JP4592293B2 - Variable magnification lens - Google Patents

Variable magnification lens Download PDF

Info

Publication number
JP4592293B2
JP4592293B2 JP2004012066A JP2004012066A JP4592293B2 JP 4592293 B2 JP4592293 B2 JP 4592293B2 JP 2004012066 A JP2004012066 A JP 2004012066A JP 2004012066 A JP2004012066 A JP 2004012066A JP 4592293 B2 JP4592293 B2 JP 4592293B2
Authority
JP
Japan
Prior art keywords
lens
lens group
magnification
object side
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004012066A
Other languages
Japanese (ja)
Other versions
JP2005208144A (en
JP2005208144A5 (en
Inventor
夏野 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tochigi Nikon Corp
Nikon Corp
Original Assignee
Tochigi Nikon Corp
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochigi Nikon Corp, Nikon Corp filed Critical Tochigi Nikon Corp
Priority to JP2004012066A priority Critical patent/JP4592293B2/en
Publication of JP2005208144A publication Critical patent/JP2005208144A/en
Publication of JP2005208144A5 publication Critical patent/JP2005208144A5/ja
Application granted granted Critical
Publication of JP4592293B2 publication Critical patent/JP4592293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、有限距離撮影用の変倍レンズに関し、特に、基板検査用に適した高性能変倍レンズに関する。   The present invention relates to a variable magnification lens for finite distance imaging, and more particularly to a high performance variable magnification lens suitable for substrate inspection.

近年、ラインCCDカメラを使用した欠陥検査対象物の大きさが多様化し、それに対応する検査装置も多種必要となっている。このような要求に応えるため、絞りを挟んでほぼ対称型の前群と後群からなる光学系であり、前群と絞りとの空気間隔及び絞りと後群との空気間隔を変化させて、撮影倍率を−0.35倍から−1.0倍までの変倍比約2.85倍を達成する変倍レンズが開示されている(例えば、特許文献1を参照)。これにより、開示されている変倍レンズは、低倍率側から等倍までフォーカシングする際に、球面収差が負側に大きく変化するのを抑えて像面のバランスをとるとともに、コマ収差を補正する効果を発揮することで、全体繰り出し方式での問題を解決しつつある。
特開平05−273465号公報
In recent years, the size of defect inspection objects using a line CCD camera has been diversified, and various inspection apparatuses corresponding to the sizes have been required. In order to meet such a demand, it is an optical system consisting of a substantially symmetric front group and a rear group across the diaphragm, and the air gap between the front group and the diaphragm and the air gap between the diaphragm and the rear group are changed, A zoom lens that achieves a zoom ratio of about 2.85 times from -0.35 to -1.0 times is disclosed (for example, see Patent Document 1). As a result, the disclosed variable magnification lens balances the image surface by suppressing the spherical aberration from greatly changing to the negative side when focusing from the low magnification side to the same magnification, and corrects the coma aberration. By demonstrating the effect, we are resolving the problem with the whole payout method.
JP 05-273465 A

しかしながら、上記公報に開示された変倍レンズでは、等倍を超えた撮影倍率で使用すると、高倍率側では球面収差の増大とともに像面の倒れが大きくなり、また低倍率側ではコマ収差の発生が大きくなり、いずれの場合も補正が困難になる。このため、上記公報に開示された変倍レンズでは、等倍を超える撮影倍率での使用が非常に難しくなってしまうという問題があった。さらに、上記公報に開示された変倍レンズでは、最低倍率から最高倍率へフォーカシングにおいて等倍を外れると、前群と後群の屈折力の対称性が崩れるため、歪曲収差の増大を招き、さらには倍率色収差の変動も大きくなってしまうという問題があった。   However, with the variable magnification lens disclosed in the above publication, when used at a photographing magnification exceeding 1 ×, the spherical aberration increases on the high magnification side and the image surface tilts greatly, and coma occurs on the low magnification side. Becomes larger, and in either case, correction becomes difficult. For this reason, the zoom lens disclosed in the above publication has a problem that it is very difficult to use at a photographing magnification exceeding 1 ×. Furthermore, in the variable power lens disclosed in the above publication, if the magnification from the lowest magnification to the highest magnification is out of the same magnification in focusing, the symmetry of the refractive power of the front group and the rear group is lost, leading to an increase in distortion aberration. However, there is a problem that the variation of the chromatic aberration of magnification becomes large.

本発明は、このような問題に鑑みてなされたものであり、等倍を超えた広変倍域における撮影倍率で使用しても、良好な性能を維持し得る変倍レンズを提供することを目的とする。   The present invention has been made in view of such a problem, and provides a variable magnification lens that can maintain good performance even when used at a photographing magnification in a wide variable magnification range exceeding 1 ×. Objective.

このような目的を達成するため、本発明に係る変倍レンズは、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、正の屈折力を有する第3レンズ群とを備え、前記第1レンズ群は、最も物体側に位置する正レンズと負レンズの貼り合わせレンズを含んで構成され、前記第2レンズ群は、負の屈折力を持つ3枚の貼り合わせレンズから構成され、前記第3レンズ群は、最も物体側に位置する物体側に凹面を向けた負の屈折力を持つ3枚の貼り合わせレンズを含んで構成され、高倍率から低倍率側にフォーカシングする際に、前記第1レンズ群と前記第2レンズ群との空気間隔、及び、前記第2レンズ群と前記第3レンズ群との空気間隔が変化し、前記第2レンズ群の焦点距離をf2とし、最高倍率時におけるレンズ系全体の焦点距離をfとし、最高倍率時における前記第1レンズ群と前記第2レンズ群の合成焦点距離をf12とし、前記第3レンズ群の焦点距離をf3とし、最高倍率時における前記第1レンズ群と前記第2レンズ群との空気間隔をD12とし、最高倍率時における前記第2レンズ群と前記第3レンズ群との空気間隔をD23としたとき、次式、 −7.05<f2/f<−1.54 、 1.29<f12/f3<1.91 、 0.006<D12/f<0.026 、 0.028<D12/D23<0.2 の条件を満足するように構成されている。 In order to achieve such an object, a zoom lens according to the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, , and a third lens group having positive refractive power, the first lens group is configured to include a cemented lens of a positive lens and a negative lens located closest to the object side, the second lens group, The third lens group includes three cemented lenses having negative refractive power with the concave surface facing the object side closest to the object side. The third lens group includes three cemented lenses having negative refractive power. When focusing from the high magnification to the low magnification side, the air gap between the first lens group and the second lens group and the air gap between the second lens group and the third lens group are varies, the focal length of the second lens group and f2, The focal length of the entire lens system at high magnification is f, the combined focal length of the first lens group and the second lens group at the maximum magnification is f12, and the focal length of the third lens group is f3. When the air gap between the first lens group and the second lens group at the magnification is D12, and the air gap between the second lens group and the third lens group at the maximum magnification is D23, −7.05 <f2 / f <−1.54, 1.29 <f12 / f3 <1.91, 0.006 <D12 / f <0.026, 0.028 <D12 / D23 <0.2 It is comprised so that the conditions may be satisfied .

また、本発明は、前記開口絞りの前後にフレア絞りを有することが好ましい。   In the present invention, it is preferable to have a flare stop before and after the aperture stop.

以上説明したように、本発明に係る変倍レンズによれば、実効Fナンバー7.7程度と明るく、撮影倍率が−1.75倍〜−0.5833倍という広い変倍域において、安定して優れた結像性能を有する高解像力の変倍光学系を達成することができる。   As described above, according to the zoom lens according to the present invention, the lens has a bright effective F number of about 7.7, and is stable in a wide zoom range of −1.75 to −0.5833 times. In addition, it is possible to achieve a variable power optical system with high resolution and excellent imaging performance.

以下、図面を参照して本発明の好ましい実施形態について説明する。本発明に係る変倍レンズは、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、正の屈折力を有する第3レンズ群とを備えて構成されている。そして、高倍率から低倍率側にフォーカシングする際に、第1レンズ群と第2レンズ群との空気間隔、及び、第2レンズ群と第3レンズ群との空気間隔が変化するように構成されている。なお、このとき、第1レンズ群と第2レンズ群との空気間隔が増加するように構成されていることが好ましい。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The zoom lens according to the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, and a third lens having a positive refractive power. And a lens group. When focusing from the high magnification to the low magnification side, the air gap between the first lens group and the second lens group and the air gap between the second lens group and the third lens group are changed. ing. At this time, it is preferable that the air gap between the first lens group and the second lens group is increased.

このように、本発明に係る変倍レンズは、高倍率側から低倍率側へのフォーカシングに際して、まず開口絞りを挟んでほぼ対称になるように光学系を前群と後群とに分ける。さらに、前群を物体側から順に正の屈折力を有する第1レンズ群と負の屈折力を有する第2レンズ群とに分けて、これら第1レンズ群と第2レンズ群との空気間隔を変化させている。これにより、本発明に係る変倍レンズは、等倍を超える広い倍率範囲(すなわち、等倍を挟んだ最高倍率から最低倍率までの倍率範囲)での収差補正を可能にして、高性能な光学系を実現可能としている。なお、開口絞りを挟んで前群と後群をほぼ対称となるように構成しているのは、等倍時に前群と後群のパワー(屈折力)がほぼ等しく、歪曲収差及び倍率色収差の発生をほぼゼロになるように補正できるためである。   As described above, in the variable power lens according to the present invention, when focusing from the high magnification side to the low magnification side, first, the optical system is divided into the front group and the rear group so as to be substantially symmetrical with the aperture stop interposed therebetween. Further, the front group is divided into a first lens group having a positive refractive power and a second lens group having a negative refractive power in order from the object side, and an air space between the first lens group and the second lens group is set. It is changing. As a result, the variable power lens according to the present invention enables aberration correction in a wide magnification range exceeding the same magnification (that is, a magnification range from the highest magnification to the lowest magnification with the same magnification interposed therebetween), and high performance optical The system is feasible. The reason why the front group and the rear group are substantially symmetrical with the aperture stop interposed therebetween is that the power (refractive power) of the front group and the rear group is almost equal at the same magnification, and distortion aberration and lateral chromatic aberration are reduced. This is because the generation can be corrected to almost zero.

そして、本発明に係る変倍レンズは、第1レンズ群は最も物体側に位置する正レンズと負レンズの貼り合わせレンズを少なくとも1組含んで構成され、第2レンズ群は負の屈折力を持つ3枚の貼り合わせレンズから構成され、第3レンズ群は最も物体側に位置する物体側に凹面を向けた負の屈折力を持つ3枚の貼り合わせレンズを含んで構成されている。
In the zoom lens according to the present invention, the first lens group includes at least one pair of a positive lens and a negative lens that are located closest to the object side, and the second lens group has a negative refractive power. The third lens group includes three cemented lenses having negative refractive power with the concave surface facing the object side closest to the object side .

このように、本発明は第1レンズ群〜第3レンズ群の各レンズ群において、色消しの意味合いを持つ貼り合わせレンズを含むことにより、広い撮影倍率範囲で軸上色収差の変動を抑えている。特に、開口絞りの前後にある(具体的には、第2レンズ群および第3レンズ群に配置されている)3枚の貼り合わせレンズは、正レンズと負レンズの屈折率差をなくして、さらに後述する各実施例のような適切な分散値の組み合わせにより、等倍を越える高い撮像倍率においても良好な収差補正を可能としている。   As described above, according to the present invention, each lens group of the first lens group to the third lens group includes a cemented lens having an achromatic meaning, thereby suppressing variation in axial chromatic aberration in a wide photographing magnification range. . In particular, the three cemented lenses before and after the aperture stop (specifically, disposed in the second lens group and the third lens group) eliminate the refractive index difference between the positive lens and the negative lens, Further, by combining appropriate dispersion values as in each of the embodiments described later, good aberration correction can be performed even at a high imaging magnification exceeding the same magnification.

以下、条件式(1)〜(4)に沿って、本発明に係る変倍レンズについて詳細に説明する。本発明に係る変倍レンズは、第2レンズ群の焦点距離をf2とし、最高倍率時におけるレンズ系全体の焦点距離をfとしたとき、次式(1)を満足することが好ましい。   Hereinafter, the variable magnification lens according to the present invention will be described in detail along conditional expressions (1) to (4). The zoom lens according to the present invention preferably satisfies the following expression (1), where f2 is the focal length of the second lens group and f is the focal length of the entire lens system at the maximum magnification.

−7.05<f2/f<−1.54 (1)               −7.05 <f2 / f <−1.54 (1)

上記条件式(1)は、負の屈折力を有する第2レンズ群の屈折力に関する条件であり、本発明に係る変倍レンズにおいてその効果を発揮し得る屈折力配置を規定している。条件式(1)の上限値を上回ると、第2レンズ群の負の屈折力が強過ぎて補正過剰となり、低倍率側までコマ収差が補正できなくなるとともに、球面収差が正側に増大して解像度が低下する。一方、条件式(1)の下限値を下回ると、第2レンズ群の屈折力が弱くなり、第1レンズ群と第2レンズ群とのフローティングによる軸外コマ収差を補正する効果がなくなってしまう。また、第1レンズ群の屈折力と第3レンズ群の屈折力が相対的に非常に強くなり、特に高倍率側の球面収差が負側に増大して、像面湾曲も負側に倒れて良好な画質を確保することが困難になる。   Conditional expression (1) is a condition relating to the refractive power of the second lens group having a negative refractive power, and defines a refractive power arrangement that can exert its effect in the variable power lens according to the present invention. If the upper limit of conditional expression (1) is exceeded, the negative refractive power of the second lens group will be too strong and overcorrected, coma cannot be corrected to the low magnification side, and spherical aberration will increase to the positive side. The resolution decreases. On the other hand, if the lower limit value of conditional expression (1) is not reached, the refractive power of the second lens group becomes weak, and the effect of correcting off-axis coma due to floating between the first lens group and the second lens group is lost. . In addition, the refractive power of the first lens group and the refractive power of the third lens group become relatively very strong, especially the spherical aberration on the high magnification side increases to the negative side, and the field curvature also falls to the negative side. It becomes difficult to ensure good image quality.

また、本発明に係る変倍レンズは、最高倍率時における第1レンズ群と第2レンズ群の合成焦点距離をf12とし、第3レンズ群の焦点距離をf3としたとき、次式(2)を満足することが好ましい。   In the variable power lens according to the present invention, when the combined focal length of the first lens group and the second lens group at the maximum magnification is f12 and the focal length of the third lens group is f3, the following formula (2) Is preferably satisfied.

1.29<f12/f3<1.91 (2)               1.29 <f12 / f3 <1.91 (2)

上記条件式(2)は、(第1レンズ群と第2レンズ群とからなる)前群と(第3レンズ群からなる)後群における屈折力配分を定めるものであり、第3レンズ群の屈折力を全撮影倍率範囲において維持して、第1レンズ群と第2レンズ群との空気間隔で決まる前群の屈折力を高倍率から低倍率へと変倍していくにつれて強くなるように変化させる。このような条件式(2)の上限値を上回ると、第3レンズ群からなる後群の屈折力が相対的に強くなり、高倍率側の球面収差が補正過剰となって正側に増大して、低倍率側まで像面とのバランスをとることが非常に難しくなる。一方、条件式(2)の下限値を下回ると、(第1レンズ群及び第2レンズ群からなる)前群の屈折力が強くなり過ぎてしまうことにより前群で発生する球面収差が低倍率側で増大するとともに、前群と後群の屈折力の対称性が大きく崩れることにより歪曲収差及びコマ収差の補正が難しくなる。   The conditional expression (2) defines the refractive power distribution in the front group (consisting of the first lens group and the second lens group) and the rear group (consisting of the third lens group). Maintaining the refractive power in the entire photographing magnification range so that the refractive power of the front group determined by the air space between the first lens group and the second lens group becomes stronger as the magnification is changed from high magnification to low magnification. Change. When the upper limit of conditional expression (2) is exceeded, the refractive power of the rear group consisting of the third lens group becomes relatively strong, and the spherical aberration on the high magnification side becomes overcorrected and increases to the positive side. Therefore, it becomes very difficult to balance the image plane to the low magnification side. On the other hand, if the lower limit value of conditional expression (2) is not reached, the refractive power of the front group (consisting of the first lens group and the second lens group) becomes too strong, so that spherical aberration generated in the front group becomes low magnification. And the symmetry of the refractive power of the front group and the rear group is greatly broken, and it becomes difficult to correct distortion and coma.

以下に述べる条件式(3)及び(4)は、物像間距離を変化させて広変倍域を達成するために、第1レンズ群と第2レンズ群との空気間隔及び第2レンズ群と第3レンズ群との空気間隔を利用したフローティング手法を採用する際に、諸収差を良好に補正するための適切な空気間隔(すなわち、第1レンズ群と第2レンズ群との空気間隔及び第2レンズ群と第3レンズ群との空気間隔)を定めるものである。   Conditional expressions (3) and (4) described below are used to determine the air gap between the first lens group and the second lens group and the second lens group in order to achieve a wide zoom range by changing the distance between the object images. When the floating method using the air distance between the first lens group and the third lens group is employed, an appropriate air distance (that is, the air distance between the first lens group and the second lens group and the second lens group) Air interval between the second lens group and the third lens group).

本発明に係る変倍レンズは、最高倍率時における前記第1レンズ群と前記第2レンズ群との空気間隔をD12とし、最高倍率時におけるレンズ系全体の焦点距離をfとしたとき、次式(3)を満足することが好ましい。   The zoom lens according to the present invention has the following formula when the air distance between the first lens group and the second lens group at the maximum magnification is D12 and the focal length of the entire lens system at the maximum magnification is f. It is preferable to satisfy (3).

0.006<D12/f<0.026 (3)               0.006 <D12 / f <0.026 (3)

上記条件式(3)は、第1レンズ群と第2レンズ群との空気間隔を定めるものである。この条件式(3)の上限値を上回ると、第1レンズ群から射出して第2レンズ群へ入射する軸外光線の入射位置が低くなるため、軸外コマ収差が悪化して補正が困難になる。一方、条件式(3)の下限値を下回ると、第1レンズ群と第2レンズ群との空気間隔が小さくなり、機械的に干渉する。   Conditional expression (3) defines the air gap between the first lens group and the second lens group. If the upper limit of conditional expression (3) is exceeded, the incident position of off-axis light rays that emerge from the first lens group and enter the second lens group becomes low, so that off-axis coma aberration deteriorates and correction is difficult. become. On the other hand, if the lower limit value of conditional expression (3) is not reached, the air space between the first lens group and the second lens group becomes small, causing mechanical interference.

また、本発明に係る変倍レンズは、最高倍率時における第1レンズ群と第2レンズ群との空気間隔をD12とし、最高倍率時における第2レンズ群と第3レンズ群との空気間隔をD23としたとき、次式(4)を満足することが好ましい。   In the variable power lens according to the present invention, the air gap between the first lens group and the second lens group at the maximum magnification is D12, and the air gap between the second lens group and the third lens group at the highest magnification is set. When D23, it is preferable to satisfy the following formula (4).

0.028<D12/D23<0.2 (4)               0.028 <D12 / D23 <0.2 (4)

上記条件式(4)は、撮影倍率全域において球面収差と非点収差をバランス良く補正するため、第1レンズ群と第2レンズ群との空気間隔と、第2レンズ群と第3レンズ群の空気間隔との比率を決定するものである。条件式(4)の上限値を上回ると、第3レンズ群による正側の球面収差及び非点収差の発生量が増大して、第1レンズ群と第2レンズ群との間隔での適切なフローティング効果が得られない。一方、条件式(4)の下限値を下回ると、高倍率側での球面収差の補正が困難になる。   Conditional expression (4) corrects spherical aberration and astigmatism in a well-balanced manner over the entire magnification range, so that the air gap between the first lens group and the second lens group, and the second lens group and the third lens group The ratio to the air spacing is determined. When the upper limit value of conditional expression (4) is exceeded, the amount of positive spherical aberration and astigmatism generated by the third lens group increases, and an appropriate distance between the first lens group and the second lens group is increased. The floating effect cannot be obtained. On the other hand, if the lower limit of conditional expression (4) is not reached, it will be difficult to correct spherical aberration on the high magnification side.

さらに、本発明に係る変倍レンズは、高次のコマ収差を押さえるために、開口絞りの前後にフレア絞りを有することが好ましい。ここで、高倍率側から低倍率側へフォーカシングする際に、開口絞り及びフレア絞りは、第2レンズ群または第3レンズ群のいずれか一方と一緒に移動してもよいし、独立して移動してもよい。また、高倍率側から低倍率側へフォーカシングする際に、各倍率において絞り径を変化させることにより、各倍率での周辺光量を十分に確保することができて、高解像度を達成できる。   Furthermore, the zoom lens according to the present invention preferably has a flare stop before and after the aperture stop in order to suppress high-order coma. Here, when focusing from the high magnification side to the low magnification side, the aperture stop and the flare stop may be moved together with either the second lens group or the third lens group, or independently. May be. Further, when focusing from the high magnification side to the low magnification side, by changing the aperture diameter at each magnification, a sufficient amount of peripheral light at each magnification can be secured, and high resolution can be achieved.

以下、本発明の各実施例を添付図面に基づいて説明する。なお、添付図面おいては、像面を符号Iで示している。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the accompanying drawings, the image plane is indicated by symbol I.

これから説明する、本発明に係る変倍レンズの4つの実施例においては、図1、図5、図9、図13にそれぞれ示すように、いずれも、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3とを備え、第1レンズ群G1は最も物体側に位置する正レンズと負レンズの貼り合わせレンズを少なくとも1組含み、第2レンズ群G2は負の屈折力を持つ3枚の貼り合わせレンズからなり、第3レンズ群G3は最も物体側に位置する物体側に凹面を向けた負の屈折力を持つ3枚の貼り合わせレンズを含むと構成とした。
In the four embodiments of the variable magnification lens according to the present invention to be described below, as shown in FIGS. 1, 5, 9, and 13, all have positive refractive power in order from the object side. A first lens group G1, a second lens group G2 having negative refractive power, an aperture stop S, and a third lens group G3 having positive refractive power, the first lens group G1 being closest to the object side It includes at least one pair of a positive lens and a negative lens , and the second lens group G2 includes three cemented lenses having negative refractive power, and the third lens group G3 is located closest to the object side. The configuration includes three bonded lenses having negative refractive power with the concave surface facing the object side.

そして、高倍率側から低倍率側へフォーカシングする際に、物体距離(物体側から第1レンズ群までの距離)、第1レンズ群G1と第2レンズ群G2との空気間隔、及び、第2レンズ群G2と第3レンズ群G3との空気間隔(絞り空間)が変化する構成とした。また、高倍率側から低倍率側へフォーカシングする際に、開口絞りSは、いずれの実施例においても第2レンズ群G2と一体となって移動するとともに、絞り径を変化させて各撮影倍率での明るさを実効Fナンバー7.7として周辺光量を十分に確保することを可能にした。   When focusing from the high magnification side to the low magnification side, the object distance (distance from the object side to the first lens group), the air gap between the first lens group G1 and the second lens group G2, and the second The air gap (aperture space) between the lens group G2 and the third lens group G3 is changed. Further, when focusing from the high magnification side to the low magnification side, the aperture stop S moves integrally with the second lens group G2 in any of the embodiments, and the aperture diameter is changed at each photographing magnification. With an effective F number of 7.7, it is possible to secure a sufficient amount of peripheral light.

(第1実施例)
以下、本発明の第1実施例について図1〜図5を用いて説明する。図1は、第1実施例に係る変倍レンズのレンズ構成図である。第1実施例に係る変倍レンズHL1において、第1レンズ群G1には、物体側から順に、物体側に凸面を向けた正レンズL1と両凹レンズL2とからなる貼り合わせレンズ、物体側に凸面を向けた負メニスカスレンズL3と両凸レンズL4とからなる貼り合わせレンズを配置して、正の屈折力を有するレンズ群を構成している。また、第2レンズ群G2には、物体側に凸面を向けた正メニスカスレンズL5と物体側に凸面を向けた負メニスカスレンズL6及び物体側に凸面を向けた正メニスカスレンズL7との貼り合わせレンズを配置して、負の屈折力を有するレンズ群を構成している。また、第3レンズ群G3には、物体側に凹面を向けた正メニスカスレンズL8と物体側に凹面を向けた負メニスカスレンズL9及び物体側に凹面を向けた正メニスカスレンズL10とからなる貼り合わせレンズ、物体側に凹面を向けた正メニスカスレンズL11と物体側に凹面を向けた負メニスカスレンズL12とからなる貼り合わせレンズ、両凹レンズL13と両凸レンズL14を配置して、正の屈折力を有するレンズ群を構成している。なお、第2レンズ群G2と第3レンズ群G3との間には、開口絞りSが配置されている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a lens configuration diagram of a variable magnification lens according to the first example. In the zoom lens HL1 according to the first example, the first lens group G1 includes, in order from the object side, a cemented lens including a positive lens L1 having a convex surface facing the object side and a biconcave lens L2, and a convex surface facing the object side. A lens group having positive refractive power is configured by arranging a cemented lens composed of a negative meniscus lens L3 and a biconvex lens L4. The second lens group G2 includes a cemented lens including a positive meniscus lens L5 having a convex surface facing the object side, a negative meniscus lens L6 having a convex surface facing the object side, and a positive meniscus lens L7 having a convex surface facing the object side. To constitute a lens group having negative refractive power. The third lens group G3 includes a positive meniscus lens L8 having a concave surface facing the object side, a negative meniscus lens L9 having a concave surface facing the object side, and a positive meniscus lens L10 having a concave surface facing the object side. A lens, a cemented lens composed of a positive meniscus lens L11 having a concave surface facing the object side and a negative meniscus lens L12 having a concave surface facing the object side, a biconcave lens L13 and a biconvex lens L14 are arranged to have a positive refractive power. It constitutes a lens group. An aperture stop S is disposed between the second lens group G2 and the third lens group G3.

図2は、高倍率側(-1.75倍)から等倍(-1.00倍)を挟んで低倍率側(-0.5833倍)まで変倍させたときの各レンズ群の移動軌跡を示す図であり、図2(a)は変倍レンズHL1が撮像倍率-1.75倍(高倍率側)にあるときの各レンズ群の位置、図2(b)は変倍レンズHL1が撮像倍率-1.00倍(等倍)にあるときの各レンズ群の位置、図2(c)は変倍レンズHL1が撮像倍率-0.5833倍(低倍率側)にあるときの各レンズ群の位置をそれぞれ示している。なお、開口絞りSは、第2レンズ群G2と一体となって移動している。   FIG. 2 is a diagram showing the movement trajectory of each lens group when zooming from the high magnification side (-1.75 times) to the low magnification side (-0.5833 times) with the same magnification (-1.00 times) in between. 2A shows the position of each lens group when the variable magnification lens HL1 is at an imaging magnification of 1.75 times (high magnification side), and FIG. 2B shows the magnification of the variable magnification lens HL1 at an imaging magnification of -1.00 times (equal magnification). 2C shows the position of each lens group, and FIG. 2C shows the position of each lens group when the variable magnification lens HL1 is at an imaging magnification of -0.5833 (on the low magnification side). The aperture stop S moves together with the second lens group G2.

次に、この第1実施例における各レンズの諸元を表1に示す(但し、長さの単位は全てmmである)。この諸元の表において、第1欄mは物体側からの各光学面の番号(以下、面番号と称する)、第2欄rは各光学面の曲率半径、第3欄dは各光学面から次の光学面(または像面)までの光軸上の距離、第4欄νはアッベ数、第5欄nはd線(λ=587.56nm)に対する屈折率、第6欄は各レンズ成分をそれぞれ表している。また、表中では、Feは実効Fナンバー、βは撮影倍率、D0は物体距離を示している。以上、表の説明は、他の実施例においても同様である。   Next, the specifications of each lens in the first embodiment are shown in Table 1 (however, the unit of length is mm). In this specification table, the first column m is the number of each optical surface from the object side (hereinafter referred to as surface number), the second column r is the radius of curvature of each optical surface, and the third column d is each optical surface. The distance on the optical axis from one to the next optical surface (or image surface), the fourth column ν is the Abbe number, the fifth column n is the refractive index with respect to the d-line (λ = 587.56 nm), and the sixth column is each lens component Respectively. In the table, Fe represents the effective F number, β represents the photographing magnification, and D0 represents the object distance. The description of the table is the same in the other examples.

第1実施例では、面番号6に示す面間隔d6(すなわち面番号6と面番号7との面間隔)と、面番号11に示す面間隔d11(すなわち面番号11と面番号12との面間隔)はフォーカシングする際に変化する。また、面番号11が開口絞りSに相当している。   In the first embodiment, the surface interval d6 indicated by the surface number 6 (namely, the surface interval between the surface number 6 and the surface number 7) and the surface interval d11 indicated by the surface number 11 (ie the surface between the surface number 11 and the surface number 12). The (interval) changes during focusing. The surface number 11 corresponds to the aperture stop S.

(表1)
Fe=7.7
m r d ν n
1 702.0736 8.5000 82.52 1.497820 L1
2 -40.5552 2.4500 64.12 1.516800 L2
3 175.9380 0.2000 1.000000
4 70.0000 4.5000 48.87 1.531720 L3
5 53.1031 9.5000 67.87 1.593189 L4
6 -436.6233 d6(可変) 1.000000
7 39.0048 6.5000 67.87 1.593189 L5
8 95.5568 2.5000 52.32 1.517420 L6
9 24.3988 5.4000 47.82 1.757000 L7
10 23.7124 14.7500 1.000000
11 開口絞りS d11(可変) 1.000000
12 -23.8762 5.4000 50.85 1.570990 L8
13 -18.2210 3.5000 52.32 1.517420 L9
14 -47.0835 6.0000 67.87 1.593189 L10
15 -42.3346 5.0000 1.000000
16 -267.1949 7.0500 67.87 1.593189 L11
17 -31.4666 2.4000 48.87 1.531720 L12
18 -58.3639 0.2000 1.000000
19 -347.2786 2.5500 52.95 1.571350 L13
20 69.8200 8.0000 82.52 1.497820 L14
21 -106.4123 1.000000

(変倍における可変間隔)
β -1.75 -1.00 -0.5833
D0 102.3573 154.5617 244.0704
d6 2.15000 7.00000 10.90000
d11 12.65000 12.30000 10.10000

(条件式対応値)
f2 =-290.500
f = 120.029
f12= 174.429
f3 = 118.853
D12= 2.15
D23= 27.4

(条件式)
(1) f2/f =-2.42
(2) f12/f3 = 1.47
(3) D12/f = 0.018
(4) D12/D23= 0.078
(Table 1)
Fe = 7.7
m r d v n
1 702.0736 8.5000 82.52 1.497820 L1
2 -40.5552 2.4500 64.12 1.516800 L2
3 175.9380 0.2000 1.000000
4 70.0000 4.5000 48.87 1.531720 L3
5 53.1031 9.5000 67.87 1.593189 L4
6 -436.6233 d6 (variable) 1.000000
7 39.0048 6.5000 67.87 1.593189 L5
8 95.5568 2.5000 52.32 1.517420 L6
9 24.3988 5.4000 47.82 1.757000 L7
10 23.7124 14.7500 1.000000
11 Aperture stop S d11 (variable) 1.000000
12 -23.8762 5.4000 50.85 1.570990 L8
13 -18.2210 3.5000 52.32 1.517420 L9
14 -47.0835 6.0000 67.87 1.593189 L10
15 -42.3346 5.0000 1.000000
16 -267.1949 7.0500 67.87 1.593189 L11
17 -31.4666 2.4000 48.87 1.531720 L12
18 -58.3639 0.2000 1.000000
19 -347.2786 2.5500 52.95 1.571350 L13
20 69.8200 8.0000 82.52 1.497820 L14
21 -106.4123 1.000000

(Variable interval in zooming)
β -1.75 -1.00 -0.5833
D0 102.3573 154.5617 244.0704
d6 2.15000 7.00000 10.90000
d11 12.65000 12.30000 10.10000

(Values for conditional expressions)
f2 = -290.500
f = 120.029
f12 = 174.429
f3 = 118.853
D12 = 2.15
D23 = 27.4

(Conditional expression)
(1) f2 / f = -2.42
(2) f12 / f3 = 1.47
(3) D12 / f = 0.018
(4) D12 / D23 = 0.078

このように第1実施例では、上記条件式(1)〜(4)は全て満たされることが分かる。   Thus, in the first example, it can be seen that all the conditional expressions (1) to (4) are satisfied.

図3は撮像倍率βが-1.75倍における諸収差図、図4は撮像倍率βが-1.00倍における諸収差図、図5は撮像倍率βが-0.5833倍における諸収差図を示している。なお、各収差図において、dはd線(λ=587.56nm)、gはg線(λ=435.83nm)、CはC線(λ=656.28nm)、FはF線(λ=486.13nm)をそれぞれ示している。また、球面収差図におけるFeの値は実効Fナンバーであり、非点収差図及び歪曲収差図におけるYの値は像高の最大値であり、コマ収差図におけるYの値は各像高の値である。さらに、非点収差図において、実線はサジタル像面を示し、破線はメリディオナル像面を示している。以上の収差図の説明は、他の実施例においても同様である。   3 shows various aberrations when the imaging magnification β is 1.75 times, FIG. 4 shows various aberrations when the imaging magnification β is −1.00 times, and FIG. 5 shows various aberrations when the imaging magnification β is −0.5833 times. In each aberration diagram, d is d line (λ = 587.56 nm), g is g line (λ = 435.83 nm), C is C line (λ = 656.28 nm), and F is F line (λ = 486.13 nm). Respectively. Further, the value of Fe in the spherical aberration diagram is the effective F number, the value of Y in the astigmatism diagram and the distortion diagram is the maximum value of the image height, and the value of Y in the coma aberration diagram is the value of each image height. It is. Further, in the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. The explanation of the above aberration diagrams is the same in the other examples.

各収差図から明らかなように、第1実施例に係る変倍レンズHL1では、撮影倍率が−1.75倍〜−0.5833倍という広い変倍域において、実効Fナンバーで7.7の明るさを有しつつ、諸収差が良好に補正され、安定して優れた結像性能が確保されていることが分かる。   As is apparent from each aberration diagram, in the variable magnification lens HL1 according to the first example, the effective F number is 7.7 in the wide variable magnification range of -1.75 times to -0.5833 times. It can be seen that while having brightness, various aberrations are well corrected and stable and excellent imaging performance is secured.

(第2実施例)
以下、本発明の第2実施例について図6〜図10を用いて説明する。図6は、第2実施例に係る変倍レンズHL2のレンズ構成図である。第2実施例に係る変倍レンズHL2において、正の屈折力を有する第1レンズ群G1には、物体側から順に、物体側に凸面を向けた正レンズL1と両凹レンズL2とからなる貼り合わせレンズ、物体側に凸面を向けた負メニスカスレンズL3と両凸レンズL4とからなる貼り合わせレンズを配置して、正の屈折力を有するレンズ群を構成している。また、第2レンズ群G2には、物体側に凸面を向けた正メニスカスレンズL5と物体側に凸面を向けた負メニスカスレンズL6及び物体側に凸面を向けた正メニスカスレンズL7との貼り合わせレンズを配置して、負の屈折力を有するレンズ群を構成している。また、第3レンズ群G3には、物体側に凹面を向けた正メニスカスレンズL8と物体側に凹面を向けた負メニスカスレンズL9及び物体側に凹面を向けた正メニスカスレンズL10とからなる貼り合わせレンズ、物体側に凹面を向けた正メニスカスレンズL11と物体側に凹面を向けた負メニスカスレンズL12とからなる貼り合わせレンズ、両凹レンズL13と両凸レンズL14を配置して、正の屈折力を有するレンズ群を構成している。なお、第2レンズ群G2と第3レンズ群G3との間には、開口絞りSが配置されている。
(Second embodiment)
A second embodiment of the present invention will be described below with reference to FIGS. FIG. 6 is a lens configuration diagram of the variable magnification lens HL2 according to the second example. In the variable magnification lens HL2 according to the second example, the first lens group G1 having a positive refractive power is bonded in order from the object side to the positive lens L1 having a convex surface facing the object side and the biconcave lens L2. A lens group including a negative meniscus lens L3 having a convex surface facing the object side and a biconvex lens L4 is disposed to constitute a lens group having a positive refractive power. The second lens group G2 includes a cemented lens including a positive meniscus lens L5 having a convex surface facing the object side, a negative meniscus lens L6 having a convex surface facing the object side, and a positive meniscus lens L7 having a convex surface facing the object side. To constitute a lens group having negative refractive power. The third lens group G3 includes a positive meniscus lens L8 having a concave surface facing the object side, a negative meniscus lens L9 having a concave surface facing the object side, and a positive meniscus lens L10 having a concave surface facing the object side. A lens, a cemented lens composed of a positive meniscus lens L11 having a concave surface facing the object side and a negative meniscus lens L12 having a concave surface facing the object side, a biconcave lens L13 and a biconvex lens L14 are arranged to have a positive refractive power. It constitutes a lens group. An aperture stop S is disposed between the second lens group G2 and the third lens group G3.

図7は、高倍率側(-1.75倍)から等倍(-1.00倍)を挟んで低倍率側(-0.5833倍)まで変倍させたときの各レンズ群の移動軌跡を示す図であり、図7(a)は変倍レンズHL2が撮像倍率-1.75倍(高倍率側)にあるときの各レンズ群の位置、図7(b)は変倍レンズHL2が撮像倍率-1.00倍(等倍)にあるときの各レンズ群の位置、図7(c)は変倍レンズHL2が撮像倍率-0.5833倍(低倍率側)にあるときの各レンズ群の位置をそれぞれ示している。なお、開口絞りSは、第2レンズ群G2と一体となって移動している。   FIG. 7 is a diagram showing the movement trajectory of each lens group when zooming from the high magnification side (-1.75 times) to the low magnification side (-0.5833 times) with the same magnification (-1.00 times) in between. 7A shows the position of each lens group when the variable magnification lens HL2 is at an imaging magnification of 1.75 times (high magnification side), and FIG. 7B shows the magnification of the variable magnification lens HL2 at an imaging magnification of -1.00 times (equal magnification). (C) shows the position of each lens group when the variable magnification lens HL2 is at an imaging magnification of -0.5833 (on the low magnification side). The aperture stop S moves together with the second lens group G2.

次に、この第2実施例における各レンズの諸元を表2に示す。なお、第2実施例では、面番号6に示す面間隔d6(すなわち面番号6と面番号7との面間隔)と、面番号11に示す面間隔d11(すなわち面番号11と面番号12との面間隔)はフォーカシングする際に変化する。また、面番号11が開口絞りSに相当している。   Next, Table 2 shows the specifications of each lens in the second embodiment. In the second embodiment, the surface interval d6 indicated by the surface number 6 (namely, the surface interval between the surface number 6 and the surface number 7) and the surface interval d11 indicated by the surface number 11 (ie the surface number 11 and the surface number 12) The distance between the planes) changes during focusing. The surface number 11 corresponds to the aperture stop S.

(表2)
Fe=7.7
m r d ν n
1 197.6374 7.0000 82.52 1.497820 L1
2 -43.6597 3.0000 64.12 1.516800 L2
3 155.6731 3.0000 1.000000
4 67.5879 4.5000 50.85 1.570990 L3
5 36.2191 9.5000 67.87 1.593189 L4
6 -1205.7046 d6(可変) 1.000000
7 35.4362 5.9911 67.87 1.593189 L5
8 33.8366 2.3043 54.62 1.514540 L6
9 24.2500 4.9772 47.38 1.788000 L7
10 22.0739 13.5951 1.000000
11 開口絞りS d11(可変) 1.000000
12 -24.2961 5.4000 50.85 1.570990 L8
13 -16.7185 3.5000 52.32 1.517420 L9
14 -231.8648 6.0000 67.87 1.593189 L10
15 -43.3155 5.0000 1.000000
16 -193.6937 7.0500 67.87 1.593189 L11
17 -29.9223 2.3000 50.85 1.570990 L12
18 -52.3453 3.0000 1.000000
19 -505.3142 2.5000 52.95 1.571350 L13
20 81.3102 8.0000 82.52 1.497820 L14
21 -139.6636 1.000000

(変倍における可変間隔)
β -1.75 -1.00 -0.5833
D0 102.2566 155.4856 245.2328
d6 3.40000 9.65000 10.30000
d11 12.95000 13.05000 11.50000

(条件式対応値)
f2 =-188.34265
f = 120.95503
f12= 185.91454
f3 = 112.56525
D12= 3.40
D23= 26.55

(条件式)
(1) f2/f =-1.56
(2) f12/f3 = 1.65
(3) D12/f = 0.028
(4) D12/D23= 0.13
(Table 2)
Fe = 7.7
m r d v n
1 197.6374 7.0000 82.52 1.497820 L1
2 -43.6597 3.0000 64.12 1.516800 L2
3 155.6731 3.0000 1.000000
4 67.5879 4.5000 50.85 1.570990 L3
5 36.2191 9.5000 67.87 1.593189 L4
6 -1205.7046 d6 (variable) 1.000000
7 35.4362 5.9911 67.87 1.593189 L5
8 33.8366 2.3043 54.62 1.514540 L6
9 24.2500 4.9772 47.38 1.788000 L7
10 22.0739 13.5951 1.000000
11 Aperture stop S d11 (variable) 1.000000
12 -24.2961 5.4000 50.85 1.570990 L8
13 -16.7185 3.5000 52.32 1.517420 L9
14 -231.8648 6.0000 67.87 1.593189 L10
15 -43.3155 5.0000 1.000000
16 -193.6937 7.0500 67.87 1.593189 L11
17 -29.9223 2.3000 50.85 1.570990 L12
18 -52.3453 3.0000 1.000000
19 -505.3142 2.5000 52.95 1.571350 L13
20 81.3102 8.0000 82.52 1.497820 L14
21 -139.6636 1.000000

(Variable interval in zooming)
β -1.75 -1.00 -0.5833
D0 102.2566 155.4856 245.2328
d6 3.40000 9.65000 10.30000
d11 12.95000 13.05000 11.50000

(Values for conditional expressions)
f2 = -188.34265
f = 120.95503
f12 = 185.91454
f3 = 112.56525
D12 = 3.40
D23 = 26.55

(Conditional expression)
(1) f2 / f = -1.56
(2) f12 / f3 = 1.65
(3) D12 / f = 0.028
(4) D12 / D23 = 0.13

このように第2実施例では、上記条件式(1)〜(4)は全て満たされることが分かる。図8は撮像倍率βが-1.75倍における諸収差図、図9は撮像倍率βが-1.00倍における諸収差図、図10は撮像倍率βが-0.5833倍における諸収差図を示している。各収差図から明らかなように、第2実施例に係る変倍レンズHL2では、撮影倍率が−1.75倍〜−0.5833倍という広い変倍域において、実効Fナンバーで7.7の明るさを有しつつ、諸収差が良好に補正され、安定して優れた結像性能が確保されていることが分かる。   As described above, in the second embodiment, it is understood that all the conditional expressions (1) to (4) are satisfied. 8 shows various aberration diagrams when the imaging magnification β is 1.75 times, FIG. 9 shows various aberration diagrams when the imaging magnification β is −1.00 times, and FIG. 10 shows various aberration diagrams when the imaging magnification β is −0.5833 times. As is apparent from each aberration diagram, in the variable magnification lens HL2 according to the second example, the effective F number is 7.7 in a wide variable magnification range of -1.75 times to -0.5833 times. It can be seen that while having brightness, various aberrations are well corrected and stable and excellent imaging performance is secured.

(第3実施例)
以下、本発明の第3実施例について図11〜図15を用いて説明する。図11は、第3実施例に係る変倍レンズHL3のレンズ構成図である。第3実施例に係る変倍レンズHL3において、第1レンズ群G1には、物体側から順に、物体側に凹面を向けた正メニスカスレンズL1と両凹レンズL2とからなる貼り合わせレンズ、物体側に凸面を向けた負メニスカスレンズL3と両凸レンズL4とからなる貼り合わせレンズを配置して、正の屈折力を有するレンズ群を構成している。また、第2レンズ群G2には、物体側に凸面を向けた正メニスカスレンズL5と物体側に凸面を向けた負メニスカスレンズL6及び物体側に凸面を向けた正メニスカスレンズL7との貼り合わせレンズを配置して、負の屈折力を有するレンズ群を構成している。また、第3レンズ群G3には、物体側に凹面を向けた正メニスカスレンズL8と物体側に凹面を向けた負メニスカスレンズL9及び物体側に凹面を向けた正メニスカスレンズL10とからなる貼り合わせレンズ、物体側に凹面を向けた正メニスカスレンズL11と物体側に凹面を向けた負メニスカスレンズL12とからなる貼り合わせレンズ、両凹レンズL13と両凸レンズL14を配置して、正の屈折力を有するレンズ群を構成している。なお、第2レンズ群G2と第3レンズ群G3との間には、開口絞りSが配置されている。
(Third embodiment)
Hereinafter, a third embodiment of the present invention will be described with reference to FIGS. FIG. 11 is a lens configuration diagram of the variable magnification lens HL3 according to the third example. In the zoom lens HL3 according to the third example, the first lens group G1 includes, in order from the object side, a cemented lens including a positive meniscus lens L1 having a concave surface facing the object side and a biconcave lens L2, and an object side. A lens group having a positive refractive power is configured by arranging a cemented lens including a negative meniscus lens L3 and a biconvex lens L4 having a convex surface. The second lens group G2 includes a cemented lens including a positive meniscus lens L5 having a convex surface facing the object side, a negative meniscus lens L6 having a convex surface facing the object side, and a positive meniscus lens L7 having a convex surface facing the object side. To constitute a lens group having negative refractive power. The third lens group G3 includes a positive meniscus lens L8 having a concave surface facing the object side, a negative meniscus lens L9 having a concave surface facing the object side, and a positive meniscus lens L10 having a concave surface facing the object side. A lens, a cemented lens composed of a positive meniscus lens L11 having a concave surface facing the object side and a negative meniscus lens L12 having a concave surface facing the object side, a biconcave lens L13 and a biconvex lens L14 are arranged to have a positive refractive power. It constitutes a lens group. An aperture stop S is disposed between the second lens group G2 and the third lens group G3.

図12は、高倍率側(-1.75倍)から等倍(-1.00倍)を挟んで低倍率側(-0.5833倍)まで変倍させたときの各レンズ群の移動軌跡を示す図であり、図12(a)は変倍レンズHL3が撮像倍率-1.75倍(高倍率側)にあるときの各レンズ群の位置、図12(b)は変倍レンズHL3が撮像倍率-1.00倍(等倍)にあるときの各レンズ群の位置、図12(c)は変倍レンズHL3が撮像倍率-0.5833倍(低倍率側)にあるときの各レンズ群の位置をそれぞれ示している。なお、開口絞りSは、第2レンズ群G2と一体となって移動している。   FIG. 12 is a diagram showing the movement trajectory of each lens group when zooming is performed from the high magnification side (-1.75 times) to the low magnification side (−0.5833 times) with the same magnification (−1.00 times) in between. 12A shows the position of each lens group when the variable magnification lens HL3 is at an imaging magnification of 1.75 times (high magnification side), and FIG. 12B shows the magnification of the variable magnification lens HL3 at an imaging magnification of -1.00 times (equal magnification). 12C shows the position of each lens group, and FIG. 12C shows the position of each lens group when the variable magnification lens HL3 is at an imaging magnification of -0.5833 (on the low magnification side). The aperture stop S moves together with the second lens group G2.

次に、この第3実施例における各レンズの諸元を表3に示す。なお、第3実施例では、面番号6に示す面間隔d6(すなわち面番号6と面番号7との面間隔)と、面番号11に示す面間隔d11(すなわち面番号11と面番号12との面間隔)はフォーカシングする際に変化する。また、面番号11が開口絞りSに相当している。   Next, Table 3 shows the specifications of each lens in the third example. In the third embodiment, the surface interval d6 indicated by the surface number 6 (ie, the surface interval between the surface number 6 and the surface number 7) and the surface interval d11 indicated by the surface number 11 (ie, the surface number 11 and the surface number 12) The distance between the planes) changes during focusing. The surface number 11 corresponds to the aperture stop S.

(表3)
Fe=7.7
m r d ν n
1 -295.8036 8.5000 82.52 1.497820 L1
2 -39.4630 2.4500 64.12 1.516800 L2
3 410.7216 0.2000 1.000000 L3
4 88.4033 4.5000 48.87 1.531720 L4
5 69.3099 9.5000 67.87 1.593189
6 -238.7392 d6(可変) 1.000000
7 45.3483 7.6541 67.87 1.593189 L5
8 711.4063 2.9439 52.32 1.517420 L6
9 25.8385 6.3588 47.82 1.757000 L7
10 27.9226 17.3690 1.000000
11 開口絞りS d11(可変) 1.000000
12 -22.8607 5.4000 50.85 1.570990 L8
13 -18.8613 3.5000 52.32 1.517420 L9
14 -53.0068 6.0000 67.87 1.593189 L10
15 -41.5489 5.0000 1.000000
16 -225.7922 7.0500 67.87 1.593189 L11
17 -33.6739 2.4000 48.87 1.531720 L12
18 -59.2502 0.2000 1.000000
19 -534.0237 2.5500 52.95 1.571350 L13
20 66.1282 8.0000 82.52 1.497820 L14
21 -106.4123 1.000000

(変倍における可変間隔)
β -1.75 -1.00 -0.5833
D0 97.5950 149.1347 238.3698
d6 0.90000 7.40000 14.05000
d11 13.60000 12.55000 9.25000

(条件式対応値)
f2 =-844.664
f = 120.009
f12= 163.681
f3 = 125.555
D12= 0.90
D23= 30.97

(条件式)
(1) f2/f =-7.04
(2) f12/f3 = 1.30
(3) D12/f = 0.0075
(4) D12/D23= 0.029
(Table 3)
Fe = 7.7
m r d v n
1 -295.8036 8.5000 82.52 1.497820 L1
2 -39.4630 2.4500 64.12 1.516800 L2
3 410.7216 0.2000 1.000000 L3
4 88.4033 4.5000 48.87 1.531720 L4
5 69.3099 9.5000 67.87 1.593189
6 -238.7392 d6 (variable) 1.000000
7 45.3483 7.6541 67.87 1.593189 L5
8 711.4063 2.9439 52.32 1.517420 L6
9 25.8385 6.3588 47.82 1.757000 L7
10 27.9226 17.3690 1.000000
11 Aperture stop S d11 (variable) 1.000000
12 -22.8607 5.4000 50.85 1.570990 L8
13 -18.8613 3.5000 52.32 1.517420 L9
14 -53.0068 6.0000 67.87 1.593189 L10
15 -41.5489 5.0000 1.000000
16 -225.7922 7.0500 67.87 1.593189 L11
17 -33.6739 2.4000 48.87 1.531720 L12
18 -59.2502 0.2000 1.000000
19 -534.0237 2.5500 52.95 1.571350 L13
20 66.1282 8.0000 82.52 1.497820 L14
21 -106.4123 1.000000

(Variable interval in zooming)
β -1.75 -1.00 -0.5833
D0 97.5950 149.1347 238.3698
d6 0.90000 7.40000 14.05000
d11 13.60000 12.55000 9.25000

(Values for conditional expressions)
f2 = -844.664
f = 120.009
f12 = 163.681
f3 = 125.555
D12 = 0.90
D23 = 30.97

(Conditional expression)
(1) f2 / f = -7.04
(2) f12 / f3 = 1.30
(3) D12 / f = 0.0075
(4) D12 / D23 = 0.029

このように第3実施例では、上記条件式(1)〜(4)は全て満たされることが分かる。図13は撮像倍率βが-1.75倍における諸収差図、図14は撮像倍率βが-1.00倍における諸収差図、図15は撮像倍率βが-0.5833倍における諸収差図を示している。各収差図から明らかなように、第3実施例に係る変倍レンズHL3では、撮影倍率が−1.75倍〜−0.5833倍という広い変倍域において、実効Fナンバーで7.7の明るさを有しつつ、諸収差が良好に補正され、安定して優れた結像性能が確保されていることが分かる。   As described above, in the third example, it is understood that all the conditional expressions (1) to (4) are satisfied. 13 shows various aberrations when the imaging magnification β is 1.75 times, FIG. 14 shows various aberrations when the imaging magnification β is −1.00 times, and FIG. 15 shows various aberrations when the imaging magnification β is −0.5833 times. As is apparent from each aberration diagram, in the variable magnification lens HL3 according to the third example, the effective F number is 7.7 in a wide variable magnification range of −1.75 times to −0.5833 times. It can be seen that while having brightness, various aberrations are well corrected and stable and excellent imaging performance is secured.

(第4実施例)
以下、本発明の第4実施例について図16〜図20を用いて説明する。図16は、第4実施例に係る変倍レンズHL4のレンズ構成図である。第4実施例に係る変倍レンズHL4において、第1レンズ群G1には、物体側から順に、物体側に凸面を向けた正レンズL1と両凹レンズL2とからなる貼り合わせレンズ、物体側に凸面を向けた負メニスカスレンズL3と両凸レンズL4とからなる貼り合わせレンズを配置して、正の屈折力を有するレンズ群を構成している。また、第2レンズ群G2には、物体側に凸面を向けた正メニスカスレンズL5と物体側に凸面を向けた負メニスカスレンズL6及び物体側に凸面を向けた正メニスカスレンズL7との貼り合わせレンズを配置して、負の屈折力を有するレンズ群を構成している。また、第3レンズ群G3には、物体側に凹面を向けた正メニスカスレンズL8と物体側に凹面を向けた負メニスカスレンズL9及び物体側に凹面を向けた正メニスカスレンズL10とからなる貼り合わせレンズ、物体側に凹面を向けた正メニスカスレンズL11と物体側に凹面を向けた負メニスカスレンズL12とからなる貼り合わせレンズ、両凹レンズL13と両凸レンズL14を配置して、正の屈折力を有するレンズ群を構成している。なお、第2レンズ群G2と第3レンズ群G3との間には、開口絞りSが配置されている。また、開口絞りSを挟んで前後(すなわち、第2レンズ群の最も像側及び第3レンズ群の最も物体側)にフレア絞りFSが配置されている。
(Fourth embodiment)
Hereinafter, a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 16 is a lens configuration diagram of the variable magnification lens HL4 according to the fourth example. In the zoom lens HL4 according to the fourth example, the first lens group G1 includes, in order from the object side, a cemented lens including a positive lens L1 having a convex surface facing the object side and a biconcave lens L2, and a convex surface facing the object side. A lens group having positive refractive power is configured by arranging a cemented lens composed of a negative meniscus lens L3 and a biconvex lens L4. The second lens group G2 includes a cemented lens including a positive meniscus lens L5 having a convex surface facing the object side, a negative meniscus lens L6 having a convex surface facing the object side, and a positive meniscus lens L7 having a convex surface facing the object side. To constitute a lens group having negative refractive power. The third lens group G3 includes a positive meniscus lens L8 having a concave surface facing the object side, a negative meniscus lens L9 having a concave surface facing the object side, and a positive meniscus lens L10 having a concave surface facing the object side. A lens, a cemented lens composed of a positive meniscus lens L11 having a concave surface facing the object side and a negative meniscus lens L12 having a concave surface facing the object side, a biconcave lens L13 and a biconvex lens L14 are arranged to have a positive refractive power. It constitutes a lens group. An aperture stop S is disposed between the second lens group G2 and the third lens group G3. Further, a flare stop FS is disposed on the front and rear sides of the aperture stop S (that is, the most image side of the second lens group and the most object side of the third lens group).

図17は、高倍率側(-1.75倍)から等倍(-1.00倍)を挟んで低倍率側(-0.5833倍)まで変倍させたときの各レンズ群の移動軌跡を示す図であり、図17(a)は変倍レンズHL4が撮像倍率-1.75倍(高倍率側)にあるときの各レンズ群の位置、図17(b)は変倍レンズHL4が撮像倍率-1.00倍(等倍)にあるときの各レンズ群の位置、図17(c)は変倍レンズHL4が撮像倍率-0.5833倍(低倍率側)にあるときの各レンズ群の位置をそれぞれ示している。なお、第2レンズ群の像側に位置しているフレア絞りFS及び開口絞りSは、第2レンズ群G2と一体となって移動している。また、第3レンズ群G3の物体側に位置しているフレア絞りFSは、第3レンズ群G3と一体となって移動している。   FIG. 17 is a diagram showing the movement trajectory of each lens group when zooming is performed from the high magnification side (-1.75 times) to the low magnification side (−0.5833 times) with the same magnification (−1.00 times) in between. 17A shows the position of each lens group when the variable magnification lens HL4 is at an imaging magnification of 1.75 times (high magnification side), and FIG. 17B shows the magnification of the variable magnification lens HL4 at an imaging magnification of −1.00 times (equal magnification). ), And FIG. 17C shows the position of each lens group when the variable magnification lens HL4 is at an imaging magnification of −0.5833 (on the low magnification side). The flare stop FS and the aperture stop S located on the image side of the second lens group are moved together with the second lens group G2. Further, the flare stop FS located on the object side of the third lens group G3 is moved integrally with the third lens group G3.

次に、この第4実施例における各レンズの諸元を表4に示す。なお、第4実施例では、面番号6に示す面間隔d6(すなわち面番号6と面番号7との面間隔)と、面番号12に示す面間隔d12(すなわち面番号12と面番号13との面間隔)はフォーカシングする際に変化する。また、面番号12が開口絞りSに相当している。また、面番号11及び面番号13がフレア絞りFSに相当している。   Next, Table 4 shows the specifications of each lens in the fourth example. In the fourth embodiment, the surface interval d6 indicated by the surface number 6 (namely, the surface interval between the surface number 6 and the surface number 7) and the surface interval d12 indicated by the surface number 12 (ie the surface number 12 and the surface number 13) The distance between the planes) changes during focusing. The surface number 12 corresponds to the aperture stop S. Surface numbers 11 and 13 correspond to the flare stop FS.

(表4)
Fe=7.7
m r d ν n
1 702.0736 8.5000 82.52 1.497820 L1
2 -40.5552 2.4500 64.12 1.516800 L2
3 175.9380 0.2000
4 70.2500 4.5000 48.87 1.531720 L3
5 49.6295 9.5000 67.87 1.593189 L4
6 -431.7184 d6(可変) 1.000000
7 41.1491 6.5000 67.87 1.593189 L5
8 82.4495 2.5000 52.32 1.517420 L6
9 23.1247 5.4000 47.82 1.757000 L7
10 24.6021 4.0000
11 フレア絞りFS 10.7500 1.000000
12 開口絞りS d12(可変) 1.000000
13 フレア絞りFS 5.0000 1.000000
14 -23.8681 5.4000 50.80 1.570990 L8
15 -20.6979 3.5000 52.32 1.517420 L9
16 -55.0000 6.0000 67.87 1.593189 L10
17 -45.5235 4.5000
18 -206.9529 7.7500 67.87 1.593189 L11
19 -31.1728 2.4000 48.87 1.531720 L12
20 -54.8123 0.2000
21 -962.1916 2.5500 52.95 1.571350 L13
22 65.5072 8.0000 82.52 1.497820 L14
23 -116.1825

(変倍における可変間隔)
β -1.75 -1.00 -0.5833
D0 102.1346 154.2296 243.4796
d6 1.75000 6.35000 10.35000
d12 8.00000 7.75000 5.55000

(条件式対応値)
f2 =-331.019
f = 119.915
f12= 163.807
f3 = 122.795
D12= 1.75
D23= 27.75

(条件式)
(1) f2/f =-2.76
(2) f12/f3 = 1.33
(3) D12/f = 0.015
(4) D12/D23= 0.063
(Table 4)
Fe = 7.7
m r d v n
1 702.0736 8.5000 82.52 1.497820 L1
2 -40.5552 2.4500 64.12 1.516800 L2
3 175.9380 0.2000
4 70.2500 4.5000 48.87 1.531720 L3
5 49.6295 9.5000 67.87 1.593189 L4
6 -431.7184 d6 (variable) 1.000000
7 41.1491 6.5000 67.87 1.593189 L5
8 82.4495 2.5000 52.32 1.517420 L6
9 23.1247 5.4000 47.82 1.757000 L7
10 24.6021 4.0000
11 Flare FS 10.7500 1.000000
12 Aperture stop S d12 (variable) 1.000000
13 Flare aperture FS 5.0000 1.000000
14 -23.8681 5.4000 50.80 1.570990 L8
15 -20.6979 3.5000 52.32 1.517420 L9
16 -55.0000 6.0000 67.87 1.593189 L10
17 -45.5235 4.5000
18 -206.9529 7.7500 67.87 1.593189 L11
19 -31.1728 2.4000 48.87 1.531720 L12
20 -54.8123 0.2000
21 -962.1916 2.5500 52.95 1.571350 L13
22 65.5072 8.0000 82.52 1.497820 L14
23 -116.1825

(Variable interval in zooming)
β -1.75 -1.00 -0.5833
D0 102.1346 154.2296 243.4796
d6 1.75000 6.35000 10.35000
d12 8.00000 7.75000 5.55000

(Values for conditional expressions)
f2 = -331.019
f = 119.915
f12 = 163.807
f3 = 122.795
D12 = 1.75
D23 = 27.75

(Conditional expression)
(1) f2 / f = -2.76
(2) f12 / f3 = 1.33
(3) D12 / f = 0.015
(4) D12 / D23 = 0.063

このように第4実施例では、上記条件式(1)〜(4)は全て満たされることが分かる。図18は撮像倍率βが-1.75倍における諸収差図、図19は撮像倍率βが-1.00倍における諸収差図、図20は撮像倍率βが-0.5833倍における諸収差図を示している。各収差図から明らかなように、第4実施例に係る変倍レンズHL4では、撮影倍率が−1.75倍〜−0.5833倍という広い変倍域において、実効Fナンバーで7.7の明るさを有しつつ、諸収差が良好に補正され、安定して優れた結像性能が確保されていることが分かる。   Thus, in the fourth example, it can be seen that all the conditional expressions (1) to (4) are satisfied. 18 shows various aberrations when the imaging magnification β is 1.75 times, FIG. 19 shows various aberrations when the imaging magnification β is −1.00 times, and FIG. 20 shows various aberrations when the imaging magnification β is −0.5833 times. As is apparent from each aberration diagram, in the variable magnification lens HL4 according to the fourth example, the effective F number is 7.7 in the wide variable magnification range of -1.75 times to -0.5833 times. It can be seen that while having brightness, various aberrations are well corrected and stable and excellent imaging performance is secured.

本発明の第1実施例に係る変倍レンズのレンズ構成図である。It is a lens block diagram of the variable magnification lens which concerns on 1st Example of this invention. 第1実施例に係る変倍レンズにおいて、高倍率側(-1.75倍)から低倍率側(-0.5833倍)まで変倍させたときの各レンズ群の移動軌跡を示す図である。FIG. 6 is a diagram showing a movement locus of each lens unit when the magnification is changed from the high magnification side (−1.75 times) to the low magnification side (−0.5833 times) in the magnification lens according to the first example. 第1実施例の撮像倍率-1.75倍における諸収差図である。FIG. 6 is a diagram illustrating various aberrations at an imaging magnification of 1.75 times in the first example. 第1実施例の撮像倍率-1.00倍における諸収差図である。FIG. 5 is a diagram illustrating various aberrations at an imaging magnification of −1.00 times in the first example. 第1実施例の撮像倍率-0.5833倍における諸収差図である。FIG. 5 is a diagram illustrating various aberrations at an imaging magnification of −0.5833 times in the first example. 本発明の第2実施例に係る変倍レンズのレンズ構成図である。It is a lens block diagram of the variable magnification lens which concerns on 2nd Example of this invention. 第2実施例に係る変倍レンズにおいて、高倍率側(-1.75倍)から低倍率側(-0.5833倍)まで変倍させたときの各レンズ群の移動軌跡を示す図である。FIG. 10 is a diagram illustrating a movement locus of each lens unit when a magnification is changed from a high magnification side (−1.75 times) to a low magnification side (−0.5833 times) in the magnification lens according to the second example. 第2実施例の撮像倍率-1.75倍における諸収差図である。FIG. 12 is a diagram illustrating various aberrations at an imaging magnification of 1.75 times in the second example. 第2実施例の撮像倍率-1.00倍における諸収差図である。FIG. 12 is a diagram illustrating various aberrations at the imaging magnification of −1.00 times in the second example. 第2実施例の撮像倍率-0.5833倍における諸収差図である。FIG. 12 is a diagram illustrating various aberrations at the imaging magnification of −0.5833 times in the second example. 本発明の第3実施例に係る変倍レンズのレンズ構成図である。It is a lens block diagram of the variable magnification lens which concerns on 3rd Example of this invention. 第3実施例に係る変倍レンズにおいて、高倍率側(-1.75倍)から低倍率側(-0.5833倍)まで変倍させたときの各レンズ群の移動軌跡を示す図である。FIG. 12 is a diagram illustrating a movement locus of each lens unit when a magnification is changed from a high magnification side (−1.75 times) to a low magnification side (−0.5833 times) in the magnification lens according to the third example. 第3実施例の撮像倍率-1.75倍における諸収差図である。FIG. 11 is a diagram illustrating all aberrations at the imaging magnification of 1.75 times in the third example. 第3実施例の撮像倍率-1.00倍における諸収差図である。FIG. 12 is a diagram illustrating various aberrations at the imaging magnification of −1.00 times in the third example. 第3実施例の撮像倍率-0.5833倍における諸収差図である。FIG. 10 is a diagram illustrating all aberrations at the imaging magnification of −0.5833 times in the third example. 本発明の第4実施例に係る変倍レンズのレンズ構成図である。It is a lens block diagram of the variable magnification lens which concerns on 4th Example of this invention. 第4実施例に係る変倍レンズにおいて、高倍率側(-1.75倍)から低倍率側(-0.5833倍)まで変倍させたときの各レンズ群の移動軌跡を示す図である。FIG. 10 is a diagram illustrating a movement locus of each lens unit when a magnification is changed from a high magnification side (−1.75 times) to a low magnification side (−0.5833 times) in a magnification lens according to a fourth example. 第4実施例の撮像倍率-1.75倍における諸収差図である。FIG. 12 is a diagram illustrating various aberrations at the imaging magnification of 1.75 times in the fourth example. 第4実施例の撮像倍率-1.00倍における諸収差図である。FIG. 11 is a diagram illustrating all aberrations at the imaging magnification of −1.00 in the fourth example. 第4実施例の撮像倍率-0.5833倍における諸収差図である。FIG. 10 is a diagram illustrating all aberrations at the imaging magnification of −0.5833 times in the fourth example.

符号の説明Explanation of symbols

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
S 開口絞り
FS フレア絞り
I 像面
G1 First lens group G2 Second lens group G3 Third lens group S Aperture stop FS Flare stop I Image surface

Claims (2)

物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、正の屈折力を有する第3レンズ群とを備え、
前記第1レンズ群は、最も物体側に位置する正レンズと負レンズの貼り合わせレンズを含んで構成され、
前記第2レンズ群は、負の屈折力を持つ3枚の貼り合わせレンズから構成され、
前記第3レンズ群は、最も物体側に位置する物体側に凹面を向けた負の屈折力を持つ3枚の貼り合わせレンズを含んで構成され、
高倍率から低倍率側にフォーカシングする際に、前記第1レンズ群と前記第2レンズ群との空気間隔、及び、前記第2レンズ群と前記第3レンズ群との空気間隔が変化し、
前記第2レンズ群の焦点距離をf2とし、最高倍率時におけるレンズ系全体の焦点距離をfとし、最高倍率時における前記第1レンズ群と前記第2レンズ群の合成焦点距離をf12とし、前記第3レンズ群の焦点距離をf3とし、最高倍率時における前記第1レンズ群と前記第2レンズ群との空気間隔をD12とし、最高倍率時における前記第2レンズ群と前記第3レンズ群との空気間隔をD23としたとき、次式
−7.05<f2/f<−1.54
1.29<f12/f3<1.91
0.006<D12/f<0.026
0.028<D12/D23<0.2
の条件を満足することを特徴とする変倍レンズ。
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, and a third lens group having a positive refractive power,
The first lens group is configured to include a cemented lens of a positive lens and a negative lens located closest to the object side,
The second lens group is composed of three bonded lenses having negative refractive power,
The third lens group includes three cemented lenses having negative refractive power with a concave surface facing the object side located closest to the object side,
When focusing from the high magnification to the low magnification side, the air gap between the first lens group and the second lens group and the air gap between the second lens group and the third lens group change ,
The focal length of the second lens group is f2, the focal length of the entire lens system at the highest magnification is f, the combined focal length of the first lens group and the second lens group at the highest magnification is f12, and The focal length of the third lens group is f3, the air gap between the first lens group and the second lens group at the maximum magnification is D12, and the second lens group and the third lens group at the maximum magnification are When the air interval of D23 is D23,
−7.05 <f2 / f <−1.54
1.29 <f12 / f3 <1.91
0.006 <D12 / f <0.026
0.028 <D12 / D23 <0.2
A zoom lens characterized by satisfying the above conditions .
前記開口絞りの前後にフレア絞りを有することを特徴とする請求項に記載の変倍レンズ。 The variable power lens according to claim 1 , further comprising a flare stop before and after the aperture stop.
JP2004012066A 2004-01-20 2004-01-20 Variable magnification lens Expired - Fee Related JP4592293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004012066A JP4592293B2 (en) 2004-01-20 2004-01-20 Variable magnification lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004012066A JP4592293B2 (en) 2004-01-20 2004-01-20 Variable magnification lens

Publications (3)

Publication Number Publication Date
JP2005208144A JP2005208144A (en) 2005-08-04
JP2005208144A5 JP2005208144A5 (en) 2007-03-01
JP4592293B2 true JP4592293B2 (en) 2010-12-01

Family

ID=34898565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004012066A Expired - Fee Related JP4592293B2 (en) 2004-01-20 2004-01-20 Variable magnification lens

Country Status (1)

Country Link
JP (1) JP4592293B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5164648B2 (en) * 2008-04-11 2013-03-21 株式会社栃木ニコン Imaging optics
RU2473932C2 (en) * 2010-04-26 2013-01-27 Закрытое Акционерное Общество "Импульс" Projection lens
CN109633875B (en) * 2019-01-14 2023-10-27 广东奥普特科技股份有限公司 Telecentric lens capable of continuously changing magnification

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961714A (en) * 1995-08-24 1997-03-07 Olympus Optical Co Ltd Zoom lens
JPH10161022A (en) * 1996-11-28 1998-06-19 Olympus Optical Co Ltd Zoom lens
JPH11142737A (en) * 1997-11-06 1999-05-28 Olympus Optical Co Ltd Variable power lens system
JP2000075204A (en) * 1998-06-16 2000-03-14 Asahi Optical Co Ltd Zoom lens system
JP2000292690A (en) * 1999-04-02 2000-10-20 Canon Inc Photographing lens using floating
JP2001208964A (en) * 2000-01-26 2001-08-03 Olympus Optical Co Ltd Electronic image pickup device
JP2001272601A (en) * 2000-03-27 2001-10-05 Canon Inc Optical system and optical equipment using the same
JP2002148514A (en) * 2000-08-30 2002-05-22 Nikon Corp Image-formation optical system
JP2003248169A (en) * 2002-02-22 2003-09-05 Seiko Epson Corp Projection lens and projector
JP2003287679A (en) * 2002-03-27 2003-10-10 Ricoh Co Ltd Zoom lens and camera device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961714A (en) * 1995-08-24 1997-03-07 Olympus Optical Co Ltd Zoom lens
JPH10161022A (en) * 1996-11-28 1998-06-19 Olympus Optical Co Ltd Zoom lens
JPH11142737A (en) * 1997-11-06 1999-05-28 Olympus Optical Co Ltd Variable power lens system
JP2000075204A (en) * 1998-06-16 2000-03-14 Asahi Optical Co Ltd Zoom lens system
JP2000292690A (en) * 1999-04-02 2000-10-20 Canon Inc Photographing lens using floating
JP2001208964A (en) * 2000-01-26 2001-08-03 Olympus Optical Co Ltd Electronic image pickup device
JP2001272601A (en) * 2000-03-27 2001-10-05 Canon Inc Optical system and optical equipment using the same
JP2002148514A (en) * 2000-08-30 2002-05-22 Nikon Corp Image-formation optical system
JP2003248169A (en) * 2002-02-22 2003-09-05 Seiko Epson Corp Projection lens and projector
JP2003287679A (en) * 2002-03-27 2003-10-10 Ricoh Co Ltd Zoom lens and camera device

Also Published As

Publication number Publication date
JP2005208144A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
US7411745B2 (en) Large-aperture-ratio internal focusing telephoto lens
JP6579997B2 (en) Optical system and imaging apparatus having the same
JP2019008148A (en) Converter lens and camera device having the same
WO2017130480A1 (en) Zoom lens and imaging device
JP5436091B2 (en) Zoom lens and imaging apparatus having the same
JP5127352B2 (en) Zoom lens and imaging apparatus having the same
WO2013031180A1 (en) Zoom lens and imaging device
JP5841675B2 (en) Zoom lens and imaging device
JP5380294B2 (en) Zoom eyepiece system
JP6164894B2 (en) Zoom lens and imaging apparatus having the same
JP2003287678A (en) Zoom lens
WO2013031110A1 (en) Zoom lens and imaging device
JPH07199123A (en) Image position correcting optical system
JP2014202806A5 (en)
US5579160A (en) Optical system capable of correcting image position
JP6112945B2 (en) Optical system and imaging apparatus having the same
JP4592293B2 (en) Variable magnification lens
WO2013031184A1 (en) Zoom lens and imaging device
JP4789349B2 (en) Zoom lens and optical apparatus having the same
JPH052134A (en) Keplerian type zoom finder optical system
JP4333151B2 (en) Zoom lens
JPH0772388A (en) Small-sized zoom lens
US6985303B2 (en) Rear focus zoom lens
WO2013031108A1 (en) Zoom lens and imaging device
JP2016200729A (en) Zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4592293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees