとって全く問題となるものではない。   C is particularly advantageous in the case of a material having a low hot rolling temperature as in the present invention, and the effect of improving the magnetic flux density by controlling the crystal orientation is particularly strong. Further, C remaining as a solid solution C has not only an effect of increasing the strength of the material but also an effect of improving the deformation resistance of the rotor, which is a problem in a high-speed motor by suppressing creep deformation. Since C content deteriorates magnetic properties, it is set to 0.040% or less. Preferably it is 0.030-0.0001%, More preferably, it is 0.020-0.0005%, More preferably, it is 0.010-0.0010%, More preferably, it is 0.008-0.0015%. Of course, like many conventional grain-oriented electrical steel sheets, the amount of carbon contained in the upper process of production is relatively high, decarburization annealing is performed during the production process, and the final product has adverse effects such as magnetic aging. It is not a problem at all for the present invention to reduce the C to such an extent that can be avoided. Further, a technique is known in which carbide is used as an inhibitor in a conventional grain-oriented electrical steel sheet. For this purpose, controlling the C content within the range of the prior art is not a problem for the present invention.

Siは、鋼板の電気抵抗を高め鉄損を低減することがよく知られており、電磁鋼板では当然のごとく添加される元素で、現状の一般的なSi含有量のすべての電磁鋼板への適用が可能である。磁気特性と通板性の兼ね合いから0.05〜6.5%とする。0.05%未満では良好な磁気特性が得られず、6.5%を超えると脆化のため製造工程での通板性が顕著に劣化する。好ましくは0.3〜5.5%、さらに好ましくは0.5〜4.5%、さらに好ましくは0.8〜4.0%である。一般的な方向性電磁鋼板は、3.0〜3.5%程度で製造されている。   Si is well known to increase the electrical resistance of steel sheets and reduce iron loss. It is an element that is naturally added to electrical steel sheets, and is applicable to all electrical steel sheets with the current general Si content. Is possible. In view of the balance between magnetic properties and sheet passing properties, the content is set to 0.05 to 6.5%. If it is less than 0.05%, good magnetic properties cannot be obtained, and if it exceeds 6.5%, the plate-passability in the production process is significantly deteriorated due to embrittlement. Preferably it is 0.3-5.5%, More preferably, it is 0.5-4.5%, More preferably, it is 0.8-4.0%. A general grain-oriented electrical steel sheet is manufactured at about 3.0 to 3.5%.

Mnは、Sと反応し硫化物を形成する元素である。通常Mnが中途半端に少ない場合には熱延中に微細なMnSが析出し鉄損および磁束密度を著しく劣化させる場合がある。しかし、本発明においては熱延条件を特定の範囲で制御することで、この悪影響を回避する効果も現れることから、Mnの下限は特に設けない。一方、Mnは固溶Mnとして鋼板の電気抵抗を上昇させ鉄損を低減させる効果を有するが、あまりに多量に含有させると材料本来の飽和磁束密度を低下させてしまうため上限を3.0%とする。また、Mnは、従来の方向性電磁鋼板において、MnS等の形でインヒビターとして用いられるものであり、従来技術の範囲内で制御することは、本発明にとって全く問題となるものではない。   Mn is an element that reacts with S to form a sulfide. Usually, when Mn is little in the middle, fine MnS may precipitate during hot rolling, which may significantly deteriorate the iron loss and magnetic flux density. However, in the present invention, by controlling the hot rolling conditions within a specific range, an effect of avoiding this adverse effect also appears, and therefore there is no particular lower limit for Mn. On the other hand, Mn has the effect of increasing the electric resistance of the steel sheet and reducing the iron loss as a solid solution Mn, but if it is contained too much, the original saturation magnetic flux density is lowered, so the upper limit is 3.0%. To do. Further, Mn is used as an inhibitor in the form of MnS or the like in conventional grain-oriented electrical steel sheets, and control within the scope of the prior art is not a problem for the present invention.

Alは、Siと同様、鋼板の電気抵抗を高め鉄損を低減する目的で積極的に添加される。Alが高くなると鋳造性が顕著に劣化するため3.5%以下とする。下限は特に設ける必要はなく、Al=0%でもよいが、0.01〜0.05%程度の量では微細なAlNを形成し磁気特性、特に鉄損を劣化させる場合があるので注意が必要である。好ましくは0.005%以下および0.1〜3.0%、さらに好ましくは0.003%以下および0.3〜2.5%、さらに好ましくは0.002%以下および0.5〜2.0%、さらに好ましくは0.001%以下および0.7〜1.5%である。また、Alは、従来の方向性電磁鋼板において、AlN等の形でインヒビターとして用いられるものであり、従来技術の範囲内で制御することは、本発明にとって全く問題となるものではない。   Al, like Si, is actively added for the purpose of increasing the electrical resistance of the steel sheet and reducing the iron loss. When Al becomes high, castability deteriorates remarkably, so 3.5% or less. The lower limit is not particularly required, and Al = 0% may be used. However, if the amount is about 0.01 to 0.05%, fine AlN may be formed to deteriorate magnetic characteristics, particularly iron loss. It is. Preferably it is 0.005% or less and 0.1-3.0%, More preferably, it is 0.003% or less and 0.3-2.5%, More preferably, it is 0.002% or less and 0.5-2. 0%, more preferably 0.001% or less and 0.7 to 1.5%. Further, Al is used as an inhibitor in the form of AlN or the like in a conventional grain-oriented electrical steel sheet, and control within the scope of the prior art is not a problem at all for the present invention.

Sは硫化物量に直接関係する。鋼中に硫化物を形成させることで本発明が目的とする熱延工程での粒成長や再結晶を抑制することも可能であるが、含有S量が多いと熱延条件を適当に制御したとしても析出量が多くなり粒成長性を阻害し特に鉄損を劣化させるためあまり好ましくはない手段である。このため、上限は0.015%とする。なお、鋼板の磁気特性をより高めるためには、0.005%以下とすることが好しく、さらに好ましくは0.003%以下、さらに好ましくは0.002%以下、さらに好ましくは0.001%以下であり、0%でもよい。また、硫化物は、従来の方向性電磁鋼板において、インヒビターとして用いられるものであり、この目的でS量を従来技術の範囲内で制御することは、本発明にとって全く問題となるものではない。   S is directly related to the amount of sulfide. Although it is possible to suppress grain growth and recrystallization in the hot rolling step aimed by the present invention by forming sulfides in the steel, the hot rolling conditions are appropriately controlled when the content of S is large. However, this is a less preferable means because the amount of precipitation increases, which inhibits the grain growth and deteriorates the iron loss. For this reason, the upper limit is made 0.015%. In order to further improve the magnetic properties of the steel sheet, it is preferably 0.005% or less, more preferably 0.003% or less, still more preferably 0.002% or less, and still more preferably 0.001%. It may be 0%. In addition, sulfide is used as an inhibitor in conventional grain-oriented electrical steel sheets, and controlling the amount of S within the range of the prior art for this purpose is not a problem for the present invention.

Pは、磁気特性にとって好ましくない比較的低温で析出するCuまたはMnの硫化物の析出温度を上昇させる効果を有するので積極的に添加することが可能である。一方、鋼板の硬度を高め、打ち抜き性に強く影響するので、所望の打ち抜き硬度によりその添加量は制限される。また、過剰に含有すると冷延性などが顕著に劣化し鋼板の製造に支障をきたす場合があるので上限を0.25%とする。   P has the effect of increasing the precipitation temperature of Cu or Mn sulfide that precipitates at a relatively low temperature, which is undesirable for the magnetic properties, and therefore can be positively added. On the other hand, since the hardness of the steel sheet is increased and the punchability is strongly affected, the amount of addition is limited by the desired punch hardness. Further, if it is contained excessively, the cold-rollability and the like are remarkably deteriorated, which may hinder the production of the steel sheet, so the upper limit is made 0.25%.

Nは、Alを含有する鋼においては含有量が多いと窒化物が多くなり結晶粒成長性を阻害するため0.004%程度以下に低く制御されている。しかし、Al含有量を0.005%程度以下に抑えればこの悪影響は全く考慮する必要はない。むしろCと同様に鋼中に固溶することで結晶方位を好ましくする効果やモーターコアの耐クリープ変形性や温間での疲労特性を向上させ、またNb含有鋼の場合にはNbNにより再結晶を遅延させる効果も有するため積極的に添加することも可能である。ただし、過剰な添加は磁気時効性の問題や溶鋼からの凝固時に生成するミクロボイドに起因する鋼板欠陥が多発するため上限を0.040%とする。生産性を考慮し好ましくは0.020%以下、さらに好ましくは0.015%以下とする。結晶方位制御の観点からは0.0002%以上とすることが好ましく、さらに好ましくは0.0005%以上、さらに好ましくは0.001%以上、さらに好ましくは0.0015%以上、さらに好ましくは0.003%以上、さらに好ましくは0.005%以上である。また、窒化物は、従来の方向性電磁鋼板において、インヒビターとして用いられるものであり、この目的でN量を従来技術の範囲内で制御することは、本発明にとって全く問題となるものではない。   In the steel containing Al, N is controlled to a low level of about 0.004% or less because a large amount of nitride increases the amount of nitride and hinders crystal grain growth. However, if the Al content is suppressed to about 0.005% or less, this adverse effect does not need to be considered at all. Rather, the effect of making the crystal orientation favorable by dissolving in steel as in C, the creep deformation resistance of the motor core, and the fatigue property in warm are improved, and in the case of Nb-containing steel, recrystallization is performed with NbN. Since it also has the effect of delaying, it can be added positively. However, excessive addition causes a problem of magnetic aging and steel plate defects due to microvoids generated during solidification from molten steel, so the upper limit is made 0.040%. Considering productivity, it is preferably 0.020% or less, more preferably 0.015% or less. From the viewpoint of controlling the crystal orientation, the content is preferably 0.0002% or more, more preferably 0.0005% or more, still more preferably 0.001% or more, still more preferably 0.0015% or more, and still more preferably 0.00. It is 003% or more, more preferably 0.005% or more. In addition, nitride is used as an inhibitor in conventional grain-oriented electrical steel sheets, and controlling the N content within the range of the prior art for this purpose is not a problem for the present invention.

Cuは本発明では、固溶Cuとしてのみならず、鋼板中にCuを主体とする金属相(以降、本明細書では「Cu金属相」と記述)を形成させ鋼板の特に再結晶または粒成長を遅延させるために活用される。この範囲として0.1〜8.0%に限定する。好ましくは0.8〜4.9%である。Cuの含有量が低いと再結晶・粒成長遅延効果が小さくなるとともに再結晶・粒成長遅延効果を得るための熱処理条件が狭い範囲に限定され、製造条件の管理、生産調整の自由度が小さくなる。また、Cuの含有量が過度に高いと磁気特性への影響が大きくなり特に鉄損の上昇が著しくなる。また、過剰なCuは熱履歴によっては望まない工程において鋼中にCu金属相を形成し、例えば、熱延中などに高温で比較的粗大なCu金属相を形成し、磁気特性に悪影響を及ぼすばかりでなく鋼板を過度に硬質化または脆化させ通板性を顕著に劣化させ生産性を阻害する場合もある。特に好ましい範囲は1.0〜3.9%である。さらに好ましくは1.3〜3.4%、さらに好ましくは1.5〜2.9%である。   In the present invention, Cu forms not only solute Cu but also a metal phase mainly composed of Cu in the steel sheet (hereinafter referred to as “Cu metal phase” in this specification), and particularly recrystallization or grain growth of the steel sheet. Used to delay. This range is limited to 0.1 to 8.0%. Preferably it is 0.8 to 4.9%. When the Cu content is low, the recrystallization / grain growth retardation effect is reduced, and the heat treatment conditions for obtaining the recrystallization / grain growth retardation effect are limited to a narrow range, and the degree of freedom in management of production conditions and production adjustment is small. Become. On the other hand, if the Cu content is excessively high, the magnetic properties are greatly affected, and the iron loss is particularly increased. In addition, excessive Cu forms a Cu metal phase in steel in an undesired process depending on the thermal history, for example, forms a relatively coarse Cu metal phase at a high temperature during hot rolling, and adversely affects magnetic properties. In addition, the steel sheet may be excessively hardened or embrittled to significantly deteriorate the sheet-passability and impede productivity. A particularly preferable range is 1.0 to 3.9%. More preferably, it is 1.3-3.4%, More preferably, it is 1.5-2.9%.

NbもCu同様、本発明では固溶Nbとしてのみならず、鋼板中にNbの主として炭・窒化物(以降、本明細書では「Nb析出物」と記述)を形成させ鋼板の再結晶または粒成長を遅延させるために活用される。この範囲として0.05〜8.0%に限定する。好ましくは0.08〜2.0%である。Nbの含有量が低いと再結晶遅延効果が小さくなるとともに再結晶・粒成長遅延効果を得るための熱処理条件が狭い範囲に限定され、製造条件の管理、生産調整の自由度が小さくなる。また、Nbの含有量が過度に高いと磁気特性への影響が大きくなり特に鉄損の上昇が著しくなる。一方、C、N含有量にもよるが、過剰なNbは熱履歴によっては鋼中に過剰なNb析出物を形成し、再結晶を遅延させるものの上述のCu金属相よりも磁気特性劣化要因となりやすい。また例えば、熱延中などに高温で比較的粗大なNb析出物を形成した場合には、再結晶・粒成長遅延効果が小さくなるばかりか、磁気特性への悪影響が大きくなる場合もある。特に好ましい範囲は0.1〜1.5%である。さらに好ましくは0.12〜1.0%、さらに好ましくは0.15〜0.8%である。   Nb as well as Cu is not only solid solution Nb in the present invention, but also Nb mainly carbon / nitride (hereinafter referred to as “Nb precipitate” in the present specification) is formed in the steel sheet to recrystallize or grain the steel sheet. Used to delay growth. This range is limited to 0.05 to 8.0%. Preferably it is 0.08 to 2.0%. When the Nb content is low, the recrystallization delay effect is reduced and the heat treatment conditions for obtaining the recrystallization / grain growth delay effect are limited to a narrow range, and the degree of freedom in management of production conditions and production adjustment is reduced. On the other hand, if the Nb content is excessively high, the magnetic properties are greatly affected, and the iron loss is particularly increased. On the other hand, although it depends on the C and N contents, excessive Nb forms excessive Nb precipitates in the steel depending on the thermal history and delays recrystallization, but causes deterioration of magnetic properties more than the above Cu metal phase. Cheap. Further, for example, when a relatively coarse Nb precipitate is formed at a high temperature during hot rolling or the like, not only the recrystallization / grain growth delay effect is reduced, but also the adverse effect on the magnetic properties may be increased. A particularly preferable range is 0.1 to 1.5%. More preferably, it is 0.12-1.0%, More preferably, it is 0.15-0.8%.

さらに上述のCu、Nbと再結晶・粒成長遅延において同様の効果を有する元素としてCr、B、Ni、Co、Mo、Tiが挙げられる。これらの含有量はCuとNbと同様に再結晶・粒成長遅延効果と磁気特性への影響を勘案し、Cr:1.0〜15.0%、B:0.0020〜0.0150%、Ni:0.2〜8.0%、Co:0.2〜8.0%、Mo:0.2〜8.0%、Ti:0.2〜2.0%とする。なお、再結晶遅延効果を明確に得るには、これらの元素のうち少なくとも一種を目的とする再結晶・粒成長遅延効果を発揮する量だけ含有することが重要である。二種以上の元素を少量ずつ含有させることで目的とする再結晶・粒成長遅延効果を得ることも可能である。   Furthermore, Cr, B, Ni, Co, Mo, and Ti are mentioned as elements having the same effect in the above-described Cu, Nb and recrystallization / grain growth delay. These contents are similar to Cu and Nb in consideration of recrystallization / grain growth delay effect and influence on magnetic properties, Cr: 1.0 to 15.0%, B: 0.0020 to 0.0150%, Ni: 0.2-8.0%, Co: 0.2-8.0%, Mo: 0.2-8.0%, Ti: 0.2-2.0%. In order to clearly obtain the recrystallization retardation effect, it is important to contain at least one of these elements in an amount that exhibits the recrystallization / grain growth retardation effect. It is also possible to obtain the intended recrystallization / grain growth delay effect by containing two or more elements in small amounts.

この他にSe、W,Sn,Sb,Mg,Ca,Ce、REM等、従来の方向性電磁鋼板において、磁気特性の更なる向上、インヒビターとしての活用、窒化や酸化の制御、表面コーティング制御、強度、耐食性や疲労特性等の部材としての付加機能、また鋳造性や焼鈍通板性、スクラップ使用など製造工程上の生産等を向上させる目的で添加が検討されている元素を公知技術により想定されている量程度まで添加することは本発明にとって何ら影響を及ぼすものではない。むしろ相乗効果として好ましい効果を発揮する場合もある。また、これら元素が原料やスクラップ等から不可避的に含有された場合、さらには他の各種の微量元素が含まれる場合も本発明の効果になんら影響を与えるものではない。言い換えればこれらの元素の影響にあえて言及するまでもなく、本発明で開示している製造工程において何ら問題なく製品を得ることができる。   In addition, Se, W, Sn, Sb, Mg, Ca, Ce, REM, etc., in conventional grain-oriented electrical steel sheets, further improvement of magnetic properties, utilization as inhibitors, control of nitriding and oxidation, surface coating control, Elements known to be added for the purpose of improving additional functions as members such as strength, corrosion resistance and fatigue characteristics, as well as production in the manufacturing process, such as castability, annealing passability, and scrap use, are assumed by known techniques. The addition to a certain amount does not affect the present invention. Rather, there is a case where a favorable effect is exhibited as a synergistic effect. Further, when these elements are inevitably contained from raw materials, scraps, etc., and even when various other trace elements are contained, the effects of the present invention are not affected at all. In other words, needless to mention the influence of these elements, a product can be obtained without any problems in the production process disclosed in the present invention.

次に本発明鋼の特徴を説明する。本発明鋼は二次再結晶後の最終的な使用状況において従来にない、非常に良好な特性を示すものであるが、その特性は、従来からも特性にとって好ましいものと考えられていた方位への集積を高めたものであり、この集積度で本発明を規定することも可能であるが、理論的には、良好な方位への集積度を高めれば特性が向上するのは当然のことであり、この点を説明したのでは本発明の特徴が明確になりにくい。本発明の特徴は、むしろ、二次再結晶が起きる前の状態で定義すると明確となる。以下の記述では、方向性電磁鋼板を使用するにあたって、最終的に二次再結晶や、また厳密な意味での二次再結晶ではなくとも、熱処理により異常粒成長させる前、すなわち、鋼板メーカーで冷延後の未再結晶組織から、一次的な再結晶焼鈍を含めた熱処理を完了した状態での、集合組織および磁気特性の観点から述べる。   Next, features of the steel of the present invention will be described. The steel of the present invention exhibits very good properties that have not been seen in the final use after secondary recrystallization, but the properties have been considered to be favorable for the properties. It is possible to define the present invention with this degree of integration, but theoretically it is natural that the characteristics improve if the degree of integration in a good orientation is increased. There is a description of this point, and it is difficult to clarify the characteristics of the present invention. Rather, the characteristics of the present invention become clear when defined in a state before secondary recrystallization occurs. In the following description, when using a grain-oriented electrical steel sheet, even if it is not finally secondary recrystallization or secondary recrystallization in a strict sense, before the abnormal grain growth by heat treatment, This will be described from the viewpoint of the texture and magnetic properties in a state in which heat treatment including primary recrystallization annealing is completed from the unrecrystallized structure after cold rolling.

なお、本発明は、厳密な意味で二次再結晶のみにより粒成長させる場合だけに、適用されるものではなく、一次再結晶と二次再結晶が同時に起きる場合、三次再結晶が起きる場合、また、何らかの原因で付与された歪を起因として歪誘起粒成長が起きるような場合のすべてに適用されるものとする。これらが、同時に起きるような場合も想定され、また実際の現象を完全に異常粒成長メカニズムで分離することは不可能でもあるため、本発明では、粒径が顕著に成長し、かつ集合組織が大きく変化するような工程を含む鋼板を対象とする。本発明ではこのような粒成長を、代表して「二次再結晶」と記述するものであり、一部では、確認の意味も含めて、「異常粒成長」という語句も合わせて用いている。   In the strict sense, the present invention is not applied only in the case of grain growth only by secondary recrystallization, when primary recrystallization and secondary recrystallization occur simultaneously, when tertiary recrystallization occurs, Further, the present invention is applied to all cases where strain-induced grain growth occurs due to strain applied for some reason. Since these may occur at the same time, and it is impossible to completely separate the actual phenomenon by the abnormal grain growth mechanism, in the present invention, the grain size grows significantly and the texture is The target is steel sheets that include processes that vary greatly. In the present invention, such grain growth is representatively described as “secondary recrystallization”, and in part, the phrase “abnormal grain growth” is also used, including the meaning of confirmation. .

本発明の特徴の記述において「方位の集積強度」という表現を用いるが、これは通常、結晶材料の集合組織を表示する際に用いられる、「ランダム強度に対する比」を意味するものであり、通常、X線、電子線や中性子線を用いて測定される当業者においては普通に用いられるものである。   In the description of the characteristics of the present invention, the expression “azimuth accumulated strength” is used, which usually means “ratio to random strength”, which is used when displaying the texture of crystal material. , X-rays, electron beams and neutron beams are commonly used by those skilled in the art.

本発明鋼の特徴は鋼板の表層部、すなわち鋼板表層1/4またはそれより表層側の部位においての集合組織を制御していることである。なお、本発明で限定する鋼板表層1/4またはそれより表層側の部位においての集合組織に関する条件は、ロールによる圧延に類する製造条件であれば、表層部ほど満足しやすくなるものである。ただし、最表層の非常に薄い層のみで満足するのでは、発明の効果が非常に小さくなってしまう。このため、少なくとも表層の1/10位置で満足することが好ましく、さらに1/8位置で満足すれば十分な効果が得られるものである。   The feature of the steel of the present invention is that the texture is controlled at the surface layer portion of the steel sheet, that is, at the steel sheet surface layer 1/4 or at the surface layer side. In addition, if the conditions regarding the texture in the steel sheet surface layer 1/4 or the portion on the surface layer side limited by the present invention are production conditions similar to rolling with a roll, the surface layer portion is more easily satisfied. However, if only a very thin layer of the outermost layer is satisfied, the effect of the invention will be very small. For this reason, it is preferable to satisfy at least 1/10 position of the surface layer, and if it is satisfied at 1/8 position, a sufficient effect can be obtained.

集合組織について一つ目の特徴は、従来の鋼板と比較し、特に表層部でα−fiber±20°の方位への集積が高く、発明鋼においてもこの方位への集積は中心部よりも表層部で顕著に高くなっていることである。α−fiber±20°方位とは前述のように圧延方向が<011>方向となっている、いわゆるα−fiber方位をさらに板面内で20°程度回転させた方位のことであり、本発明で重要な方位である{411}<148>方位はα−fiber±20°方位上の方位である。
まず、この方位への集積の必要性、効果について説明する。
The first feature of the texture is that the accumulation in the α-fiber ± 20 ° orientation is particularly high in the surface layer compared to the conventional steel sheet. It is that it is significantly higher in the part. The α-fiber ± 20 ° azimuth is an orientation obtained by further rotating the so-called α-fiber azimuth in the plate surface by about 20 °, in which the rolling direction is the <011> direction as described above. The {411} <148> orientation, which is an important orientation, is an orientation on the α-fiber ± 20 ° orientation.
First, the necessity and effect of integration in this direction will be described.

従来から方向性電磁鋼板において、二次再結晶のメカニズムとして粒界性格に起因するものが提案されており、実際の現象を非常によく説明できることが多く報告されている(CLSモデル)。このメカニズムによれば、二次再結晶後に、方向性電磁鋼板として好ましいゴス方位を発達させるには、一次再結晶方位としては、これとΣ9粒界の関係を有するいくつかの方位、すなわち{111}<112>、{411}<148>等を発達させておくことが好ましいことが示唆されている。しかし、これらの方位のうち、本発明が特徴とする{411}<148>への集積は、現在主流である工業的なプロセス、すなわち鋳造−熱延(−熱延板焼鈍)−冷延−焼鈍というプロセスではそれほど高くならず、一次再結晶後の鋼板において{411}<148>方位を顕著に強化した製品は、一般的には実用化されていない。本発明は、一次再結晶時点で{411}<148>方位を含むα−fiber±20°方位への集積度を比較的簡単な方法で顕著に高める技術を開示し、その定量的な効果を検討し、なされたものである。   Conventionally, in a grain-oriented electrical steel sheet, a secondary recrystallization mechanism has been proposed due to the grain boundary character, and it has been reported that the actual phenomenon can be explained very well (CLS model). According to this mechanism, in order to develop a Goss orientation preferable as a grain-oriented electrical steel sheet after secondary recrystallization, the primary recrystallization orientation includes several orientations having a Σ9 grain boundary relationship, that is, {111 } <112>, {411} <148>, etc. are suggested to be preferred. However, among these orientations, the integration into {411} <148>, which is a feature of the present invention, is an industrial process that is currently mainstream, namely casting-hot rolling (-hot-rolled sheet annealing)-cold rolling- In the annealing process, the product does not become so high, and a product in which the {411} <148> orientation is remarkably strengthened in the steel sheet after the primary recrystallization has not been put into practical use in general. The present invention discloses a technique for remarkably increasing the degree of integration in α-fiber ± 20 ° azimuth including {411} <148> azimuth at the time of primary recrystallization by a relatively simple method, and its quantitative effect is disclosed. It has been studied and made.

さらに本発明の特徴は、鋼板の表層部でこの方位への集積が高くなっていることである。特に特殊な条件ではない製造範囲においてはα−fiber±20°方位の中でも{411}<148>近傍がピーク強度となる。もちろんこれはこれ以外の方位がピークとなったものを除外するものではなく、α−fiber±20°方位が表層部で高くなっていることが本発明鋼の明確な特徴である。   Furthermore, the feature of the present invention is that the accumulation in this orientation is high in the surface layer portion of the steel sheet. In the manufacturing range which is not particularly special, the peak intensity is in the vicinity of {411} <148> even in the α-fiber ± 20 ° azimuth. Of course, this does not exclude the case where the orientation other than this is a peak, and it is a clear feature of the steel of the present invention that the α-fiber ± 20 ° orientation is higher in the surface layer portion.

本発明では代表的に{411}<148>方位により本発明鋼を特徴付け、鋼板の表層部での{411}<148>方位の集積強度≧4.0を制限条件として規定する。好ましくは6.0以上、さらに好ましくは8.0以上、好ましい成分や熱延条件では10.0以上にもなり、非常に好ましい特性が得られる。またα−fiber上の方位である{411}<011>方位の集積強度との関係で{411}<148>方位の集積強度/{411}<011>方位の集積強度≧4.0とする。   In the present invention, the steel of the present invention is typically characterized by the {411} <148> orientation, and the integrated strength of the {411} <148> orientation at the surface layer portion of the steel plate ≧ 4.0 is defined as the limiting condition. Preferably it is 6.0 or more, More preferably, it is 8.0 or more, and it becomes 10.0 or more on a preferable component and hot rolling conditions, and a very preferable characteristic is acquired. Also, the integrated strength of {411} <148> orientation / integrated strength of {411} <011> orientation ≧ 4.0 in relation to the integrated strength of {411} <011> orientation which is the orientation on α-fiber. .

従来から通常の工業的プロセスではα−fiberへの集積は比較的簡単で{411}<001>方位も少なからず存在する方位であるが、本発明では通常発達しない{411}<148>方位をその数倍以上に集積させ、むしろ通常存在する{411}<001>方位の発達を抑制したものである。この点から本発明で制御する{411}<148>方位への集積の高さは非常に特異なものと言える。好ましくは6.0以上、さらに好ましくは8.0以上、さらに成分や製造条件などが好ましい場合には{411}<011>の10.0倍以上に強く集積させることも可能である。   Conventionally, in normal industrial processes, integration into α-fiber is relatively simple and there are a few {411} <001> orientations. However, in the present invention, {411} <148> orientations that are not normally developed are used. It is accumulated several times or more, and rather, the development of the {411} <001> orientation that normally exists is suppressed. From this point, it can be said that the height of integration in the {411} <148> direction controlled by the present invention is very unique. Preferably, it is 6.0 or more, more preferably 8.0 or more, and when the components and production conditions are more preferable, it is possible to accumulate more strongly 10.0 times or more than {411} <011>.

ここで興味を引くのは、本発明において特徴的なα−fiber±20°方位が顕著に増加した場合、そこからの広がり、つまり副方位として{411}<011>方位が増加するのではなく、むしろ{411}<011>方位の減少を伴って{411}<148>方位が増加する傾向があることである。むろんこれは絶対的なものではないが、この点から{411}方位に関する上述の比はできるだけ大きいほうが好ましい特性を示すようになる。   What is interesting here is that when the α-fiber ± 20 ° azimuth characteristic of the present invention increases significantly, the spread from there, that is, the {411} <011> azimuth does not increase as a sub-azimuth. Rather, the {411} <148> orientation tends to increase with a decrease in {411} <011> orientation. Of course, this is not absolute, but from this point, it is preferable that the above-described ratio with respect to the {411} orientation is as large as possible.

また、本発明鋼ではα−fiber±20°方位への集積を高めているため他の方位への集積が低下している。α−fiber方位そのものが低下することが集合組織上の一つの特徴であるが、発明の効果においては{111}<211>方位の集積強度が低下していることに特徴があり、{111}<211>方位の平均集積強度<2.0 を満たすことを特徴とする。好ましくは1.5以下、さらに好ましくは1.0以下、さらに好ましくは0.7以下である。集合組織的には以上のような範囲を外れると本発明の効果が小さくなる。   Moreover, in the steel of the present invention, the accumulation in the α-fiber ± 20 ° azimuth is increased, and therefore the accumulation in other azimuths is lowered. One characteristic on the texture is that the α-fiber orientation itself is lowered, but the effect of the invention is that the integrated intensity of {111} <211> orientation is reduced, and {111} <211> Orientation average accumulated intensity <2.0. Preferably it is 1.5 or less, More preferably, it is 1.0 or less, More preferably, it is 0.7 or less. If the texture is outside the above range, the effect of the present invention is reduced.

集合組織について二つ目の特徴は、特定の結晶面が板表面に平行になっている方位について、板面内での方位分布が従来の鋼板と比較し、ある意味で、よりランダムになっていることである。   The second feature of the texture is that the orientation distribution in the plate surface is more random in a sense than the conventional steel plate for the orientation in which a specific crystal plane is parallel to the plate surface. It is that you are.

特定の方位の一つは結晶の{411}面が板表面と平行である方位で、一般的には{411}方位または<411>//NDなどと記述される方位である。従来の集合組織制御においてはこの方位に関しては板面内で<011>方向が板圧延方向と平行になっている方位、一般的にはα−fiberと呼ばれる方位への集積が強くなる。この方位は{411}<011>方位であるが、{411}方位においてこの{411}<011>方位に方位集積すると{411}方位に関して板面内の強度分布は180°毎の周期性しか有さないため板面内の異方性が強くなる。言い換えると、α−fiber上の{411}方位に関して板面内の全周にわたる強度分布は2つの極大値しか示さない。   One of the specific orientations is an orientation in which the {411} plane of the crystal is parallel to the plate surface, and is generally an orientation described as {411} orientation or <411> // ND. In the conventional texture control, the accumulation in the direction in which the <011> direction is parallel to the plate rolling direction in the plate surface, generally in the direction called α-fiber, is strong. This azimuth is {411} <011>. However, if the {411} azimuth is accumulated in the {411} <011> azimuth, the intensity distribution in the plate surface with respect to the {411} azimuth is only periodic by 180 °. Since it does not have, the anisotropy in the plate surface becomes strong. In other words, the intensity distribution over the entire circumference in the plate surface with respect to the {411} orientation on the α-fiber shows only two local maximum values.

これに対し、本発明は{411}方位に関しては{411}<011>方位ではなく{411}<148>方位近傍に集積強度のピークを有する。この方位のピークが明確になると{411}方位に関して板面内の強度分布は約40°と約140°の間隔が交互に現れる周期性を示し板面内の異方性が小さくなる。言い換えると、{411}方位に関して板面内の全周にわたる強度分布は4つの極大値を示すようになる。   In contrast, the present invention has an integrated intensity peak in the vicinity of the {411} <148> direction, not the {411} <011> direction with respect to the {411} direction. When the peak of this orientation becomes clear, the intensity distribution in the plate surface with respect to the {411} orientation shows periodicity in which intervals of about 40 ° and about 140 ° appear alternately, and the anisotropy in the plate surface becomes small. In other words, the intensity distribution over the entire circumference in the plate surface with respect to the {411} orientation shows four local maximum values.

上記の特定方位の説明において、{411}方位に関しては代表的に{411}<148>方位で説明したが、本発明は集積強度が極大となる方位をこれらに限定するものではない。{411}方位に関しては一般的に形成される{411}<011>方位による2個の極大値より多くの極大値を有することを特徴とし、{411}方位に関しては4個以上の極大値を有するものである。{411}方位においては例えば、上記の{411}<148>に加えて、{411}<011>にもピークを有する場合があり、この場合は、極大値は6個にもなる。   In the above description of the specific orientation, the {411} orientation has been typically described as the {411} <148> orientation, but the present invention does not limit the orientation in which the integrated strength is maximized. The {411} orientation is characterized by having more local maximum values than the two local maximum values formed by the {411} <011> orientation, and the {411} orientation has four or more local maximum values. I have it. In the {411} orientation, for example, in addition to the above {411} <148>, {411} <011> may also have a peak. In this case, the maximum value is six.

なお、本発明では板面内の集積強度分布における極大値の数を規定しているが、実際の板では結晶方位の局所的な変動やばらつき、また測定条件や測定ばらつき等または測定データの解析精度等により、集積強度は微妙に変動し、これらの条件によっても極大値の数が影響される。このため本発明では極大値を次のように規定するものとする。測定方法は特に問わないが、一般的に集合組織を測定するために用いられている方法によるものとする。一般的には電子線やX線を用いた方法が広く利用されている。   In the present invention, the number of local maximum values in the integrated intensity distribution in the plate is specified, but in the actual plate, local fluctuations and variations in crystal orientation, measurement conditions, measurement variations, etc., or analysis of measurement data Accumulation strength varies slightly depending on accuracy, etc., and the number of local maximum values is also affected by these conditions. For this reason, in the present invention, the maximum value is defined as follows. The measuring method is not particularly limited, but it is based on a method generally used for measuring a texture. In general, a method using an electron beam or an X-ray is widely used.

例えばX線で測定する場合、通常70μm程度の厚さのサンプルを製品から取り出すが製品厚さが薄い場合、例えば0.12mm程度の厚さの板からこのようなサンプルを取り出すと最表層から中心層までの情報を含んだものとなってしまう。このような場合には板厚方向の集合組織の変化が明確になるようにサンプル厚さを通常より薄くすることや厚さ方向の情報が混在し難い電子線、たとえばEBSPなどによる方法を用いるべきであることは注意を要する。   For example, when measuring with X-rays, a sample with a thickness of about 70 μm is usually taken out from the product, but when the product thickness is thin, for example, when such a sample is taken out from a plate with a thickness of about 0.12 mm, it is centered from the outermost layer. The information up to the layer will be included. In such a case, the sample thickness should be made thinner than usual so that the change in texture in the plate thickness direction becomes clear, or a method using an electron beam, such as EBSP, which is difficult to mix information in the thickness direction should be used. It is necessary to be careful.

また方位分布を求めるには数値的な解析処理が必要になるが、一般的にはODFやベクトル法と呼ばれる三次元集合組織解析法が用いられている。測定条件や解析条件は一般的に認知されている程度の条件で十分である。特定面に関しての板面内の強度分布は5°毎、全周72点で表示するものとする。この表示点数が極端に少なくなれば、本発明で数えられるべき極大値が見落とされ極大値の数も減ることになり、極端に多くなると強度のばらつき等の誤差をも計測するようになり不当に極大値の数が増大してしまう。また、極大に関しても特性への影響を無視できる程度の小さな変動まで数えることは本発明の本意ではない。また、極大であっても、集積強度が低いものは、本発明で期待している特性の向上には寄与しない。   Further, in order to obtain the orientation distribution, a numerical analysis process is required. Generally, a three-dimensional texture analysis method called ODF or vector method is used. Measurement conditions and analysis conditions that are generally recognized are sufficient. It is assumed that the intensity distribution in the plate surface with respect to the specific surface is displayed at 72 points on the entire circumference every 5 °. If the number of display points is extremely reduced, the maximum value to be counted in the present invention is overlooked and the number of maximum values is also reduced.If the number is extremely increased, errors such as intensity variations are measured, which is unreasonable. The number of local maxima increases. In addition, regarding the maximum, it is not the intention of the present invention to count even small fluctuations that can ignore the influence on the characteristics. Moreover, even if it is maximum, those with low integration strength do not contribute to the improvement of characteristics expected in the present invention.

本発明では特定面に関しての板面内の平均強度より高い強度を示し、かつ、極大の両隣の極小の集積強度の平均値の1.1倍以上の集積強度を持つ極大のみを極大の数として数えるものとする。または、特定面に関しての板面内の平均強度より高い強度を示し、かつ、集積強度を1.0間隔の等高線で示した場合に極大として認識できる極大のみを極大の数として数えるものとする。   In the present invention, only a maximum having an intensity higher than the average intensity in the plate surface with respect to a specific surface and having an integrated intensity 1.1 times or more of the average value of the minimum integrated intensity on both sides of the maximum is taken as the maximum number. It shall be counted. Alternatively, only the maximum that can be recognized as the maximum when the strength higher than the average strength in the plate surface with respect to the specific surface is shown and the integrated strength is indicated by contour lines of 1.0 intervals is counted as the maximum number.

次に本発明鋼に関する鋼板の特性上の特徴を説明する。   Next, characteristics of the steel sheet relating to the steel of the present invention will be described.

本発明鋼板の特徴は一次再結晶鋼板における上述のような特異な集合組織の制御に起因し、一次再結晶鋼板の時点で、従来の一次再結晶鋼板と比較し圧延方向から45°の方向の特性が優れることである。以下、単に0°特性、45°特性または90°特性などの記述はそれぞれ鋼板製造時の圧延方向から0°、45°または90°の方向の特性を示すものとする。また以下で各変数に関し、B0、B45、B90は誘起電流密度を5000(A/m)とした時の圧延方向から0°、45°、90°方向の磁束密度(T)であり、さらにBは本発明に関する一次再結晶鋼板、B’は比較とする一次再結晶鋼板についての特性を示すものとする。 The feature of the steel sheet of the present invention is due to the unique texture control as described above in the primary recrystallized steel sheet, and at the time of the primary recrystallized steel sheet, the direction of 45 ° from the rolling direction compared to the conventional primary recrystallized steel sheet. It has excellent characteristics. Hereinafter, descriptions such as 0 ° characteristic, 45 ° characteristic, or 90 ° characteristic simply indicate characteristics in the direction of 0 °, 45 °, or 90 ° from the rolling direction at the time of manufacturing the steel sheet. In addition, regarding each variable below, B 0 , B 45 , and B 90 are magnetic flux densities (T) in the 0 °, 45 °, and 90 ° directions from the rolling direction when the induced current density is 5000 (A / m). Further, B represents the characteristics of the primary recrystallized steel sheet according to the present invention, and B ′ represents the characteristics of the primary recrystallized steel sheet for comparison.

45°特性の特異性は次の点で記述できる。つまり、(B0+B90)/2−B45≦0.040の条件を満足することである。通常の一次再結晶鋼板でこれらの特性を満足することはほとんどない。好ましくは(B0+B90)/2−B45の値は0.030以下、さらに好ましくは0.020以下、さらに好ましくは0.010以下である。これらの条件を満足しない一次再結晶鋼板は本発明が目的とする良好な特性を得ることができない。 The specificity of the 45 ° characteristic can be described by the following points. That is, the condition (B 0 + B 90 ) / 2−B 45 ≦ 0.040 is satisfied. Conventional primary recrystallized steel sheets rarely satisfy these characteristics. Preferably, the value of (B 0 + B 90 ) / 2−B 45 is 0.030 or less, more preferably 0.020 or less, and still more preferably 0.010 or less. A primary recrystallized steel sheet that does not satisfy these conditions cannot obtain the desired characteristics of the present invention.

別の面からの材料的な特徴は本発明鋼板では、一次再結晶時点での上述の集合組織制御が主として鋼板の表層部において行われていることに起因するものである。本発明鋼板に関する一次再結晶鋼板は表層1/4またはそれより表層側の部位において上述の集合組織や特性の条件を満たすものである。また、特に表層部の集合組織を制御しているため中心部の集合組織とは少なからざる差異を生じ、これが本発明鋼板の特徴でもある。つまり、鋼板の表層1/4位置またはそれより表層側の位置での{411}<148>方位の集積強度が板厚中心での集積強度の2倍以上となるものである。好ましくは3倍、さらに好ましくは4倍である。   The material characteristic from another aspect is due to the fact that in the steel sheet of the present invention, the texture control described above at the time of primary recrystallization is mainly performed in the surface layer portion of the steel sheet. The primary recrystallized steel sheet relating to the steel sheet of the present invention satisfies the above-mentioned texture and property conditions at the surface layer 1/4 or at the surface layer side. Further, since the texture of the surface layer portion is controlled in particular, there is a considerable difference from the texture of the central portion, which is also a feature of the steel sheet of the present invention. That is, the integrated strength in the {411} <148> orientation at the position of the surface layer 1/4 of the steel plate or the position on the surface layer side thereof is more than twice the integrated strength at the thickness center. Preferably 3 times, more preferably 4 times.

ただし、本発明において主として表層部に対して行っている集合組織制御を特に熱延工程で行う場合には、圧延という変形方法であるためその影響は少なからず中心層にも及ぶことがある。このため本発明方法の非常に好ましい条件においては鋼板中心部においてさえも表層部と同等の集合組織制御の効果が現れ表層と中心層の集合組織の差が小さくなる場合もあるので注意を要する。   However, in the present invention, when the texture control that is mainly performed on the surface layer portion is performed in the hot rolling process, the influence is not limited to the central layer because of the deformation method called rolling. For this reason, it should be noted that under the highly preferable conditions of the method of the present invention, the texture control effect equivalent to that of the surface layer portion appears even in the central portion of the steel sheet, and the difference in texture between the surface layer and the central layer may be reduced.

このような集合組織制御を熱延での比較的低い温度域での圧延により行う場合には、通常の一次再結晶鋼板のうち、熱延の全圧延パスがF℃以上で行われた鋼板との比較において、製品板の表層1/4位置またはそれより表層側の位置での{411}<148>方位の集積強度が2倍以上となっていることが特徴になる。好ましくは3倍、製造条件が非常に好ましいものであれば4倍以上にも到達するものである。ここでFは、質量%で表される含有元素量により以下の式1で示される。
F=820+(10×Si+50×Cu+50×Nb+10×Cr+5000×B+10×Ni+20×Co+40×Mo+20×Ti)・・・・・・・・・・・(式1)
また、45°特性は鋼成分が実質的に同じでかつ熱延の全圧延パスがF℃以上で行われた一次再結晶鋼板との比較において、B45−B’45≧0.030を満たすという点で非常に特異なものである。好ましくは0.040以上、後述の最適な製造条件を適用することにより0.050以上とすれば非常に良好な特性を得ることができる。
When performing such texture control by rolling at a relatively low temperature range in hot rolling, among normal primary recrystallized steel plates, a steel plate in which all rolling passes in hot rolling are performed at F ° C or higher In the comparison, the integrated strength of {411} <148> orientation at the position of the surface layer 1/4 or the position of the surface layer of the product plate is more than twice. It is preferably 3 times, and if production conditions are very favorable, it can reach 4 times or more. Here, F is represented by the following formula 1 depending on the amount of contained elements expressed in mass%.
F = 820 + (10 × Si + 50 × Cu + 50 × Nb + 10 × Cr + 5000 × B + 10 × Ni + 20 × Co + 40 × Mo + 20 × Ti) (Equation 1)
Further, the 45 ° characteristic satisfies B 45 −B ′ 45 ≧ 0.030 in comparison with the primary recrystallized steel plate in which the steel components are substantially the same and the entire rolling pass of hot rolling is performed at F ° C. or higher. This is very unique. If it is preferably 0.040 or more and 0.050 or more by applying the optimum production conditions described later, very good characteristics can be obtained.

なお、上記の鋼成分が実質的に同じでかつ熱延の全圧延パスがF℃以上で行われた鋼板との比較においては、冷延率や焼鈍温度等の磁気特性に大きな影響を及ぼすことがよく知られている因子が大きく異なると本請求項が目的とする比較が意味をなさなくなるので、これらの条件は磁気特性に大きな差を生じない範囲で同一にすることが必要である。特性の向上が一般的に知られている要因によるものであるか、本発明の効果であるかは、通常業務として特性向上を目的に製造条件の影響を検討している当業者であれば容易に判別が可能なものである。   In addition, in comparison with a steel plate in which the above steel components are substantially the same and the entire rolling pass of hot rolling is performed at F ° C. or higher, it has a great influence on magnetic properties such as cold rolling rate and annealing temperature. If the well-known factors greatly differ, the comparison intended by the present claim makes no sense. Therefore, it is necessary to make these conditions the same within a range that does not cause a large difference in magnetic characteristics. Whether the improvement in characteristics is due to a generally known factor or the effect of the present invention is easy for those skilled in the art who are examining the influence of manufacturing conditions for the purpose of improving characteristics as a normal business. Can be distinguished.

さらに、本発明鋼は上述のように特に一次再結晶鋼板の表層部の特性を改善することで二次再結晶後の鋼板全体の特性を改善するものであるため、例えば一次再結晶鋼板の表層部を除去すると発明の効果が小さくなる。特性の劣化代は表層の研削量によるが、これにより発明鋼を規定し、一次再結晶鋼板の表と裏の表層1/4を取り除き板厚中心層1/2厚さで測定するとB45が0.02T以上低下するものを本発明鋼の一つの特徴とする。ただし、上述のように発明の特徴的な集合組織制御が板厚中心まで相当に及んでいると表層部除去による特性劣化代は小さくなるので注意が必要である。これは従来一次再結晶鋼板のようにB45が低い材料で表層を除去してもB45の劣化が小さいこととは本質的に異なるものであり、このようなきわめて良好なB45を有する鋼板が本発明に含まれることは当然である。 Furthermore, since the steel of the present invention improves the overall characteristics of the steel sheet after secondary recrystallization by improving the characteristics of the surface layer portion of the primary recrystallized steel sheet as described above, for example, the surface layer of the primary recrystallized steel sheet If the portion is removed, the effect of the invention is reduced. The amount of deterioration of characteristics depends on the grinding amount of the surface layer. By this, the invention steel is defined, and when the surface layer 1/4 of the primary recrystallized steel sheet is removed and the thickness is measured by the thickness of the central layer 1/2, B 45 is One characteristic of the steel of the present invention is that it decreases by 0.02 T or more. However, if the characteristic texture control of the invention extends to the center of the plate thickness as described above, it is necessary to pay attention because the characteristic deterioration margin due to the surface layer removal becomes small. This is what essentially different from that deterioration of B 45 be removed surface layer in B 45 is low material as in the conventional primary recrystallization steel is small, the steel sheet having such a very good B 45 Is naturally included in the present invention.

上述のような集合組織制御を行う一つの方法としては熱延板において特に表層部に圧延組織を残存させたまま冷延し、焼鈍を行うことが有効である。未再結晶組織は少なくとも表層1/4の領域内に残存している必要がある。言い換えれば板厚中心層に未再結晶組織が残存していても表層1/4の領域が完全再結晶組織である場合は本発明の効果が小さくなってしまう。発明の効果をより顕著に得るには最表層に近い部位に未再結晶組織が多く残存していることが好ましく、表層1/8領域が完全に未再結晶組織であれば目的とする特性は非常に良好となる。   As one method for performing the texture control as described above, it is effective to perform the cold rolling and annealing in the hot rolled sheet with the rolled structure remaining in the surface layer portion. The unrecrystallized structure needs to remain at least in the region of the surface layer 1/4. In other words, even if an unrecrystallized structure remains in the thickness center layer, the effect of the present invention is reduced if the surface layer 1/4 region has a complete recrystallized structure. In order to obtain the effect of the invention more remarkably, it is preferable that a large amount of unrecrystallized structure remains in a portion close to the outermost layer. If the surface layer 1/8 region is completely unrecrystallized structure, the target characteristics are Very good.

また発明の効果は表層1/4領域が完全未再結晶であれば非常に好ましいが、完全に未再結晶でなくとも再結晶率が90%以下であれば有効な効果が得られる。好ましくは70%以下、さらに好ましくは50%以下、さらに好ましくは30%以下、完全未再結晶が理想的であることは言うまでもない。   In addition, the effect of the invention is very preferable if the surface layer 1/4 region is completely unrecrystallized, but an effective effect is obtained if the recrystallization rate is 90% or less even if it is not completely unrecrystallized. Needless to say, it is preferably 70% or less, more preferably 50% or less, and further preferably 30% or less.

また、冷延前の熱延板に、部分的に再結晶組織を含ませることは、以下のような理由でも有用である。つまり、鋼成分や熱延条件によっては完全な加工組織である熱延板を冷延、一次再結晶焼鈍、二次再結晶焼鈍して製品を製造した場合に、異常粒成長せず一次再結晶組織がほとんどそのまま残存した細粒の領域が残存し、磁気特性の劣化が起きる場合があることや、析出物形態の制御により冷延後、焼鈍時の粒成長性を改善し磁気特性の向上が必要な場合がある場合にはこれを改善する目的で適当な熱処理により加工組織の一部を再結晶させることも可能である。その条件は鋼成分等により異なるため一概には言えないが、通常の技術を有する当業者であれば、一般的に行っている熱延巻取温度の制御や熱延板焼鈍条件により適当な範囲に制御することは簡単なことである。   It is also useful to partially include a recrystallized structure in the hot-rolled sheet before cold rolling for the following reasons. In other words, depending on the steel composition and hot rolling conditions, when a product is manufactured by cold rolling, primary recrystallization annealing, or secondary recrystallization annealing, which is a fully processed structure, primary recrystallization without abnormal grain growth occurs. There are cases where fine-grained regions where the structure remains almost as it is may remain, which may cause deterioration of magnetic properties, and by controlling the morphology of precipitates, the grain growth during annealing is improved and the magnetic properties are improved. If necessary, a part of the processed structure can be recrystallized by an appropriate heat treatment for the purpose of improving this. Since the conditions vary depending on the steel components, etc., it cannot be generally stated, but those skilled in the art having ordinary techniques can appropriately control the range depending on the control of the hot rolling coil temperature and the annealing conditions of the hot rolled sheet. It is easy to control.

目安としては熱延後の巻取温度が750℃を越えると再結晶組織が現れるようになり、連続式の熱延板焼鈍を行う場合はSi量が1%程度以下の材料であれば700℃を超えると、Si量が2%程度以上の材料であれば750℃を超えると、再結晶組織が現れるようになる。これらの温度は、特にCuやNbなど、本発明鋼で熱延での再結晶を抑制する効果を発揮する元素を適当量添加することで、より広い温度範囲で制御することが可能となる。   As a guideline, when the coiling temperature after hot rolling exceeds 750 ° C., a recrystallized structure appears. When continuous hot-rolled sheet annealing is performed, if the Si content is about 1% or less, 700 ° C. If it exceeds 750 ° C., the recrystallized structure will appear if the material has a Si content of about 2% or more. These temperatures can be controlled in a wider temperature range by adding an appropriate amount of an element that exhibits an effect of suppressing recrystallization in hot rolling, particularly Cu and Nb.

本発明の効果が得られるメカニズムは以下のようなものと考えられる。すなわち、熱延時に鋼板表層に付与される剪断変形を主とする変形により結晶回転は通常の圧延で想定されるものとは大きく異なったものとなっている。具体的には一般的に圧延による結晶回転によりα−fiber方位が強く発達すると考えられており、これをそのままさらに冷延してα−fiber方位への集積を高め最終焼鈍を行うと二次再結晶にとって好ましい{111}<211>方位も発達するが、磁性にとって好ましくない{111}<011>方位も発達してしまうとともに、α−fiber方位自体も再結晶方位として残存してしまう。そのため従来の電磁鋼板では熱延板組織を再結晶させ、冷延前の時点でα−fiber方位への集積を和らげ比較的ランダムな方位としておくような工程条件がとられる。   The mechanism for obtaining the effects of the present invention is considered as follows. That is, the crystal rotation is greatly different from that assumed in normal rolling due to deformation mainly of shear deformation applied to the steel sheet surface layer during hot rolling. Specifically, it is generally considered that the α-fiber orientation is strongly developed by crystal rotation by rolling, and when this is further cold-rolled to increase the accumulation in the α-fiber orientation and perform final annealing, secondary re-generation is performed. The {111} <211> orientation that is preferable for crystals develops, but the {111} <011> orientation that is not preferable for magnetism also develops, and the α-fiber orientation itself remains as a recrystallization orientation. Therefore, in the conventional electromagnetic steel sheet, the hot rolled sheet structure is recrystallized, and the process conditions are taken such that the accumulation in the α-fiber direction is eased and the relatively random direction is set before the cold rolling.

また熱延時に鋼板表面での剪断変形に起因して発達する特異な変形集合組織は鋼板表面での歪量が中心層より高くなることから通常の製法では熱延中またはコイル巻取後に再結晶してしまい、その存在による最終製品への効果が顧みられることはなかった。これに対し、本発明鋼は意識的に熱延中の鋼板表層に付与される剪断変形による歪を保持し、再結晶を抑制することでこれを蓄積し、冷延前の鋼板においてその特異な結晶方位を保持させるものである。具体的には{311}<233>および{110}<001>近傍に集積した方位である。   In addition, the unique deformation texture that develops due to shear deformation on the surface of the steel sheet during hot rolling causes the amount of strain on the surface of the steel sheet to be higher than that of the central layer. Therefore, the effect on the final product due to its existence was not taken care of. In contrast, the steel of the present invention consciously retains the strain due to shear deformation applied to the surface layer of the hot-rolled steel sheet, accumulates it by suppressing recrystallization, and is unique in the steel sheet before cold rolling. The crystal orientation is maintained. Specifically, the orientations are accumulated in the vicinity of {311} <233> and {110} <001>.

これを冷延すると、一般的なランダム方位を起点としたものとは異なった結晶回転が起きる。bcc金属では原理的に冷延加工によりα−fiber方位が強く発達するため冷延後の時点では集合組織的な特徴は顕著ではないが、その中には通常の材料にはそれほど強く発達しないα−fiber±20°方位の再結晶核が存在し再結晶後に特異なα−fiber±20°方位が強く発達するという特徴を示すものである。他にもメカニズムは考えられるが、本明細書に記述している鋼板表層に熱延での加工組織が残存したまま冷延を行う方法については上のような機構が強く働いているものと思われる。   When this is cold-rolled, crystal rotation different from that of a general random orientation is caused. In bcc metal, the α-fiber orientation is strongly developed by cold rolling in principle, so that the texture characteristic is not remarkable at the time after cold rolling, but among them, α does not develop so strongly in ordinary materials. This indicates a characteristic that a recrystallization nucleus of −fiber ± 20 ° orientation exists and a specific α-fiber ± 20 ° orientation develops strongly after recrystallization. Other mechanisms are conceivable, but the above mechanism seems to work strongly for the method of performing cold rolling while the hot rolled working structure remains on the steel sheet surface layer described in this specification. It is.

このようにして、一次再結晶時点で{411}<148>方位のみを優先的に発達させておけば、Σ9粒界の関係(CLSモデル)により、二次再結晶(異常粒成長)後に、ゴス方位の発達が従来以上に顕著になる。   Thus, if only the {411} <148> orientation is preferentially developed at the time of primary recrystallization, due to the Σ9 grain boundary relationship (CLS model), after secondary recrystallization (abnormal grain growth), The development of Goth direction becomes more remarkable than before.

次に本発明の効果を顕著に得るため、重要な制限要因である製造条件について説明する。   Next, in order to obtain the effects of the present invention remarkably, manufacturing conditions that are important limiting factors will be described.

本発明による方向性電磁鋼板は、上述した成分からなる溶鋼を鋳造して鋼片とし、熱延し、酸洗し、冷間圧延し、一次再結晶焼鈍、必要に応じて脱炭焼鈍、二次再結晶焼鈍(または粒成長焼鈍)することで得ることが可能である。この場合、工程の概略は通常の工程と大きく異なるものではないが、特に、以下のような特徴的な熱延条件により発明の効果を十分に得ることができる。   The grain-oriented electrical steel sheet according to the present invention is obtained by casting molten steel comprising the above-described components into a steel slab, hot-rolling, pickling, cold-rolling, primary recrystallization annealing, and decarburization annealing as necessary. It can be obtained by subsequent recrystallization annealing (or grain growth annealing). In this case, the outline of the process is not greatly different from that of the normal process, but in particular, the effects of the invention can be sufficiently obtained by the following characteristic hot rolling conditions.

特に、熱延で圧延による歪が付与される温度域と付与される歪の量、歪を付与した後の再結晶が起きる可能性がある温度域での保持時間が本発明での重要な要件であって、これを発明範囲内に制御することで本発明の効果を的確に得ることができる。   In particular, the temperature range in which strain due to rolling is imparted by hot rolling, the amount of strain imparted, and the holding time in the temperature range where recrystallization may occur after imparting strain are important requirements in the present invention. And by controlling this within the scope of the invention, the effect of the present invention can be obtained accurately.

温度に関しては、熱延の圧下の大きな部分が、質量%で表される含有元素量により決定される以下の式1で示されるF℃以下の温度範囲で行われることが好ましい。   Regarding the temperature, it is preferable that a large portion of the hot rolling is performed in a temperature range of F ° C. or lower represented by the following formula 1 determined by the amount of contained elements expressed in mass%.

F=820+(10×Si+50×Cu+50×Nb+10×Cr+5000×B+10×Ni+20×Co+40×Mo+20×Ti)・・・・・・・・・・・(式1)
この温度以下の範囲を本発明では低温域と呼ぶ。温度が高すぎると本発明の効果が消失する。一方、温度範囲が低すぎると、圧延が困難となるばかりでなく発明の効果も小さくなる。圧延温度の下限は熱延工程での圧延により形成される加工組織の再結晶進行を抑制するには低いほうが好ましいが、圧延性の観点から温度範囲の下限は好ましくは500℃、さらに好ましくは550℃、さらに好ましくは600℃、さらに好ましくは650℃である。
F = 820 + (10 × Si + 50 × Cu + 50 × Nb + 10 × Cr + 5000 × B + 10 × Ni + 20 × Co + 40 × Mo + 20 × Ti) (Equation 1)
The range below this temperature is referred to as the low temperature range in the present invention. When the temperature is too high, the effect of the present invention is lost. On the other hand, if the temperature range is too low, not only rolling is difficult, but the effect of the invention is also reduced. The lower limit of the rolling temperature is preferably lower in order to suppress the progress of recrystallization of the processed structure formed by rolling in the hot rolling process, but the lower limit of the temperature range is preferably 500 ° C., more preferably 550 from the viewpoint of rollability. ° C, more preferably 600 ° C, more preferably 650 ° C.

熱延温度に関しては、通常の熱延板を再結晶させて製造している一般材に比べ温度条件が大きく異なると作業性の面でも問題が発生する。通常、850〜950℃程度の仕上温度で圧延されている一般材と同チャンスで通板した際の作業性等を考えると、Cu、Nb、Ni等の再結晶抑制元素を添加し、この程度の温度域で熱延することが好ましい。   Regarding the hot rolling temperature, there is a problem in terms of workability if the temperature conditions are significantly different from those of general materials manufactured by recrystallizing ordinary hot rolled sheets. Usually, considering the workability when the sheet is passed at the same chance as a general material rolled at a finishing temperature of about 850 to 950 ° C., recrystallization inhibitor elements such as Cu, Nb, and Ni are added. It is preferable to hot-roll in this temperature range.

温度範囲の上限は好ましくはF−40℃、さらに好ましくはF−80℃、さらに好ましくはF−120℃、さらに好ましくはF−150℃、さらに好ましくはF−180℃である。F−210℃以下であれば本発明の効果を非常に顕著に得ることが可能となる。この温度域で圧延を行えば極端な低速、軽圧下パススケジュールでない限り加工発熱により好ましい温度域を保つことも可能となる。このような低温域での圧延条件は圧延温度と付与する歪量、保持時間に関し、低温域での圧下による累積歪(対数歪)Hと各パス出側温度T(℃)および圧延後の時間t(秒)の関係が
T<F−H×10−t×10・・・・・・・・・・(式2)
を満たすことが好ましい。これはTがF以上では熱延中に再結晶が進行してしまい好ましい未再結晶組織を得ることが困難になることに対応している。また、圧延により付与する歪が大きいほど再結晶の進行が促進されるためHが大きいほどTを低くして再結晶を抑制することが好ましいことを示している。
The upper limit of the temperature range is preferably F-40 ° C, more preferably F-80 ° C, more preferably F-120 ° C, more preferably F-150 ° C, and more preferably F-180 ° C. If it is F-210 degrees C or less, it will become possible to acquire the effect of this invention very notably. If rolling is performed in this temperature range, a preferable temperature range can be maintained by processing heat generation unless it is an extremely low speed and light pressure pass schedule. The rolling conditions in such a low temperature range relate to the rolling temperature, the amount of strain to be applied, and the holding time, and the cumulative strain (logarithmic strain) H, each pass outlet temperature T (° C.) and the time after rolling in the low temperature range. The relationship of t (seconds) is T <F−H × 10−t × 10 (Equation 2)
It is preferable to satisfy. This corresponds to the fact that when T is F or more, recrystallization proceeds during hot rolling, making it difficult to obtain a preferable non-recrystallized structure. Moreover, since the progress of recrystallization is promoted as the strain applied by rolling increases, it is indicated that it is preferable to suppress T by lowering T as H increases.

ここでtに関しては、最終パスを除く圧延パスにおいては圧延後次の圧延パス開始までの時間、または最終パスの場合は最終パス圧延後水冷開始までの時間である。これは圧延後の時間の経過とともに再結晶が進行してしまうためで、あるパスで圧延後、次の圧延または水冷開始までに再結晶がおき得る温度域での保持時間が長くなる場合には再結晶を抑制するためTを低くする必要があることを示している。または言うまでもないことではあるが、言い換えれば再結晶を抑制するためtを短くする必要性をも同時に示している。   Here, t is the time from rolling to the start of the next rolling pass in the rolling pass excluding the final pass, or in the case of the final pass, the time from the final pass to the start of water cooling. This is because recrystallization proceeds with the passage of time after rolling, so if the holding time in the temperature range where recrystallization can occur before rolling or water cooling after the rolling in a certain pass becomes long. It shows that T needs to be lowered in order to suppress recrystallization. Or, needless to say, in other words, the necessity of shortening t in order to suppress recrystallization is also shown.

このtに関しては現状設備を使用する場合、最終パスを除くとロールスタンド間隔と圧延速度で一義的に決まってしまうものであり、ロールスタンド間隔の変更は現実的でなく、また圧延速度の変更は生産性にも影響するため制御因子としては制約が大きい。一方で最終パスの場合には水冷開始までの時間であり、条件によっては水冷ノズルの新設等の設備的な対策も必要となるが、一般的には大幅な制御が行われている因子となる。本発明では最終パス後水冷開始までの時間を2秒以下とすることで効果が顕著になる。好ましくは1.5秒以下、さらに好ましくは1.0秒以下、さらに好ましくは0.5秒以下、さらに好ましくは0.2秒以下である。   With regard to t, when using the current equipment, the roll stand interval and the rolling speed are unambiguously determined except for the final pass. Changing the roll stand interval is not realistic, and changing the rolling speed is Since it affects the productivity, the control factor is very limited. On the other hand, in the case of the final pass, it is the time until the start of water cooling, and depending on the conditions, it is necessary to take equipment measures such as newly installing a water cooling nozzle, but in general, it is a factor for significant control. . In the present invention, the effect becomes remarkable by setting the time from the last pass to the start of water cooling to 2 seconds or less. Preferably it is 1.5 seconds or less, More preferably, it is 1.0 second or less, More preferably, it is 0.5 second or less, More preferably, it is 0.2 second or less.

また、熱延板の再結晶進行を抑制するため最終パス後の水冷時の冷却速度を高めることも有効である。好ましくは10℃/s以上、さらに好ましくは20℃/s以上、さらに好ましくは40℃/s以上とする。水冷後の温度はそのままコイルの巻取温度となり、その近傍の温度域で比較的長時間保持されることになるので、再結晶抑制のため低くすることが有効である。成分や鋼板に蓄積された歪量等にもよるが、700℃以下とする。コイル温度は巻取後低下するとは言え、冷却速度は非常に遅く、巻取温度近傍での保持時間は長い場合、数時間以上にも及ぶ。このため純度が高い材料では巻取温度が700℃に近いと再結晶が十分に進行してしまうことがある。このため好ましくは650℃以下、さらに好ましくは600℃以下、さらに好ましくは550℃以下であり、500℃以下とすればほとんどの場合、再結晶の進行は停止する。   It is also effective to increase the cooling rate during water cooling after the final pass in order to suppress the progress of recrystallization of the hot-rolled sheet. Preferably it is 10 degrees C / s or more, More preferably, it is 20 degrees C / s or more, More preferably, you may be 40 degrees C / s or more. The temperature after water cooling becomes the coil winding temperature as it is, and is maintained for a relatively long time in the temperature range in the vicinity thereof. Therefore, it is effective to lower the temperature in order to suppress recrystallization. Although it depends on the components and the amount of strain accumulated in the steel sheet, it is 700 ° C. or lower. Although the coil temperature decreases after winding, the cooling rate is very slow, and when the holding time near the winding temperature is long, it reaches several hours or more. For this reason, when the coiling temperature is close to 700 ° C. with a high purity material, recrystallization may proceed sufficiently. For this reason, it is preferably 650 ° C. or lower, more preferably 600 ° C. or lower, more preferably 550 ° C. or lower, and if it is 500 ° C. or lower, in most cases, the progress of recrystallization stops.

このように書くと難しいように思われるが、要は鋼板の再結晶を抑えることが必要で、高歪量、高温、長時間の条件で再結晶が起きやすくなるという一般的な知見を元にして条件を決定するだけのことである。この条件はパススケジュールや熱延板厚等の製品仕様、用途に応じた鋼成分などが変化すると変わるものであるため一概に規定することは不可能で、目安として(式1)を含む、上の条件を提示しているが、通常のメタラジー知識を有する当業者であれば、数度の試行の後に、各仕様、用途毎に容易に条件を決定できる程度のものである。   Although it seems difficult to write in this way, the main point is that it is necessary to suppress recrystallization of the steel sheet, and based on the general knowledge that recrystallization occurs easily under conditions of high strain, high temperature, and long time. Just determine the conditions. These conditions change when the product specifications such as pass schedule, hot-rolled sheet thickness, etc., and the steel composition according to the application change, so it is impossible to define them unconditionally, including (Equation 1) as a guideline. However, a person skilled in the art having ordinary metallurgy knowledge can easily determine the conditions for each specification and application after several trials.

また、特に、低温域の熱延で付与される歪の種類も本発明での重要な要件となる。歪は剪断歪が大きいことが必要で、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である必要がある。好ましくは0.3以上、さらに好ましくは0.4以上、さらに好ましくは0.6以上、さらに好ましくは0.8以上、さらに好ましくは1.0以上である。このように圧延温度と剪断歪を制御することで単に低温で圧延した場合や、圧延温度の考慮なしに大きな歪を付与した場合には得ることができなかった非常に特異な効果を得ることが可能となる。   In particular, the kind of strain imparted by hot rolling in a low temperature region is also an important requirement in the present invention. The strain needs to have a large shear strain, and the shear strain or shear strain at the steel sheet surface layer / (sheet thickness direction compressive strain) needs to be 0.2 or more. Preferably it is 0.3 or more, More preferably, it is 0.4 or more, More preferably, it is 0.6 or more, More preferably, it is 0.8 or more, More preferably, it is 1.0 or more. By controlling the rolling temperature and shear strain in this way, it is possible to obtain a very specific effect that could not be obtained when rolling at low temperature or when applying a large strain without considering the rolling temperature. It becomes possible.

ここで述べた圧延温度及び圧延歪に関する条件を以下では「低温域での剪断歪条件」と呼ぶ。「低温域での剪断歪条件」に関し、特に歪に関する条件については熱延中にその歪が付与された際の熱延中の板の表層で満足している必要がある。これらは実測することも可能であるが手間がかかるため有限要素法等の一般的に認知されている数値計算によることも可能である。一般的には温度や歪は板厚方向に分布を有しており、本発明が規定する剪断歪または剪断歪/(板厚方向圧縮歪)の値は板厚方向での位置により異なるものになることが通常である。   The conditions relating to the rolling temperature and the rolling strain described here are hereinafter referred to as “shear strain conditions in a low temperature region”. With regard to “shear strain conditions in a low temperature region”, in particular, regarding the conditions regarding strain, it is necessary to satisfy the surface layer of the plate during hot rolling when the strain is applied during hot rolling. Although these can be actually measured, since it takes time, it is also possible to use a generally recognized numerical calculation such as a finite element method. Generally, temperature and strain have a distribution in the plate thickness direction, and the value of shear strain or shear strain / (plate thickness direction compressive strain) specified by the present invention varies depending on the position in the plate thickness direction. It is normal to be.

この分布を考慮した場合、「低温域での剪断歪条件」を満足する領域が圧延時の板厚で全板厚の10%以上に及ぶことが好ましい。さらに好ましくは20%以上、さらに好ましくは25%以上であり、特に限定されるものではないが、板の表面および裏面の歪または温度分布が板厚中心に関し対称となっている場合には、表層25%以上は、全板厚では50%以上を意味するものとなり、十分な効果を得ることが可能となる。さらに好ましくは30%以上、さらに好ましくは40%以上であり、全板厚がこの条件を満足することが好ましいことは言うまでもない。   In consideration of this distribution, it is preferable that the region satisfying the “shear strain condition in the low temperature region” reaches 10% or more of the total plate thickness in the plate thickness during rolling. More preferably, it is 20% or more, more preferably 25% or more, and there is no particular limitation, but when the strain or temperature distribution on the front and back surfaces of the plate is symmetrical with respect to the center of the plate thickness, the surface layer 25% or more means 50% or more in the total thickness, and a sufficient effect can be obtained. More preferably, it is 30% or more, more preferably 40% or more, and it is needless to say that the total thickness preferably satisfies this condition.

このような「低温域での剪断歪条件」を満足する剪断歪を生ずる圧延パスはそのパスでの摩擦係数、ロール径等を変化させることで制御することが可能であるが、本発明では、摩擦係数が0.05以上、圧延ワークロールの直径が700mm以下を満たして行われることが好ましい。摩擦係数はさらに好ましくは0.10以上、さらに好ましくは0.15以上、さらに好ましくは0.20以上、さらに好ましくは0.25以上、さらに好ましくは0.30以上、さらに好ましくは0.40以上、さらに好ましくは0.50以上である。また圧延ワークロールの直径はさらに好ましくは600mm以下、さらに好ましくは500mm以下、さらに好ましくは400mm以下、さらに好ましくは300mm以下、さらに好ましくは250mm以下である。   A rolling pass that generates a shear strain that satisfies such a “shear strain condition in a low temperature range” can be controlled by changing a friction coefficient, a roll diameter, and the like in the pass. It is preferable that the friction coefficient is 0.05 or more and the diameter of the rolled work roll is 700 mm or less. The friction coefficient is more preferably 0.10 or more, more preferably 0.15 or more, further preferably 0.20 or more, more preferably 0.25 or more, more preferably 0.30 or more, and further preferably 0.40 or more. More preferably, it is 0.50 or more. The diameter of the rolled work roll is more preferably 600 mm or less, further preferably 500 mm or less, more preferably 400 mm or less, further preferably 300 mm or less, and further preferably 250 mm or less.

また本発明では条件は特に限定しないが、圧延時の上下ロールの回転速度に差をつける、いわゆる「異周速圧延」によって剪断歪を付与することも可能である。この場合にも本発明の効果を得るには温度や歪量などは本発明の範囲内にあることが必要であることは言うまでもない。このような異周速圧延は一般的な圧延操業では行われているものではないが、剪断歪を制御する技術としてその効果はよく知られているものであり、本発明で目的とする特性への影響としては上述のように本発明で条件を詳細に記述している熱延条件の制御と同様の変化、効果を及ぼすことが期待できる。異周速圧延においては原理的によく知られているように周速差を大きくするほど効果も大きくなることは言うまでもない。   In the present invention, the conditions are not particularly limited, but it is also possible to impart shear strain by so-called “different circumferential speed rolling” that makes a difference in the rotational speed of the upper and lower rolls during rolling. In this case as well, it goes without saying that the temperature, the amount of strain, and the like must be within the scope of the present invention in order to obtain the effects of the present invention. Such different peripheral speed rolling is not carried out in a general rolling operation, but its effect is well known as a technique for controlling shear strain, and to the target characteristics in the present invention. As described above, as described above, it can be expected to exert the same changes and effects as the control of the hot rolling conditions in which the conditions are described in detail in the present invention. Needless to say, in different peripheral speed rolling, the effect increases as the peripheral speed difference increases, as is well known in principle.

本発明では「低温域での剪断歪条件」を満足する剪断歪の歪速度、複数回で付与する場合の積算値、時間的な間隔が重要な意味を有する。通常は連続的な多パスの圧延で歪が付与されるのでこれを想定して以下に記述する。「低温域での剪断歪条件」を満足する圧延パスについて各圧延パスの歪速度が10/s以上であることが好ましい。さらに好ましくは20/s以上、さらに好ましくは40/s以上、さらに好ましくは80/s以上、さらに好ましくは120/s以上、さらに好ましくは180/s以上、さらに好ましくは260/s以上である。   In the present invention, the strain rate of the shear strain that satisfies the “shear strain condition in a low temperature range”, the integrated value when applied multiple times, and the time interval are important. Usually, since distortion is given by continuous multi-pass rolling, this will be described below. It is preferable that the strain rate of each rolling pass is 10 / s or more with respect to the rolling pass satisfying the “shear strain condition in a low temperature region”. More preferably, it is 20 / s or more, More preferably, it is 40 / s or more, More preferably, it is 80 / s or more, More preferably, it is 120 / s or more, More preferably, it is 180 / s or more, More preferably, it is 260 / s or more.

また「低温域での剪断歪条件」を満足する圧延パスが複数回行われる場合、「低温域での剪断歪条件」を満足する剪断歪の累計が0.6以上となると発明の効果が特に著しい。さらに好ましくは0.8以上、さらに好ましくは1.0以上、さらに好ましくは1.5以上、さらに好ましくは2.0以上、さらに好ましくは2.5以上、さらに好ましくは3.0以上、さらに好ましくは3.3以上、さらに好ましくは3.5以上である。さらに「低温域での剪断歪条件」を満足する圧延パスが複数回かつ連続して行われる場合、各圧延パス間時間が4.0秒以下であることが好ましい。さらに好ましくは3.0秒以下、さらに好ましくは2.0秒以下、さらに好ましくは1.0秒以下、さらに好ましくは0.5秒以下である。   Further, when the rolling pass satisfying the “shear strain condition in the low temperature region” is performed a plurality of times, the effect of the invention is particularly effective when the total number of shear strains satisfying the “shear strain condition in the low temperature region” is 0.6 or more. It is remarkable. More preferably 0.8 or more, more preferably 1.0 or more, more preferably 1.5 or more, further preferably 2.0 or more, more preferably 2.5 or more, more preferably 3.0 or more, further preferably Is 3.3 or more, more preferably 3.5 or more. Furthermore, when rolling passes that satisfy the “shear strain condition in a low temperature region” are performed a plurality of times and continuously, the time between the rolling passes is preferably 4.0 seconds or less. More preferably, it is 3.0 seconds or less, More preferably, it is 2.0 seconds or less, More preferably, it is 1.0 second or less, More preferably, it is 0.5 second or less.

これらの歪を付与する条件が影響を及ぼす原因は明確ではないが、低温域とは言えこの温度域では圧延中または直後に回復、再結晶が少なからず進行するため本発明が目的とする歪の蓄積や結晶回転が効率的に起きなくなるためと考えられる。特に、近年の材料のように極低C、N、S化に加え、TiやCu等のトランプエレメントまでも含めて高純度化された材料では、回復、再結晶挙動が従来材以上に早く起きるようになるためこのような考慮が重要になる。   Although the cause of the influence of the conditions for imparting these strains is not clear, although it is in the low temperature range, the recovery and recrystallization proceed at least during or immediately after rolling in this temperature range. This is probably because accumulation and crystal rotation do not occur efficiently. In particular, in addition to ultra-low C, N, and S, as in recent materials, high-purity materials including Ti and Cu and other trump elements cause recovery and recrystallization behavior faster than conventional materials. Such consideration is important.

本発明鋼は上述の低温域での圧延により鋼板表層で特異な結晶回転を起こすことで、一次再結晶時点で特異な集合組織を有するものとなるが、これより高温の温度域で圧延歪を適当量付与することで二次再結晶後に残存して磁気特性を阻害する可能性がある微細組織の残留を抑制するという重要な効果も発揮する。この微細組織は、二次再結晶粒に蚕食されなかったもので、基本的に一次再結晶組織と同じ方位を有することから、二次再結晶後には特性を劣化させるものとなる。この効果は特に(式1)による、F℃をわずかに超える温度域で圧下することで好ましい作用を発揮する。この温度域を本発明では中温域と呼ぶ。この温度はF℃を超える温度であるが、後述のようにあまりに高温だと効果が小さくなるので注意が必要である。好ましくはF+150℃以下、さらに好ましくはF+100℃以下、さらに好ましくはF+50℃以下である。   The steel of the present invention has a specific texture at the time of primary recrystallization by causing a specific crystal rotation in the surface layer of the steel sheet by rolling in the low temperature range described above. By providing an appropriate amount, an important effect of suppressing the remaining of a fine structure remaining after secondary recrystallization and possibly inhibiting magnetic properties is also exhibited. This fine structure is not phagocytosed by the secondary recrystallized grains, and basically has the same orientation as the primary recrystallized structure. Therefore, the characteristics deteriorate after the secondary recrystallization. This effect exerts a preferable effect by reducing the temperature in a temperature range slightly exceeding F ° C. according to (Equation 1). This temperature range is referred to as an intermediate temperature range in the present invention. Although this temperature exceeds F ° C., it is necessary to be careful because the effect is reduced when the temperature is too high as will be described later. Preferably it is F + 150 degrees C or less, More preferably, it is F + 100 degrees C or less, More preferably, it is F + 50 degrees C or less.

この中温域で付与される歪を3.0以下とする。ただし、本発明の効果はあくまでも低温域での大きな歪によって発現するものであるから、中音域での歪が低温域での歪を上回らないことが好ましい。歪量は好ましくは2.0以下、さらに好ましくは1.5以下、さらに好ましくは1.0以下、さらに好ましくは0.5以下である。   The strain applied in this intermediate temperature range is set to 3.0 or less. However, since the effect of the present invention is manifested by a large distortion in the low temperature range, it is preferable that the distortion in the mid range does not exceed the distortion in the low temperature range. The amount of strain is preferably 2.0 or less, more preferably 1.5 or less, still more preferably 1.0 or less, and still more preferably 0.5 or less.

下限は最終製品の異方性をより小さくするとともに特に非変態鋼で問題となるリジングを抑制するため好ましくは0.1以上、さらに好ましくは0.2以上、さらに好ましくは0.3以上とする。さらに中温域での圧延を複数回のパスで行う場合は、1パスあたりの平均歪は0.6以下、好ましくは0.5以下、さらに好ましくは0.4以下とする。   The lower limit is preferably 0.1 or more, more preferably 0.2 or more, and even more preferably 0.3 or more in order to reduce the anisotropy of the final product and to suppress ridging that is a problem particularly in non-transformed steel. . Further, when rolling in the middle temperature region is performed in a plurality of passes, the average strain per pass is 0.6 or less, preferably 0.5 or less, more preferably 0.4 or less.

また、これらの好ましい範囲は高温域での圧延のパス間時間にも依存し、各パス間時間を4.0秒以上とすることが好ましい。これらの条件の一つを満足すれば、リジング低減の効果を得ることができるが、二つ以上の条件を満足すれば、効果がより顕著になることは言うまでもない。   These preferable ranges also depend on the time between passes of rolling in a high temperature range, and the time between passes is preferably 4.0 seconds or more. If one of these conditions is satisfied, an effect of reducing ridging can be obtained, but it goes without saying that the effect becomes more remarkable if two or more conditions are satisfied.

この中温域で付与する歪は鋳造時に形成される柱状組織に起因する集合組織を破壊し、その後、ただちに低温域で圧延されることで、低温熱延で問題とされていた細粒組織残存を抑制する効果を発揮する。   This strain imparted in the middle temperature range destroys the texture caused by the columnar structure formed during casting, and then immediately rolled in the low temperature range, thereby removing the fine grain structure that had been a problem in low temperature hot rolling. Demonstrate the effect.

本発明法が細粒組織の残存抑制に有効であるメカニズムは明確ではないが、以下のように考えられる。すなわち、中温域での圧延条件を再結晶がわずかに起きる条件とし、実質的に低温域での圧延が始まる前の結晶組織を微細にすることが一因と思われる。さらに、この中温域での圧延が完了した微細組織を、低温域で剪断歪により特殊な変形を付与することで、微細組織残存の原因となる類似結晶方位の空間的な偏在、コロニーと呼ばれるものが破壊されるものと思われる。この効果は特に非変態鋼である高Si系材料では非常に好ましいもので、従来技術では実現できなかったもので、{411}<148>方位に代表される方位への集積を高めた本発明鋼に特徴的な効果である。   The mechanism by which the method of the present invention is effective for suppressing the residual fine grain structure is not clear, but is considered as follows. That is, it seems that one of the causes is that the rolling conditions in the middle temperature range are the conditions under which recrystallization occurs slightly, and the crystal structure before the rolling in the low temperature range starts substantially fine. Furthermore, by applying a special deformation to the microstructure that has been rolled in the middle temperature range by shear strain in the low temperature range, spatial uneven distribution of similar crystal orientations that cause the microstructure to remain, what are called colonies Seems to be destroyed. This effect is very favorable especially for high-Si materials that are non-transformed steels, and this effect cannot be realized by the prior art. The present invention improves the integration in the orientation represented by the {411} <148> orientation. This is a characteristic effect of steel.

以上のような現象の発現は付与される歪量に依存するため、熱延前の鋼片の厚みがある程度以上必要となる。本発明では熱延前の鋼片の厚さを20mm以上とする。好ましくは50mm以上、好ましくは100mm以上、さらに好ましくは150mm以上、さらに好ましくは200mm以上である。   Since the occurrence of the above phenomenon depends on the amount of strain applied, the thickness of the steel slab before hot rolling is required to some extent. In this invention, the thickness of the steel piece before hot rolling shall be 20 mm or more. Preferably it is 50 mm or more, Preferably it is 100 mm or more, More preferably, it is 150 mm or more, More preferably, it is 200 mm or more.

鋼片の厚さが20mm以下の場合は本発明範囲内の低温大圧下の熱延を行ったとしても、鋳造時の凝固に伴い形成される柱状組織に起因する{100}集合組織が残存し、本発明で特徴的な集合組織の効果を発揮できなくなる。   When the thickness of the steel slab is 20 mm or less, even when hot rolling under low temperature and high pressure within the scope of the present invention is performed, {100} texture resulting from the columnar structure formed with solidification during casting remains. The texture effect characteristic of the present invention cannot be exhibited.

この原因は明確ではないが、柱状組織に起因する非常に強い面内異方性を有する{100}方位を破壊するには本発明が特徴とする低温域での歪量が発明範囲内であったとしても十分なものとは言えず、熱延トータルでの大きな歪が必要なためと考えられる。   The cause of this is not clear, but the amount of strain in the low temperature range, which is a feature of the present invention, is within the scope of the invention in order to destroy the {100} orientation having very strong in-plane anisotropy caused by the columnar structure. Even if this is not sufficient, it is considered that a large strain is required in the total hot rolling.

鋼片の製造工程は特に限定しないが、通常の溶製工程から連続鋳造で製造されることが現状ではコスト面から最良である。また、熱延時のスラブの加熱温度は1250℃以下とすることが好ましい。これは析出物、特に硫化物、窒化物を粗大化させ無害化し鉄損を低減するのに効果的であるとともに、本発明の特徴である低温圧延に好ましい熱履歴となるからである。   The manufacturing process of the steel slab is not particularly limited, but it is best from the viewpoint of cost that it is manufactured by continuous casting from a normal melting process. Moreover, it is preferable that the heating temperature of the slab at the time of hot rolling shall be 1250 degrees C or less. This is because the precipitates, particularly sulfides and nitrides are coarsened to be harmless and effective in reducing iron loss, and the thermal history is favorable for low temperature rolling, which is a feature of the present invention.

つまり、通常の熱延条件のように1200℃以上でスラブを加熱してしまうと本発明で必要な圧延の大部分が低温域で行われるような熱履歴をとろうとすると、加熱炉からスラブを取り出した後、冷却を行う必要が生じ、コスト、生産性を阻害することになるためである。好ましくは1100℃以下、さらに好ましくは1000℃以下とする。   In other words, if the slab is heated at 1200 ° C. or higher as in the normal hot rolling conditions, the slab is removed from the heating furnace when trying to obtain a heat history such that most of the rolling required in the present invention is performed in a low temperature region. This is because it is necessary to perform cooling after taking out, which hinders cost and productivity. Preferably it is 1100 degrees C or less, More preferably, it is 1000 degrees C or less.

なお、圧延温度を低くするという観点からは、生産性阻害の要因ともなるが、従来のインヒビターを十分に活用した二次再結晶を行う際に必要とされていた、1300℃以上、さらには1350℃以上のスラブ加熱を行っても本発明の効果が失われるものではない。   In addition, from the viewpoint of lowering the rolling temperature, although it may be a factor in inhibiting productivity, it has been required at the time of secondary recrystallization using a conventional inhibitor sufficiently, 1300 ° C. or higher, and further 1350 The effect of the present invention is not lost even if slab heating at a temperature of ℃ or higher is performed.

熱延以降の工程としては未再結晶組織が残存したまま冷延が行われる必要があり、一般的に一部の材料で行われる熱延板焼鈍はあえて行う必要はない。通板性の改善など何らかの必要性があって温度を上げる場合には500℃以上に昇温しなければ再結晶が進行し本発明の効果が失われる心配は無用である。冷延、焼鈍は通常と同様に行えばよい。冷間圧延の後は通常の方向性電磁鋼板と同様の工程で再結晶焼鈍、皮膜形成等が行われる。これらの条件は本発明の効果に関して特に限定されるものではないが、上記の熱延条件を適用した場合、冷延率は50%以上とすることが磁束密度の向上の観点からは好ましい。冷延率があまりに低いと本発明で特徴的な集合組織の発達が起こり難い場合がある。   As a process after hot rolling, it is necessary to perform cold rolling with an unrecrystallized structure remaining, and it is not necessary to dare to perform hot-rolled sheet annealing generally performed with some materials. When the temperature is raised due to some necessity such as improvement of the plate passing property, it is unnecessary to worry that recrystallization proceeds and the effect of the present invention is lost unless the temperature is raised to 500 ° C. or higher. Cold rolling and annealing may be performed as usual. After cold rolling, recrystallization annealing, film formation, etc. are performed in the same steps as those for ordinary grain-oriented electrical steel sheets. These conditions are not particularly limited with respect to the effects of the present invention, but when the above hot rolling conditions are applied, the cold rolling rate is preferably 50% or more from the viewpoint of improving the magnetic flux density. If the cold rolling rate is too low, the texture development characteristic of the present invention may hardly occur.

本発明の効果は磁束密度の向上、鉄損の低減や応力感受性も改善する。これらは基本的には本発明における集合組織の改善による効果と考えられる。さらには再結晶抑制元素として添加したCu,Nb,Ni等は固溶強化に加え、析出強化等の効果を発揮するものもあり、高強度電磁鋼板としても有効なものとなる。   The effects of the present invention improve magnetic flux density, reduce iron loss and improve stress sensitivity. These are basically considered to be the effects of the texture improvement in the present invention. Further, Cu, Nb, Ni and the like added as recrystallization inhibiting elements exhibit effects such as precipitation strengthening in addition to solid solution strengthening, and are effective as high-strength electrical steel sheets.

また、本発明技術は、従来の方向性電磁鋼板の製造において、一般に行われてきた、脱炭焼鈍を用いたり、二次再結晶時にインヒビターの作用を利用する製造工程に適用し、特性向上効果を得ることができるものであるが、製造工程は、このような従来の方向性電磁鋼板のそれに準じたものに限定されない。すなわち、例えば、溶鋼時点でC量を脱ガス工程等で低くしておき、脱炭を行わない工程や、特に意識したインヒビターを用いず、二次再結晶(異常粒成長)を起こさせた場合にも、二次再結晶(異常粒成長)後に、非常に特性が良好な方向性電磁鋼板を得ることが可能となる。   In addition, the technology of the present invention is applied to a manufacturing process that uses decarburization annealing or the action of an inhibitor during secondary recrystallization, which has been generally performed in the manufacture of conventional grain-oriented electrical steel sheets. However, the manufacturing process is not limited to that of the conventional grain-oriented electrical steel sheet. That is, for example, when the amount of C is lowered in the degassing process at the time of molten steel, and when secondary recrystallization (abnormal grain growth) is caused without using a decarburizing process or a particularly conscious inhibitor In addition, it is possible to obtain a grain-oriented electrical steel sheet having very good characteristics after secondary recrystallization (abnormal grain growth).

脱炭を不要とした場合には、通常の連続焼鈍ラインでの一次再結晶が可能となり、生産性が向上する。また、インヒビターを用いない場合、インヒビターを用いたものより、多少、方位の集積度は劣る場合もあるが、二次再結晶が比較的、低温・短時間で完了するため、二次再結晶のための特殊な焼鈍炉でなくとも適用が可能で、雰囲気や加熱温度の精緻な制御も不要となる。また、焼鈍分離材の使用も不要で、通常の連続焼鈍ラインでの二次再結晶(異常粒成長)も可能となり、生産コストの大幅な低減が達成される。   When decarburization is not required, primary recrystallization can be performed in a normal continuous annealing line, and productivity is improved. In addition, when the inhibitor is not used, the degree of orientation accumulation may be somewhat inferior to that using the inhibitor, but secondary recrystallization is completed at a relatively low temperature and in a short time. Therefore, it can be applied without using a special annealing furnace, and precise control of the atmosphere and heating temperature is not required. Further, it is not necessary to use an annealing separator, and secondary recrystallization (abnormal grain growth) in a normal continuous annealing line is possible, and a significant reduction in production cost is achieved.

本発明では一次再結晶鋼板特性の特徴を45°方向の特性が優れるとしているが、厳密には最も良好な特性は45°方向ではなく、これからずれたものになることも考えられる。これは磁気特性が本発明で特徴的なα−fiber±20°方位以外にも様々な方位を有する鋼板内の全ての結晶の影響によるものであることから当然であるが、それによって発明の効果が全く得られなくなったり逆になるようなものではなく影響は小さく、本発明では代表的に45°方向特性が優れるとの記述をしているものである。   In the present invention, the characteristic of the primary recrystallized steel sheet characteristic is that the characteristic in the 45 ° direction is excellent, but strictly speaking, the best characteristic is not in the 45 ° direction but may be deviated from this. This is natural because the magnetic properties are due to the influence of all the crystals in the steel sheet having various orientations other than the α-fiber ± 20 ° orientation characteristic of the present invention. However, the influence is small, and the present invention describes that the 45 ° direction characteristic is typically excellent.

また、特徴を記述する特性を「誘起電流密度を5000A/mとした時の圧延方向から0°、45°、90°方向の磁束密度」すなわちB0、B45、B90で行っているが、これ以外の特性での記述も可能なものである。例えば誘起電流密度が異なる場合の磁束密度で規定することも可能で、この場合、当然のことながら規定する値の絶対値等も異なることになる。さらに磁束密度ではなく鉄損や磁歪などによっても発明の効果を評価することも可能である。 The characteristics describing the characteristics are “magnetic flux density in the direction of 0 °, 45 °, 90 ° from the rolling direction when the induced current density is 5000 A / m”, that is, B 0 , B 45 , B 90. It is possible to describe other characteristics. For example, it can be defined by the magnetic flux density when the induced current density is different. In this case, naturally, the absolute value of the defined value is also different. Furthermore, the effect of the invention can be evaluated not by the magnetic flux density but by iron loss, magnetostriction, and the like.

磁束密度が最高の方向では、鉄損は最低値を示すなど、対象とする特性によっては絶対値の高低が逆になる場合もある。これらの特性は互いに密接に関連し定性的な関連は公知であり、一般的な知識を有する当業者であれば容易に想定できる程度のもので「誘起電流密度を5000A/mとした時の圧延方向から0°、45°、90°方向の磁束密度」で評価した本発明と本質的に同様のものに過ぎないものである。   Depending on the target characteristics, the magnitude of the absolute value may be reversed, for example, the iron loss shows the lowest value in the direction in which the magnetic flux density is highest. These characteristics are closely related to each other and qualitative relations are well known, and can be easily assumed by those skilled in the art having general knowledge. “Rolling when the induced current density is 5000 A / m” This is essentially the same as the present invention evaluated by “the magnetic flux density in the directions of 0 °, 45 °, and 90 ° from the direction”.

以下に実施例について説明する。一次再結晶鋼板の磁気特性は55mm×55mmの大きさのサンプルでコイルの圧延方向から0°、45°、90°の方向について特性を測定した。磁束密度は通常用いられるB50およびW15/50で評価した。B0、B45、B90、Baveはそれぞれ0°、45°、90°の方向の磁束密度、および{(0°特性)+2*(45°特性)+(90°特性)}/4で得られる面内平均磁束密度を意味する。集合組織はサンプルの表層1/8部位および中心部についてX線により測定し、三次元ベクトル法で解析した。 Examples will be described below. The magnetic properties of the primary recrystallized steel sheet were measured in the direction of 0 °, 45 °, and 90 ° from the coil rolling direction with a sample having a size of 55 mm × 55 mm. The magnetic flux density was evaluated by commonly used B 50 and W 15/50 . B 0 , B 45 , B 90 , and B ave are magnetic flux densities in directions of 0 °, 45 °, and 90 °, respectively, and {(0 ° characteristic) + 2 * (45 ° characteristic) + (90 ° characteristic)} / 4. Means the in-plane average magnetic flux density. The texture was measured by X-ray at the surface 1/8 site and the center of the sample and analyzed by a three-dimensional vector method.

「低温域での剪断歪条件」の判定、剪断領域厚さに関する判定、剪断歪速度、累計剪断歪は、FEM計算により判定を行った。FEM計算は、圧延される鋼材を板厚方向に20等分したモデルを用い、ロール径や温度などのパス条件において行った。判定は表層1/4位置に相当する部位についての結果で行った。通常の条件であれば、これより表層側で判定すれば、剪断歪量が多くなり、本発明条件を満足しやすくなり、中心側で判定すれば、剪断歪量が少なくなるため、本発明条件を満足し難くなるものである。本発明では、実際に製造された板の板厚方向での集合組織変化と、特性に及ぼす影響を考え、板厚の1/4位置で判定した。   Determination of “shear strain conditions in a low temperature region”, determination on the thickness of the shear region, shear strain rate, and cumulative shear strain were determined by FEM calculation. The FEM calculation was performed under a pass condition such as a roll diameter and temperature using a model in which a steel material to be rolled was equally divided into 20 in the plate thickness direction. The determination was made based on the results for the part corresponding to the position of the surface layer 1/4. If it is a normal condition, if it is judged on the surface layer side from this, the amount of shear strain will increase, and it will be easier to satisfy the conditions of the present invention. It will be difficult to satisfy. In the present invention, the texture change in the thickness direction of the actually manufactured plate and the influence on the characteristics are considered, and the determination is made at a 1/4 position of the plate thickness.

鉄損は磁束密度と逆相関を示すことがよく知られており、各方向についての表示を省き、{(0°特性)+2×(45°特性)+(90°特性)}/4で得られる面内平均値を示した。また二次再結晶後は、コイル幅中央部から採取したサンプルについて、エプスタイン法により磁気特性を調査した。特性は800A/mで励磁したときの磁束密度B8および50Hzで1.7Tまで交流で励磁したときの鉄損W17/50で評価した。 It is well known that the iron loss shows an inverse correlation with the magnetic flux density. The display in each direction is omitted, and {(0 ° characteristic) + 2 × (45 ° characteristic) + (90 ° characteristic)} / 4 is obtained. The in-plane average value obtained is shown. After secondary recrystallization, the magnetic properties of the sample collected from the central part of the coil width were investigated by the Epstein method. The characteristics were evaluated by the magnetic flux density B 8 when excited at 800 A / m and the iron loss W 17/50 when excited by alternating current up to 1.7 T at 50 Hz.

表2〜7における条件1〜5は以下のとおりである。
(条件1)
×:「低温域での剪断歪条件」を満足する圧延パスが存在しない
○:「低温域での剪断歪条件」を満足する圧延パスが、少なくとも1パスは存在する
(条件2)
熱間圧延におけるF℃を超える温度域での圧延において、
・圧延歪が2.0以下、
・1回の圧延パスあたりの圧延歪が0.6以下、
・複数回かつ連続したパスを行うに際し各圧延パス間時間が4.0秒以上、
と言う条件を
×:ひとつも満足しない
○:少なくとも一つは満足する
(条件3)
表層1/4位置での{411}<148>方位の集積強度について、鋼成分が実質的に同じでかつ熱延の全圧延パスがF℃以上で行われた鋼板との比
(条件4)
45について、両表層1/4を除去したときの低下量
(条件5)
45について、鋼成分が実質的に同じでかつ熱延の全圧延パスがF℃以上で行われた鋼板との差
実験工程は、通常の方向性電磁鋼板や無方向性電磁鋼板を製造する場合とほぼ同様である。鋼を溶製し、連鋳スラブとなし、熱延、酸洗、冷延、焼鈍し、一次再結晶鋼板の時点で特性を測定した。焼鈍は必要に応じて脱炭雰囲気とした。その後、必要に応じ、窒化雰囲気での焼鈍、焼鈍分離剤を塗布し、二次再結晶焼鈍し、さらに必要に応じて表面に皮膜を形成して製品板を得、特性を評価した。本実施例で重要な要点となる熱延は、粗熱延6パス、仕上熱延6パスまたは7パスで行い、各パスについて本発明製造法への適合を評価した。
Conditions 1 to 5 in Tables 2 to 7 are as follows.
(Condition 1)
×: There is no rolling pass that satisfies the “shear strain condition in the low temperature region”. ○: There is at least one pass that satisfies the “shear strain condition in the low temperature region” (condition 2).
In rolling in a temperature range exceeding F ° C in hot rolling,
-Rolling strain is 2.0 or less,
-Rolling strain per rolling pass is 0.6 or less,
-The time between each rolling pass is 4.0 seconds or more when performing multiple passes continuously.
X: Not satisfied at all ○: At least one satisfied (Condition 3)
Ratio of the strength of {411} <148> orientation at the 1/4 position of the surface layer with a steel plate in which the steel components are substantially the same and the entire rolling pass of hot rolling is performed at F ° C or higher (Condition 4)
For B 45, reduction amount when the removal of both surface layers 1/4 (Condition 5)
For B 45, the difference between experimental steps of the steel sheet steel components substantially same as and total rolling pass of hot rolling is performed at F ° C. or more, to produce a regular grain oriented electrical steel sheet and non-oriented electrical steel sheet It is almost the same as the case. The steel was melted and formed as a continuous cast slab, hot rolled, pickled, cold rolled, annealed, and the properties were measured at the time of the primary recrystallized steel sheet. Annealing was performed in a decarburizing atmosphere as necessary. Then, if necessary, annealing in a nitriding atmosphere and an annealing separator were applied, followed by secondary recrystallization annealing, and if necessary, a film was formed on the surface to obtain a product plate, and the characteristics were evaluated. Hot rolling, which is an important point in the present example, was performed by rough hot rolling 6 passes, finishing hot rolling 6 passes or 7 passes, and each pass was evaluated for conformity to the production method of the present invention.

<実施例1>
二次再結晶のインヒビターとして、主として窒化により形成された窒化物を用いて製造される方向性電磁鋼板に準じた製法による場合の、本発明の効果を検討した。表1に成分を示す鋼Aのスラブを1150℃に加熱し、板厚2.3mmに熱延した。熱延条件を表2に示す。その後、0.22mm厚に冷間圧延した。この冷延板を、820℃で120秒間、脱炭雰囲気で焼鈍し、C量を0.002%とした一次再結晶鋼板を得て、この特性を評価した。その後、750℃で30秒間アンモニア含有雰囲気中で焼鈍し、鋼板中の窒素量を0.025%とした。次いで、MgOを主成分とする焼鈍分離剤を塗布した後、1200℃で20時間仕上げ焼鈍を施し二次再結晶させた。二次再結晶鋼板の特性値を表3に併記する。比較材は、現状で市場に出荷されている程度の方向性電磁鋼板であるが、これと比較することで本発明法による鋼板の優れた特性が分かる。
<Example 1>
As an inhibitor of secondary recrystallization, the effect of the present invention was examined in the case of a production method according to a grain-oriented electrical steel sheet produced mainly using nitride formed by nitriding. The slab of steel A having the components shown in Table 1 was heated to 1150 ° C. and hot rolled to a plate thickness of 2.3 mm. Table 2 shows the hot rolling conditions. Then, it cold-rolled to 0.22 mm thickness. This cold-rolled sheet was annealed in a decarburizing atmosphere at 820 ° C. for 120 seconds to obtain a primary recrystallized steel sheet having a C content of 0.002%, and this property was evaluated. Thereafter, annealing was performed at 750 ° C. for 30 seconds in an ammonia-containing atmosphere, so that the amount of nitrogen in the steel sheet was 0.025%. Next, after applying an annealing separator containing MgO as a main component, a final annealing was performed at 1200 ° C. for 20 hours for secondary recrystallization. Table 3 shows the characteristic values of the secondary recrystallized steel sheet. The comparative material is a grain-oriented electrical steel sheet that is currently shipped to the market, but the superior characteristics of the steel sheet according to the method of the present invention can be understood by comparing with this.

Figure 0004593317
Figure 0004593317

Figure 0004593317
Figure 0004593317

Figure 0004593317
Figure 0004593317

<実施例2>
高温スラブ加熱で溶解した硫化物、窒化物を、その後の工程で微細に析出させ二次再結晶時のインヒビターとして用いる方向性電磁鋼板に準じた製法による場合の、本発明の効果を検討した。組成を表1に示す鋼Bスラブを、1330℃に加熱後、表4に示す熱延により板厚2.0mmの熱延板とした。
<Example 2>
The effect of the present invention was studied when a sulfide or nitride dissolved by high-temperature slab heating was finely precipitated in a subsequent process and produced by a method according to a grain-oriented electrical steel sheet used as an inhibitor during secondary recrystallization. The steel B slab whose composition is shown in Table 1 was heated to 1330 ° C., and then hot-rolled with a thickness of 2.0 mm by hot rolling shown in Table 4.

次いで、冷間圧延により板厚0.30mmとした後、脱炭雰囲気で890℃30秒間の一次再結晶焼鈍を施し、C量が0.001%の一次再結晶鋼板を得て、この特性を評価した。次に、MgO:95%、TiO2:5%を含有する焼鈍分離剤を水スラリーとし鋼板に塗布し、1150℃3時間の二次再結晶焼鈍を行った。上記のようにして得られた仕上焼鈍板の表面に、リン酸塩−クロム酸塩−コロイダルシリカを質量比3:1:3で含有する塗布液を塗布し、800℃で焼き付けた。得られた結果を表5に併記する。比較材は、現状で市場に出荷されている程度の方向性電磁鋼板であるが、これと比較することで本発明法による鋼板の優れた特性が分かる。 Next, after making the plate thickness 0.30 mm by cold rolling, primary recrystallization annealing was performed in a decarburizing atmosphere at 890 ° C. for 30 seconds to obtain a primary recrystallized steel sheet having a C content of 0.001%. evaluated. Next, an annealing separator containing MgO: 95% and TiO 2 : 5% was applied as a water slurry to the steel sheet, and subjected to secondary recrystallization annealing at 1150 ° C. for 3 hours. A coating solution containing phosphate-chromate-colloidal silica at a mass ratio of 3: 1: 3 was applied to the surface of the finish-annealed plate obtained as described above, and baked at 800 ° C. The obtained results are also shown in Table 5. The comparative material is a grain-oriented electrical steel sheet that is currently shipped to the market, but the superior characteristics of the steel sheet according to the method of the present invention can be understood by comparing with this.

Figure 0004593317
Figure 0004593317

Figure 0004593317
Figure 0004593317

<実施例3>
二次再結晶のインヒビターとして、従来の方向性電磁鋼板に準じたものを用いず、比較的低温、短時間で二次再結晶(異常粒成長)させる製法による場合の、本発明の効果を検討した。この方法では、特に、工程の簡略化を念頭においたため、脱炭焼鈍も行わない条件とした。表1に示す鋼C−Jを連続鋳造でスラブとし、表6に示す条件で熱延、冷延、一次再結晶焼鈍、さらに二次再結晶焼鈍(異常粒成長焼鈍)した。一次再結晶鋼板時点での特性と二次再結晶(異常粒成長)鋼板の特性値を表7に併記する。同一成分の中で比較することで、本発明法による鋼板の優れた特性が分かる。
<Example 3>
Examining the effect of the present invention when a secondary recrystallization inhibitor is not used in accordance with conventional grain-oriented electrical steel sheets but is produced by secondary recrystallization (abnormal grain growth) at a relatively low temperature in a short time. did. In this method, in particular, since the process was simplified, the decarburization annealing was performed. Steel CJ shown in Table 1 was made into a slab by continuous casting, and subjected to hot rolling, cold rolling, primary recrystallization annealing, and secondary recrystallization annealing (abnormal grain growth annealing) under the conditions shown in Table 6. Table 7 shows the characteristics at the time of the primary recrystallized steel sheet and the characteristic values of the secondary recrystallized (abnormal grain growth) steel sheet. By comparing among the same components, the excellent characteristics of the steel sheet according to the method of the present invention can be understood.

Figure 0004593317
Figure 0004593317

Figure 0004593317
Figure 0004593317

Claims (22)

質量%で、C:0.040%以下、Si:0.05〜6.5%、Mn:3.0%以下、Al:3.5%以下、S:0.055%以下、P:0.25%以下、N:0.040%以下を含み、残部Feおよび不可避的不純物からなる溶鋼を鋳造で厚さ50mm以上の鋼片に凝固させ、その後、熱延工程において500℃以上F℃以下の温度域で圧延が行われ、前記温度域での圧延において、圧下による累積歪(対数歪)Hと各パス出側温度T(℃)および、最終パスを除く圧延パスにおいては圧延後次の圧延パス開始までの時間t(秒)または最終パスの場合は最終パス圧延後水冷開始までの時間t(秒)の関係が、以下の式2
T<F−H×10−t×10 ・・・式2
を満たして行われ、前記温度域での圧延において、そのうちの少なくとも一回の圧延パスについて圧延時の鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上であり、熱延板時点で表層1/4領域に未再結晶組織を残存させ、さらに酸洗後、この未再結晶組織が残存したまま圧下率50%以上の冷間圧延を行うことにより、製品冷延板の表層1/4またはそれより表層側の部位において{411}<148>方位の集積強度/{411}<011>方位の集積強度≧4.0かつ{411}<148>方位の集積強度≧4.0を満たすようにし、前記冷延鋼板を二次再結晶させることを特徴とする方向性電磁鋼板の製造方法。
In mass%, C: 0.040% or less, Si: 0.05 to 6.5%, Mn: 3.0% or less, Al: 3.5% or less, S: 0.055% or less, P: 0 .25% or less, N: 0.040% or less, molten steel consisting of the balance Fe and unavoidable impurities is solidified into a steel piece having a thickness of 50 mm or more by casting, and then 500 ° C. or more and F ° C. or less in the hot rolling process In the rolling in the temperature range, the cumulative strain (logarithmic strain) H due to the reduction and each pass outlet temperature T (° C.), and in the rolling pass excluding the final pass, The relationship between the time t (second) until the start of the rolling pass or the time t (second) until the start of water cooling after the final pass rolling in the case of the final pass is expressed by the following formula 2
T <F−H × 10−t × 10 Equation 2
In the rolling in the temperature range, at least one of the rolling passes, the shear strain or shear strain / ((thickness direction compressive strain)) in the steel sheet surface layer during rolling is 0.2 or more. In addition, the non-recrystallized structure remains in the 1/4 layer of the surface layer at the time of hot rolling, and after pickling , the product is cooled by performing cold rolling with a reduction rate of 50% or more with the non-recrystallized structure remaining. at the site of the surface layer 1/4 or above the surface layer side of the rolled sheet {411} <148> integration intensity / {411} orientation <011> integrated intensity ≧ 4.0 and {411} orientation <148> orientation integration of A method for producing a grain-oriented electrical steel sheet characterized by satisfying strength ≧ 4.0 and secondary recrystallization of the cold-rolled steel sheet.
質量%で、C:0.040%以下、Si:0.05〜6.5%、Mn:3.0%以下、Al:3.5%以下、S:0.055%以下、P:0.25%以下、N:0.040%以下を含み、残部Feおよび不可避的不純物からなる溶鋼を鋳造で厚さ50mm以上の鋼片に凝固させ、その後、熱延工程において500℃以上F℃以下の温度域で圧延が行われ、前記温度域での圧延において、圧下による累積歪(対数歪)Hと各パス出側温度T(℃)および、最終パスを除く圧延パスにおいては圧延後次の圧延パス開始までの時間t(秒)または最終パスの場合は最終パス圧延後水冷開始までの時間t(秒)の関係が、以下の式2
T<F−H×10−t×10 ・・・式2
を満たして行われ、前記温度域での圧延において、そのうちの少なくとも一回の圧延パスについて圧延時の鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上であり、熱延板時点で表層1/4領域に未再結晶組織を残存させ、さらに酸洗後、この未再結晶組織が残存したまま圧下率50%以上の冷間圧延を行うことにより冷延板の鋼板表層1/4またはそれより表層側の部位において<411>//ND方位の集積強度の板面内の方位分布について極大値が4個以上存在するようにし、前記冷延鋼板を二次再結晶させることを特徴とする方向性電磁鋼板の製造方法。
In mass%, C: 0.040% or less, Si: 0.05 to 6.5%, Mn: 3.0% or less, Al: 3.5% or less, S: 0.055% or less, P: 0 .25% or less, N: 0.040% or less, molten steel consisting of the balance Fe and unavoidable impurities is solidified into a steel piece having a thickness of 50 mm or more by casting, and then 500 ° C. or more and F ° C. or less in the hot rolling process In the rolling in the above temperature range, the cumulative strain (logarithmic strain) H due to the reduction and each pass outlet temperature T (° C.), and in the rolling pass excluding the final pass, The relationship between the time t (second) until the start of the rolling pass or the time t (second) until the start of water cooling after the final pass rolling in the case of the final pass is expressed by the following formula 2
T <F−H × 10−t × 10 Equation 2
In the rolling in the temperature range, at least one of the rolling passes, the shear strain or shear strain / ((thickness direction compressive strain)) in the steel sheet surface layer during rolling is 0.2 or more. , non-recrystallized structure in a surface layer 1/4 region in hot-rolled sheet time is remaining, further pickling, by performing the non-recrystallized structure is cold-rolling remains reduction of 50% or more remaining, cold rolled as the maximum value for the orientation distribution of the <411> // the plate surface of the integrated intensity of the ND orientation steel surface layer 1/4 or than at the site of the surface layer side of the plate are present at least four, the cold-rolled steel sheet two A method for producing a grain-oriented electrical steel sheet, characterized by performing next recrystallization.
請求項1または2記載の方向性電磁鋼板の製造方法において熱延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスについて、剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である領域が圧延時の板厚で全板厚の10%以上に及ぶようにすることにより、冷延板の表層1/4またはそれより表層側の部位において{111}<211>方位の集積強度≦2.0を満たすようにすることを特徴とする方向性電磁鋼板の製造方法。 3. The method for producing a grain- oriented electrical steel sheet according to claim 1 , wherein the shear strain or shear strain / (sheet thickness direction compressive strain) in the steel sheet surface layer is 0 in rolling in a temperature range of F ° C. or less in hot rolling. For a rolling pass that is 2 or more, by making the region where the shear strain or shear strain / (plate thickness direction compressive strain) is 0.2 or more reaches 10% or more of the total plate thickness in the plate thickness at the time of rolling. the method of the grain-oriented electrical steel sheet, wherein to Rukoto to satisfy integrated intensity ≦ 2.0 {111} <211> orientation at the site of the surface layer 1/4 or above the surface layer side of the cold-rolled plate. 請求項1〜3のいずれかの項に記載の方向性電磁鋼板の製造方法において冷延板の表層1/4位置またはそれより表層側の位置での{411}<148>方位の集積強度が鋼板板厚中心での集積強度の2倍以上であることを特徴とする方向性電磁鋼板の製造方法。 In the manufacturing method of the grain- oriented electrical steel sheet according to any one of claims 1 to 3, the integrated strength of {411} <148> orientation at the surface layer 1/4 position of the cold-rolled sheet or the surface layer side thereof. Is a method for producing a grain-oriented electrical steel sheet, characterized in that is at least twice the integrated strength at the thickness center of the steel sheet. 請求項1〜4のいずれかの項に記載の方向性電磁鋼板の製造方法において冷延板が(B0+B90)/2−B45≦0.040を満たすことを特徴とする方向性電磁鋼板の製造方法。
ここで各変数は誘起電流密度を5000A/mとした時の圧延方向から0°、45°、90°方向の磁束密度/TをそれぞれB0、B45、B90とする。
The method for producing a grain- oriented electrical steel sheet according to any one of claims 1 to 4, wherein the cold-rolled sheet satisfies (B0 + B90) /2-B45≤0.040. Method.
Here, for each variable, the magnetic flux densities / T in the 0 °, 45 °, and 90 ° directions from the rolling direction when the induced current density is 5000 A / m are B 0, B 45, and B 90, respectively.
請求項1〜5のいずれかの項に記載の方向性電磁鋼板の製造方法において鋼成分が質量%で、さらに、Cu+Nb+Cr+B+Ni+Co+Mo+Ti:0.2〜8.0%を含有することを特徴とする方向性電磁鋼板の製造方法。 In the manufacturing method of the grain- oriented electrical steel sheet according to any one of claims 1 to 5 , the steel component is in mass%, and further contains Cu + Nb + Cr + B + Ni + Co + Mo + Ti: 0.2 to 8.0%. Method for producing an electrical steel sheet. 請求項1〜6のいずれかの項に記載の方向性電磁鋼板の製造方法において鋼成分が質量%で、さらに、Cu:0.2〜8.0%、Nb:0.1〜4.0%、Cr:1.0〜15.0%、B:0.0020〜0.0150%、Ni:0.2〜8.0%、Co:0.2〜8.0%、Mo:0.2〜8.0%、Ti:0.2〜2.0%のいずれか一種以上を含有することを特徴とする方向性電磁鋼板の製造方法。 The method for manufacturing a grain- oriented electrical steel sheet according to any one of claims 1 to 6, wherein the steel component is in mass%, Cu: 0.2 to 8.0%, and Nb: 0.1 to 4. 0%, Cr: 1.0 to 15.0%, B: 0.0020 to 0.0150%, Ni: 0.2 to 8.0%, Co: 0.2 to 8.0%, Mo: 0 The manufacturing method of the grain-oriented electrical steel sheet characterized by containing any 1 or more types of 0.2-8.0%, Ti: 0.2-2.0%. 請求項1〜7のいずれかの項に記載の方向性電磁鋼板の製造方法において鋼成分が質量%で、W,Sn,Sb,Mg,Ca,Ce、REMの1種または2種以上を合計で0.5%以下含有することを特徴とする方向性電磁鋼板の製造方法。 In the manufacturing method of the grain- oriented electrical steel sheet according to any one of claims 1 to 7 , the steel component is mass%, and one or more of W, Sn, Sb, Mg, Ca, Ce, and REM are used. The manufacturing method of the grain-oriented electrical steel sheet characterized by containing 0.5% or less in total. 請求項1〜8のいずれかの項に記載の方向性電磁鋼板の製造方法において、鋼成分が同じでかつ熱延の全圧延パスがF℃以上で行われた以外は同じ工程で製造された鋼板との比較において、冷延板の表層1/4位置またはそれより表層側の位置での{411}<148>方位の集積強度が2倍以上となっていることを特徴とする方向性電磁鋼板の製造方法。
ここでFは、鋼板の成分による以下の式1で示される。
F=820+(10×Si+50×Cu+50×Nb+10×Cr+5000×B+10×Ni+20×Co+40×Mo+20×Ti) ・・・式1
In the manufacturing method of the grain- oriented electrical steel sheet according to any one of claims 1 to 8, it was manufactured in the same process except that the steel components were the same and all rolling passes of hot rolling were performed at F ° C or higher. Directional electromagnetic wave characterized in that the integrated strength of {411} <148> orientation at the surface layer 1/4 position of the cold-rolled sheet or the surface layer side of the cold-rolled sheet is more than twice in comparison with the steel sheet. A method of manufacturing a steel sheet.
Here, F is represented by the following formula 1 depending on the components of the steel plate.
F = 820 + (10 × Si + 50 × Cu + 50 × Nb + 10 × Cr + 5000 × B + 10 × Ni + 20 × Co + 40 × Mo + 20 × Ti) Formula 1
請求項1〜9のいずれかの項に記載の方向性電磁鋼板の製造方法において、鋼成分が同じでかつ熱延の全圧延パスがF℃以上で行われた以外は同じ工程で製造された鋼板との比較において、冷延板がB45−B’45≧0.030を満たすことを特徴とする方向性電磁鋼板の製造方法。
ここで各変数は誘起電流密度を5000A/mとした時の圧延方向から45°方向の磁束密度/TをB45とする。Bは発明鋼、B’は比較鋼についての特性を示す。
In the manufacturing method of the grain- oriented electrical steel sheet according to any one of claims 1 to 9, it was manufactured in the same process except that the steel components were the same and all rolling passes of hot rolling were performed at F ° C or higher. A method for producing a grain-oriented electrical steel sheet, wherein the cold-rolled sheet satisfies B45−B′45 ≧ 0.030 in comparison with the steel sheet.
Here, for each variable, the magnetic flux density / T in the 45 ° direction from the rolling direction when the induced current density is 5000 A / m is B45. B shows the characteristics of the invention steel and B ′ shows the characteristics of the comparative steel.
請求項1〜10のいずれかの項に記載の方向性電磁鋼板の製造方法において冷延板の表層1/4を取り除き板厚中心層1/2厚さで測定するとB45が0.02T以上低下することを特徴とする方向性電磁鋼板の製造方法。 In the manufacturing method of the grain- oriented electrical steel sheet according to any one of claims 1 to 10, when the surface layer 1/4 of the cold-rolled sheet is removed and measurement is performed with a sheet thickness center layer 1/2 thickness, B45 is 0.02T or more. A method for producing a grain-oriented electrical steel sheet, characterized in that it decreases. 請求項1〜11のいずれかの項に記載の方向性電磁鋼板の製造方法において、冷延直前の熱延板時点で表層1/4領域の再結晶率が90%以下であることを特徴とする方向性電磁鋼板の製造方法。 In the manufacturing method of the grain- oriented electrical steel sheet according to any one of claims 1 to 11, a recrystallization rate of a surface quarter region is 90% or less at the time of hot rolling immediately before cold rolling. A method for producing a grain-oriented electrical steel sheet. 請求項1〜12のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスについて、圧延ワークロールの直径が700mm以下とすることを特徴とする方向性電磁鋼板の製造方法。 In the manufacturing method of the grain- oriented electrical steel sheet according to any one of claims 1 to 12 , in rolling in a temperature range of F ° C or lower in hot rolling, shear strain or shear strain at a steel sheet surface layer / (sheet thickness direction) A method for producing a grain-oriented electrical steel sheet, characterized in that a rolling work roll has a diameter of 700 mm or less for a rolling pass having a compressive strain of 0.2 or more. 請求項1〜13のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスについて、摩擦係数が0.10以上であることを特徴とする方向性電磁鋼板の製造方法。 In the manufacturing method of the grain- oriented electrical steel sheet according to any one of claims 1 to 13 , in rolling in a temperature range of F ° C or lower in hot rolling, shear strain or shear strain at a steel sheet surface layer / (sheet thickness direction) A method for producing a grain-oriented electrical steel sheet, wherein a friction coefficient is 0.10 or more for a rolling pass having a compressive strain (0.2) or more. 請求項1〜14のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスについて、剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である部位の剪断歪速度が10/s以上であることを特徴とする方向性電磁鋼板の製造方法。 In the manufacturing method of the grain- oriented electrical steel sheet according to any one of claims 1 to 14 , in rolling in a temperature range of F ° C or lower in hot rolling, shear strain or shear strain in a steel sheet surface layer / (sheet thickness direction) A rolling pass having a compressive strain of 0.2 or more has a shear strain rate of 10 / s or more at a portion where the shear strain or shear strain / (thickness direction compressive strain) is 0.2 or more. A method for producing a grain-oriented electrical steel sheet. 請求項1〜15のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスを複数回かつ連続して行うに際し、各圧延パス間時間が4.0秒以下であることを特徴とする方向性電磁鋼板の製造方法。 In the manufacturing method of the grain- oriented electrical steel sheet according to any one of claims 1 to 15 , in rolling in a temperature range of F ° C or less in hot rolling, shear strain or shear strain in a steel sheet surface layer / (sheet thickness direction) A method for producing a grain-oriented electrical steel sheet, characterized in that a time between rolling passes is 4.0 seconds or less when a rolling pass having a compressive strain of 0.2 or more is continuously performed a plurality of times. 請求項1〜16のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延におけるF℃以下の温度域での圧延において、鋼板表層での剪断歪または剪断歪/(板厚方向圧縮歪)が0.2以上である圧延パスを複数回行い、これによる鋼板表層での剪断歪の累計を0.6以上とすることを特徴とする方向性電磁鋼板の製造方法。 In the manufacturing method of the grain- oriented electrical steel sheet according to any one of claims 1 to 16 , in rolling in a temperature range of F ° C or lower in hot rolling, shear strain or shear strain at a steel sheet surface layer / (sheet thickness direction) A method for producing a grain-oriented electrical steel sheet, wherein a rolling pass having a compressive strain of 0.2 or more is performed a plurality of times, and a cumulative total of shear strain on the steel sheet surface layer is 0.6 or more. 請求項1〜17のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延におけるF℃を超える温度域での圧延において、圧延歪が2.0以下、または1回の圧延パスあたりの圧延歪が0.6以下、または複数回かつ連続したパスを行うに際し各圧延パス間時間が4.0秒以上であることを特徴とする方向性電磁鋼板の製造方法。 In the manufacturing method of the grain- oriented electrical steel sheet according to any one of claims 1 to 17 , in rolling in a temperature range exceeding F ° C in hot rolling, a rolling strain is 2.0 or less, or one rolling pass. A method for producing a grain-oriented electrical steel sheet, characterized in that the rolling strain is about 0.6 or less, or the time between each rolling pass is 4.0 seconds or more when performing a plurality of continuous passes. 請求項1〜18のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延の最終パス後、水冷開始までの時間を2秒以下とすることを特徴とする方向性電磁鋼板の製造方法。 In the manufacturing method of the grain- oriented electrical steel sheet according to any one of claims 1 to 18 , the time until the start of water cooling after the final pass of hot rolling is 2 seconds or less. Production method. 請求項1〜19のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延の最終パス後の水冷時の冷却速度を10℃/s以上とし700℃以下まで冷却することを特徴とする方向性電磁鋼板の製造方法。 In the manufacturing method of the grain- oriented electrical steel sheet according to any one of claims 1 to 19 , the cooling rate at the time of water cooling after the final pass of hot rolling is set to 10 ° C / s or more and cooled to 700 ° C or less. A method for producing a grain-oriented electrical steel sheet. 請求項1〜20のいずれかの項に記載の方向性電磁鋼板の製造方法において、熱延の最終パス後の水冷後、500℃以上に昇温することなく冷延し、焼鈍することを特徴とする方向性電磁鋼板の製造方法。 In the manufacturing method of the grain- oriented electrical steel sheet according to any one of claims 1 to 20 , after water cooling after the final pass of hot rolling , the steel sheet is cold-rolled without being heated to 500 ° C or more and annealed. A method for producing a grain-oriented electrical steel sheet. 請求項1〜21のいずれかの項に記載の方向性電磁鋼板の製造方法において、最終焼鈍後に0.5%以上、50%以下の歪を付与することを特徴とする方向性電磁鋼板の製造方法。 The method of manufacturing a grain-oriented electrical steel sheet according to any one of claims 1 to 21, the final annealing after 0.5% or more, the production of grain-oriented electrical steel sheet, which comprises applying a strain of 50% or less Method.
JP2005057066A 2005-03-02 2005-03-02 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties Active JP4593317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057066A JP4593317B2 (en) 2005-03-02 2005-03-02 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057066A JP4593317B2 (en) 2005-03-02 2005-03-02 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JP2006241503A JP2006241503A (en) 2006-09-14
JP4593317B2 true JP4593317B2 (en) 2010-12-08

Family

ID=37048201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057066A Active JP4593317B2 (en) 2005-03-02 2005-03-02 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP4593317B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021332A1 (en) 2016-07-29 2018-02-01 Jfeスチール株式会社 Hot-rolled steel sheet for grain-oriented magnetic steel sheet and production method therefor, and production method for grain-oriented magnetic steel sheet
WO2020067721A1 (en) * 2018-09-27 2020-04-02 주식회사 포스코 Doubly oriented electrical steel sheet and manufacturing method therefor
TWI718041B (en) * 2019-04-03 2021-02-01 日商日本製鐵股份有限公司 Electromagnetic steel plate and manufacturing method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219793A (en) * 2010-04-06 2011-11-04 Nippon Steel Corp Hot-rolled plate for oriented electromagnetic steel sheet excellent in magnetic characteristic, and method of producing the same
CN102443736B (en) * 2010-09-30 2013-09-04 宝山钢铁股份有限公司 Method for producing high magnetic flux-density oriented silicon steel product
JP5982883B2 (en) * 2011-04-11 2016-08-31 Jfeスチール株式会社 Evaluation method of grain-oriented electrical steel sheet
CN102268605B (en) * 2011-08-11 2013-10-16 广东省钢铁研究所 Method for preparing iron silicon soft magnetic alloy
KR101440596B1 (en) 2012-11-07 2014-09-15 주식회사 포스코 Grain-oriented electrical steel sheet and manufacturing method for the same
KR102466499B1 (en) * 2015-12-22 2022-11-10 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method for the same
MX2020010514A (en) * 2018-04-06 2020-10-22 Nucor Corp High friction rolling of thin metal strip.
KR102142511B1 (en) * 2018-11-30 2020-08-07 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
KR102271299B1 (en) * 2019-12-19 2021-06-29 주식회사 포스코 Double oriented electrical steel sheet method for manufacturing the same
JP7463976B2 (en) 2020-02-28 2024-04-09 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP7231888B2 (en) * 2020-03-30 2023-03-02 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet
KR102513027B1 (en) * 2020-12-21 2023-03-21 주식회사 포스코 Grain oriented electrical steel sheet and method for menufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794689B2 (en) * 1989-04-04 1995-10-11 新日本製鐵株式会社 Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH0788531B2 (en) * 1989-04-14 1995-09-27 新日本製鐵株式会社 Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021332A1 (en) 2016-07-29 2018-02-01 Jfeスチール株式会社 Hot-rolled steel sheet for grain-oriented magnetic steel sheet and production method therefor, and production method for grain-oriented magnetic steel sheet
KR20190034622A (en) 2016-07-29 2019-04-02 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet for directional electric steel sheet, manufacturing method thereof, and manufacturing method of directional electric steel sheet
WO2020067721A1 (en) * 2018-09-27 2020-04-02 주식회사 포스코 Doubly oriented electrical steel sheet and manufacturing method therefor
KR20200035753A (en) * 2018-09-27 2020-04-06 주식회사 포스코 Double oriented electrical steel sheet method for manufacturing the same
KR102105529B1 (en) 2018-09-27 2020-04-28 주식회사 포스코 Double oriented electrical steel sheet method for manufacturing the same
TWI718041B (en) * 2019-04-03 2021-02-01 日商日本製鐵股份有限公司 Electromagnetic steel plate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2006241503A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4593317B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
JP4589737B2 (en) Semi-process electrical steel sheet with excellent magnetic properties after grain growth and method for producing the same
JP4724431B2 (en) Non-oriented electrical steel sheet
KR20190112757A (en) Manufacturing method of non-oriented electrical steel sheet and non-oriented electrical steel sheet
JP6855895B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP7172100B2 (en) Non-oriented electrical steel sheet
JP4533036B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties in the 45 ° direction from the rolling direction and method for producing the same
JP7284383B2 (en) Non-oriented electrical steel sheet
JP6432671B2 (en) Method for producing grain-oriented electrical steel sheet
JPS59177327A (en) Production of cold rolled steel sheet for pressing work
JP4403038B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties in the 45 ° direction from the rolling direction and method for producing the same
JP7164071B1 (en) Non-oriented electrical steel sheet
JP6034002B2 (en) Cold rolling method for grain-oriented electrical steel sheet containing high Si
JP4855221B2 (en) Non-oriented electrical steel sheet for split core
JP2008308704A (en) Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
JP2020169367A (en) Method for manufacturing grain oriented electrical steel sheet
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP7269527B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7428872B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP7164070B1 (en) Non-oriented electrical steel sheet
JP7164069B1 (en) Non-oriented electrical steel sheet
JP7428873B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2005199311A (en) Method for manufacturing non-oriented magnetic steel sheet which is excellent in in-plane mean of magnetic properties and extremely small in in-plane anisotropy
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4593317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350