JP6112945B2 - Optical system and imaging apparatus having the same - Google Patents

Optical system and imaging apparatus having the same Download PDF

Info

Publication number
JP6112945B2
JP6112945B2 JP2013079713A JP2013079713A JP6112945B2 JP 6112945 B2 JP6112945 B2 JP 6112945B2 JP 2013079713 A JP2013079713 A JP 2013079713A JP 2013079713 A JP2013079713 A JP 2013079713A JP 6112945 B2 JP6112945 B2 JP 6112945B2
Authority
JP
Japan
Prior art keywords
group
refractive power
lens
positive
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013079713A
Other languages
Japanese (ja)
Other versions
JP2014202952A (en
Inventor
陽太郎 三條
陽太郎 三條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013079713A priority Critical patent/JP6112945B2/en
Publication of JP2014202952A publication Critical patent/JP2014202952A/en
Application granted granted Critical
Publication of JP6112945B2 publication Critical patent/JP6112945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、光学系及びそれを有する撮像装置に関し、特に放送用テレビカメラ、映画用カメラ、ビデオカメラ、デジタルスチルカメラ、銀塩写真用カメラ等に好適なものである。   The present invention relates to an optical system and an imaging apparatus having the optical system, and is particularly suitable for a broadcast television camera, a movie camera, a video camera, a digital still camera, a silver salt photography camera, and the like.

写真用カメラ、映画用カメラ、ビデオカメラ等の撮像装置のうち、特に一眼レフカメラや映画用カメラに用いられる撮像光学系には、広画角でバックフォーカスが長いとともに、物体距離全般に渡り画面中心から画面周辺までの略均一な解像力が求められている。広画角でバックフォーカスが長い撮像光学系として、レトロフォーカスタイプの撮像光学系が知られている。その中でも、無限遠物体から近距離物体への焦点調節時に光学系の後方の2つの群を互いに異なる移動量で物体側へ移動させる所謂フローティングを用いた焦点調節方式が知られている(特許文献1、2)。   Among imaging devices such as photographic cameras, movie cameras, and video cameras, the imaging optical system used for single-lens reflex cameras and movie cameras in particular has a wide angle of view, a long back focus, and a screen that covers the entire object distance. There is a demand for substantially uniform resolution from the center to the periphery of the screen. As an imaging optical system having a wide angle of view and a long back focus, a retrofocus type imaging optical system is known. Among them, a focus adjustment method using so-called floating is known in which two groups behind the optical system are moved to the object side with different amounts of movement during focus adjustment from an object at infinity to a short distance object (Patent Literature). 1, 2).

特開昭63−61213号公報JP 63-61213 A 特開平11−211978号公報Japanese Patent Laid-Open No. 11-211978

前述のフローティングを用いた焦点調節方式は、焦点調節に伴う収差変化を抑制することが比較的容易である。しかしながら、前述のフローティングを用いた焦点調節方式を採用するだけでは、焦点調節に伴って発生する球面収差と非点収差を同時に補正することが困難である。そこで、物体距離全般に渡り画面中心から画面周辺までの略均一な解像力を実現するためには、固定群である第1群の構成および近軸配置を適切に設定し、焦点調節に伴って第1群で発生する特に球面収差の変化を抑制することが重要である。   The focus adjustment method using the above-described floating is relatively easy to suppress the aberration change accompanying the focus adjustment. However, it is difficult to correct simultaneously the spherical aberration and astigmatism generated by the focus adjustment only by adopting the above-described focus adjustment method using floating. Therefore, in order to achieve substantially uniform resolving power from the center of the screen to the periphery of the screen over the entire object distance, the configuration and paraxial arrangement of the first group, which is a fixed group, are appropriately set, and the first is accompanied by the focus adjustment. In particular, it is important to suppress changes in spherical aberration that occur in one group.

本発明では前述のフローティングを用いた焦点調節方式の単焦点レンズにおいて、焦点調節に伴う収差変化を抑制し、物体距離全般に渡って高い光学性能を有する単焦点レンズの提供を目的とする。具体的には、画角65度程度、Fナンバー1.4程度であり、焦点調節に伴う収差変化を抑制した単焦点レンズの提供を目的とする。   An object of the present invention is to provide a single focus lens that suppresses an aberration change accompanying focus adjustment and has high optical performance over the entire object distance in the above-described focus adjustment type single focus lens using floating. Specifically, an object of the present invention is to provide a single focus lens that has an angle of view of about 65 degrees and an F number of about 1.4 and that suppresses an aberration change accompanying focus adjustment.

本発明の単焦点レンズは、物体側から順に、焦点調節時に固定の負の屈折力の第1群、無限遠物体から近距離物体に焦点調節する際に物体側に移動する正の屈折力の第2群から構成され、前記第2群は正の屈折力の第21群、開口絞り、正の屈折力の第22群で構成され、前記第21群と前記第22群が焦点調節時に互いに異なる移動量で物体側へ移動し、前記第1群の屈折力をφ1、前記第21群の屈折力をφ21、前記第1群の正レンズの屈折力の和をφ1pとするとき、
−2.80<φ21/φ1<−1.64
−2.09<φ1p/φ1<−1.
を満たすことを特徴としている。
本発明の別の態様の単焦点レンズは、物体側から順に、焦点調節時に固定の負の屈折力の第1群、無限遠物体から近距離物体に焦点調節する際に物体側に移動する正の屈折力の第2群から構成され、前記第2群は正の屈折力の第21群、開口絞り、正の屈折力の第22群で構成され、前記第21群と前記第22群が焦点調節時に互いに異なる移動量で物体側へ移動し、前記第1群の屈折力をφ1、前記第21群の屈折力をφ21、前記第22群の屈折力をφ22、前記第1群の正レンズの屈折力の和をφ1pとするとき、
−2.80<φ21/φ1<−1.64
−2.09<φ1p/φ1<−1.20
−4.80<φ22/φ1<−2.30
1.10<φ22/φ21<2.00
を満たすことを特徴としている。
The single-focus lens of the present invention has, in order from the object side, a first lens unit having a negative refractive power that is fixed during focus adjustment, and a positive refractive power that moves toward the object side when focusing from an object at infinity to a short-distance object. The second group is composed of a 21st group having a positive refractive power, an aperture stop, and a 22nd group having a positive refractive power, and the 21st group and the 22nd group are mutually adjusted during focus adjustment. When moving to the object side with different moving amounts, the refractive power of the first group is φ1, the refractive power of the 21st group is φ21, and the sum of the refractive powers of the positive lenses of the first group is φ1p,
-2.80 <φ21 / φ1 <−1.64
-2.09 <φ1p / φ1 <−1. 5 0
It is characterized by satisfying.
A single focus lens according to another aspect of the present invention includes a first lens group having a fixed negative refractive power at the time of focus adjustment in order from the object side, and a positive lens that moves toward the object side when focusing from an object at infinity to a short distance object. The second group is composed of a 21st group having a positive refractive power, an aperture stop, and a 22nd group having a positive refractive power, and the 21st group and the 22nd group are When the focus is adjusted, the lens unit moves toward the object side with different amounts of movement. The refractive power of the first group is φ1, the refractive power of the 21st group is φ21, the refractive power of the 22nd group is φ22, and the positive power of the first group is positive. When the total refractive power of the lens is φ1p,
-2.80 <φ21 / φ1 <−1.64
-2.09 <φ1p / φ1 <−1.20
-4.80 <φ22 / φ1 <-2.30
1.10 <φ22 / φ21 <2.00
It is characterized by satisfying.

本発明によれば、焦点調節に伴う収差変化を抑制し、物体距離全般に渡って高い光学性能を有する単焦点レンズ及びそれを有する撮像装置を得られる。   According to the present invention, it is possible to obtain a single-focus lens having a high optical performance over the entire object distance and an image pickup apparatus having the same, by suppressing an aberration change accompanying focus adjustment.

本発明の数値実施例1の単焦点レンズの無限遠物体に合焦しているときのレンズ断面図である。It is a lens sectional view when focusing on an object at infinity of the single focus lens of Numerical Example 1 of the present invention. 数値実施例1の(A)無限遠物体、(B)至近物体に合焦しているときの縦収差図である。It is a longitudinal aberration diagram when focusing on (A) an object at infinity and (B) a close object in Numerical Example 1. 本発明の数値実施例2の単焦点レンズの無限遠物体に合焦しているときのレンズ断面図である。It is lens sectional drawing when focusing on the object of infinity of the single focus lens of the numerical Example 2 of this invention. 数値実施例2の(A)無限遠物体、(B)至近物体に合焦しているときの縦収差図である。FIG. 6 is a longitudinal aberration diagram when focusing on an object at infinity and (B) a close object in Numerical Example 2. 本発明の数値実施例3の単焦点レンズの無限遠物体に合焦しているときのレンズ断面図である。It is lens sectional drawing when focusing on the object of infinity of the single focus lens of the numerical Example 3 of this invention. 数値実施例3の(A)無限遠物体、(B)至近物体に合焦しているときの縦収差図である。It is a longitudinal aberration diagram when focusing on (A) an object at infinity and (B) a close object in Numerical Example 3. 本発明の数値実施例4の単焦点レンズの無限遠物体に合焦しているときのレンズ断面図である。It is lens sectional drawing when focusing on the object of infinity of the single focus lens of the numerical Example 4 of this invention. 数値実施例4の(A)無限遠物体、(B)至近物体に合焦しているときの縦収差図である。FIG. 10 is a longitudinal aberration diagram when focusing on an object at infinity and (B) a close object in Numerical Example 4. 本発明の数値実施例5の単焦点レンズの無限遠物体に合焦しているときのレンズ断面図である。It is lens sectional drawing when focusing on the object at infinity of the single focus lens of the numerical Example 5 of this invention. 数値実施例5の(A)無限遠物体、(B)至近物体に合焦しているときの縦収差図である。It is a longitudinal aberration diagram when focusing on (A) an object at infinity and (B) a close object in Numerical Example 5. 本発明の数値実施例6の単焦点レンズの無限遠物体に合焦しているときのレンズ断面図である。It is lens sectional drawing when focusing on the object of infinity of the single focus lens of the numerical Example 6 of this invention. 数値実施例6の(A)無限遠物体、(B)至近物体に合焦しているときの縦収差図である。It is a longitudinal aberration diagram when focusing on (A) an object at infinity and (B) a close object in Numerical Example 6. 本発明の数値実施例7の単焦点レンズの無限遠物体に合焦しているときのレンズ断面図である。It is lens sectional drawing when focusing on the object of infinity of the single focus lens of the numerical Example 7 of this invention. 数値実施例7の(A)無限遠物体、(B)至近物体に合焦しているときの縦収差図である。It is a longitudinal aberration diagram when focusing on (A) an object at infinity and (B) a close object in Numerical Example 7. は数値実施例1の(A)無限遠物体、(B)至近物体に合焦しているときの光路図である。These are optical path diagrams when focusing on (A) an object at infinity and (B) a close object in Numerical Example 1. FIG. は正の屈折力のレンズ群による軸上色収差の2色の色消しと二次スペクトル残存に関する模式図である。FIG. 4 is a schematic diagram regarding achromaticity of two colors of axial chromatic aberration and a residual secondary spectrum by a lens unit having a positive refractive power. は一般的な硝子材料のアッベ数νdと部分分散比θgFの分布の模式図である。FIG. 4 is a schematic diagram of a distribution of an Abbe number νd and a partial dispersion ratio θgF of a general glass material. は本発明の撮像装置の要部概略図である。These are the principal part schematic of the imaging device of this invention.

次に本発明の単焦点レンズの特徴について説明する。
本発明の単焦点レンズは、物体側から順に、焦点調節時に固定の負の屈折力の第1群U1、無限遠物体から近距離物体に焦点調節する際に物体側に移動する正の屈折力の第2群U2を有している。第2群U2は正の屈折力の第21群U21、開口絞り、正の屈折力の第22群U22で構成されている。第21群U21と第22群U22は無限遠物体から近距離物体に焦点調節する際に互いに異なる移動量で物体側へ移動する。
Next, features of the single focus lens of the present invention will be described.
The single-focus lens of the present invention has, in order from the object side, the first lens unit U1 having a fixed negative refractive power at the time of focus adjustment, and a positive refractive power that moves toward the object side when focusing from an object at infinity to a short distance object. The second group U2. The second group U2 includes a twenty-first group U21 having a positive refractive power, an aperture stop, and a twenty-second group U22 having a positive refractive power. The 21st group U21 and the 22nd group U22 move to the object side with different amounts of movement when focusing from an infinitely distant object to a close object.

本発明の単焦点レンズは、第1群U1の屈折力をφ1、第21群U21の屈折力をφ21、第1群U1の正レンズの屈折力の和をφ1pとするとき、
−2.80<φ21/φ1<−1.64 ・・・(1)
−2.09<φ1p/φ1<−1.20 ・・・(2)
を満たしている。
The single focus lens of the present invention has a refractive power of the first lens unit U1 of φ1, a refractive power of the twenty-first lens unit U21 of φ21, and a sum of refractive powers of the positive lenses of the first lens unit U1 is φ1p.
-2.80 <φ21 / φ1 <−1.64 (1)
-2.09 <φ1p / φ1 <−1.20 (2)
Meet.

図15(A)、(B)は、本発明の単焦点レンズの数値実施例1のそれぞれ無限遠物体、至近物体に合焦しているときの光路図である。図15(A)、(B)に示すように、特に第1群U1の正レンズでは軸上マージナル光線の入射高が高くなる。又、図15(A)に対して図15(B)で示すように、無限遠物体に対して至近物体の合焦時における第1群U1の正レンズを通る軸上マージナル光線は、物体側の面への入射傾角がより大きくなる一方で、入射高はより低くなる。従って、特に第1群U1の正レンズの屈折力が強くなり、特に物体側の面の曲率が大きくなると、無限遠物体に対して至近物体の合焦時に球面収差がよりアンダーに発生する。一方で、特に第1群U1の正レンズの屈折力が弱くなり、特に物体側の面の曲率が小さくなると、無限遠物体に対して至近物体の合焦時に球面収差がよりオーバーに発生する。よって、焦点調節に伴う球面収差の変化を抑制するには、特に第1群U1の正レンズに適切な屈折力を設定することが重要である。   FIGS. 15A and 15B are optical path diagrams when focusing on an object at infinity and a close object in Numerical Example 1 of the single focus lens of the present invention, respectively. As shown in FIGS. 15A and 15B, the incident height of the on-axis marginal ray is particularly high in the positive lens of the first lens unit U1. Further, as shown in FIG. 15B with respect to FIG. 15A, the axial marginal ray passing through the positive lens of the first unit U1 at the time of focusing the close object to the object at infinity is the object side. While the incident inclination angle to the surface becomes larger, the incident height becomes lower. Therefore, especially when the refractive power of the positive lens of the first lens unit U1 is increased and the curvature of the object-side surface is increased, spherical aberration occurs more under-focusing when the closest object is focused on the object at infinity. On the other hand, especially when the refractive power of the positive lens in the first lens unit U1 becomes weak and the curvature of the surface on the object side becomes particularly small, the spherical aberration occurs more excessively when the object close to the object at infinity is in focus. Therefore, in order to suppress the change of the spherical aberration accompanying the focus adjustment, it is particularly important to set an appropriate refractive power for the positive lens in the first lens unit U1.

条件式(1)は、第1群U1と第21群U21の屈折力の比を規定している。
条件式(1)を満たすことで、球面収差やコマ収差などの諸収差を良好に補正している。
条件式(1)の上限を超えると、第21群U21の屈折力に対して第1群U1の屈折力が強くなり、第1群U1からの軸上及び軸外光束の発散が大きく、第22群U22に強い屈折力を与えて軸上及び軸外光束を収斂する必要が生じる。このため、特に球面収差やコマ収差の補正が困難となる。
条件式(1)の下限を超えると、第1群U1の屈折力に対して第21群U21の屈折力が強くなり、第1群U1から発散された光束が強い屈折力の第2群U2で収斂させられるため、特に球面収差やコマ収差の補正が困難となる。
Conditional expression (1) defines the ratio of the refractive powers of the first group U1 and the twenty-first group U21.
By satisfying conditional expression (1), various aberrations such as spherical aberration and coma are corrected satisfactorily.
When the upper limit of conditional expression (1) is exceeded, the refractive power of the first group U1 becomes stronger than the refractive power of the 21st group U21, and the divergence of on-axis and off-axis light beams from the first group U1 is large. It is necessary to give a strong refractive power to the 22 group U22 to converge on-axis and off-axis light beams. This makes it particularly difficult to correct spherical aberration and coma.
When the lower limit of conditional expression (1) is exceeded, the refractive power of the 21st group U21 becomes stronger than the refractive power of the first group U1, and the second group U2 in which the light beam diverged from the first group U1 has a strong refractive power. Therefore, it is difficult to correct spherical aberration and coma aberration.

更に好ましくは、条件式(1)を次の如く設定するのが良い。
−2.50<φ21/φ1<−1.70 ・・・(1a)
More preferably, conditional expression (1) should be set as follows.
-2.50 <φ21 / φ1 <−1.70 (1a)

条件式(2)は、第1群U1と第1群U1の正レンズの屈折力の和の比を規定している。
条件式(2)を満たすことで、焦点調節に伴う収差変化、特に球面収差の変化の抑制と小型化を両立している。
条件式(2)の上限を超えると、第1群U1の屈折力に対して第1群U1の正レンズの屈折力の和が不足するため、第1群U1が大型化するとともに至近物体の合焦時に球面収差がオーバーに発生し、焦点調節に伴う特に球面収差の変化を抑制することが困難となる。
条件式(2)の下限を超えると、第1群U1の屈折力に対して第1群U1の正レンズの屈折力の和が強くなり、至近物体の合焦時に球面収差がアンダーに発生し、焦点調節に伴う特に球面収差の変化を抑制することが困難となる。
Conditional expression (2) defines the ratio of the sum of the refractive powers of the positive lenses of the first lens unit U1 and the first lens unit U1.
By satisfying conditional expression (2), it is possible to achieve both suppression of aberration change accompanying focus adjustment, particularly suppression of change in spherical aberration, and miniaturization.
If the upper limit of conditional expression (2) is exceeded, the sum of the refractive powers of the positive lenses of the first group U1 with respect to the refractive power of the first group U1 is insufficient. Spherical aberration occurs excessively at the time of focusing, and it becomes difficult to suppress especially the change of spherical aberration accompanying focus adjustment.
When the lower limit of conditional expression (2) is exceeded, the sum of the refractive powers of the positive lens of the first unit U1 becomes stronger than the refractive power of the first unit U1, and spherical aberration occurs under focus when the closest object is in focus. In particular, it becomes difficult to suppress a change in spherical aberration associated with focus adjustment.

更に好ましくは、条件式(2)を次の如く設定するのが良い。
−2.08<φ1p/φ1<−1.50 ・・・(2a)
本発明の単焦点レンズは、第1群U1のレンズ構成を前述の如く特定し、以上の各条件式を満たすことにより、焦点調節に伴う収差変化を抑制し、物体距離全般に渡り高い光学性能を達成している。
More preferably, conditional expression (2) should be set as follows.
-2.08 <φ1p / φ1 <−1.50 (2a)
The single focus lens of the present invention specifies the lens configuration of the first lens unit U1 as described above, satisfies the above conditional expressions, suppresses aberration changes accompanying focus adjustment, and has high optical performance over the entire object distance. Has achieved.

本発明の更なる実施態様として、条件式(3)により第1群U1の正レンズの形状を規定している。第1群U1は物体側から順に負レンズ2枚、正レンズ1枚で構成されており、正レンズの物体側の面の曲率半径をR1、像側の面の曲率半径をR2としたとき、
−1.5<(R1+R2)/(R1−R2)<−0.3 ・・・(3)
を満たしている。
As a further embodiment of the present invention, the shape of the positive lens of the first lens unit U1 is defined by conditional expression (3). The first unit U1 is composed of two negative lenses and one positive lens in order from the object side. When the radius of curvature of the object side surface of the positive lens is R1 and the radius of curvature of the image side surface is R2,
-1.5 <(R1 + R2) / (R1-R2) <-0.3 (3)
Meet.

条件式(3)を満たすことで、焦点調節に伴う収差変化、特に球面収差の変化の抑制を達成するとともに、球面収差やコマ収差を良好に補正している。第1群U1の正レンズの特に物体側の面の曲率が大きくなると、無限遠物体に対して至近物体の合焦時に球面収差がよりアンダーに発生する。一方で、特に第1群U1の正レンズの特に物体側の面の曲率が小さくなると、無限遠物体に対して至近物体の合焦時に球面収差がよりオーバーに発生する。よって、焦点調節に伴う球面収差の変化を抑制するには、特に第1群U1の正レンズに適切な形状を設定することが重要である。   By satisfying the conditional expression (3), it is possible to suppress the aberration change accompanying the focus adjustment, particularly the spherical aberration, and to correct the spherical aberration and the coma aberration well. When the curvature of the positive lens of the first lens unit U1 particularly on the object side increases, spherical aberration occurs more under-focused when the closest object is focused on the object at infinity. On the other hand, particularly when the curvature of the object-side surface of the positive lens in the first lens unit U1 becomes small, spherical aberration occurs more excessively when the object close to the object at infinity is in focus. Therefore, in order to suppress the change in spherical aberration associated with focus adjustment, it is particularly important to set an appropriate shape for the positive lens in the first lens unit U1.

一方、図15(A)(B)に示すように特に第1群U1の物体側から2番目の負レンズの像側面では軸上光束及び軸外光束が大きく発散され、特に球面収差及びコマ収差が発生する。そこで、1つ像側の面である第1群U1の正レンズの物体側の面に適切な曲率の凸面形状を与えることで球面収差及びコマ収差を良好に補正している。
ここで、第1群U1の正レンズG3の物体側の面をR1面、像側の面をR2面と定義する。
On the other hand, as shown in FIGS. 15A and 15B, on the image side surface of the second negative lens from the object side of the first lens unit U1, the on-axis light beam and off-axis light beam are greatly diverged, particularly spherical aberration and coma aberration. Occurs. Therefore, spherical aberration and coma aberration are favorably corrected by giving a convex shape having an appropriate curvature to the object-side surface of the positive lens of the first lens unit U1 that is one image-side surface.
Here, the object side surface of the positive lens G3 of the first lens unit U1 is defined as the R1 surface, and the image side surface is defined as the R2 surface.

条件式(3)の上限を超えると、G3の形状がより両凸のレンズ形状に近づき、G3の正の屈折力が強くなり、至近物体の合焦時に球面収差がアンダーに発生し、焦点調節に伴う収差変化の抑制が困難となる。
条件式(3)の下限を超えると、G3の形状がR2面が凹面の凸のメニスカス形状となり、G3の屈折力が不足するため、第1群U1が大型化するとともに至近物体の合焦時に球面収差がオーバーに発生し、焦点調節に伴う収差変化の抑制が困難となる。
If the upper limit of conditional expression (3) is exceeded, the shape of G3 will be closer to a biconvex lens shape, the positive refractive power of G3 will become stronger, and spherical aberration will occur under focus when the closest object is in focus, and focus adjustment It becomes difficult to suppress the change in aberration associated with.
If the lower limit of conditional expression (3) is exceeded, the shape of G3 becomes a convex meniscus shape with the R2 surface being concave, and the refractive power of G3 is insufficient. Spherical aberration occurs excessively, making it difficult to suppress changes in aberration associated with focus adjustment.

更に好ましくは、(3)式は次の如く設定するのが良い。
−1.3<(R1+R2)/(R1−R2)<−0.4 ・・・(3a)
More preferably, the expression (3) is set as follows.
−1.3 <(R1 + R2) / (R1−R2) <− 0.4 (3a)

ここで、本数値実施例で用いている光学素子(レンズ)の材料の部分分散比とアッべ数は次の通りである。フラウンフォーファ線のg線(435.8nm)、F線(486.1nm)、d線(587.6nm)、C線(656.3nm)に対する屈折率をそれぞれNg、NF、Nd、NCとする。アッべ数νdとg線とF線に関する部分分散比θgFは以下の通りに与えられる。
νd=(Nd−1)/(NF−NC) ・・・(4)
θgF=(Ng−NF)/(NF−NC) ・・・(5)
Here, the partial dispersion ratio and Abbe number of the material of the optical element (lens) used in this numerical example are as follows. The refractive indexes of the Fraunhofer line for g-line (435.8 nm), F-line (486.1 nm), d-line (587.6 nm), and C-line (656.3 nm) are Ng, NF, Nd, and NC, respectively. To do. The partial dispersion ratio θgF regarding the Abbe number νd, g-line, and F-line is given as follows.
νd = (Nd−1) / (NF-NC) (4)
θgF = (Ng−NF) / (NF−NC) (5)

本発明の更なる実施態様として、第1群U1の正レンズの平均屈折率をN1p、平均アッべ数をν1pとするとき、条件式(6)により第1群U1の正レンズの平均屈折率を、条件式(7)により第1群U1の正レンズの平均アッベ数を規定している。
1.65<N1p<2.10 ・・・(6)
65<ν1p<23 ・・・(7)
As a further embodiment of the present invention, when the average refractive index of the positive lens of the first lens unit U1 is N1p and the average Abbe number is ν1p, the average refractive index of the positive lens of the first lens unit U1 according to the conditional expression (6) Is defined by the conditional expression (7) as the average Abbe number of the positive lens in the first lens unit U1.
1.65 <N1p <2.10 (6)
65 <ν1p <23 (7)

条件式(6)及び条件式(7)を満たすことで、焦点調節に伴う収差変化、特に球面収差や軸上色収差の変化を抑制している。
一般に高屈折率硝材ほどアッベ数が小さく、低屈折率硝材ほどアッベ数が大きい傾向にある。
条件式(6)及び条件式(7)の上限を超えると、第1群U1の正レンズに高屈折率硝材を選択でき、特に物体側の面の曲率が小さくなり、焦点調節に伴う球面収差の変化の抑制には有利である。しかし、同時にアッベ数の小さな硝材を選択することになり、軸上マージナル光線の入射高が高い第1群U1の正レンズで発生する軸上色収差を第1群U1内で補正することが不足するため、焦点調節に伴う特に軸上色収差の変化の抑制が困難となる。
条件式(6)及び条件式(7)の下限を超えると、第1群U1の正レンズに低屈折率硝材を選択することになるため、第1群U1の正レンズの特に物体側の面の曲率が大きくなり、焦点調節に伴う球面収差の変化の抑制が困難となる。
By satisfying conditional expression (6) and conditional expression (7), it is possible to suppress changes in aberrations associated with focus adjustment, particularly changes in spherical aberration and axial chromatic aberration.
Generally, the higher the refractive index glass material, the smaller the Abbe number, and the lower the refractive index glass material, the larger the Abbe number tends to be.
When the upper limit of conditional expression (6) and conditional expression (7) is exceeded, a high refractive index glass material can be selected for the positive lens of the first lens unit U1, and in particular, the curvature of the object side surface becomes small, and spherical aberration associated with focus adjustment. It is advantageous for suppressing the change of. However, at the same time, a glass material having a small Abbe number is selected, and it is insufficient to correct the axial chromatic aberration generated in the positive lens of the first lens unit U1 having a high incident height of the axial marginal ray in the first lens unit U1. For this reason, it is difficult to suppress a change in axial chromatic aberration particularly with focus adjustment.
If the lower limit of conditional expression (6) and conditional expression (7) is exceeded, a low refractive index glass material will be selected for the positive lens of the first lens unit U1, and therefore the surface on the object side of the positive lens of the first lens unit U1. Becomes difficult to suppress the change in spherical aberration associated with the focus adjustment.

更に好ましくは、条件式(6)及び(7)を次の如く設定するのが良い。
1.70<N1p<2.05 ・・・(6a)
50<ν1p<25 ・・・(7a)
More preferably, conditional expressions (6) and (7) should be set as follows.
1.70 <N1p <2.05 (6a)
50 <ν1p <25 (7a)

本発明の更なる実施態様として、条件式(8)により第1群U1の屈折力に対する第22群U22の屈折力の比を、条件式(9)により第21群U21の屈折力に対する第22群U22の屈折力の比を規定している。
第22群U22の屈折力をφ22とするとき、
−4.80<φ22/φ1<−2.30 ・・・(8)
1.10<φ22/φ21<2.00 ・・・(9)
を満たしている。
As a further embodiment of the present invention, the ratio of the refractive power of the twenty-second group U22 to the refractive power of the first group U1 according to the conditional expression (8), and the twenty-second refractive power relative to the refractive power of the twenty-first group U21 according to the conditional expression (9). The ratio of the refractive power of the group U22 is defined.
When the refractive power of the 22nd group U22 is φ22,
-4.80 <φ22 / φ1 <-2.30 (8)
1.10 <φ22 / φ21 <2.00 (9)
Meet.

条件式(8)を満たすことで、球面収差、コマ収差、非点収差、歪曲などの諸収差を良好に補正している。
条件式(8)の上限を超えると、第22群U22の屈折力に対して第1群U1の屈折力が強くなり、特にコマ収差や非点収差や歪曲の補正が困難となる。
条件式(8)の下限を超えると、第1群U1の屈折力に対して第22群U22の屈折力が強くなり、第22群U22に強い屈折力を与えて軸上及び軸外光束を収斂する必要が生じるため、特に球面収差、非点収差、歪曲の補正が困難となる。
By satisfying conditional expression (8), various aberrations such as spherical aberration, coma, astigmatism and distortion are corrected satisfactorily.
When the upper limit of conditional expression (8) is exceeded, the refractive power of the first group U1 becomes stronger than the refractive power of the 22nd group U22, and in particular, correction of coma, astigmatism and distortion becomes difficult.
When the lower limit of conditional expression (8) is exceeded, the refractive power of the 22nd group U22 becomes stronger than the refractive power of the 1st group U1, and the strong refractive power is given to the 22nd group U22 so Since it becomes necessary to converge, correction of spherical aberration, astigmatism, and distortion becomes difficult.

更に好ましくは、条件式(8)を次の如く設定するのが良い。
−4.60<φ22/φ1<−2.60 ・・・(8a)
More preferably, conditional expression (8) should be set as follows.
-4.60 <φ22 / φ1 <-2.60 (8a)

条件式(9)を満たすことで、球面収差、コマ収差、非点収差、歪曲などの諸収差を良好に補正している。
条件式(9)の上限を超えると、第21群U21の屈折力に対して第22群U22の屈折力が強くなり、特に球面収差、非点収差、歪曲の補正が困難となる。
条件式(9)の下限を超えると、第22群U22の屈折力に対して第21群U21の屈折力が強くなり、特に球面収差、コマ収差、非点収差、歪曲の補正が困難となる。
By satisfying conditional expression (9), various aberrations such as spherical aberration, coma, astigmatism and distortion are corrected satisfactorily.
If the upper limit of conditional expression (9) is exceeded, the refractive power of the 22nd group U22 will be stronger than the refractive power of the 21st group U21, and it will be particularly difficult to correct spherical aberration, astigmatism and distortion.
When the lower limit of conditional expression (9) is exceeded, the refractive power of the 21st group U21 becomes stronger than the refractive power of the 22nd group U22, and in particular, it becomes difficult to correct spherical aberration, coma aberration, astigmatism, and distortion. .

更に好ましくは、条件式(9)を次の如く設定するのが良い。
1.40<φ22/φ21<1.90 ・・・(9a)
More preferably, conditional expression (9) should be set as follows.
1.40 <φ22 / φ21 <1.90 (9a)

ここで、軸上近軸光線及び瞳近軸光線は、次のように定義される光線である。軸上近軸光線は、光学系全系の焦点距離を1に規格化し、光学系に光軸と平行に、入射高を1として入射させた近軸光線である。瞳近軸光線は、光学系全系の焦点距離を1に規格化し、撮像面の最大像高に入射する光線の内、光学系の入射瞳と光軸との交点を通過する近軸光線である。物体は光学系の左側にあるものとし、物体側から光学系に入射する光線は左から右へ進むものとする。   Here, the on-axis paraxial ray and the pupil paraxial ray are rays defined as follows. An on-axis paraxial ray is a paraxial ray that is normalized with the focal length of the entire optical system set to 1, and is incident on the optical system parallel to the optical axis with an incident height of 1. A pupil paraxial ray is a paraxial ray that normalizes the focal length of the entire optical system to 1 and passes through the intersection of the entrance pupil of the optical system and the optical axis among rays incident on the maximum image height of the imaging surface. is there. It is assumed that the object is on the left side of the optical system, and light rays incident on the optical system from the object side travel from left to right.

図17に示すように、現存する光学材料はνdに対し部分分散比θgFが狭い範囲に分布しており、νdが小さいほどθgFが大きい傾向を持っている。   As shown in FIG. 17, existing optical materials are distributed in a narrow range of the partial dispersion ratio θgF with respect to νd, and θgF tends to increase as νd decreases.

所定の屈折力Φで、正の屈折力Φp、負の屈折力Φn、アッベ数νp、νn、軸上近軸光線の入射高h、瞳近軸光線の入射高H、の2枚のレンズGp、Gnで構成される薄肉密着系の軸上色収差係数L、倍率色収差係数Tは、
L=h×h×(Φp/νp+Φn/νn) ・・・(10)
T=h×H×(Φp/νp+Φn/νn) ・・・(11)
であらわされる。ここで、
Φ=Φp+Φn ・・・(12)
とする。式(10)及び式(11)の各レンズの屈折力は、式(12)がΦ=1となるように規格化されている。3枚以上で構成される場合も同様に考えることができる。式(10)及び式(11)において、L=0及びT=0とするとC線−F線の軸上及び像面上での結像位置が合致する。
Two lenses Gp having a predetermined refractive power Φ, a positive refractive power Φp, a negative refractive power Φn, an Abbe number νp, νn, an incident height h of on-axis paraxial rays, and an incident height H of pupil paraxial rays. , The axial chromatic aberration coefficient L and the lateral chromatic aberration coefficient T of the thin-walled contact system composed of Gn are:
L = h × h × (Φp / νp + Φn / νn) (10)
T = h × H × (Φp / νp + Φn / νn) (11)
It is expressed. here,
Φ = Φp + Φn (12)
And The refractive powers of the lenses in Expression (10) and Expression (11) are normalized so that Expression (12) becomes Φ = 1. The same can be considered for the case of three or more sheets. In Expressions (10) and (11), if L = 0 and T = 0, the imaging positions on the C-F line axis and on the image plane coincide.

この時、物体距離を無限遠として光束を入射した場合のF線に対するg線の軸上色収差のずれ量及び倍率色収差のずれ量を、それぞれ軸上色収差の二次スペクトル量Δs、倍率色収差の二次スペクトル量Δyとして定義すると、
Δs=−h×h×(θp−θn)/(νp−νn)×f ・・・(13)
Δy=−h×H×(θp−θn)/(νp−νn)×Y ・・・(14)
で表される。ここで、fはレンズ全系の焦点距離、Yは像高とする。
At this time, the deviation amount of the axial chromatic aberration and the lateral chromatic aberration of the g-line with respect to the F-line when the light beam is incident with the object distance set to infinity are respectively the second-order spectral amount Δs of the axial chromatic aberration and the lateral chromatic aberration of the two. When defined as the next spectral amount Δy,
Δs = −h × h × (θp−θn) / (νp−νn) × f (13)
Δy = −h × H × (θp−θn) / (νp−νn) × Y (14)
It is represented by Here, f is the focal length of the entire lens system, and Y is the image height.

図16において、正の屈折力のレンズ群Lpでの色消しでは正レンズGpとしてアッベ数νpの大きな材料、負レンズGnとしてνnの小さな材料を用いる。従って式(13)より、正レンズGpはθpが小さく、負レンズGnはθnが大きくなり、F線とC線で色収差を補正した場合、図16に示すように軸上ではg線の結像点が像側に移動する。   In FIG. 16, in the achromatization with the lens unit Lp having a positive refractive power, a material having a large Abbe number νp is used as the positive lens Gp, and a material having a small νn is used as the negative lens Gn. Therefore, from equation (13), when the positive lens Gp has a small θp, the negative lens Gn has a large θn, and when the chromatic aberration is corrected by the F-line and the C-line, as shown in FIG. The point moves to the image side.

二次スペクトル量Δsは、図15(A)、(B)に示すように、軸上マージナル光線の入射高が高い本実施例の第2群U2で顕著に発生する。
画面中心の光学性能の更なる向上を達成するには、軸上色収差を良好に補正することが重要である。
As shown in FIGS. 15A and 15B, the secondary spectrum amount Δs is remarkably generated in the second group U2 of the present embodiment in which the incident height of the on-axis marginal ray is high.
In order to achieve further improvement in optical performance at the center of the screen, it is important to correct axial chromatic aberration well.

第21群の正レンズにνdがより大きい材料、負レンズにνdがより小さい材料を用いて、適切な屈折力で配置することで、一次の色消しを良好に行うことができる。
更に、第21群U21の正レンズにθgFがより大きな材料、負レンズにθgFがより小さな材料を用いて、適切な屈折力で配置することで、軸上色収差の二次スペクトルを良好に補正することができる。
By using a material having a larger νd for the positive lens in the 21st group and a material having a smaller νd for the negative lens and arranging them with appropriate refractive power, primary achromaticity can be satisfactorily performed.
Further, by using a material having a larger θgF for the positive lens of the 21st lens unit U21 and a material having a smaller θgF for the negative lens and arranging them with appropriate refractive power, the secondary spectrum of longitudinal chromatic aberration can be corrected well. be able to.

本発明の更なる実施態様として、条件式(15)〜(17)は以上を考慮して軸上色収差をより効果的に補正できる第21群U21内の開口絞りの近傍にある正レンズ及び負レンズの材料のアッベ数と部分分散比、及び屈折力を適切に設定したものである。
−2.45×10−3<(θp−θn)/(νp−νn)<−0.80×10−3
・・・(15)
0.50<φp×f<1.50 ・・・(16)
−1.60<φn×f<−0.70 ・・・(17)
ここで、第21群U21は像側から順に負レンズG21n、正レンズG21pを有し、正レンズG21p及び負レンズG21nの屈折力を各々φp、φn 、部分分散比を各々θp、θn 、屈折力を各々νp、νn、全系の焦点距離をfとする。
As a further embodiment of the present invention, the conditional expressions (15) to (17) take into account the above and positive lens and negative lens in the vicinity of the aperture stop in the 21st group U21 that can correct axial chromatic aberration more effectively. The Abbe number, the partial dispersion ratio, and the refractive power of the lens material are appropriately set.
-2.45 × 10-3 <(θp−θn) / (νp−νn) <− 0.80 × 10-3
(15)
0.50 <φp × f <1.50 (16)
−1.60 <φn × f <−0.70 (17)
Here, the twenty-first unit U21 includes a negative lens G21n and a positive lens G21p in order from the image side. The refractive powers of the positive lens G21p and the negative lens G21n are φp and φn, respectively, and the partial dispersion ratios are θp and θn, respectively. Are denoted by νp and νn, respectively, and the focal length of the entire system is denoted by f.

条件式(15)は、第21群U21内の正レンズG21p及び負レンズG21nの材料のアッべ数と部分分散比を規定したものである。
条件式(15)の上限を超えると、G21pとG21nの硝材のアッべ数の差が小さくなり過ぎ両レンズの屈折力が強くなるとともに、低屈折率硝材を選択することになるため、高次の諸収差が発生するため収差補正や一次の色消しが困難となる。
条件式(15)の下限を超えると、式(13)より第21群U21内での二次スペクトル補正効果が不足してしまい、軸上色収差を良好に補正することが困難となる。
Conditional expression (15) defines the Abbe number and partial dispersion ratio of the materials of the positive lens G21p and the negative lens G21n in the 21st group U21.
If the upper limit of conditional expression (15) is exceeded, the difference between the Abbe numbers of the glass materials G21p and G21n becomes too small and the refractive power of both lenses becomes strong, and a low refractive index glass material is selected. As these aberrations occur, it becomes difficult to correct aberrations and perform primary achromaticity.
If the lower limit of conditional expression (15) is exceeded, the effect of correcting the secondary spectrum in the 21st group U21 will be insufficient from expression (13), making it difficult to correct axial chromatic aberration well.

更に好ましくは条件式(15)を次の如く設定するのが良い。
−2.42×10−3<(θp−θn)/(νp−νn)<−0.90×10−3
・・・(15a)
More preferably, conditional expression (15) should be set as follows.
-2.42 × 10-3 <(θp−θn) / (νp−νn) <− 0.90 × 10-3
... (15a)

条件式(16)は、正レンズG21pの屈折力を規定したものである。
条件式(16)の上限を超えると、G21pの屈折力が強くなり高次の諸収差が発生するため収差補正や一次の色消しが困難となる。
条件式(16)の下限を超えると、G21pの屈折力が不足するため、第21群U21内での二次スペクトル補正効果が不足してしまい、軸上色収差を良好に補正することが困難となる。
Conditional expression (16) defines the refractive power of the positive lens G21p.
If the upper limit of conditional expression (16) is exceeded, the refractive power of G21p will become strong and various higher-order aberrations will occur, making it difficult to correct aberrations and perform primary achromatization.
If the lower limit of conditional expression (16) is exceeded, the refractive power of G21p will be insufficient, and the secondary spectrum correction effect in the 21st group U21 will be insufficient, making it difficult to correct axial chromatic aberration well. Become.

更に好ましくは条件式(16)を次の如く設定するのが良い。
0.75<φp×f<1.20 ・・・(16a)
More preferably, conditional expression (16) should be set as follows.
0.75 <φp × f <1.20 (16a)

条件式(17)は、負レンズG21nの屈折力を規定したものである。
条件式(17)の上限を超えると、G21nの屈折力が不足するため、第21群U21内での二次スペクトル補正効果が不足してしまい、軸上色収差を良好に補正することが困難となる。
条件式(17)の下限を超えると、G21nの屈折力が強くなり高次の諸収差が発生するため収差補正や一次の色消しが困難となる。
Conditional expression (17) defines the refractive power of the negative lens G21n.
If the upper limit of conditional expression (17) is exceeded, the refractive power of G21n will be insufficient, and the secondary spectrum correction effect in the 21st group U21 will be insufficient, making it difficult to correct axial chromatic aberration well. Become.
If the lower limit of conditional expression (17) is exceeded, the refractive power of G21n becomes strong and various higher-order aberrations occur, making it difficult to correct aberrations and perform primary achromaticity.

更に好ましくは条件式(17)を次の如く設定するのが良い。
−1.40<φn×f<−0.90 ・・・(17a)
More preferably, conditional expression (17) should be set as follows.
−1.40 <φn × f <−0.90 (17a)

[数値実施例1]
本発明の単焦点レンズの数値実施例1を以下に示す。図1は数値実施例1の単焦点レンズの無限遠物体に合焦しているときのレンズ断面図である。数値実施例1の単焦点レンズは、物体側から順に、焦点調節時に固定の負の屈折力の第1群U1、無限遠物体から近距離物体に焦点調節する際に物体側に移動する正の屈折力の第2群U2を含む。第2群U2は、物体側から順に、正の屈折力の第21群U21、開口絞りSP、正の屈折力の第22群U22から構成される。IPは像面であり、本発明の単焦点レンズが接続される撮像装置の固体撮像素子(光電変換素子)の撮像面に相当する。
[Numerical Example 1]
Numerical Example 1 of the single focus lens of the present invention is shown below. FIG. 1 is a lens cross-sectional view of a single focus lens of Numerical Example 1 when focused on an object at infinity. The single focus lens of Numerical Example 1 is a positive first lens unit U1 having a negative refractive power that is fixed during focus adjustment in order from the object side, and a positive lens that moves toward the object side when focusing from an object at infinity to a short distance object. The second group U2 of refractive power is included. The second group U2 includes, in order from the object side, a 21st group U21 having a positive refractive power, an aperture stop SP, and a 22nd group U22 having a positive refractive power. IP is an image plane, which corresponds to an imaging plane of a solid-state imaging element (photoelectric conversion element) of an imaging apparatus to which the single focus lens of the present invention is connected.

次に、数値実施例1の各群のレンズ構成について説明する。以下、各レンズは物体側より像側へ順に配置されているものとする。第1群U1は負レンズ2枚、正レンズ1枚で構成されている。第21群U21は正レンズ、正レンズと負レンズの接合レンズで構成されている。第22群U22は負レンズと正レンズの接合レンズ、正レンズ2枚で構成されている。前述したレンズ構成は、数値実施例1〜4において、全て同じである。
数値実施例1の単焦点レンズは、焦点距離34.2mm、半画角32.3度、Fナンバー1.45である。
Next, the lens configuration of each group in Numerical Example 1 will be described. Hereinafter, it is assumed that the lenses are arranged in order from the object side to the image side. The first unit U1 includes two negative lenses and one positive lens. The 21st group U21 includes a positive lens and a cemented lens of a positive lens and a negative lens. The 22nd group U22 includes a cemented lens of a negative lens and a positive lens, and two positive lenses. The lens configurations described above are all the same in Numerical Examples 1 to 4.
The single focus lens of Numerical Example 1 has a focal length of 34.2 mm, a half angle of view of 32.3 degrees, and an F number of 1.45.

図2に、数値実施例1の(A)無限遠物体、(B)至近物体に合焦しているときの縦収差図を示す。焦点距離の値はmm単位で表した値である。収差図において、球面収差はe線とg線によって表されている。非点収差はe線のメリディオナル像面(ΔM)とe線のサジタル像面(ΔS)によって表されている。倍率色収差はg線によって表されている。FnoはFナンバー、ωは半画角である。すべての収差図において、球面収差は0.4mm、非点収差は0.4mm、歪曲は5%、倍率色収差は0.05mmのスケールで描かれている。これは以下の各数値実施例において全て同じである。   FIG. 2 shows longitudinal aberration diagrams when focusing on (A) an object at infinity and (B) a close object in Numerical Example 1. FIG. The value of the focal length is a value expressed in mm. In the aberration diagrams, spherical aberration is represented by e-line and g-line. Astigmatism is represented by an e-line meridional image plane (ΔM) and an e-line sagittal image plane (ΔS). The lateral chromatic aberration is represented by the g-line. Fno is the F number, and ω is the half angle of view. In all the aberration diagrams, the spherical aberration is 0.4 mm, the astigmatism is 0.4 mm, the distortion is 5%, and the chromatic aberration of magnification is 0.05 mm. This is all the same in the following numerical examples.

[数値実施例2]
図3に、数値実施例2の単焦点レンズの無限遠物体に合焦しているときのレンズ断面図を示す。基本的な構成は数値実施例1と同様であるので、説明は省略する。数値実施例2の単焦点レンズは、焦点距離33.5mm、半画角32.9度、Fナンバー1.45である。図4に、数値実施例2の(A)無限遠物体、(B)至近物体に合焦しているときの縦収差図を示す。
[Numerical Example 2]
FIG. 3 is a lens cross-sectional view when focusing on an object at infinity of the single focus lens of Numerical Example 2. Since the basic configuration is the same as that of Numerical Example 1, the description thereof is omitted. The single focus lens of Numerical Example 2 has a focal length of 33.5 mm, a half angle of view of 32.9 degrees, and an F number of 1.45. FIG. 4 shows longitudinal aberration diagrams when focusing on (A) an object at infinity and (B) a close object in Numerical Example 2.

[数値実施例3]
図5に、数値実施例3の単焦点レンズの無限遠物体に合焦しているときのレンズ断面図を示す。基本的な構成は数値実施例1と同様であるので、説明は省略する。数値実施例3の単焦点レンズは、焦点距離33.0mm、半画角33.3度、Fナンバー1.45である。図6に、数値実施例3の(A)無限遠物体、(B)至近物体に合焦しているときの縦収差図を示す。
[Numerical Example 3]
FIG. 5 shows a lens cross-sectional view of the single focus lens of Numerical Example 3 when focused on an object at infinity. Since the basic configuration is the same as that of Numerical Example 1, the description thereof is omitted. The single focus lens of Numerical Example 3 has a focal length of 33.0 mm, a half angle of view of 33.3 degrees, and an F number of 1.45. FIG. 6 is a longitudinal aberration diagram when focusing on (A) an object at infinity and (B) a close object in Numerical Example 3.

[数値実施例4]
図7に、数値実施例4の単焦点レンズの無限遠物体に合焦しているときのレンズ断面図を示す。基本的な構成は数値実施例1と同様であるので、説明は省略する。数値実施例4の単焦点レンズは、焦点距離34.5mm、半画角32.1度、Fナンバー1.45である。図8に、数値実施例4の(A)無限遠物体、(B)至近物体に合焦しているときの縦収差図を示す。
[Numerical Example 4]
FIG. 7 shows a lens cross-sectional view when focusing on an object at infinity of the single focus lens of Numerical Example 4. Since the basic configuration is the same as that of Numerical Example 1, the description thereof is omitted. The single focus lens of Numerical Example 4 has a focal length of 34.5 mm, a half angle of view of 32.1 degrees, and an F number of 1.45. FIG. 8 shows longitudinal aberration diagrams when focusing on (A) an infinitely distant object and (B) a close object in Numerical Example 4.

[数値実施例5]
図9に、数値実施例5の単焦点レンズの無限遠物体に合焦しているときのレンズ断面図を示す。数値実施例5の単焦点レンズにおいては、第1群U1が、物体側から順に、負レンズ2枚と正レンズ2枚で構成されている点が数値実施例1〜4とは異なる。しかし、他の構成は、数値実施例1と全て同じであるので説明は省略する。数値実施例5の単焦点レンズは、焦点距離33.0mm、半画角33.3度、Fナンバー1.45である。図10に、数値実施例5の(A)無限遠物体、(B)至近物体に合焦しているときの縦収差図を示す。
[Numerical Example 5]
FIG. 9 shows a lens cross-sectional view when focusing on an object at infinity of the single focus lens of Numerical Example 5. FIG. The single focus lens of Numerical Example 5 is different from Numerical Examples 1 to 4 in that the first unit U1 is composed of two negative lenses and two positive lenses in order from the object side. However, the other configurations are all the same as those of the numerical value example 1, and the description thereof is omitted. The single focus lens of Numerical Example 5 has a focal length of 33.0 mm, a half angle of view of 33.3 degrees, and an F number of 1.45. FIG. 10 shows longitudinal aberration diagrams when focusing on (A) an object at infinity and (B) a close object in Numerical Example 5.

[数値実施例6]
図11に、数値実施例6の単焦点レンズの無限遠物体に合焦しているときのレンズ断面図を示す。数値実施例6の単焦点レンズにおいては、第21群U21が、正レンズと負レンズの接合レンズ2枚で構成されている点が数値実施例1〜5とは異なる。しかし、他の構成は、数値実施例1と全て同じであるので説明は省略する。数値実施例6の単焦点レンズは、焦点距離33.3mm、半画角33.0度、Fナンバー1.45である。図12に、数値実施例6の(A)無限遠物体、(B)至近物体に合焦しているときの縦収差図を示す。
[Numerical Example 6]
FIG. 11 is a cross-sectional view of the lens when the single focus lens of Numerical Example 6 is focused on an object at infinity. The single focus lens of Numerical Example 6 is different from Numerical Examples 1 to 5 in that the 21st group U21 is composed of two cemented lenses of a positive lens and a negative lens. However, the other configurations are all the same as those of the numerical value example 1, and the description thereof is omitted. The single focus lens of Numerical Example 6 has a focal length of 33.3 mm, a half angle of view of 33.0 degrees, and an F number of 1.45. FIG. 12 shows longitudinal aberration diagrams when focusing on an object at (A) infinity and (B) a close object in Numerical Example 6. FIG.

[数値実施例7]
図13に、数値実施例7の単焦点レンズの無限遠物体に合焦しているときのレンズ断面図を示す。数値実施例7の単焦点レンズでは第1群の正レンズの凸面に周辺に向けて屈折力が弱くなる形状の非球面を配置し、焦点調節に伴う収差変化を抑制し、物体距離全般に渡って高い光学性能を達成している点が数値実施例1〜6とは異なる。しかし、他の構成は、数値実施例1と全て同じであるので説明は省略する。数値実施例7の単焦点レンズは、焦点距離33.0mm、半画角33.3度、Fナンバー1.45である。図14に、数値実施例7の(A)無限遠物体、(B)至近物体に合焦しているときの縦収差図を示す。
[Numerical Example 7]
FIG. 13 is a lens cross-sectional view of the single focus lens of Numerical Example 7 when focused on an object at infinity. In the single focus lens of Numerical Example 7, an aspheric surface having a refractive power that weakens toward the periphery is arranged on the convex surface of the positive lens in the first group to suppress aberration change due to focus adjustment, and over the entire object distance. This is different from Numerical Examples 1 to 6 in that high optical performance is achieved. However, the other configurations are all the same as those of the numerical value example 1, and the description thereof is omitted. The single focus lens of Numerical Example 7 has a focal length of 33.0 mm, a half angle of view of 33.3 degrees, and an F number of 1.45. FIG. 14 is a longitudinal aberration diagram when focusing on (A) an infinitely distant object and (B) a close object in Numerical Example 7.

表1に数値実施例1〜7の各条件式の対応値を示す。数値実施例1〜7の単焦点レンズは、条件式(1)〜(3)、(6)〜(9)、(15)〜(17)の何れの条件式も満足しており、焦点調節に伴う収差変化を抑制し、物体距離全般に渡って高い光学性能を達成している。   Table 1 shows corresponding values of the conditional expressions of Numerical Examples 1 to 7. The single focus lenses of Numerical Examples 1 to 7 satisfy the conditional expressions (1) to (3), (6) to (9), and (15) to (17). Aberration change due to the lens is suppressed, and high optical performance is achieved over the entire object distance.

以下の各数値実施例の数値データを示す。iは物体側からの面の順序を示し、rは物体側より第i番目の面の曲率半径、dは物体側より第i番目と第i+1番目の間隔、ndとνdとθgFは第i番目の光学部材の屈折率とアッベ数と部分分散比である。非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正とし、Rを近軸曲率半径、kを円錐常数、A4、A6、A8、A10を各々非球面係数とし、次式で表す。   Numerical data of the following numerical examples is shown. i indicates the order of the surfaces from the object side, r is the radius of curvature of the i-th surface from the object side, d is the i-th and i + 1-th spacing from the object side, and nd, νd, and θgF are the i-th surface These are the refractive index, Abbe number, and partial dispersion ratio of the optical member. The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, k is the cone constant, and A4, A6, A8, and A10 are non- The spherical coefficient is given by the following equation.

Figure 0006112945
又、「e−Z」は「×10-Z」を意味する。*印は非球面であることを示す。
Figure 0006112945
“E-Z” means “× 10 −Z ”. * Indicates an aspherical surface.

<数値実施例1>
面番号 r d nd vd θgF 有効径 焦点距離
1 320.116 2.80 1.51633 64.1 0.5352 51.99 -93.54
2 41.977 5.78 45.00
3 174.176 2.30 1.51823 58.9 0.5456 44.56 -97.45
4 39.095 14.53 41.15
5 83.274 4.44 1.77250 49.6 0.5521 39.37 88.98
6 -395.333 (可変) 38.88
7 57.067 5.14 1.77250 49.6 0.5521 35.63 57.75
8 -200.681 8.71 35.34
9 607.365 6.47 1.77250 49.6 0.5521 30.62 35.68
10 -28.883 1.50 1.65412 39.7 0.5737 30.02 -29.00
11 57.419 (可変) 26.96
12(絞り) ∞ 7.82 25.98
13 -19.812 1.60 1.80518 25.4 0.6161 24.65 -21.64
14 162.418 4.90 1.83481 42.7 0.5642 27.82 62.15
15* -75.798 0.20 29.43
16 -470.465 6.60 1.77250 49.6 0.5521 30.27 45.14
17 -32.806 0.20 32.76
18 -154.187 6.32 1.77250 49.6 0.5521 35.98 56.91
19 -34.950 37.18
像面 ∞

非球面データ
第15面
K = 4.82454e+000 A 4= 1.27386e-005 A 6= 2.46580e-009 A 8=-1.63965e-011
A10= 1.16481e-014

焦点距離 34.20
Fナンバー 1.45
半画角 32.32
像高 21.64
レンズ全長 129.16
BF 39.35

焦点調節可変間隔 無限遠合焦時 至近合焦時(像面より0.3m)
d 6 6.26 0.50
d11 4.23 3.21

各レンズ群データ
群 始面 焦点距離
1 1 -164.29
2 7 76.56
3 13 45.49
<Numerical Example 1>
Surface number rd nd vd θgF Effective diameter Focal length
1 320.116 2.80 1.51633 64.1 0.5352 51.99 -93.54
2 41.977 5.78 45.00
3 174.176 2.30 1.51823 58.9 0.5456 44.56 -97.45
4 39.095 14.53 41.15
5 83.274 4.44 1.77250 49.6 0.5521 39.37 88.98
6 -395.333 (variable) 38.88
7 57.067 5.14 1.77250 49.6 0.5521 35.63 57.75
8 -200.681 8.71 35.34
9 607.365 6.47 1.77250 49.6 0.5521 30.62 35.68
10 -28.883 1.50 1.65412 39.7 0.5737 30.02 -29.00
11 57.419 (variable) 26.96
12 (Aperture) ∞ 7.82 25.98
13 -19.812 1.60 1.80518 25.4 0.6161 24.65 -21.64
14 162.418 4.90 1.83481 42.7 0.5642 27.82 62.15
15 * -75.798 0.20 29.43
16 -470.465 6.60 1.77250 49.6 0.5521 30.27 45.14
17 -32.806 0.20 32.76
18 -154.187 6.32 1.77250 49.6 0.5521 35.98 56.91
19 -34.950 37.18
Image plane ∞

Aspheric data 15th surface
K = 4.82454e + 000 A 4 = 1.27386e-005 A 6 = 2.46580e-009 A 8 = -1.63965e-011
A10 = 1.16481e-014

Focal length 34.20
F number 1.45
Half angle of view 32.32
Statue height 21.64
Total lens length 129.16
BF 39.35

Focus adjustment variable interval At infinity focus At close focus (0.3m from the image plane)
d 6 6.26 0.50
d11 4.23 3.21

Each lens group data group Start surface Focal length
1 1 -164.29
2 7 76.56
3 13 45.49

<数値実施例2>
面データ
面番号 r d nd vd θgF 有効径 焦点距離
1 168.071 2.80 1.58913 61.1 0.5406 52.33 -95.34
2 41.959 4.84 45.64
3 101.105 2.30 1.58913 61.1 0.5406 45.20 -109.11
4 39.056 19.16 41.76
5 113.732 4.15 1.88300 40.8 0.5667 38.29 96.87
6 -347.230 (可変) 37.71
7 53.725 5.92 1.72916 54.7 0.5444 36.02 58.37
8 -199.469 6.95 35.60
9 284.925 7.67 1.77250 49.6 0.5521 31.43 35.98
10 -30.598 1.50 1.65412 39.7 0.5737 30.37 -28.27
11 48.371 (可変) 26.98
12(絞り) ∞ 8.17 26.11
13 -19.812 1.60 1.80518 25.4 0.6161 24.66 -21.64
14 162.418 4.90 1.83481 42.7 0.5642 27.83 62.15
15* -75.798 0.20 29.44
16 -470.465 6.60 1.77250 49.6 0.5521 30.27 45.14
17 -32.806 0.20 32.76
18 -154.187 6.32 1.77250 49.6 0.5521 35.98 56.91
19 -34.950 37.18
像面 ∞

非球面データ
第15面
K = 4.82454e+000 A 4= 1.27386e-005 A 6= 2.46580e-009 A 8=-1.63965e-011
A10= 1.16481e-014

焦点距離 33.50
Fナンバー 1.45
半画角 32.85
像高 21.64
レンズ全長 133.11
BF 39.36

焦点調節可変間隔 無限遠合焦時 至近合焦時(像面より0.3m)
d 6 6.26 0.50
d11 4.23 3.52

各レンズ群データ
群 始面 焦点距離
1 1 -187.22
2 7 81.04
3 13 45.49
<Numerical Example 2>
Surface data surface number rd nd vd θgF Effective diameter Focal length
1 168.071 2.80 1.58913 61.1 0.5406 52.33 -95.34
2 41.959 4.84 45.64
3 101.105 2.30 1.58913 61.1 0.5406 45.20 -109.11
4 39.056 19.16 41.76
5 113.732 4.15 1.88300 40.8 0.5667 38.29 96.87
6 -347.230 (variable) 37.71
7 53.725 5.92 1.72916 54.7 0.5444 36.02 58.37
8 -199.469 6.95 35.60
9 284.925 7.67 1.77250 49.6 0.5521 31.43 35.98
10 -30.598 1.50 1.65412 39.7 0.5737 30.37 -28.27
11 48.371 (variable) 26.98
12 (Aperture) ∞ 8.17 26.11
13 -19.812 1.60 1.80518 25.4 0.6161 24.66 -21.64
14 162.418 4.90 1.83481 42.7 0.5642 27.83 62.15
15 * -75.798 0.20 29.44
16 -470.465 6.60 1.77250 49.6 0.5521 30.27 45.14
17 -32.806 0.20 32.76
18 -154.187 6.32 1.77250 49.6 0.5521 35.98 56.91
19 -34.950 37.18
Image plane ∞

Aspheric data 15th surface
K = 4.82454e + 000 A 4 = 1.27386e-005 A 6 = 2.46580e-009 A 8 = -1.63965e-011
A10 = 1.16481e-014

Focal length 33.50
F number 1.45
Half angle of view 32.85
Statue height 21.64
Total lens length 133.11
BF 39.36

Focus adjustment variable interval At infinity focus At close focus (0.3m from the image plane)
d 6 6.26 0.50
d11 4.23 3.52

Each lens group data group Start surface Focal length
1 1 -187.22
2 7 81.04
3 13 45.49

<数値実施例3>
面データ
面番号 r d nd vd θgF 有効径 焦点距離
1 138.678 2.80 1.51633 64.1 0.5352 51.75 -87.87
2 34.045 8.14 43.71
3 471.833 2.30 1.51742 52.4 0.5564 43.26 -79.65
4 37.998 15.08 39.87
5 72.980 4.33 1.83481 42.7 0.5642 38.88 84.32
6 -2286.600 (可変) 38.40
7 55.352 6.16 1.69680 55.5 0.5433 37.65 56.43
8 -131.452 7.03 37.38
9 211.651 8.86 1.56907 71.3 0.5451 32.58 38.87
10 -24.418 1.50 1.54814 45.8 0.5685 31.63 -30.23
11 53.519 (可変) 27.72
12(絞り) ∞ 8.51 26.83
13 -19.580 1.60 1.80518 25.4 0.6161 25.41 -24.40
14 -1624.756 3.48 1.83481 42.7 0.5642 28.74 72.36
15* -58.607 0.20 29.90
16 -201.678 4.78 1.77250 49.6 0.5521 30.68 51.41
17 -33.656 0.20 31.43
18 -125.538 6.03 1.77250 49.6 0.5521 33.29 51.93
19 -31.155 34.55
像面 ∞

非球面データ
第15面
K = 3.19091e+000 A 4= 1.37664e-005 A 6= 4.83734e-009 A 8=-1.25511e-011
A10= 8.19810e-015

焦点距離 33.00
Fナンバー 1.45
半画角 33.25
像高 21.64
レンズ全長 130.83
BF 39.35

焦点調節可変間隔 無限遠合焦時 至近合焦時(像面より0.3m)
d 6 6.26 0.50
d11 4.23 3.43

各レンズ群データ
群 始面 焦点距離
1 1 -130.50
2 7 74.94
3 13 47.34
<Numerical Example 3>
Surface data surface number rd nd vd θgF Effective diameter Focal length
1 138.678 2.80 1.51633 64.1 0.5352 51.75 -87.87
2 34.045 8.14 43.71
3 471.833 2.30 1.51742 52.4 0.5564 43.26 -79.65
4 37.998 15.08 39.87
5 72.980 4.33 1.83481 42.7 0.5642 38.88 84.32
6 -2286.600 (variable) 38.40
7 55.352 6.16 1.69680 55.5 0.5433 37.65 56.43
8 -131.452 7.03 37.38
9 211.651 8.86 1.56907 71.3 0.5451 32.58 38.87
10 -24.418 1.50 1.54814 45.8 0.5685 31.63 -30.23
11 53.519 (variable) 27.72
12 (Aperture) ∞ 8.51 26.83
13 -19.580 1.60 1.80518 25.4 0.6161 25.41 -24.40
14 -1624.756 3.48 1.83481 42.7 0.5642 28.74 72.36
15 * -58.607 0.20 29.90
16 -201.678 4.78 1.77250 49.6 0.5521 30.68 51.41
17 -33.656 0.20 31.43
18 -125.538 6.03 1.77250 49.6 0.5521 33.29 51.93
19 -31.155 34.55
Image plane ∞

Aspheric data 15th surface
K = 3.19091e + 000 A 4 = 1.37664e-005 A 6 = 4.83734e-009 A 8 = -1.25511e-011
A10 = 8.19810e-015

Focal length 33.00
F number 1.45
Half angle of view 33.25
Statue height 21.64
Total lens length 130.83
BF 39.35

Focus adjustment variable interval At infinity focus At close focus (0.3m from the image plane)
d 6 6.26 0.50
d11 4.23 3.43

Each lens group data group Start surface Focal length
1 1 -130.50
2 7 74.94
3 13 47.34

<数値実施例4>
面データ
面番号 r d nd vd θgF 有効径 焦点距離
1 72.833 2.80 1.51633 64.1 0.5352 52.55 -231.71
2 44.741 6.93 47.42
3 495.555 2.30 1.51633 64.1 0.5352 46.72 -68.21
4 32.946 15.21 40.84
5 73.203 3.88 1.83481 42.7 0.5642 38.13 92.69
6 1206.136 (可変) 37.56
7 69.908 4.81 1.77250 49.6 0.5521 33.57 65.84
8 -184.247 6.93 33.31
9 183.296 8.46 1.77250 49.6 0.5521 30.16 29.77
10 -25.908 1.50 1.65412 39.7 0.5737 29.21 -25.78
11 50.258 (可変) 25.93
12(絞り) ∞ 7.74 25.04
13 -18.324 1.60 1.80518 25.4 0.6161 23.86 -20.62
14 202.949 4.95 1.83481 42.7 0.5642 27.39 56.72
15* -61.515 0.20 29.12
16 -224.197 6.86 1.77250 49.6 0.5521 30.70 44.55
17 -30.361 0.20 33.31
18 -169.048 6.53 1.77250 49.6 0.5521 37.12 56.54
19 -35.428 38.27

非球面データ
第15面
K = 3.52328e+000 A 4= 1.33216e-005 A 6= 3.55802e-009 A 8=-1.56396e-011
A10= 1.26434e-014

焦点距離 34.50
Fナンバー 1.45
画角 32.09
像高 21.64
レンズ全長 130.73
BF 39.35

焦点調節可変間隔 無限遠合焦時 至近合焦時(像面より0.3m)
d 6 6.26 0.50
d11 4.23 3.30

各レンズ群データ
群 始面 焦点距離
1 1 -193.13
2 7 80.16
3 13 43.01
<Numerical Example 4>
Surface data surface number rd nd vd θgF Effective diameter Focal length
1 72.833 2.80 1.51633 64.1 0.5352 52.55 -231.71
2 44.741 6.93 47.42
3 495.555 2.30 1.51633 64.1 0.5352 46.72 -68.21
4 32.946 15.21 40.84
5 73.203 3.88 1.83481 42.7 0.5642 38.13 92.69
6 1206.136 (variable) 37.56
7 69.908 4.81 1.77250 49.6 0.5521 33.57 65.84
8 -184.247 6.93 33.31
9 183.296 8.46 1.77250 49.6 0.5521 30.16 29.77
10 -25.908 1.50 1.65412 39.7 0.5737 29.21 -25.78
11 50.258 (variable) 25.93
12 (Aperture) ∞ 7.74 25.04
13 -18.324 1.60 1.80518 25.4 0.6161 23.86 -20.62
14 202.949 4.95 1.83481 42.7 0.5642 27.39 56.72
15 * -61.515 0.20 29.12
16 -224.197 6.86 1.77250 49.6 0.5521 30.70 44.55
17 -30.361 0.20 33.31
18 -169.048 6.53 1.77250 49.6 0.5521 37.12 56.54
19 -35.428 38.27

Aspheric data 15th surface
K = 3.52328e + 000 A 4 = 1.33216e-005 A 6 = 3.55802e-009 A 8 = -1.56396e-011
A10 = 1.26434e-014

Focal length 34.50
F number 1.45
Angle of View 32.09
Statue height 21.64
Total lens length 130.73
BF 39.35

Focus adjustment variable interval At infinity focus At close focus (0.3m from the image plane)
d 6 6.26 0.50
d11 4.23 3.30

Each lens group data group Start surface Focal length
1 1 -193.13
2 7 80.16
3 13 43.01

<数値実施例5>
面データ
面番号 r d nd vd θgF 有効径 焦点距離
1 128.003 2.80 1.58913 61.1 0.5406 48.75 -70.18
2 31.089 8.58 41.04
3 -1434.850 2.30 1.58913 61.1 0.5406 40.66 -96.93
4 59.749 9.61 38.83
5 99.708 2.36 1.71300 53.9 0.5458 37.90 291.76
6 188.834 0.20 37.56
7 115.832 3.51 1.88300 40.8 0.5667 37.37 98.67
8 -354.793 (可変) 36.94
9 55.693 5.10 1.69680 55.5 0.5433 35.17 63.10
10 -205.133 8.16 34.92
11 135.179 6.36 1.77250 49.6 0.5521 30.94 32.82
12 -30.749 1.50 1.65412 39.7 0.5737 30.47 -28.56
13 49.273 (可変) 27.10
14(絞り) ∞ 8.45 26.23
15 -19.812 1.60 1.80518 25.4 0.6161 24.67 -21.64
16 162.418 4.90 1.83481 42.7 0.5642 27.85 62.15
17* -75.798 0.20 29.46
18 -470.465 6.60 1.77250 49.6 0.5521 30.67 45.14
19 -32.806 0.20 33.09
20 -154.187 6.32 1.77250 49.6 0.5521 36.37 56.91
21 -34.950 37.53
像面 ∞

非球面データ
第17面
K = 4.82454e+000 A 4= 1.27386e-005 A 6= 2.46580e-009 A 8=-1.63965e-011
A10= 1.16481e-014

焦点距離 33.00
Fナンバー 1.45
半画角 33.25
像高 21.64
レンズ全長 128.60
BF 39.36

焦点調節可変間隔 無限遠合焦時 至近合焦時(像面より0.3m)
d 8 6.26 0.50
d13 4.23 3.57

各レンズ群データ
群 始面 焦点距離
1 1 -143.79
2 9 73.18
3 15 45.49

<数値実施例6>
面データ
面番号 r d nd vd θgF 有効径 焦点距離
1 144.032 2.80 1.56732 42.8 0.5730 51.42 -72.47
2 31.896 7.37 43.18
3 134.427 2.30 1.69895 30.1 0.6029 42.84 -97.91
4 45.260 11.78 40.55
5 69.612 4.17 2.00069 25.5 0.6133 40.11 76.25
6 703.046 (可変) 39.63
7 65.773 7.06 1.77250 49.6 0.5521 35.48 38.40
8 -51.942 1.50 1.65412 39.7 0.5737 35.26 -105.74
9 -207.258 9.33 34.46
10 336.996 6.50 1.80400 46.6 0.5572 29.64 29.89
11 -25.793 1.50 1.72047 34.7 0.5834 29.15 -25.73
12 69.207 (可変) 26.33
13(絞り) ∞ 7.36 25.55
14 -18.795 1.60 1.75520 27.5 0.6103 24.45 -20.02
15 83.712 3.69 1.81600 46.6 0.5568 28.11 47.36
16* -71.020 0.37 28.84
17 -310.370 5.67 1.77250 49.6 0.5521 29.59 44.91
18 -31.588 0.20 30.55
19 -112.941 4.94 1.77250 49.6 0.5521 32.83 57.32
20 -32.530 33.73
像面 ∞

非球面データ
第16面
K = 3.09216e+000 A 4= 1.39545e-005 A 6= 9.44622e-010 A 8=-1.48017e-011
A10= 1.54514e-015

焦点距離 33.32
Fナンバー 1.45
半画角 33.00
像高 21.64
レンズ全長 126.22
BF 37.99

焦点調節可変間隔 無限遠合焦時 至近合焦時(像面より0.3m)
d 6 6.83 1.32
d12 3.26 2.26

各レンズ群データ
群 始面 焦点距離
1 1 -143.42
2 7 72.39
3 13 46.26

<数値実施例7>
面データ
面番号 r d nd vd θgF 有効径 焦点距離
1 130.413 2.80 1.51633 64.1 0.5352 50.76 -78.78
2 30.865 9.43 42.29
3 -638.842 2.30 1.58913 61.1 0.5406 41.87 -92.75
4 60.084 10.82 39.84
5* 84.426 4.58 1.78800 47.4 0.5559 38.60 77.00
6 -214.306 (可変) 38.18
7 57.548 5.00 1.72916 54.7 0.5444 34.99 62.34
8 -212.802 8.82 34.73
9 355.239 6.35 1.80400 46.6 0.5572 30.60 34.70
10 -30.200 1.50 1.65412 39.7 0.5737 30.05 -30.03
11 58.273 (可変) 27.10
12(絞り) ∞ 8.20 26.11
13 -19.812 1.60 1.80518 25.4 0.6161 24.65 -21.64
14 162.418 4.90 1.83481 42.7 0.5642 27.82 62.15
15* -75.798 0.20 29.43
16 -470.465 6.60 1.77250 49.6 0.5521 30.27 45.14
17 -32.806 0.20 32.76
18 -154.187 6.32 1.77250 49.6 0.5521 36.00 56.91
19 -34.950 37.18
像面 ∞

非球面データ
第5面
K =-2.33085e+000 A 4= 2.90341e-007 A 6=-9.23173e-011 A 8= 1.45810e-013 A10=-6.71605e-017

第15面
K = 4.82454e+000 A 4= 1.27386e-005 A 6= 2.46580e-009 A 8=-1.63965e-011
A10= 1.16481e-014

焦点距離 33.00
Fナンバー 1.45
画角 33.25
像高 21.64
レンズ全長 129.44
BF 39.35

d 6 6.26
d11 4.23
d19 39.35

焦点調節可変間隔 無限遠合焦時 至近合焦時(像面より0.3m)
d 6 6.26 0.65
d11 4.23 3.51

各レンズ群データ
群 始面 焦点距離
1 1 -155.06
2 7 75.22
3 12 45.49
<Numerical example 5>
Surface data surface number rd nd vd θgF Effective diameter Focal length
1 128.003 2.80 1.58913 61.1 0.5406 48.75 -70.18
2 31.089 8.58 41.04
3 -1434.850 2.30 1.58913 61.1 0.5406 40.66 -96.93
4 59.749 9.61 38.83
5 99.708 2.36 1.71300 53.9 0.5458 37.90 291.76
6 188.834 0.20 37.56
7 115.832 3.51 1.88300 40.8 0.5667 37.37 98.67
8 -354.793 (variable) 36.94
9 55.693 5.10 1.69680 55.5 0.5433 35.17 63.10
10 -205.133 8.16 34.92
11 135.179 6.36 1.77250 49.6 0.5521 30.94 32.82
12 -30.749 1.50 1.65412 39.7 0.5737 30.47 -28.56
13 49.273 (variable) 27.10
14 (Aperture) ∞ 8.45 26.23
15 -19.812 1.60 1.80518 25.4 0.6161 24.67 -21.64
16 162.418 4.90 1.83481 42.7 0.5642 27.85 62.15
17 * -75.798 0.20 29.46
18 -470.465 6.60 1.77250 49.6 0.5521 30.67 45.14
19 -32.806 0.20 33.09
20 -154.187 6.32 1.77250 49.6 0.5521 36.37 56.91
21 -34.950 37.53
Image plane ∞

Aspheric data 17th surface
K = 4.82454e + 000 A 4 = 1.27386e-005 A 6 = 2.46580e-009 A 8 = -1.63965e-011
A10 = 1.16481e-014

Focal length 33.00
F number 1.45
Half angle of view 33.25
Statue height 21.64
Total length of lens 128.60
BF 39.36

Focus adjustment variable interval At infinity focus At close focus (0.3m from the image plane)
d 8 6.26 0.50
d13 4.23 3.57

Each lens group data group Start surface Focal length
1 1 -143.79
2 9 73.18
3 15 45.49

<Numerical Example 6>
Surface data surface number rd nd vd θgF Effective diameter Focal length
1 144.032 2.80 1.56732 42.8 0.5730 51.42 -72.47
2 31.896 7.37 43.18
3 134.427 2.30 1.69895 30.1 0.6029 42.84 -97.91
4 45.260 11.78 40.55
5 69.612 4.17 2.00069 25.5 0.6133 40.11 76.25
6 703.046 (variable) 39.63
7 65.773 7.06 1.77250 49.6 0.5521 35.48 38.40
8 -51.942 1.50 1.65412 39.7 0.5737 35.26 -105.74
9 -207.258 9.33 34.46
10 336.996 6.50 1.80400 46.6 0.5572 29.64 29.89
11 -25.793 1.50 1.72047 34.7 0.5834 29.15 -25.73
12 69.207 (variable) 26.33
13 (Aperture) ∞ 7.36 25.55
14 -18.795 1.60 1.75520 27.5 0.6103 24.45 -20.02
15 83.712 3.69 1.81600 46.6 0.5568 28.11 47.36
16 * -71.020 0.37 28.84
17 -310.370 5.67 1.77250 49.6 0.5521 29.59 44.91
18 -31.588 0.20 30.55
19 -112.941 4.94 1.77250 49.6 0.5521 32.83 57.32
20 -32.530 33.73
Image plane ∞

Aspheric data 16th surface
K = 3.09216e + 000 A 4 = 1.39545e-005 A 6 = 9.44622e-010 A 8 = -1.48017e-011
A10 = 1.54514e-015

Focal length 33.32
F number 1.45
Half angle of view 33.00
Statue height 21.64
Total lens length 126.22
BF 37.99

Focus adjustment variable interval At infinity focus At close focus (0.3m from the image plane)
d 6 6.83 1.32
d12 3.26 2.26

Each lens group data group Start surface Focal length
1 1 -143.42
2 7 72.39
3 13 46.26

<Numerical Example 7>
Surface data surface number rd nd vd θgF Effective diameter Focal length
1 130.413 2.80 1.51633 64.1 0.5352 50.76 -78.78
2 30.865 9.43 42.29
3 -638.842 2.30 1.58913 61.1 0.5406 41.87 -92.75
4 60.084 10.82 39.84
5 * 84.426 4.58 1.78800 47.4 0.5559 38.60 77.00
6 -214.306 (variable) 38.18
7 57.548 5.00 1.72916 54.7 0.5444 34.99 62.34
8 -212.802 8.82 34.73
9 355.239 6.35 1.80 400 46.6 0.5572 30.60 34.70
10 -30.200 1.50 1.65412 39.7 0.5737 30.05 -30.03
11 58.273 (variable) 27.10
12 (Aperture) ∞ 8.20 26.11
13 -19.812 1.60 1.80518 25.4 0.6161 24.65 -21.64
14 162.418 4.90 1.83481 42.7 0.5642 27.82 62.15
15 * -75.798 0.20 29.43
16 -470.465 6.60 1.77250 49.6 0.5521 30.27 45.14
17 -32.806 0.20 32.76
18 -154.187 6.32 1.77250 49.6 0.5521 36.00 56.91
19 -34.950 37.18
Image plane ∞

Aspheric data 5th surface
K = -2.33085e + 000 A 4 = 2.90341e-007 A 6 = -9.23173e-011 A 8 = 1.45810e-013 A10 = -6.71605e-017

15th page
K = 4.82454e + 000 A 4 = 1.27386e-005 A 6 = 2.46580e-009 A 8 = -1.63965e-011
A10 = 1.16481e-014

Focal length 33.00
F number 1.45
Angle of view 33.25
Statue height 21.64
Total length of lens 129.44
BF 39.35

d 6 6.26
d11 4.23
d19 39.35

Focus adjustment variable interval At infinity focus At close focus (0.3m from the image plane)
d 6 6.26 0.65
d11 4.23 3.51

Each lens group data group Start surface Focal length
1 1 -155.06
2 7 75.22
3 12 45.49

Figure 0006112945
Figure 0006112945

図18は一眼レフカメラの要部概略図である。図18において、光学系1は数値実施例1〜7の撮影光学系である。撮影光学系1は保持部材である鏡筒2に保持されている。20はカメラ本体である。カメラ本体20はクイックリターンミラー3、焦点板4、ペンタダハプリズム5、接眼レンズ6等によって構成されている。クイックリターンミラー3は、撮影光学系10からの光束を上方に反射する。焦点板4は撮影光学系10の像形成位置に配置されている。ペンタダハプリズム5は焦点板4に形成された逆像を正立像に変換する。観察者は、その正立像を接眼レンズ6を介して観察する。7は感光面であり、像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)や銀塩フィルムが配置される。撮影時にはクイックリターンミラー3が光路から退避して、感光面7上に撮影光学系10によって像側形成される。尚、本発明の光学系は、放送用テレビカメラ、映画用カメラ、ビデオカメラ、デジタルスチルカメラ、銀塩写真用カメラ等に適用できる。
このように本発明の単焦点レンズを一眼レフカメラや映画用カメラに適用することにより、高い光学性能を有する撮像装置を実現している。
FIG. 18 is a schematic view of the main part of a single-lens reflex camera. In FIG. 18, the optical system 1 is a photographing optical system of Numerical Examples 1 to 7. The photographing optical system 1 is held by a lens barrel 2 that is a holding member. Reference numeral 20 denotes a camera body. The camera body 20 includes a quick return mirror 3, a focusing screen 4, a penta roof prism 5, an eyepiece lens 6, and the like. The quick return mirror 3 reflects the light beam from the photographing optical system 10 upward. The focusing screen 4 is disposed at the image forming position of the photographing optical system 10. The penta roof prism 5 converts the reverse image formed on the focusing screen 4 into an erect image. An observer observes the erect image through the eyepiece 6. Reference numeral 7 denotes a photosensitive surface, on which a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor that receives an image, or a silver salt film is disposed. At the time of photographing, the quick return mirror 3 is retracted from the optical path, and is formed on the photosensitive surface 7 by the photographing optical system 10 on the image side. The optical system of the present invention can be applied to broadcast television cameras, movie cameras, video cameras, digital still cameras, silver salt photography cameras, and the like.
As described above, by applying the single focus lens of the present invention to a single-lens reflex camera or a movie camera, an imaging apparatus having high optical performance is realized.

U1 : 第1群
U2 : 第2群
U21 : 第21群
U22 : 第22群
SP : 開口絞り
1 : 撮影光学系
U1: First group U2: Second group U21: 21st group U22: 22nd group SP: Aperture stop 1: Shooting optical system

Claims (8)

物体側から順に、焦点調節時に固定の負の屈折力の第1群、無限遠物体から近距離物体に焦点調節する際に物体側に移動する正の屈折力の第2群から構成され、前記第2群は正の屈折力の第21群、開口絞り、正の屈折力の第22群で構成され、前記第21群と前記第22群が焦点調節時に互いに異なる移動量で物体側へ移動し、前記第1群の屈折力をφ1、前記第21群の屈折力をφ21、前記第1群の正レンズの屈折力の和をφ1pとするとき、
−2.80<φ21/φ1<−1.64
−2.09<φ1p/φ1<−1.
を満たすことを特徴とする単焦点レンズ。
In order from the object side, the first group of negative refractive power that is fixed at the time of focus adjustment, and the second group of positive refractive power that moves to the object side when focusing from an object at infinity to a short distance object, The second group is composed of a 21st group having a positive refractive power, an aperture stop, and a 22nd group having a positive refractive power, and the 21st group and the 22nd group move toward the object side with different amounts of movement during focus adjustment. When the refractive power of the first group is φ1, the refractive power of the 21st group is φ21, and the total refractive power of the positive lenses of the first group is φ1p,
-2.80 <φ21 / φ1 <−1.64
-2.09 <φ1p / φ1 <−1. 5 0
A single-focus lens characterized by satisfying
前記第22群の屈折力をφ22とするとき、  When the refractive power of the 22nd group is φ22,
−4.80<φ22/φ1<−2.30      -4.80 <φ22 / φ1 <-2.30
1.10<φ22/φ21<2.00        1.10 <φ22 / φ21 <2.00
を満たすことを特徴とする請求項1に記載の単焦点レンズ。The single focus lens according to claim 1, wherein:
物体側から順に、焦点調節時に固定の負の屈折力の第1群、無限遠物体から近距離物体に焦点調節する際に物体側に移動する正の屈折力の第2群から構成され、前記第2群は正の屈折力の第21群、開口絞り、正の屈折力の第22群で構成され、前記第21群と前記第22群が焦点調節時に互いに異なる移動量で物体側へ移動し、前記第1群の屈折力をφ1、前記第21群の屈折力をφ21、前記第22群の屈折力をφ22、前記第1群の正レンズの屈折力の和をφ1pとするとき、  In order from the object side, the first group of negative refractive power that is fixed at the time of focus adjustment, and the second group of positive refractive power that moves to the object side when focusing from an object at infinity to a short distance object, The second group is composed of a 21st group having a positive refractive power, an aperture stop, and a 22nd group having a positive refractive power, and the 21st group and the 22nd group move toward the object side with different amounts of movement during focus adjustment. When the refractive power of the first group is φ1, the refractive power of the 21st group is φ21, the refractive power of the 22nd group is φ22, and the sum of the refractive powers of the positive lenses of the first group is φ1p,
−2.80<φ21/φ1<−1.64      -2.80 <φ21 / φ1 <−1.64
−2.09<φ1p/φ1<−1.20      -2.09 <φ1p / φ1 <−1.20
−4.80<φ22/φ1<−2.30      -4.80 <φ22 / φ1 <-2.30
1.10<φ22/φ21<2.00        1.10 <φ22 / φ21 <2.00
を満たすことを特徴とする単焦点レンズ。A single-focus lens characterized by satisfying
前記第1群は負レンズ2枚、正レンズ1枚で構成され、前記正レンズの物体側の面の曲率半径をR1、像側の面の曲率半径をR2とするとき、
−1.5<(R1+R2)/(R1−R2)<−0.3
を満たすことを特徴とする請求項1乃至3のいずれか1項に記載の単焦点レンズ。
The first group includes two negative lenses and one positive lens. When the radius of curvature of the object side surface of the positive lens is R1, and the radius of curvature of the image side surface is R2,
-1.5 <(R1 + R2) / (R1-R2) <-0.3
The single focus lens according to any one of claims 1 to 3, wherein:
前記第1群の正レンズの平均屈折率をN1p、平均アッべ数をν1pとするとき、
1.65<N1p<2.10
65<ν1p<23
を満たすことを特徴とする請求項1乃至のいずれか1項に記載の単焦点レンズ。
When the average refractive index of the positive lens in the first group is N1p and the average Abbe number is ν1p,
1.65 <N1p <2.10
65 <ν1p <23
Single focus lens according to any one of claims 1 to 4, characterized in that meet.
前記第1群の正レンズの少なくとも1つの凸面に周辺に向けて屈折力が弱くなる形状の非球面を有することを特徴とする請求項1乃至のいずれか1項に記載の単焦点レンズ。 It said at least one single focus lens according to any one of claims 1 to 5, characterized in that it has a non-spherical shape refractive power becomes weaker toward the periphery a convex of the first group of positive lenses. 前記第21群は像側から順に負レンズG21n、正レンズG21pを有し、前記正レンズG21p及び前記負レンズG21nの屈折力を各々φp、φn 、部分分散比を各々θp、θn 、屈折力を各々νp、νn、全系の焦点距離をfとするとき、
−2.45×10−3<(θp−θn)/(νp−νn)<−0.80×10−3
0.50<φp×f<1.50
−1.60<φn×f<−0.70
を満たすことを特徴とする請求項1乃至のいずれか1項に記載の単焦点レンズ。
The twenty-first group includes a negative lens G21n and a positive lens G21p in order from the image side. The positive lens G21p and the negative lens G21n have refractive powers of φp and φn, partial dispersion ratios of θp and θn, respectively. When νp, νn and the focal length of the whole system are f,
-2.45 × 10 −3 <(θp−θn) / (νp−νn) <− 0.80 × 10 −3
0.50 <φp × f <1.50
−1.60 <φn × f <−0.70
The single focus lens according to any one of claims 1 to 6 , wherein:
請求項1乃至のいずれか1項に記載の単焦点レンズと前記単焦点レンズによって形成された像を受光する固体撮像素子を有することを特徴とする撮像装置。 Imaging apparatus characterized by comprising a solid-state image sensor for receiving an image formed by the single-focus lens and the single focus lens according to any one of claims 1 to 7.
JP2013079713A 2013-04-05 2013-04-05 Optical system and imaging apparatus having the same Active JP6112945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013079713A JP6112945B2 (en) 2013-04-05 2013-04-05 Optical system and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013079713A JP6112945B2 (en) 2013-04-05 2013-04-05 Optical system and imaging apparatus having the same

Publications (2)

Publication Number Publication Date
JP2014202952A JP2014202952A (en) 2014-10-27
JP6112945B2 true JP6112945B2 (en) 2017-04-12

Family

ID=52353415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013079713A Active JP6112945B2 (en) 2013-04-05 2013-04-05 Optical system and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP6112945B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6570239B2 (en) 2014-11-19 2019-09-04 キヤノン株式会社 Optical system and optical apparatus having the same
JPWO2019229817A1 (en) * 2018-05-28 2021-05-13 株式会社ニコン Optical systems, optical instruments, and methods of manufacturing optical systems
CN110609380B (en) * 2019-09-12 2022-02-15 浙江大华技术股份有限公司 Lens

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130743A (en) * 1997-07-11 1999-02-02 Canon Inc Retrofocus type lens

Also Published As

Publication number Publication date
JP2014202952A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
US10215972B2 (en) Optical system and image pickup apparatus including the same
WO2010090281A1 (en) Macro lens
JP5893423B2 (en) Zoom lens and imaging apparatus having the same
US20150146085A1 (en) Optical system and image pickup apparatus including the same
JP2017191160A (en) Optical system and imaging apparatus having the same
JP2016200743A (en) Optical system and imaging apparatus including the same
JP2017223755A (en) Imaging optical system
JP2019008148A (en) Converter lens and camera device having the same
WO2013031188A1 (en) Zoom lens and imaging device
JP6253379B2 (en) Optical system and imaging apparatus having the same
JP5151635B2 (en) PHOTOGRAPHIC LENS, OPTICAL DEVICE EQUIPPED WITH THIS PHOTOGRAPHIC LENS, AND IMAGE-FORMING METHOD
JP5127352B2 (en) Zoom lens and imaging apparatus having the same
JP5615141B2 (en) Zoom lens
WO2013031180A1 (en) Zoom lens and imaging device
JP6164894B2 (en) Zoom lens and imaging apparatus having the same
JP5136776B2 (en) PHOTOGRAPHIC LENS, OPTICAL DEVICE EQUIPPED WITH THIS PHOTOGRAPHIC LENS, AND IMAGE-FORMING METHOD
JP5656684B2 (en) Zoom lens and imaging apparatus having the same
JP2018072367A (en) Zoom lens and imaging apparatus having the same
JP6112945B2 (en) Optical system and imaging apparatus having the same
JP2014202806A5 (en)
WO2013031185A1 (en) Zoom lens and imaging device
US10578843B2 (en) Image pickup apparatus, rear attachment lens, and image pickup system including the same
JP2012123155A (en) Optical system
WO2013031184A1 (en) Zoom lens and imaging device
WO2013031183A1 (en) Zoom lens and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170314

R151 Written notification of patent or utility model registration

Ref document number: 6112945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151