JP4592512B2 - Desulfurization catalyst for catalytic cracking gasoline, production method thereof, and desulfurization method of catalytic cracking gasoline using the catalyst - Google Patents

Desulfurization catalyst for catalytic cracking gasoline, production method thereof, and desulfurization method of catalytic cracking gasoline using the catalyst Download PDF

Info

Publication number
JP4592512B2
JP4592512B2 JP2005182687A JP2005182687A JP4592512B2 JP 4592512 B2 JP4592512 B2 JP 4592512B2 JP 2005182687 A JP2005182687 A JP 2005182687A JP 2005182687 A JP2005182687 A JP 2005182687A JP 4592512 B2 JP4592512 B2 JP 4592512B2
Authority
JP
Japan
Prior art keywords
catalyst
catalytic cracking
desulfurization
cracking gasoline
porous inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005182687A
Other languages
Japanese (ja)
Other versions
JP2007000748A (en
Inventor
誠二郎 野中
広 松本
好明 加藤
一雄 四郎園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2005182687A priority Critical patent/JP4592512B2/en
Priority to SG200603927A priority patent/SG128585A1/en
Priority to AU2006202559A priority patent/AU2006202559B2/en
Priority to KR1020060055803A priority patent/KR101330351B1/en
Publication of JP2007000748A publication Critical patent/JP2007000748A/en
Application granted granted Critical
Publication of JP4592512B2 publication Critical patent/JP4592512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8435Antimony
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Description

本発明は、接触分解ガソリン用脱硫触媒およびその製造方法並びにその脱硫触媒を用いた接触分解ガソリンの脱硫方法に関する。接触分解ガソリン用脱硫触媒とは、周知のように、重質炭化水素油や減圧軽油を流動接触分解装置(以下、FCC装置と略記することもある。)で接触分解するに際し、生成した接触分解ガソリン中に含まれる硫黄分を除去するための触媒である。   The present invention relates to a desulfurization catalyst for catalytic cracking gasoline, a production method thereof, and a desulfurization method of catalytic cracking gasoline using the desulfurization catalyst. The catalytic cracking gasoline desulfurization catalyst is, as is well known, the catalytic cracking produced when catalytically cracking heavy hydrocarbon oil or vacuum gas oil with a fluid catalytic cracking unit (hereinafter sometimes abbreviated as FCC unit). It is a catalyst for removing sulfur contained in gasoline.

重質油炭化水素油や減圧軽油の流動接触分解で得られる接触分解ガソリンには硫黄化合物が含まれているが、最近、大気汚染などの環境問題から自動車排ガスに含まれるNOxを除去する触媒が硫黄の被毒により急激に活性低下を起こすため、接触分解ガソリン中の硫黄分を低減することが要求されている。日本においても2005年にはガソリン中の硫黄分量が50ppm以下に規制されることになっており、従来、FCC装置において、触媒を用いて接触分解ガソリン中に含まれる硫黄分を除去する脱硫方法が種々提案されている。   Catalytic cracking gasoline obtained by fluid catalytic cracking of heavy oil hydrocarbon oil or vacuum gas oil contains sulfur compounds, but recently, a catalyst that removes NOx contained in automobile exhaust gas due to environmental problems such as air pollution. Since the activity is rapidly lowered by sulfur poisoning, it is required to reduce the sulfur content in catalytic cracked gasoline. Even in Japan, the sulfur content in gasoline is regulated to 50 ppm or less in 2005. Conventionally, there is a desulfurization method for removing sulfur contained in catalytic cracked gasoline using a catalyst in an FCC unit. Various proposals have been made.

例えば、特許第3545652号公報(特許文献1)には、液体の接触分解された石油フラクションの硫黄含量を低減させる方法であって、有機硫黄化合物を含む石油フィードフラクションを、流動接触分解条件にて、製品硫黄低減触媒の存在下で高温にて接触分解することを含み、当該製品硫黄低減触媒は多孔性のモレキュラー・シーブであって、モレキュラー・シーブの内部小孔構造内にゼロよりも大きい酸化状態のバナジウム金属を含み、バナジウム金属がシーブの小孔内で交換されたカチオン種として導入されている、硫黄含量が低減した液体クラッキング製品を製造するものである、硫黄含量低減方法が開示されている。
しかし、該製品硫黄低減触媒は、モレキュラー・シーブの内部小孔構造内にゼロよりも大きい酸化状態のバナジウム金属を含み、バナジウム金属がシーブの小孔内で交換されたカチオン種として導入されているので、バナジウム金属がモレキュラー・シーブの結晶構造を破壊するため、石油フィードフラクションの接触分解能が低下するという問題があった。
For example, Japanese Patent No. 3545652 (Patent Document 1) discloses a method for reducing the sulfur content of a liquid catalytically cracked petroleum fraction, in which a petroleum feed fraction containing an organic sulfur compound is subjected to fluid catalytic cracking conditions. , Including catalytic cracking at high temperatures in the presence of a product sulfur reduction catalyst, the product sulfur reduction catalyst being a porous molecular sieve having an oxidation greater than zero within the internal pore structure of the molecular sieve. Disclosed is a method for reducing sulfur content, which produces a liquid cracking product with reduced sulfur content, comprising vanadium metal in the state, wherein the vanadium metal is introduced as a cationic species exchanged within the pores of the sieve. Yes.
However, the product sulfur reduction catalyst contains vanadium metal in an oxidation state greater than zero within the molecular sieve internal pore structure, and the vanadium metal is introduced as a cationic species exchanged within the sieve pores. As a result, vanadium metal destroys the molecular structure of the molecular sieve, which reduces the contact resolution of the petroleum feed fraction.

また、特開2003−27065号公報(特許文献2)には、流動接触分解装置あるいは重油流動接触分解装置における原料油の接触分解において、無機多孔体にバナジウム、亜鉛、ニッケル、鉄およびコバルトから選ばれる少なくとも一種の金属を均一に担持してなる触媒を含む接触分解脱硫触媒を用いることを特徴とする接触分解ガソリンの脱硫方法が開示されており、生成ガソリン溜分の脱硫の点から好ましくはバナジウムまたは亜鉛が用いられることが記載されている。
しかし、バナジウムを無機多孔体に均一に担持した触媒は、有機硫黄化合物が触媒内へ拡散し、かつ酸化バナジウムと接触しなければ脱硫されないため、担持された酸化バナジウムの利用効率が低く、そのため、バナジウムの担時量を多くしなければならなかった。さらに、無機多孔体がY型ゼオライトを含む流動接触分解触媒(以下、FCC触媒と略記することもある。)である場合には、重質油炭化水素油の流動接触分解において、ガソリン溜分の硫黄分を除去する効果は有するものの、バナジウムによりY型ゼオライトが破壊されるため分解活性が低下し、水素、コークの生成が増加するという問題があった。
Japanese Patent Laid-Open No. 2003-27065 (Patent Document 2) discloses that the inorganic porous material is selected from vanadium, zinc, nickel, iron and cobalt in the catalytic cracking of the raw material oil in the fluid catalytic cracking apparatus or the heavy oil fluid catalytic cracking apparatus. And a catalytic cracking desulfurization catalyst comprising a catalyst formed by uniformly supporting at least one kind of metal is disclosed. From the viewpoint of desulfurization of the gasoline fraction produced, vanadium is preferable. Or it describes that zinc is used.
However, the catalyst in which vanadium is uniformly supported on the inorganic porous body is not desulfurized unless the organic sulfur compound diffuses into the catalyst and comes into contact with vanadium oxide, so the utilization efficiency of the supported vanadium oxide is low. I had to increase the amount of vanadium. Further, when the inorganic porous material is a fluid catalytic cracking catalyst containing Y-type zeolite (hereinafter sometimes abbreviated as FCC catalyst), in fluid catalytic cracking of heavy oil hydrocarbon oil, Although it has an effect of removing sulfur content, vanadium destroys the Y-type zeolite, so that there is a problem that the decomposition activity is reduced and the production of hydrogen and coke is increased.

特許第3545652号公報Japanese Patent No. 3456562 特開2003−27065号公報JP 2003-27065 A

本発明の目的は、前述の問題を解決して、重質油炭化水素油や減圧軽油の流動接触分解において、ガソリン溜分の硫黄分除去に高い脱硫性能を示し、しかも分解活性が高く、水素、コークの生成が抑制された接触分解ガソリン用脱硫触媒を提供することにある。
また、本発明は、そのような接触分解ガソリン用脱硫触媒の製造方法を提供すると共に、その脱硫触媒を用いた接触分解ガソリンの脱硫方法を提供するものである。
The object of the present invention is to solve the above-mentioned problems, exhibit high desulfurization performance for removal of sulfur content in gasoline distillate in fluid catalytic cracking of heavy oil hydrocarbon oil and vacuum gas oil, and have high cracking activity, hydrogen Another object is to provide a catalytic cracking gasoline desulfurization catalyst in which the production of coke is suppressed.
The present invention also provides a method for producing such a catalytic cracking gasoline desulfurization catalyst and a method for desulfurizing catalytic cracking gasoline using the desulfurization catalyst.

本発明者らは、前述の目的を達成するために鋭意研究を重ねた結果、多孔性無機酸化物微小球状粒子表面にだけ酸化バナジウムを担持した接触分解ガソリン用脱硫触媒は、重質油炭化水素油や減圧軽油の流動接触分解において、ガソリン溜分の脱硫性能が高く、しかも分解活性が高いにも拘わらず、水素、コークの生成が抑制されることを見出し本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that a desulfurization catalyst for catalytic cracking gasoline in which vanadium oxide is supported only on the surface of porous inorganic oxide fine spherical particles is a heavy oil hydrocarbon. In the fluid catalytic cracking of oil and vacuum gas oil, the present inventors have found that the generation of hydrogen and coke is suppressed despite the high desulfurization performance of gasoline fraction and high cracking activity.

即ち、本発明の接触分解ガソリン用脱硫触媒は、多孔性無機酸化物微小球状粒子の表面部分だけに酸化バナジウムが担持された触媒であって、該表面部分の少なくとも一部分に酸化バナジウムが担持されていることを特徴とするものである。
前記酸化バナジウムは、多孔性無機酸化物微小球状粒子の表面部分の少なくとも一部分に酸化バナジウム被膜を形成していることが好ましい。
That is, the desulfurization catalyst for catalytic cracking gasoline of the present invention is a catalyst in which vanadium oxide is supported only on the surface portion of the porous inorganic oxide fine spherical particles, and vanadium oxide is supported on at least a part of the surface portion. It is characterized by being.
The vanadium oxide preferably has a vanadium oxide film formed on at least a part of the surface portion of the porous inorganic oxide microspherical particles.

前記酸化バナジウムの担持量はV25として0.3〜3wt%の範囲にあることが好ましい。
前記多孔性無機酸化物微小球状粒子には更にアンチモンが担持されていることが好ましい。
前記多孔性無機酸化物微小球状粒子は、結晶性アルミノシリケートゼオライトと多孔性無機酸化物マトリックスとからなることが好ましく、多孔性無機酸化物マトリックスは、結合材として作用する耐火酸化物、粘土鉱物、含水微粉ケイ酸、アルミナ粉末および金属捕捉剤とからなることが好ましい。
The supported amount of vanadium oxide is preferably in the range of 0.3 to 3 wt% as V 2 O 5 .
It is preferable that antimony is further supported on the porous inorganic oxide fine spherical particles.
The porous inorganic oxide microspherical particles are preferably composed of a crystalline aluminosilicate zeolite and a porous inorganic oxide matrix, and the porous inorganic oxide matrix includes a refractory oxide that acts as a binder, a clay mineral, It preferably comprises hydrous finely divided silicic acid, alumina powder and a metal scavenger.

本発明の接触分解ガソリン用脱硫触媒の製造方法は、多孔性無機酸化物微小球状粒子に酸化バナジウムゾルを含浸させた後、乾燥、焼成することを特徴とするものであり、前記酸化バナジウムゾルの酸化バナジウム微粒子は平均粒子径が1〜1000nmの範囲にあることが好ましい。   The method for producing a desulfurization catalyst for catalytic cracking gasoline of the present invention comprises impregnating a porous inorganic oxide fine spherical particle with a vanadium oxide sol, followed by drying and firing, wherein the vanadium oxide sol The vanadium oxide fine particles preferably have an average particle diameter in the range of 1 to 1000 nm.

本発明の接触分解ガソリンの脱硫方法は、前記接触分解ガソリン用脱硫触媒と、炭化水素流動接触分解触媒とを5/95〜50/50の重量比で混合した混合触媒に、重質炭化水素油および/または減圧軽油を接触分解条件下で接触させて接触分解反応と共に脱硫反応を行うことを特徴とするものである。   The method for desulfurizing catalytic cracking gasoline of the present invention comprises a heavy hydrocarbon oil mixed with a mixed catalyst obtained by mixing the desulfurization catalyst for catalytic cracking gasoline and a hydrocarbon fluid catalytic cracking catalyst in a weight ratio of 5/95 to 50/50. In addition, the desulfurization reaction is performed together with the catalytic cracking reaction by contacting the vacuum gas oil under the catalytic cracking condition.

本発明の接触分解ガソリンの脱硫触媒は、FCC装置において、FCC触媒と混合して重質炭化水素油および/または減圧軽油の接触分解に使用した際に、有機硫黄化合物は接触分解ガソリン用脱硫触媒の表面部分だけに担時された酸化バナジウムと効率よく接触する。そのため、触媒の表面部分だけに担時された少量の酸化バナジウムで所望の脱硫活性が得られる。
さらに、結晶性アルミノシリケートゼオライトを含むFCC触媒を多孔性無機酸化物微小球状粒子として使用した場合には、酸化バナジウムによる結晶性アルミノシリケートゼオライトの結晶破壊が生じないため分解活性が高く、水素、コークの生成が抑制される。
When the catalytic cracking gasoline desulfurization catalyst of the present invention is mixed with the FCC catalyst and used for the catalytic cracking of heavy hydrocarbon oil and / or vacuum gas oil in the FCC unit, the organic sulfur compound is the desulfurization catalyst for catalytic cracking gasoline. Efficient contact with vanadium oxide supported only on the surface of the surface. Therefore, a desired desulfurization activity can be obtained with a small amount of vanadium oxide supported only on the surface portion of the catalyst.
Furthermore, when an FCC catalyst containing crystalline aluminosilicate zeolite is used as porous inorganic oxide microspherical particles, the crystal aluminosilicate zeolite is not broken by vanadium oxide, so the decomposition activity is high. Generation is suppressed.

また、酸化バナジウムに加えてアンチモンが担持されている本発明の接触分解ガソリンの脱硫触媒では、アンチモンが硫黄化合物に対して高い水素化分解能を有し、また脱水素反応の抑制による水素の生成を抑制する効果をも有している。
In addition, in the catalytic cracking gasoline desulfurization catalyst of the present invention in which antimony is supported in addition to vanadium oxide, antimony has a high hydrogenation resolution with respect to sulfur compounds, and also generates hydrogen by suppressing the dehydrogenation reaction. It also has an inhibitory effect.

接触分解ガソリン用脱硫触媒
本発明において多孔性無機酸化物微小球状粒子には、重質油炭化水素油や減圧軽油の流動接触分解装置で使用される通常の流動接触分解触媒と同様の大きさの微小球状粒子が採用され、具体的には平均粒子径が40〜90μm範囲の微小球状粒子が例示される。
本発明において多孔性無機酸化物微小球状粒子の表面部分とは、該微小球状粒子の外表面から粒子半径の1/2の長さ迄の内側部分をいい、本発明の接触分解ガソリン用脱硫触媒は、該表面部分の少なくとも一部分に酸化バナジウムが担持されている。
Catalytic cracking gasoline desulfurization catalyst In the present invention, the porous inorganic oxide fine spherical particles have the same size as that of a normal fluid catalytic cracking catalyst used in a fluid catalytic cracking apparatus for heavy oil hydrocarbon oil or vacuum gas oil. Fine spherical particles are employed, and specifically, fine spherical particles having an average particle diameter in the range of 40 to 90 μm are exemplified.
In the present invention, the surface portion of the porous inorganic oxide microspherical particles refers to an inner portion from the outer surface of the microspherical particles to a length of ½ of the particle radius. The desulfurization catalyst for catalytic cracking gasoline of the present invention Has vanadium oxide supported on at least a part of the surface portion.

従来の接触分解ガソリン用脱硫触媒である多孔性無機酸化物微小球状粒子に均一に酸化バナジウムが担持された触媒、又は該微小球状粒子の粒子半径の1/2の長さを越えた中心部分に迄も酸化バナジウムが担持された触媒では、有機硫黄化合物が触媒内へ拡散し、かつ酸化バナジウムと接触しなければ脱硫されないため、担持された酸化バナジウムの利用効率が低い。そのため、酸化バナジウムの担持量を多くしないと所望の脱硫活性が得られなかった。
然るに、本発明の接触分解ガソリン用脱硫触媒では、有機硫黄化合物は多孔性無機酸化物微小球状粒子の表面部分だけに担時された酸化バナジウムと効率よく接触するため、酸化バナジウムの利用効率が高い。そのため、触媒の表面部分だけに担時された少量の酸化バナジウムで所望の脱硫活性が得られる。さらに、前記多孔性無機酸化物微小球状粒子が後述する結晶性アルミノシリケートゼオライトを含むFCC触媒である場合には、酸化バナジウムによる結晶性アルミノシリケートゼオライトの結晶破壊が生じないため分解活性が高く、水素、コークの生成が抑制される。
A catalyst in which vanadium oxide is uniformly supported on a porous inorganic oxide fine spherical particle, which is a conventional desulfurization catalyst for catalytic cracking gasoline, or a central portion exceeding the half of the particle radius of the fine spherical particle. Until now, in the catalyst on which vanadium oxide is supported, since the organic sulfur compound diffuses into the catalyst and is not desulfurized unless it comes into contact with vanadium oxide, the utilization efficiency of the supported vanadium oxide is low. Therefore, the desired desulfurization activity cannot be obtained unless the supported amount of vanadium oxide is increased.
However, in the catalytic cracking gasoline desulfurization catalyst of the present invention, the organic sulfur compound efficiently contacts with the vanadium oxide supported only on the surface portion of the porous inorganic oxide microspherical particles, and therefore, the utilization efficiency of vanadium oxide is high. . Therefore, a desired desulfurization activity can be obtained with a small amount of vanadium oxide supported only on the surface portion of the catalyst. Furthermore, when the porous inorganic oxide microsphere particles are an FCC catalyst containing a crystalline aluminosilicate zeolite, which will be described later, the crystal aluminosilicate zeolite is not broken by vanadium oxide, so that the decomposition activity is high. The production of coke is suppressed.

本発明の接触分解ガソリン用脱硫触媒は、好ましくは多孔性無機酸化物微小球状粒子の外表面から粒子半径の30%の長さ以内、さらに好ましくは20%以内の範囲の少なくとも一部分に、酸化バナジウムの担持量の少なくとも90wt%が担持されていることが望ましい。なお、多孔性無機酸化物微小球状粒子表面部分への酸化バナジウムの担持状態は、走査型電子顕微鏡(SEM)写真および電子プローブ微小部分析装置(WDS)画像によって確認される。
また、本発明の接触分解ガソリン用脱硫触媒では、前記多孔性無機酸化物微小球状粒子の外表面から粒子半径の1/2の長さ迄の内側部分の一部分に担持された酸化バナジウムは、多孔性無機酸化物微小球状粒子の表面の少なくとも一部分に酸化バナジウム被膜を形成していることが好ましい。該酸化バナジウム被膜は、多孔性無機酸化物微小球状粒子の表面のSEM写真で観察される。
The desulfurization catalyst for catalytic cracking gasoline of the present invention preferably has vanadium oxide within at least a portion within the range of 30% of the particle radius, more preferably within 20% of the outer surface of the porous inorganic oxide microspherical particles. It is desirable that at least 90 wt% of the supported amount is supported. In addition, the supporting state of vanadium oxide on the surface portion of the porous inorganic oxide microspherical particles is confirmed by a scanning electron microscope (SEM) photograph and an electron probe microanalyzer (WDS) image.
In the catalytic cracking gasoline desulfurization catalyst of the present invention, the vanadium oxide supported on a part of the inner portion from the outer surface of the porous inorganic oxide microspherical particle to the length of ½ of the particle radius is porous. It is preferable that a vanadium oxide film is formed on at least a part of the surface of the conductive inorganic oxide fine spherical particles. The vanadium oxide film is observed by SEM photographs of the surface of the porous inorganic oxide microsphere particles.

本発明の接触分解ガソリン用脱硫触媒は、該多孔性無機酸化物微小球状粒子の表面の少なくとも一部分に酸化バナジウムが担持されていると、特に酸化バナジウム被膜が形成されていると、有機硫黄化合物と該多孔性無機酸化物微小球状粒子との表面接触のみで脱硫反応が進むため脱硫効率が高く、かつガソリン留分だけでなく、より沸点の高い高分子量生成油中の有機硫黄化合物の脱硫も行うことができる。   The desulfurization catalyst for catalytic cracking gasoline of the present invention has an organic sulfur compound when vanadium oxide is supported on at least a part of the surface of the porous inorganic oxide microspherical particles, particularly when a vanadium oxide film is formed. Since the desulfurization reaction proceeds only by surface contact with the porous inorganic oxide fine spherical particles, the desulfurization efficiency is high, and not only the gasoline fraction but also the desulfurization of the organic sulfur compound in the high molecular weight product oil having a higher boiling point is performed. be able to.

本発明の接触分解ガソリン用脱硫触媒は、前記酸化バナジウムの担持量がV25として0.3〜3Wt%の範囲にあることが好ましい。該含有量が0.3wt%より少ない場合には、重質油炭化水素油や減圧軽油の流動接触分解において、ガソリン溜分の硫黄分を除去する脱硫性能が低下することがあり、また、該含有量が3wt%より多い場合には、ガソリン溜分の硫黄分を除去する脱硫性能は高くなるが、水素、コークの生成が増加し、ガソリン溜分の収率が低下する傾向にある。前記バナジウムの含有量は、さらに好ましくはV25として0.5〜2wt%の範囲にあることが望ましい。 In the catalytic cracking gasoline desulfurization catalyst of the present invention, the supported amount of vanadium oxide is preferably in the range of 0.3 to 3 Wt% as V 2 O 5 . When the content is less than 0.3 wt%, desulfurization performance for removing sulfur content of gasoline distillate may be reduced in fluid catalytic cracking of heavy oil hydrocarbon oil or vacuum gas oil, When the content is more than 3 wt%, the desulfurization performance for removing the sulfur content of the gasoline fraction increases, but the production of hydrogen and coke tends to increase, and the yield of the gasoline fraction tends to decrease. The vanadium content is more preferably in the range of 0.5 to 2 wt% as V 2 O 5 .

また、本発明の接触分解ガソリン用脱硫触媒は、多孔性無機酸化物微小球状粒子に前述の酸化バナジウムに加えてアンチモンが担持されていることが好ましい。酸化バナジウムに加えてアンチモンを担持することにより、重質油炭化水素油や減圧軽油の流動接触分解において、水素、コークの生成を抑制する効果が増大され、ガソリン溜分の収率が高くなる。水素の生成が少なくなるのは、アンチモンとバナジウムがSbVO4、Sb2VO5、Sb0.90.14などの化合物を生成してバナジウムによる脱水素反応が抑制されるためと推察される。 Moreover, it is preferable that the desulfurization catalyst for catalytic cracking gasoline of this invention is carrying | supporting antimony in addition to the above-mentioned vanadium oxide to the porous inorganic oxide microsphere particle. By supporting antimony in addition to vanadium oxide, the effect of suppressing the formation of hydrogen and coke in the fluid catalytic cracking of heavy oil hydrocarbon oil or vacuum gas oil is increased, and the yield of gasoline fraction is increased. It is assumed that the generation of hydrogen is reduced because antimony and vanadium generate compounds such as SbVO 4 , Sb 2 VO 5 , and Sb 0.9 V 0.1 O 4 to suppress the dehydrogenation reaction by vanadium.

アンチモンの担持量は触媒基準でSb23として0.3〜5wt%、さらに好ましくは0.5〜4wt%の範囲にあることが望ましい。
さらに、本発明の接触分解ガソリン用脱硫触媒は、前述の酸化バナジウムに加えて、通常、接触分解ガソリン用脱硫触媒として使用される亜鉛、ニッケル、鉄、コバルトなどの金属が担持されていても良い。
アンチモンおよび亜鉛等の金属の担持位置については特別の制限はないが、バナジウムの近傍に存在することが好ましい。
The supported amount of antimony is desirably 0.3 to 5 wt%, more preferably 0.5 to 4 wt% as Sb 2 O 3 on a catalyst basis.
Furthermore, in addition to the aforementioned vanadium oxide, the catalytic cracking gasoline desulfurization catalyst of the present invention may be loaded with a metal such as zinc, nickel, iron, and cobalt, which is usually used as a catalytic cracking gasoline desulfurization catalyst. .
There are no particular restrictions on the loading position of metals such as antimony and zinc, but it is preferably present in the vicinity of vanadium.

前記多孔性無機酸化物微小球状粒子には、通常、流動接触分解触媒に使用されている無機酸化物の微小球状粒子が使用可能である。
多孔性無機酸化物としては、例えば、Y型ゼオライト、超安定Y型ゼオライト(USY)、X型ゼオライト、モルデナイト、β−ゼオライト、ZSM型ゼオライトなどの結晶性アルミノシリケートゼオライト、シリカ、アルミナ、シリカ−アルミナ、シリカ−マグネシア、アルミナ−ボリア、チタニア、ジルコニア、シリカ−ジルコニア、珪酸カルシウム、カルシウムアルミネートなどの耐火酸化物、カオリン、ベントナイト、ハロイサイトなどの粘土鉱物などを挙げることができる。
As the porous inorganic oxide microspherical particles, inorganic oxide microspherical particles usually used for fluid catalytic cracking catalysts can be used.
Examples of the porous inorganic oxide include crystalline aluminosilicate zeolite such as Y-type zeolite, ultra-stable Y-type zeolite (USY), X-type zeolite, mordenite, β-zeolite, ZSM-type zeolite, silica, alumina, silica- Examples thereof include refractory oxides such as alumina, silica-magnesia, alumina-boria, titania, zirconia, silica-zirconia, calcium silicate and calcium aluminate, and clay minerals such as kaolin, bentonite and halloysite.

本発明の多孔性無機酸化物微小球状粒子は、特に、Y型ゼオライト、超安定性Y型ゼオライト、ZSM−5などの結晶性アルミノシリケートゼオライトと、無機酸化物マトリックスとからなるものであることが好ましい。該無機酸化物マトリックスは、シリカ、アルミナ、シリカ−アルミナなどの結合材として作用する耐火酸化物と、カオリンなどの粘土鉱物を含み、更に、必要に応じて適当量の含水微粉ケイ酸、アルミナ粉末または金属捕捉剤を含むものであることが好ましい。
前記結晶性アルミノシリケートゼオライトの含有量は、触媒基準で5〜50wt%の範囲にあることが望ましい。該結晶性アルミノシリケートゼオライトは通常の接触分解触媒の場合と同様に水素、アンモニウムおよび多価金属よりなる群から選ばれた少なくとも1種のカチオンでイオン交換された形で使用される。
The porous inorganic oxide microsphere particles of the present invention are particularly composed of a crystalline aluminosilicate zeolite such as Y-type zeolite, ultra-stable Y-type zeolite, ZSM-5, and an inorganic oxide matrix. preferable. The inorganic oxide matrix contains a refractory oxide that acts as a binder such as silica, alumina, silica-alumina, and a clay mineral such as kaolin, and further contains an appropriate amount of water-containing finely divided silicic acid, alumina powder. Alternatively, it preferably contains a metal scavenger.
The content of the crystalline aluminosilicate zeolite is preferably in the range of 5 to 50 wt% based on the catalyst. The crystalline aluminosilicate zeolite is used in the form of being ion-exchanged with at least one cation selected from the group consisting of hydrogen, ammonium and a polyvalent metal, as in the case of a normal catalytic cracking catalyst.

特に、重質油炭化水素油や減圧軽油の流動接触分解装置で使用される通常の結晶性アルミノシリケートゼオライト含有流動接触分解触媒は、多孔性無機酸化物微小球状粒子として好適である。
前述の多孔性無機酸化物微小球状粒子は、通常の流動接触分解用触媒の製造方法と同様にして製造される。例えば、超安定性Y型ゼオライトと、シリカゾル、カオリン、含水微粉ケイ酸およびアルミナ水和物等を含有する無機酸化物マトリックス前駆体との混合物を噴霧乾燥し、得られた微小球状粒子を洗浄し、乾燥し、所望により焼成する。微小球状粒子は、平均粒子径が40〜90μmの範囲にあることが望ましい。
In particular, a normal crystalline aluminosilicate zeolite-containing fluid catalytic cracking catalyst used in a fluid catalytic cracking apparatus for heavy oil hydrocarbon oil or vacuum gas oil is suitable as porous inorganic oxide fine spherical particles.
The aforementioned porous inorganic oxide microspherical particles are produced in the same manner as in the usual method for producing a catalyst for fluid catalytic cracking. For example, a mixture of ultrastable Y-type zeolite and inorganic oxide matrix precursor containing silica sol, kaolin, hydrous fine powdered silicic acid and alumina hydrate is spray-dried, and the resulting microspherical particles are washed. , Dried and fired as desired. The fine spherical particles preferably have an average particle diameter in the range of 40 to 90 μm.

接触分解ガソリン用脱硫触媒の製造方法
本発明の接触分解ガソリン用脱硫触媒は、前述の多孔性無機酸化物微小球状粒子に酸化バナジウムゾルを含浸させた後、乾燥、焼成して製造される。
酸化バナジウムゾルは、例えば、特表平7−507532号公報に記載されている方法で調製することができるし、また、市販の酸化バナジウムゾルを使用することができる。
Production Method of Desulfurization Catalyst for Catalytic Cracking Gasoline The desulfurization catalyst for catalytic cracking gasoline of the present invention is produced by impregnating the aforementioned porous inorganic oxide fine spherical particles with vanadium oxide sol, followed by drying and firing.
The vanadium oxide sol can be prepared, for example, by the method described in JP-A-7-507532, or a commercially available vanadium oxide sol can be used.

該多孔性無機酸化物微小球状粒子への酸化バナジウムゾルの含浸は、周知の含浸方法を採用することができる。例えば、噴霧法、ポアフィリング法、インシピアント・ウエットネス法、蒸発乾固法などの含浸方法が例示される。本発明の製造方法では、該多孔性無機酸化物微小球状粒子へ酸化バナジウムゾルを周知の方法により含浸させた後、例えば、水分が20wt%以下、好ましくは15〜5wt%の範囲にまで乾燥し、次いで約500〜600℃の温度で焼成する。なお、焼成は、流動接触分解反応装置の再生塔において触媒の再生条件で行うことができる。   A well-known impregnation method can be employed for impregnating the porous inorganic oxide fine spherical particles with the vanadium oxide sol. For example, impregnation methods such as a spray method, a pore filling method, an incipient wetness method, and an evaporation to dryness method are exemplified. In the production method of the present invention, the porous inorganic oxide fine spherical particles are impregnated with vanadium oxide sol by a well-known method, and then dried to a moisture content of 20 wt% or less, preferably 15 to 5 wt%. Then, baking is performed at a temperature of about 500 to 600 ° C. In addition, calcination can be performed on the regeneration conditions of a catalyst in the regeneration tower of a fluid catalytic cracking reactor.

前記酸化バナジウムゾルにおける酸化バナジウム微粒子の平均粒子径は、1〜1000nmの範囲にあることが好ましい。該平均粒子径が1nmより小さい場合は、前述の多孔性無機酸化物微小球状粒子の表面部分に担持される酸化バナジウムの量が少なくなり、該微小球状粒子の内部にも酸化バナジウムが担持されることがあり、前述の所望の効果が得られないことがある。また、該平均粒子径が1000nmより大きい場合は、前述の多孔性無機酸化物微小球状粒子の表面部分に担持された酸化バナジウムと該多孔性無機酸化物微小球状粒子との結合力が弱くなることがあり、そのため、得られた脱硫触媒は、使用中に、担持した酸化バナジウムの量が減少し、所望の脱硫効果が得られなくなることがある。   The average particle diameter of the vanadium oxide fine particles in the vanadium oxide sol is preferably in the range of 1 to 1000 nm. When the average particle size is smaller than 1 nm, the amount of vanadium oxide supported on the surface portion of the porous inorganic oxide microspherical particles is reduced, and vanadium oxide is also supported inside the microspherical particles. In some cases, the desired effect described above may not be obtained. Further, when the average particle diameter is larger than 1000 nm, the binding force between the vanadium oxide supported on the surface portion of the porous inorganic oxide microspherical particles and the porous inorganic oxide microspherical particles is weakened. Therefore, in the obtained desulfurization catalyst, the amount of supported vanadium oxide is reduced during use, and the desired desulfurization effect may not be obtained.

本発明において、酸化バナジウム微粒子の平均粒子径の値は、透過型電子顕微鏡(TEM)で撮影した酸化バナジウム微粒子画像の長径をノギスにより100個測定して得た値の平均値である。
前記酸化バナジウム微粒子の平均粒子径は、さらに好ましくは20〜500nmの範囲にあることが望ましい。
In the present invention, the value of the average particle diameter of the vanadium oxide fine particles is an average value obtained by measuring 100 long diameters of the vanadium oxide fine particle images taken with a transmission electron microscope (TEM) with calipers.
The average particle size of the vanadium oxide fine particles is more preferably in the range of 20 to 500 nm.

前記接触分解ガソリン用脱硫触媒において、酸化バナジウムに加えてアンチモンが担持されている場合は、例えば、前述の多孔性無機酸化物微小球状粒子を、塩酸水溶液に塩化アンチモンを溶解した水溶液に混合し、水酸化ナトリウムで中和して、脱水、乾燥、焼成した後、前述の方法で酸化バナジウムゾルを含浸し、乾燥し、必要に応じて焼成して製造される。また、後述する実施例のように、酸化アンチモンゾルを用いてもよい。   In the catalytic cracking gasoline desulfurization catalyst, when antimony is supported in addition to vanadium oxide, for example, the aforementioned porous inorganic oxide fine spherical particles are mixed in an aqueous solution in which antimony chloride is dissolved in an aqueous hydrochloric acid solution, After neutralization with sodium hydroxide, dehydration, drying, and firing, the vanadium oxide sol is impregnated by the above-described method, dried, and fired as necessary. Moreover, you may use an antimony oxide sol like the Example mentioned later.

接触分解ガソリンの脱硫方法
本発明の接触分解ガソリンの脱硫方法は、前述の接触分解ガソリンの脱硫触媒と、FCC触媒とを混合した混合触媒に、重質炭化水素油および/または減圧軽油を接触分解条件下で接触させて接触分解反応と共に脱硫反応を行う。
Method of Desulfurization of Catalytic Cracking Gasoline The method of desulfurization of catalytic cracking gasoline according to the present invention comprises catalytic cracking of heavy hydrocarbon oil and / or vacuum gas oil into a mixed catalyst obtained by mixing the above-mentioned catalytic cracking gasoline desulfurization catalyst and FCC catalyst. The desulfurization reaction is performed together with the catalytic cracking reaction by contacting under conditions.

FCC触媒としては、一般に市販されている炭化水素流動接触分解触媒が使用可能で、特に、フォージャサイト型ゼオライト含有FCC触媒は分解活性が高いので好適に使用される。フォージャサイト型ゼオライト含有FCC触媒は、例えば、ケイバン比が5〜6のフォージャサイト型ゼオライト(USY)10〜50wt%、結合材としてのシリカ15〜20wt%、含水微粉ケイ酸0〜15wt%、活性アルミナ0〜20wt%、メタル捕捉剤0〜10wt%、カオリン25〜65wt%の範囲にある触媒などが例示される。
この様なFCC触媒としては、ACZ、DCT、STW、BLC、HMR(いずれも触媒化成工業株式会社製のFCC触媒の商標または登録商標)などが例示される。また、本発明のFCC触媒としては、FCC装置で炭化水素油の接触分解反応に使用された前記FCC触媒の平衡触媒が使用可能である。
As the FCC catalyst, a commercially available hydrocarbon fluid catalytic cracking catalyst can be used. In particular, a faujasite-type zeolite-containing FCC catalyst is preferably used because of its high cracking activity. The faujasite type zeolite-containing FCC catalyst is, for example, 10 to 50 wt% of faujasite type zeolite (USY) having a caivan ratio of 5 to 6, 15 to 20 wt% of silica as a binder, and 0 to 15 wt% of hydrous fine powder silicic acid. Examples include activated alumina 0-20 wt%, metal scavenger 0-10 wt%, and kaolin 25-65 wt%.
Examples of such FCC catalysts include ACZ, DCT, STW, BLC, and HMR (all are trademarks or registered trademarks of FCC catalyst manufactured by Catalytic Chemical Industry Co., Ltd.). In addition, as the FCC catalyst of the present invention, the FCC catalyst equilibrium catalyst used for the catalytic cracking reaction of hydrocarbon oil in the FCC apparatus can be used.

前述の混合触媒は、接触分解ガソリンの脱硫触媒とFCC触媒との混合割合が重量比で5/95〜50/50の範囲にある。接触分解ガソリンの脱硫触媒の混合割合が5/95重量比より小さい場合には、脱硫触媒の量が少ないためガソリン溜分の硫黄分を十分に除去できず、また、接触分解ガソリンの脱硫触媒の混合割合が50/50重量比より大きい場合には、分解活性が低下しガソリン収率が低下する。
前記接触分解ガソリンの脱硫触媒とFCC触媒との混合割合は、好ましくは10/90〜30/70重量比の範囲にあることが望ましい。
In the aforementioned mixed catalyst, the mixing ratio of the catalyst for desulfurization of catalytic cracking gasoline and the FCC catalyst is in the range of 5/95 to 50/50 by weight. When the mixing ratio of the catalytic cracking gasoline desulfurization catalyst is smaller than 5/95 weight ratio, the sulfur content of the gasoline distillate cannot be sufficiently removed due to the small amount of the desulfurization catalyst. When the mixing ratio is larger than 50/50 weight ratio, the cracking activity decreases and the gasoline yield decreases.
The mixing ratio of the desulfurization catalyst and FCC catalyst of the catalytic cracking gasoline is preferably in the range of 10/90 to 30/70 weight ratio.

本発明の接触分解ガソリンの脱硫方法は、FCC装置において、前述の混合触媒に重質炭化水素油および/または減圧軽油を接触分解条件下で接触させて接触分解反応と共に脱硫反応を行う。接触分解条件としては、従来当業界で慣用されている接触分解条件が採用可能であり、例えば、接触分解温度としては約400〜600℃、再生温度としては約500〜800℃の範囲が例示される。

以下に示す実施例により本発明をさらに具体的に説明するが、本発明はこれにより何ら限定されるものではない。
The desulfurization method of catalytic cracking gasoline of the present invention performs desulfurization reaction together with catalytic cracking reaction by contacting the above-mentioned mixed catalyst with heavy hydrocarbon oil and / or vacuum gas oil under catalytic cracking conditions in the FCC apparatus. As the catalytic cracking conditions, catalytic cracking conditions conventionally used in the art can be adopted. For example, the catalytic cracking temperature is about 400 to 600 ° C., and the regeneration temperature is about 500 to 800 ° C. The

The present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto.

製造例1Production Example 1

最終触媒組成物の乾燥基準でSiO2濃度が20wt%となるように、SiO2濃度17wt%の水ガラス2941gに濃度25wt%の硫酸1059gを連続的に加えて、SiO2濃度12.5wt%のシリカヒドロゾル4000gを調製した。このシリカヒドロゾルにカオリン、含水微粉ケイ酸、活性アルミナ、メタル捕捉剤、25wt%硫酸でpH3.0に調製した超安定Y型ゼオライトスラリーを最終触媒組成物の乾燥基準でそれぞれ39wt%、5wt%、5wt%、1wt%、30wt%となるように975g、125g、125g、25g、750g加えて混合スラリーを得た。この混合スラリーを噴霧乾燥して微小球状粒子を調製した後、Na2O含有量が0.5wt%以下になるまで洗浄して135℃の乾燥機内で乾燥して触媒Aを調製した。
触媒Aの組成と性状を以下に示す。
As SiO 2 concentration of 20 wt% on a dry basis of the final catalyst composition, the concentration 25 wt% of 1059g sulfate SiO 2 concentration 17 wt% of water glass 2941g added continuously, the SiO 2 concentration of 12.5 wt% 4000 g of silica hydrosol was prepared. To this silica hydrosol, kaolin, hydrous finely divided silicic acid, activated alumina, metal scavenger, and ultra-stable Y-type zeolite slurry adjusted to pH 3.0 with 25 wt% sulfuric acid were 39 wt% and 5 wt%, respectively, based on the dry basis of the final catalyst composition. 975 g, 125 g, 125 g, 25 g, and 750 g were added so as to be 5 wt%, 1 wt%, and 30 wt% to obtain a mixed slurry. The mixed slurry was spray-dried to prepare microspherical particles, which were then washed until the Na 2 O content was 0.5 wt% or less and dried in a dryer at 135 ° C. to prepare Catalyst A.
The composition and properties of catalyst A are shown below.

(1)組成
シリカ: 20 wt%
カオリン: 39 wt%
ゼオライト: 30 wt%
含水微粉ケイ酸: 5 wt%
活性アルミナ: 5 wt%
メタル捕捉剤: 1 wt%
(2)性状
焼成減量(1000℃-1h):11.3 wt%
残存Na2O: 0.1 wt%
残存SO4: 0.2 wt%
Al23: 25.2 wt%
平均粒子径: 72 μm
嵩比重: 0.76 g/ml
比表面積: 211 m2/g
耐摩耗性: 0.1 wt%/hr
(1) Composition Silica: 20 wt%
Kaolin: 39 wt%
Zeolite: 30 wt%
Hydrous fine powdered silicic acid: 5 wt%
Activated alumina: 5 wt%
Metal scavenger: 1 wt%
(2) Properties Loss on firing (1000 ° C-1h): 11.3 wt%
Residual Na 2 O: 0.1 wt%
Residual SO 4 : 0.2 wt%
Al 2 O 3 : 25.2 wt%
Average particle size: 72 μm
Bulk specific gravity: 0.76 g / ml
Specific surface area: 211 m 2 / g
Abrasion resistance: 0.1 wt% / hr

触媒重量あたり五酸化バナジウムとして0.5wt%になるように濃度2wt%の五酸化バナジウムゾル125.0gをとり、水58.8gに混合した溶液を乾燥基準で497.5gの触媒Aに含浸し、135℃で12時間乾燥し、次いで600℃で2時間焼成して五酸化バナジウムを担持した接触分解ガソリン用脱硫触媒(触媒αと言う。)を調製した。使用した五酸化バナジウムゾルは、新興化学工業株式会社製の五酸化バナジウムゾル(平均長径250nm、平均短径1nm)である。   127.5 g of vanadium pentoxide sol having a concentration of 2 wt% so as to be 0.5 wt% as vanadium pentoxide per catalyst weight, and a solution mixed with 58.8 g of water was impregnated with 497.5 g of catalyst A on a dry basis. The catalyst was dried at 135 ° C. for 12 hours and then calcined at 600 ° C. for 2 hours to prepare a desulfurization catalyst for catalytic cracking gasoline (referred to as catalyst α) carrying vanadium pentoxide. The vanadium pentoxide sol used is a vanadium pentoxide sol (average major axis 250 nm, average minor axis 1 nm) manufactured by Shinsei Chemical Industry Co., Ltd.

図1は、触媒αを走査型電子顕微鏡(SEM)によって観察した、表面状態を示す撮像写真であり、触媒Aの表面に被膜が形成されていることが分かる。
また、図2に示す電子プローブ微小部分析装置(WDS)の画像と線分析結果から、触媒粒子の半径と五酸化バナジウムの担持部分を測定した。20個の触媒粒子について測定した結果、いずれの粒子でも五酸化バナジウムは触媒αの外表面から半径の約14%以内の範囲に担持されていることが確認された。
触媒αの性状を表1に示す。
FIG. 1 is an image photograph showing the surface state of the catalyst α observed with a scanning electron microscope (SEM). It can be seen that a film is formed on the surface of the catalyst A.
Further, the radius of the catalyst particles and the supported portion of vanadium pentoxide were measured from the image of the electron probe microanalyzer (WDS) shown in FIG. As a result of measurement on 20 catalyst particles, it was confirmed that in any particle, vanadium pentoxide was supported within a range of about 14% of the radius from the outer surface of the catalyst α.
The properties of the catalyst α are shown in Table 1.

実施例1の触媒αと同様にして、触媒重量あたり五酸化バナジウムとして1.0wt%になるように、五酸化バナジウムゾル125.0g、水57.9gを混合した溶液を乾燥基準で495.0gの触媒Aに、触媒Aの吸水率量に見合う液量を含浸するために、含浸・乾燥の操作を2回繰り返した後、600℃で2時間焼成して五酸化バナジウムを担持した接触分解ガソリン用脱硫触媒(触媒β)を調製した。
実施例1と同様のSEM観察の結果、触媒Aの表面に被膜が形成されていることが分かった。
WDSの線分析結果から、五酸化バナジウムは触媒βの外表面から半径の約15%以内の範囲に担持されていることが確認された。
触媒βの性状を表1に示す。
In the same manner as in the catalyst α of Example 1, a solution obtained by mixing 125.0 g of vanadium pentoxide sol and 57.9 g of water so as to be 1.0 wt% as vanadium pentoxide per catalyst weight was 495.0 g on a dry basis. In order to impregnate the catalyst A with a liquid amount corresponding to the amount of water absorption of the catalyst A, the impregnation and drying operations were repeated twice, and then calcined at 600 ° C. for 2 hours to carry catalytically cracked gasoline carrying vanadium pentoxide. A desulfurization catalyst (catalyst β) was prepared.
As a result of SEM observation similar to that in Example 1, it was found that a film was formed on the surface of the catalyst A.
From the WDS line analysis results, it was confirmed that vanadium pentoxide was supported within a range of about 15% of the radius from the outer surface of the catalyst β.
Table 1 shows the properties of the catalyst β.

実施例1の触媒αと同様にして、触媒重量あたり五酸化バナジウムとして2.0%になるように、五酸化バナジウムゾル165.0g、水16.6gを混合した溶液を乾燥基準で490.0gの触媒Aに、触媒Aの吸水率量に見合う液量を含浸するために、含浸・乾燥の操作を3回繰り返した後、600℃で2時間焼成して五酸化バナジウムを担持した接触分解ガソリン用脱硫触媒(触媒γ)を調製した。
実施例1と同様のSEM観察の結果、触媒Aの表面に被膜が形成されていることが分かった。
WDSの線分析結果から、五酸化バナジウムは触媒γの外表面から半径の約17%以内の範囲に担持されていることが確認された。
触媒γの性状を表1に示す。
In the same manner as the catalyst α in Example 1, a solution obtained by mixing 165.0 g of vanadium pentoxide sol and 16.6 g of water so as to be 2.0% as vanadium pentoxide per catalyst weight was 490.0 g on a dry basis. In order to impregnate the catalyst A with a liquid amount corresponding to the amount of water absorption of the catalyst A, the impregnation and drying operations were repeated three times, and then calcined at 600 ° C. for 2 hours to carry catalytically cracked gasoline carrying vanadium pentoxide. A desulfurization catalyst (catalyst γ) was prepared.
As a result of SEM observation similar to that in Example 1, it was found that a film was formed on the surface of the catalyst A.
From the WDS line analysis results, it was confirmed that vanadium pentoxide was supported within a range of about 17% of the radius from the outer surface of the catalyst γ.
The properties of the catalyst γ are shown in Table 1.

触媒重量あたり三酸化アンチモン(Sb23)として2.0wt%になるように五酸化アンチモンゾル20.5gをとり、水166.0gに混合した溶液を乾燥基準で485.0gの触媒Aに含浸した後、135℃で12時間乾燥した。さらにこの触媒に、触媒重量あたり五酸化バナジウムとして1.0wt%になるように、五酸化バナジウムゾル125.0g、水57.9gを混合した溶液を、触媒Aの吸水率量に見合う液量を含浸するために、含浸・乾燥の操作を2回繰り返した後、600℃で2時間焼成して五酸化アンチモンと五酸化バナジウムを担持した接触分解ガソリン用脱硫触媒(触媒δ)を調製した。
実施例1と同様のSEM観察の結果、触媒Aの表面に被膜が形成されていることが分かった。
WDSの線分析結果から、五酸化バナジウムは触媒δの外表面から半径の約14%以内の範囲に担持されていることが確認された。
触媒δの性状を表1に示す。
20.5 g of antimony pentoxide sol was taken so as to be 2.0 wt% as antimony trioxide (Sb 2 O 3 ) per catalyst weight, and the solution mixed with 166.0 g of water was converted to 485.0 g of catalyst A on a dry basis. After impregnation, it was dried at 135 ° C. for 12 hours. Further, a solution obtained by mixing 125.0 g of vanadium pentoxide sol and 57.9 g of water so that the catalyst has 1.0 wt% as vanadium pentoxide per weight of the catalyst, has a liquid amount corresponding to the water absorption rate of the catalyst A. In order to impregnate, the impregnation and drying operations were repeated twice, and then calcined at 600 ° C. for 2 hours to prepare a catalytic cracking gasoline desulfurization catalyst (catalyst δ) carrying antimony pentoxide and vanadium pentoxide.
As a result of SEM observation similar to that in Example 1, it was found that a film was formed on the surface of the catalyst A.
From the WDS line analysis results, it was confirmed that vanadium pentoxide was supported within a range of about 14% of the radius from the outer surface of the catalyst δ.
Table 1 shows the properties of the catalyst δ.

比較例1Comparative Example 1

メタバナジン酸アンモニウムを触媒重量あたり五酸化バナジウムとして1.0wt%になるように6.4g計量してアミン水溶液165.0gで溶解した。該溶液を乾燥基準で495.0gの触媒Aに含浸し、135℃で12時間乾燥し、次いで600℃で2時間焼成して五酸化バナジウムを担持した接触分解ガソリン用脱硫触媒(触媒a)を調製した。
実施例1と同様のWDSの線分析結果から、五酸化バナジウムは触媒aの内部にまで均一に担持されていることが確認された。
触媒aの性状を表1に示す。
6.4 g of ammonium metavanadate was measured so that the amount of vanadium pentoxide was 1.0 wt% per catalyst weight, and dissolved in 165.0 g of an amine aqueous solution. The catalyst A was impregnated with 495.0 g of the catalyst A on a dry basis, dried at 135 ° C. for 12 hours, and then calcined at 600 ° C. for 2 hours to provide a catalytic cracking gasoline desulfurization catalyst (catalyst a) carrying vanadium pentoxide. Prepared.
From the WDS line analysis results similar to those in Example 1, it was confirmed that vanadium pentoxide was uniformly supported even inside catalyst a.
Table 1 shows the properties of the catalyst a.

比較例2Comparative Example 2

メタバナジン酸アンモニウムを触媒重量あたり五酸化バナジウムとして2.0wt%になるように12.9g計量してアミン水溶液156.0gで溶解した。該溶液を乾燥基準で490.0gの触媒Aに含浸し、135℃で12時間乾燥し、次いで600℃で2時間焼成して五酸化バナジウムを担持した接触分解ガソリン用脱硫触媒(触媒b)を調製した。
実施例1と同様のWDSの線分析結果から、五酸化バナジウムは触媒bの内部にまで均一に担持されていることが確認された。
触媒bの性状を表1に示す。
12.9 g of ammonium metavanadate as vanadium pentoxide per catalyst weight was measured at 22.9 g and dissolved in 156.0 g of an aqueous amine solution. The solution was impregnated with 490.0 g of catalyst A on a dry basis, dried at 135 ° C. for 12 hours, and then calcined at 600 ° C. for 2 hours to provide a catalytic cracking gasoline desulfurization catalyst (catalyst b) carrying vanadium pentoxide. Prepared.
From the WDS line analysis results similar to those in Example 1, it was confirmed that vanadium pentoxide was uniformly supported even inside catalyst b.
Properties of catalyst b are shown in Table 1.

前記触媒の活性評価をパイロット反応装置で行った。このパイロット反応装置は触媒が装置内を循環しながら反応と触媒再生を交互に繰り返す循環式流動床であり、商業規模で使用される炭化水素油のFCC装置を模したものである。
脱硫触媒α〜δ、a、bを反応前に750℃で13時間、100%スチームで処理し、これらの各触媒をFCC平衡触媒2kgに対して10wt%混合し、前記反応装置に投入してそれぞれ反応を行った。
The activity of the catalyst was evaluated with a pilot reactor. This pilot reactor is a circulating fluidized bed in which a catalyst is circulated in the apparatus and alternately repeats reaction and catalyst regeneration. The pilot reactor mimics a hydrocarbon oil FCC apparatus used on a commercial scale.
The desulfurization catalysts α to δ, a, and b were treated with 100% steam at 750 ° C. for 13 hours before the reaction, and these catalysts were mixed at 10 wt% with respect to 2 kg of FCC equilibrium catalyst and put into the reactor. Each reaction was performed.

反応条件は以下の通りである。
原料油: 脱硫減圧軽油
反応温度:500℃
触媒/原料油比:5g/gおよび7g/g
原料油供給速度:10g/min
CRC(再生触媒上の炭素濃度):0.05wt%
The reaction conditions are as follows.
Feedstock: Desulfurized vacuum gas oil Reaction temperature: 500 ° C
Catalyst / feed oil ratio: 5 g / g and 7 g / g
Raw material supply rate: 10 g / min
CRC (carbon concentration on regenerated catalyst): 0.05 wt%

なお、生成ガスおよび生成油の分析はガスクロマトグラフィーを用いて行ない、ガソリンはC5〜沸点204℃で得られる生成油とした。また、得られた生成油は回転バンド(理論段数45段、東科精器)法によりガソリンとサイクルオイルに分留し、電量滴定法(ASTM D−3120)でガソリン中の硫黄濃度を分析した。
触媒/原料油比が7g/gの時の各生成物収率およびガソリン中の硫黄濃度を表2に示す。
In addition, analysis of the product gas and the product oil was performed using gas chromatography, and gasoline was a product oil obtained at C5 to boiling point 204 ° C. The resulting oil was fractionated into gasoline and cycle oil by the rotation band method (45 theoretical plates, Toshin Seiki), and the sulfur concentration in the gasoline was analyzed by coulometric titration (ASTM D-3120).
Table 2 shows the yield of each product and the sulfur concentration in gasoline when the catalyst / feed oil ratio was 7 g / g.

(表2の注)
*1)LPG(液化石油ガス)には、プロパン、プロピレン、n-ブタン、i-ブタン、ブチレンを含む。
*2)ガソリンは、C5〜沸点204℃までの留分である。
*3)LCO(ライトサイクルオイル) は、沸点204〜343℃までの留分である。
*4)HCO(ヘビーサイクルオイル)は、沸点343℃以上の留分である。
*5)C1はメタン、C2はエタン、C2=はエチレンを示す。
(Note to Table 2)
* 1) LPG (liquefied petroleum gas) includes propane, propylene, n-butane, i-butane and butylene.
* 2) Gasoline is a fraction from C5 to boiling point 204 ° C.
* 3) LCO (light cycle oil) is a fraction having a boiling point of 204 to 343 ° C.
* 4) HCO (heavy cycle oil) is a fraction having a boiling point of 343 ° C or higher.
* 5) C1 represents methane, C2 represents ethane, and C2 = represents ethylene.

実施例1の触媒αの表面を走査型電子顕微鏡(SEM)によって観察して撮影した、撮像写真である。It is an imaging photograph which observed and image | photographed the surface of the catalyst (alpha) of Example 1 with the scanning electron microscope (SEM). 電子プローブ微小部分析装置(WDS)による触媒αの画像と、触媒αを該画像の白線部で線分析した元素分布チャートである。2 is an image of a catalyst α by an electron probe microanalyzer (WDS) and an element distribution chart obtained by performing a line analysis of the catalyst α at a white line portion of the image.

Claims (9)

多孔性無機酸化物微小球状粒子の表面部分だけに酸化バナジウムが担持された触媒であって、該表面部分の少なくとも一部分に酸化バナジウムが担持されていることを特徴とする接触分解ガソリン用脱硫触媒。   A catalyst for desulfurization for catalytic cracking gasoline, characterized in that vanadium oxide is supported only on the surface portion of the porous inorganic oxide microspherical particles, and at least part of the surface portion is supported with vanadium oxide. 前記酸化バナジウムが多孔性無機酸化物微小球状粒子の表面部分の少なくとも一部分に酸化バナジウム被膜を形成していることを特徴とする請求項1記載の接触分解ガソリン用脱硫触媒。   The desulfurization catalyst for catalytic cracking gasoline according to claim 1, wherein the vanadium oxide forms a vanadium oxide film on at least a part of the surface portion of the porous inorganic oxide microsphere particles. 前記酸化バナジウムの担持量がV25として0.3〜3wt%の範囲にあることを特徴とする請求項1または2記載の接触分解ガソリン用脱硫触媒。 The desulfurization catalyst for catalytic cracking gasoline according to claim 1 or 2, wherein the supported amount of vanadium oxide is in the range of 0.3 to 3 wt% as V 2 O 5 . 前記多孔性無機酸化物微小球状粒子にアンチモンが担持されていることを特徴とする請求項1〜3記載の接触分解ガソリン用脱硫触媒。   The desulfurization catalyst for catalytic cracking gasoline according to claim 1, wherein antimony is supported on the porous inorganic oxide fine spherical particles. 前記多孔性無機酸化物微小球状粒子が結晶性アルミノシリケートゼオライトと多孔性無機酸化物マトリックスとからなることを特徴とする請求項1〜4記載の接触分解ガソリン用脱硫触媒。   The desulfurization catalyst for catalytic cracking gasoline according to claim 1, wherein the porous inorganic oxide fine spherical particles are composed of a crystalline aluminosilicate zeolite and a porous inorganic oxide matrix. 前記多孔性無機酸化物マトリックスが、結合材として作用する耐火酸化物、粘土鉱物、含水微粉ケイ酸、アルミナ粉末および金属捕捉剤とからなる請求項5記載の接触分解ガソリン用脱硫触媒。   The desulfurization catalyst for catalytic cracking gasoline according to claim 5, wherein the porous inorganic oxide matrix comprises a refractory oxide, a clay mineral, hydrous finely divided silicic acid, alumina powder and a metal scavenger that act as a binder. 多孔性無機酸化物微小球状粒子に酸化バナジウムゾルを含浸させた後、乾燥、焼成することを特徴とする請求項1〜6記載の接触分解ガソリン用脱硫触媒の製造方法。   The method for producing a desulfurization catalyst for catalytic cracking gasoline according to claim 1, wherein the porous inorganic oxide fine spherical particles are impregnated with vanadium oxide sol, and then dried and calcined. 前記酸化バナジウムゾルの酸化バナジウム微粒子が平均粒子径1〜1000nmの範囲にあることを特徴とする請求項7記載の接触分解ガソリン用脱硫触媒の製造方法。   The method for producing a desulfurization catalyst for catalytic cracking gasoline according to claim 7, wherein the vanadium oxide fine particles of the vanadium oxide sol are in the range of an average particle diameter of 1 to 1000 nm. 請求項1〜6記載の接触分解ガソリンの脱硫触媒と、炭化水素流動接触分解触媒とを5/95〜50/50の重量比で混合した混合触媒に、重質炭化水素油および/または減圧軽油を接触分解条件下で接触させて接触分解反応と共に脱硫反応を行うことを特徴とする接触分解ガソリンの脱硫方法。

A heavy hydrocarbon oil and / or a vacuum gas oil mixed with a mixed catalyst obtained by mixing the catalytic cracking gasoline desulfurization catalyst according to claim 1 and a hydrocarbon fluid catalytic cracking catalyst in a weight ratio of 5/95 to 50/50. A desulfurization method for catalytic cracking gasoline, wherein the desulfurization reaction is carried out together with the catalytic cracking reaction by contacting them under catalytic cracking conditions.

JP2005182687A 2005-06-22 2005-06-22 Desulfurization catalyst for catalytic cracking gasoline, production method thereof, and desulfurization method of catalytic cracking gasoline using the catalyst Active JP4592512B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005182687A JP4592512B2 (en) 2005-06-22 2005-06-22 Desulfurization catalyst for catalytic cracking gasoline, production method thereof, and desulfurization method of catalytic cracking gasoline using the catalyst
SG200603927A SG128585A1 (en) 2005-06-22 2006-06-08 Desulfurization catalyst for catalytic cracked gasoline, method of producing the same, and method for desulfurizing of catalytic cracked gasoline using the same
AU2006202559A AU2006202559B2 (en) 2005-06-22 2006-06-19 Desulfurization Catalyst for Catalytic Cracked Gasoline, Method of Producing the Same, and Method for Desulferizing of Catalytic Cracked Gasoline Using the Same
KR1020060055803A KR101330351B1 (en) 2005-06-22 2006-06-21 Desulfurization catalyst for catalytically cracked gasoline, method of producing the same, and method for desulfurization of catalytically cradcked gasoline with the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005182687A JP4592512B2 (en) 2005-06-22 2005-06-22 Desulfurization catalyst for catalytic cracking gasoline, production method thereof, and desulfurization method of catalytic cracking gasoline using the catalyst

Publications (2)

Publication Number Publication Date
JP2007000748A JP2007000748A (en) 2007-01-11
JP4592512B2 true JP4592512B2 (en) 2010-12-01

Family

ID=37649681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005182687A Active JP4592512B2 (en) 2005-06-22 2005-06-22 Desulfurization catalyst for catalytic cracking gasoline, production method thereof, and desulfurization method of catalytic cracking gasoline using the catalyst

Country Status (4)

Country Link
JP (1) JP4592512B2 (en)
KR (1) KR101330351B1 (en)
AU (1) AU2006202559B2 (en)
SG (1) SG128585A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194732A (en) * 1987-02-06 1988-08-11 Nippon Oil Co Ltd Hydrogenation catalyst for heavy oil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556837A (en) * 1978-10-20 1980-04-26 Nippon Steel Chem Co Ltd Preparation of denitrating catalyst
SU1202610A1 (en) * 1984-06-13 1986-01-07 Ленинградский Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Технологический Институт Им.Ленсовета Method of preparing spheroidal vanadium catalyst for oxidizing sulfur dioxide and naphthalene
EP1334165A4 (en) * 2000-08-31 2004-11-03 Conoco Phillips Company Desulfurization and novel sorbents for same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194732A (en) * 1987-02-06 1988-08-11 Nippon Oil Co Ltd Hydrogenation catalyst for heavy oil

Also Published As

Publication number Publication date
AU2006202559A1 (en) 2007-01-11
KR20060134825A (en) 2006-12-28
SG128585A1 (en) 2007-01-30
JP2007000748A (en) 2007-01-11
KR101330351B1 (en) 2013-11-15
AU2006202559B2 (en) 2010-10-28

Similar Documents

Publication Publication Date Title
KR101318000B1 (en) Gasoline sulfur reduction catalyst for fluid catalytic cracking process
CA2444461C (en) Gasoline sulfur reduction catalyst for fluid catalytic cracking process
RU2749402C1 (en) Desulphurisation catalyst, synthesis and application thereof
JP5628027B2 (en) Fluid catalytic cracking catalyst of hydrocarbon oil and fluid catalytic cracking method of hydrocarbon oil using the same
EP2782980A1 (en) Improved metal passivator/trap for fcc processes
JP5283745B2 (en) Process for producing desulfurization catalyst for catalytic cracking gasoline
US10005072B2 (en) High matrix surface area catalytic cracking catalyst stabilized with magnesium and silica
JP4394992B2 (en) Catalyst composition for increasing gasoline octane number and / or lower olefin and fluid catalytic cracking process of hydrocarbons using the same
KR102151830B1 (en) Magnesium stabilized ultra low soda cracking catalysts
JP4592512B2 (en) Desulfurization catalyst for catalytic cracking gasoline, production method thereof, and desulfurization method of catalytic cracking gasoline using the catalyst
JP4859358B2 (en) Catalytic cracking gasoline desulfurization catalyst and catalytic cracking gasoline desulfurization method using the same
JP4931555B2 (en) Desulfurization catalyst for catalytic cracking gasoline and method for desulfurization of catalytic cracking gasoline using the catalyst
US4261861A (en) FCC Catalyst production from used FCC catalyst
JP2004130193A (en) Catalyst composition for cracking hydrocarbon catalytically and catalytic cracking method using the same
JPH0273886A (en) Catalytic cracking of hydrocarbon by using mixture of zeolite l and zeolite y

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4592512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250